EM8671 [EXCELLIANCE]

HV Start-up Green-mode PWM Controller with Brown-Out Protection;
EM8671
型号: EM8671
厂家: Excelliance MOS    Excelliance MOS
描述:

HV Start-up Green-mode PWM Controller with Brown-Out Protection

文件: 总13页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM8671/A  
HV Start-up Green-mode PWM Controller with Brown-Out Protection  
General Description  
Features  
EM8671/A is a high performance, low cost, HV  
Start-up, current mode PWM controller with green  
mode power saving. The EM8671/A integrates  
functions of Soft Start(SS), Under Voltage  
Lockout(UVLO), Leading Edge Blanking(LEB),  
internal Over Temperature Protection(OTP),  
internal slope compensation. The EM8671/A also  
features more protection like Over Load  
Protection(OLP) and Over Voltage Protection(OVP)  
to prevent circuit damage occurred under  
abnormal conditions. The EM8671/A also has line  
under-voltage protection (Brown-out Protection).  
700V High Voltage Start up Circuit  
Current Mode Control  
Soft Start Function  
Built-in Slope Compensation  
Internal Leading-edge Blanking  
Brown in/out Protection  
Over Voltage Protection (OVP) on VCC pin  
Over Load Protection (OLP)  
Cycle-by-cycle Current Limit  
Feedback Open Protection  
Internal Over Temperature Protection (OTP)  
Constant Output Power Limit (Full AC Input  
Range)  
Excellent EMI performance  
Ordering Information  
Part Number Package  
Deep burst CS level  
Applications  
EM8671G  
EM8671G7  
EM8671AG  
EM8671AG7  
SOP-8  
SOP-7  
SOP-8  
SOP-7  
0.3V  
0.3V  
0.1V  
0.1V  
LCD Monitor Power Supply  
Open-Frame SMPS  
Typical Application Circuit  
2013/01/30  
REV.A.3  
1
EM8671/A  
Pin Configuration  
Pin Assignment  
Pin Number  
Pin Name  
Pin Function  
SOP-8  
4
SOP-7  
4
Ground.  
GND  
Voltage feedback pin. By connecting a photo-coupler to close the control loop and  
achieve the regulation.  
COMP  
2
2
Line voltage detection. Use for brown-out protection, and Line OCP compensation.  
Senses the primary current.  
BNO  
CS  
1
3
6
5
7
1
3
6
5
--  
IC Power Supply Pin.  
VCC  
GATE  
NC  
Gate drive output to drive the external MOSFET.  
No Internal Connection.  
For start-up, this pin is pulled high to the line input or the bulk capacitor via  
resistors.  
HV  
8
7
2013/01/30  
REV.A.3  
2
EM8671/A  
Function Block Diagram  
HV  
VCC  
BꢀO  
BꢀO  
0.9V  
OVP  
Control  
Logic  
OTP  
OLP  
26V  
UVLO  
Vbias  
16V / 10V  
Green  
mode  
COMP  
Oscillator  
Max duty  
2R  
R
GATE  
Soft  
start  
S
Q
Soft  
Driver  
-
-
PG  
R
Line compensation  
OCP  
+
PWM  
comparator  
LEB  
CS  
Slope  
Comp  
GꢀD  
2013/01/30  
3
REV.A.3  
EM8671/A  
Absolute Maximum Ratings  
(Note1)  
Supply Input Voltage, VCC ------------------------------------------------------------------------ 30V  
Gate pin------------------------------------------------------------------------------------------------ 30V  
HV pin--------------------------------------------------------------------------------------------------- 700V  
BNO, COMP, CS Pin --------------------------------------------------------------------------------- - 0.3V to 6.5V  
Power Dissipation, PD @ TA = 25  
SOP 8 --------------------------------------------------------------------------------------------------- 0.4W  
SOP7 --------------------------------------------------------------------------------------------------- 0.4W  
Package Thermal Resistance  
SOP 8 -------------------------------------------------------------------------------------------------- 160/W  
SOP 7 -------------------------------------------------------------------------------------------------- 160/W  
Junction Temperature ----------------------------------------------------------------------------- 150℃  
Lead Temperature (Soldering, 10 sec.) -------------------------------------------------------- 260℃  
Storage Temperature Range --------------------------------------------------------------------- -65to 150℃  
ESD Susceptibility  
(Note2)  
HBM (Human Body Mode) ------------------------------------------------------------------------ 3KV  
MM (Machine Mode) -------------------------------------------------------------------------------- 250V  
Gate Output Current---------------------------------------------------------------------------------- 500mA  
Recommended Operating Conditions  
(Note3)  
Supply Input Voltage, VCC ----------------------------------------------------------------------- 11V to 25V  
VCC Capacitor ---------------------------------------------------------------------------------------- 4.7uF to 47uF  
Junction Temperature Range--------------------------------------------------------------------- -40to 125℃  
Ambient Temperature Range-------------------------------------------------------------------- -40to 85℃  
2013/01/30  
REV.A.3  
4
EM8671/A  
Electrical Characteristics  
(VCC=16V, TA=25, unless otherwise specified)  
Parameter  
VCC Section  
Symbol  
Test Conditions  
VCC=VTH-ON-0.5V  
VCC=15V, VCOMP=0V,  
Min  
Typ  
Max  
Units  
VCC OVP Protect voltage  
Start up current  
VOVP  
25  
-
27  
45  
16  
10  
1
29  
65  
17  
11  
2
V
uA  
V
ISTART  
VCC On Threshold Voltage  
VCC Off Threshold Voltage  
Operating Supply Current 1  
VTH-ON  
VTH-OFF  
ICC-OP1  
15  
9
V
-
mA  
VCC=15V, VCOMP=3V,  
CGATE=1nF  
Operating Supply Current 2  
Operating Supply Current 3  
ICC-OP2  
ICC-OP3  
-
-
2.5  
0.5  
-
-
mA  
mA  
VCC=15V,  
Protection triggerred  
Gate Section  
Rising Time  
Falling Time  
HV Section  
TR  
TF  
CL = 1nF  
CL = 1nF  
-
-
100  
30  
160  
60  
nS  
nS  
VCC=VTH-ON-0.5V  
VHV=50V  
HV Current Source  
IHV  
1
1
mA  
uA  
VCC=VTH-ON+0.5V  
VHV=700V  
Off-State Leakage  
Ileakage  
20  
Current-Sense Section  
VBNO=1V  
VBNO=3V  
0.8  
0.65  
200  
0.85  
0.7  
0.9  
0.75  
400  
V
V
Maximum Internal Current  
Setpoint  
VCSLim  
Leading Edge Blanking Time  
Propagation Delay Time  
Soft-Start Period  
TLEB  
TPD  
TSS  
300  
100  
2.5  
nS  
nS  
mS  
Internal Oscillator  
Oscillation Frequency  
Maximum Duty  
fOSC  
60  
65  
75  
22  
70  
KHz  
%
Dmax  
Green mode minimum frequency  
Frequency variation vs. VCC  
KHz  
%
VCC=11V to 25V  
-20to 105℃  
(Note4)  
5
5
Frequency variation vs.  
Temperature  
%
COMP Section  
COMP short to GND current  
Open loop COMP voltage  
ICOMP  
VCOMP=0V  
150  
250  
5.2  
350  
uA  
V
VCOMP  
COMP pin open  
COMP voltage to CS voltage  
Attenuation  
Av  
1 / 2.5  
1 / 3  
1 / 3.5  
V/V  
2013/01/30  
REV.A.3  
5
EM8671/A  
Green mode COMP Threshold  
Voltage  
VGreen  
1.8  
1.3  
V
COMP voltage for zero duty  
VCOMP-ZD  
V
BNO Section  
PWM Turn On Voltage  
VBNO-ON  
0.81  
0.86  
0.91  
V
V
PWM Turn Off Voltage  
VBNO_OFF  
VBNO-ON – 0.1  
Protection Section  
Open loop protection delay time Tdelay  
56  
4.0  
140  
mS  
V
Open loop protection COMP Trip  
voltage  
VOLP  
Internal Temperature Shutdown TSD  
Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution is recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. Guaranteed by design.  
2013/01/30  
REV.A.3  
6
EM8671/A  
Typical Operating Characteristics  
Temperature()  
Temperature()  
Fig1. UVLO (on) vs. Temperature  
Fig2. UVLO (off) vs. Temperature  
Temperature()  
Temperature()  
Fig3. Frequency vs. Temperature.  
Fig4. Green Mode Frequency vs. Temperature.  
Vbno = 1V  
Vbno = 3V  
Temperature()  
Temperature()  
Fig5. VCSLIM vs. Temperature.  
Fig6. Start Up Current vs. Temperature.  
2013/01/30  
REV.A.3  
7
EM8671/A  
Temperature()  
Temperature()  
Fig7. OVP vs. Temperature.  
Fig8. VOLP-Trip vs. Temperature.  
Temperature()  
Temperature()  
Fig9. Comp Open Voltage vs. Temperature.  
Fig10. Max Duty vs Temperature.  
VBNO  
VCC  
Fig11. VCSLIM vs. VBNO  
.
Fig12. Frequency vs. VCC.  
2013/01/30  
8
REV.A.3  
EM8671/A  
Functional Description  
UVLO  
AC  
An UVLO comparator is implemented in EM8671/A  
to monitor the VCC pin voltage. As shown in Fig. 13,  
a hysteresis is built in to prevent the shutdown  
from the voltage drop during startup. The UVLO  
(on) and UVLO (off) are setting at 16V and 10V,  
respectively.  
INPUT  
CVCC  
GATE  
VCC  
HV  
EM8671/A  
CS  
GꢀD  
Fig. 14  
Switching Frequency  
To guarantee accurate frequency, EM8671/A is  
trimmed to 7% tolerance. The internal oscillator  
also generates slope compensation, 75% maximum  
duty limit.  
Fig. 13  
Leading Edge Blanking (LEB)  
Each time the power MOSFET turn on, the MOSFET  
COSS, secondary rectifier reverse recovery current  
and gate driver sourcing current comprise the  
current spike. To avoid premature termination of  
the switching pulse, a leading edge blanking time is  
built in. During the blanking time (300nS), the  
PWM comparator is off and cannot switch off the  
gate driver. It is recommended to adopt a smaller  
R-C filter (as show ad Fig.15) for high power  
application to avoid the total spike width over  
300nS leading edge blanking time.  
Startup Operation  
Fig. 14 shows a typical HV startup circuit and  
transformer auxiliary winding for the EM8671/A  
application, it consumes only startup current  
(typical 45uA) and the startup current drawn from  
the HV pin to charge the VCC capacitor (CVCC).  
When VCC reaches UVLO (on) voltage, EM8671/A  
begins switching and the HV startup current  
switches off. Then, the power required is supplied  
from the transformer auxiliary winding. The  
hysteresis of UVLO (off) provides more holdup time,  
which allows using a small capacitor for VCC.  
2013/01/30  
REV.A.3  
9
EM8671/A  
conserves the energy.  
The EM8671/A adjusts the switching mode  
according to the load condition, the COMP pin  
voltage drops below Deep Burst mode in-threshold  
level (typical 1.3V). Device enters Deep Burst Mode  
Control. The Gate drive output remains at off state  
to minimize the switching loss and reduces the  
standby power consumption. And when the COMP  
pin voltage exceed the burst mode on threshold  
level (typical 1.4V). The Gate drive output starts  
active. The COMP pin voltage immediately  
increases if there is a high load. When the COMP  
pin voltage exceed the Deep Burst mode  
out-threshold level (typical 1.5V), the device goes  
to normal mode. During the Deep Burst mode, the  
CS level is controlled to 0.3V for EM8671. (0.1V for  
EM8671A) Fig 16 shows the signals of Deep Burst  
mode.  
Fig. 15  
Soft Start  
The EM8671/A has an internal soft-start circuit that  
increases cycle-by-cycle current limit comparator  
inverting input voltage slowly after it starts. The  
typical soft-start time is 2mS. The pulse width to  
the power MOSFET is progressively increased to  
establish the correct working conditions for  
transformers, rectifier diodes and capacitors. The  
voltage on the output capacitors is progressively  
increased with the intention of smoothly  
establishing the required output voltage. It also  
helps prevent transformer saturation and reduces  
the stress on the secondary diode during startup.  
VCC  
COMP  
1.5V  
1.4V  
1.3V  
Vcs  
0.3 / 0.1V  
Deep Burst  
Slope compensation  
In the conventional application, the problem of the  
stability is a critical issue for current mode  
controlling, when it operates in high than 50% of  
the duty cycle. The EM8671/A built in saw-tooth  
slope compensation. So it requires no extra  
component.  
Burst  
Fig. 16  
Protection  
The EM8671/A provides many protection functions  
that intend to protect system from being damaged.  
All the protection functions are listed as below:  
Deep Burst Mode Operation  
At no load or light load condition, majority of the  
power dissipation in switching power supply is  
form switching loss on the power MOSFET, the  
core loss of the transformer and the loss on the  
snubber. The magnitude of power loss is in  
proportion to the number of switching events  
within a fixed period of time. Reducing switching  
events leads reduction on the power loss and  
Cycle-by-cycle current limit  
The EM8671/A has over-current protection  
thresholds. It is for cycle-by-cycle current limit,  
which turns off MOSFET for the remainder of  
the switching cycle when the sensing voltage of  
MOSFET current reaches the threshold.  
2013/01/30  
REV.A.3  
10  
EM8671/A  
VCC  
OVP level  
Over-load / Open-loop Protection (OLP)  
When feedback loop is open, as shown in Fig. 17,  
no current flows through the opto-coupler  
transistor, the EM8671/A pulls up the COMP pin  
voltage to 5.2V.  
UVLO(on)  
UVLO(off)  
When the COMP pin voltage is above 4.0V  
longer than 56mS, OLP is triggered. This  
protection is also triggered when the SMPS  
output drops below the normal value longer  
than 56mS due to the overload condition.  
t
Gate out  
No Switch out  
t
Fig. 18  
Internal Over-Temperature Protection (OTP)  
Internal 140comparator will provide over  
temperature protection (OTP). OTP will not  
shutdown system. It stops the system from  
switching until the VCC is below the UVLO (off)  
threshold voltage, the system will hiccup.  
Fig. 17  
Over Voltage Protection (OVP) on VCC  
The VGS ratings of the HV power MOSFETs are  
often limited up to max 30V. To prevent the VGS  
from the fault condition, the EM8671/A are  
implemented a Over-Voltage-Protection (OVP)  
on VCC. Whenever the VCC voltage is high than  
the OVP threshold voltage (28V), the output  
gate drive will be shutdown to shop the  
switching of the power MOSFET until the next  
UVLO (on).  
The Over-Voltage-Protection on VCC function in  
EM8671/A is an auto-restart type protection. If  
the OVP condition is not released, the VCC will  
tripped the OVP level again and re-shutdown  
the gate output. The VCC is working as a hiccup  
mode as shown in Fig. 18. On the other hand, if  
the OVP condition is removed, the VCC level will  
go back to normal level and the output will  
automatically return to the normal operation.  
2013/01/30  
REV.A.3  
11  
EM8671/A  
Ordering & Marking Information  
Device Name: EM8671G for SOP-8  
EM  
EM8671G: Device Name  
8671  
ABCDEFG: Date Code  
ABCDEFG  
Device Name: EM8671G7 for SOP-7  
EM  
8671  
ABCDEFG  
EM8671G7: Device Name  
ABCDEFG: Date Code  
Device Name: EM8671AG for SOP-8  
EM  
8671A  
ABCDEFG  
EM8671AG: Device Name  
ABCDEFG: Date Code  
Device Name: EM8671AG7 for SOP-7  
EM  
8671A  
ABCDEFG  
EM8671AG7: Device Name  
ABCDEFG: Date Code  
2013/01/30  
12  
REV.A.3  
EM8671/A  
Outline Drawing  
SOP-8  
J
F
I
K
G
H
I
D
E
B
C
A
Dimension in mm  
Dimension  
Min.  
A
4.70  
B
3.70  
C
5.80  
D
0.33  
E
F
1.20  
G
0.08  
H
0.40  
I
0.19  
J
0.25  
K
0  
Typ.  
Max.  
1.27  
5.10  
4.10  
6.20  
0.51  
1.62  
0.28  
0.83  
0.26  
0.50  
8∘  
SOP-7  
J
F
I
I
K
G
H
D
E
B
C
A
Dimension in mm  
Dimension  
A
B
C
D
E
F
G
H
I
J
K
Min.  
4.70  
3.70  
5.80  
0.33  
1.20  
0.08  
0.40  
0.19  
0.25  
0∘  
Typ.  
1.27  
Max.  
5.10  
4.10  
6.20  
0.51  
1.62  
0.28  
0.83  
0.26  
0.50  
8∘  
2013/01/30  
13  
REV.A.3  

相关型号:

EM8671A

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8671AG

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8671AG7

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8671G

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8671G7

HV Start-up Green-mode PWM Controller with Brown-Out Protection
EXCELLIANCE

EM8672

HV Start-up PWM Controller with Over Temperature Protection
EXCELLIANCE

EM8672G

HV Start-up PWM Controller with Over Temperature Protection
EXCELLIANCE

EM8672G7

HV Start-up PWM Controller with Over Temperature Protection
EXCELLIANCE

EM8900

ULTRA-LOW VOLTAGE DCDC BOOST CONVERTER FOR THERMAL ELECTRICAL GENERATORS
EMMICRO

EM8900-V001-DF10B+

ULTRA-LOW VOLTAGE DCDC BOOST CONVERTER FOR THERMAL ELECTRICAL GENERATORS
EMMICRO

EM8931

Cost Effective PWM Forward Controller
EXCELLIANCE

EM8931J

Cost Effective PWM Forward Controller
EXCELLIANCE