FAN4822 [FAIRCHILD]

ZVS Average Current PFC Controller; ZVS平均电流PFC控制器
FAN4822
型号: FAN4822
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

ZVS Average Current PFC Controller
ZVS平均电流PFC控制器

功率因数校正 控制器
文件: 总10页 (文件大小:74K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FAN4 8 2 2  
ZVS Ave ra g e Cu rre n t P FC Co n t ro lle r  
Features  
General Description  
• Average current sensing, continuous boost, leading edge  
PFC for low total harmonic distortion and near unity  
power factor  
• Built-in ZVS switch control with fast response for high  
efficiency at high power levels  
• Average line voltage compensation with brownout control  
• Current fed gain modulator improves noise immunity and  
provides universal input operation  
• Overvoltage comparator eliminates output “runaway” due  
to load removal  
The FAN4822 is a PFC controller designed specifically for  
high power applications. The controller contains all of the  
functions necessary to implement an average current boost  
PFC converter, along with a Zero Voltage Switch (ZVS) con-  
troller to reduce diode recovery and MOSFET turn-on  
losses.  
The average current boost PFC circuit provides high power  
factor (>98%) and low Total Harmonic Distortion (THD).  
Built-in safety features include undervoltage lockout, over-  
voltage protection, peak current limiting, and input voltage  
brownout protection.  
• UVLO, current limit, and soft-start  
• Precision 1.3% reference  
The ZVS control section drives an external ZVS MOSFET  
which, combined with a diode and inductor, soft switches the  
boost regulator. This technique reduces diode reverse recov-  
ery and MOSFET switching losses to reduce EMI and maxi-  
mize efficiency.  
Block Diagram  
1
8
2
VEAO  
VEA  
GND  
IEAO  
FB  
VCC  
14  
OVP  
VCCZ  
13.5V  
12  
+
FB  
+
2.5V  
IAC  
R+  
IEA  
2.7V  
+
+
GAIN  
4
5
3
MODULATOR  
S
R
Q
VRMS  
I LIMIT  
R–  
+
1V  
ISENSE  
PFC OUT  
11  
RTCT  
REF  
6
OSC  
S
R
Q
VCCZ  
REF  
ZVS OUT  
10  
13  
7
S
R
+
ZV SENSE  
–  
PWR GND  
Q
9
REV. 1.0.1 8/10/01  
FAN4822  
PRODUCT SPECIFICATION  
Pin Configuration  
FAN4822  
14-Pin DIP (P14)  
FAN4822  
16-Pin SOIC (S16W)  
VEAO  
IEAO  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
FB  
VEAO  
IEAO  
ISENSE  
IAC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
FB  
REF  
REF  
ISENSE  
IAC  
VCC  
VCC  
PFC OUT  
ZVS OUT  
PWR GND  
GND  
PFC OUT  
ZVS OUT  
PWR GND  
GND  
VRMS  
VRMS  
RTCT  
RTC  
T
ZV SENSE  
8
ZV SENSE  
N/C  
N/C  
TOP VIEW  
TOP VIEW  
Pin Description (Pin numbers is parentheses are for 16-pin package)  
Pin  
1 (1)  
Name  
VEAO  
IEAO  
Function  
Transconductance voltage error amplifier output.  
Transconductance current error amplifier output.  
Current sense input to the PFC current limit comparator.  
PFC gain modulator reference input.  
2 (2)  
3 (3)  
I
SENSE  
4 (4)  
I
AC  
5 (5)  
V
RMS  
Input for RMS line voltage compensation.  
6 (6)  
R C  
T T  
Connection for oscillator frequency setting components.  
7 (7)  
ZV SENSE  
GND  
Input to the high speed zero voltage crossing comparator.  
Analog signal ground.  
8 (10)  
9 (11)  
10 (12)  
11 (13)  
12 (14)  
13 (15)  
14 (16)  
PWR GND  
ZVS OUT  
PFC OUT  
Return for the PFC and ZVS driver outputs.  
ZVS MOSFET driver output.  
PFC MOSFET driver output.  
V
CC  
Shunt-regulated supply voltage.  
REF  
FB  
Buffered output for the internal 7.5V reference.  
Transconductance voltage error amplifier input.  
Absolute Maximum Ratings  
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum rat-  
ings are stress ratings only and functional device operation is not implied.  
Parameter  
Min  
Max  
55  
Unit  
mA  
mA  
V
Shunt Regulator Current (ICC  
Peak Driver Output Current  
Analog Inputs  
)
±500  
7
0.3  
65  
Junction Temperature  
Storage Temperature Range  
150  
150  
150  
°C  
°C  
Lead Temperature (Soldering, 10 sec)  
°C  
Thermal Resistance (θJA)  
Plastic DIP  
Plastic SOIC  
80  
110  
°C/W  
°C/W  
2
REV. 1.0.1 8/10/01  
PRODUCT SPECIFICATION  
FAN4822  
Operating Conditions  
Temperature Range  
Min.  
Max.  
Units  
°C  
FAN4822IX  
40  
85  
Electrical Characteristics  
Unless otherwise specified, R = 52.3k, C = 470pF, T = Operating Temperature Range (Note 1)  
T
T
A
Parameter  
Voltage Error Amplifier  
Input Voltage Range  
Transconductance  
Conditions  
Min.  
Typ.  
Max.  
Units  
0
7
V
V
= V , VEAO = 3.75V  
INV  
50  
2.4  
60  
60  
70  
2.5  
75  
120  
2.6  
µ
NON-INV  
Feedback Reference Voltage V  
= V  
FB  
V
EAO  
Open Loop Gain  
dB  
dB  
V
PSRR  
V
3V < V  
CC  
< V  
CCZ  
0.5V  
75  
CCZ  
Output Low  
0.65  
6.7  
80  
80  
1
Output High  
6.0  
40  
40  
V
Source Current  
Sink Current  
V = ±0.5V, V  
IN  
= 6V  
µA  
OUT  
V = ±0.5V, V  
IN  
= 1.5V  
mA  
OUT  
Current Error Amplifier  
Input Voltage Range  
Transconductance  
Input Offset Voltage  
Open Loop Gain  
PSRR  
1.5  
2
V
V
V
= V , IEAO = 3.75V  
INV  
130  
195  
±3  
310  
±15  
µ
NON-INV  
mV  
dB  
dB  
V
60  
60  
75  
3V < V  
CC  
< V  
CCZ  
0.5V  
75  
CCZ  
Output Low  
0.65  
6.7  
80  
80  
1
Output High  
6.0  
30  
40  
V
Source Current  
Sink Current  
V = ±0.5V, V  
IN  
= 6V  
µA  
µA  
OUT  
V = ±0.5V, V  
IN  
= 1.5V  
OUT  
OVP Comparator  
Threshold Voltage  
Hysteresis  
2.6  
80  
2.7  
2.8  
V
120  
150  
mV  
I
Comparator  
SENSE  
Threshold Voltage  
Delay to Output  
0.8  
1.0  
1.15  
V
150  
300  
ns  
ZV Sense Comparator  
Propagation Delay  
Threshold Voltage  
Input Capacitance  
100mV Overdrive  
50  
ns  
V
7.35  
7.5  
6
7.65  
pF  
REV. 1.0.1 8/10/01  
3
FAN4822  
PRODUCT SPECIFICATION  
Electrical Characteristics (Continued)  
Unless otherwise specified, R = 52.3k, C = 470pF, T = Operating Temperature Range (Note 1)  
T
T
A
Parameter  
Gain Modulator  
Conditions  
Min.  
Typ.  
Max.  
Units  
Gain (Note 2)  
I
V
= 100mA, V  
= 0V  
= 0V,  
VRMS  
0.36  
1.20  
0.55  
0.14  
0.51  
1.72  
0.78  
0.20  
0.66  
2.24  
1.01  
0.26  
IAC  
FB  
I
= 50mA, V  
= 0V  
= 1.2V,  
= 1.8V,  
= 3.3V,  
IAC  
VRMS  
V
FB  
I
= 100µA, V  
IAC  
VRMS  
V
= 0V  
FB  
I
= 100µA, V  
IAC  
VRMS  
V
= 0V  
FB  
Bandwidth  
I
= 250µA  
10  
MHz  
V
IAC  
Output Voltage  
V
= 0V, V  
VRMS  
= 1.15V, I  
IAC  
=
0.72  
74  
0.8  
0.9  
87  
FB  
250µA  
Oscillator  
Initial Accuracy  
Voltage Stability  
Temperature Stability  
Total Variation  
T = 25°C  
80  
1
kHz  
%
A
V
3V < V  
CC  
< V 0.5V  
CCZ  
CCZ  
2
%
Line, temperature  
72  
89  
kHz  
V
Ramp Valley to Peak Voltage  
Dead Time  
2.5  
300  
7.5  
100  
4.5  
450  
9.5  
ns  
CT Discharge Current  
Reference  
mA  
Output Voltage  
T = 25°C, I  
REF  
= 1mA  
< V  
7.4  
7.5  
2
7.6  
10  
15  
V
mV  
mV  
%
A
Line Regulation  
V
CCZ  
3V < V  
CC  
0.5V  
CCZ  
Load Regulation  
1mA < I  
, < 20mA  
2
REF  
Temperature Stability  
Total Variation  
0.4  
Line, load, and temperature  
T = 125°C, 1000 hours  
7.35  
7.65  
25  
V
Long Term Stability  
Short Circuit Current  
PFC Comparator  
Minimum Duty Cycle  
Maximum Duty Cycle  
MOSFET Driver Outputs  
Output Low Voltage  
5
mV  
mA  
j
V
CC  
< V  
CCZ  
0.5V, V  
= 0V  
15  
40  
100  
REF  
V
V
> 6.7V  
< 1.2V  
0
%
%
IEAO  
90  
95  
IEAO  
I
I
I
I
I
= 20mA  
= 100mA  
= 10mA, V  
= 20mA  
0.4  
1.5  
1.0  
3.5  
1.5  
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
= 8V  
0.8  
V
CC  
Output High Voltage  
9.5  
9
10.3  
10.3  
40  
V
= 100mA  
V
Output Rise/Fall Time  
Undervoltage Lockout  
Threshold Voltage  
C = 1000pF  
L
ns  
V
V
V
V
V
CCZ  
0.9  
CCZ  
0.6  
CCZ  
0.2  
Hysteresis  
2.4  
2.9  
3.45  
4
REV. 1.0.1 8/10/01  
PRODUCT SPECIFICATION  
FAN4822  
Electrical Characteristics (Continued)  
Unless otherwise specified, R = 52.3k, C = 470pF, T = Operating Temperature Range (Note 1)  
T
T
A
Parameter  
Conditions  
Min.  
12.8  
12.4  
Typ.  
Max.  
Units  
Supply  
Shunt Voltage (VCCZ  
Load Regulation  
Total Variation  
Start-up Current  
Operating Current  
Notes  
)
I
=25mA  
13.5  
14.2  
±300  
14.6  
1.1  
V
CC  
25mA < I  
CC  
< 55mA  
±150  
mV  
V
Load and temperature  
V
V
< 12.3V  
0.7  
22  
mA  
mA  
CC  
CC  
= V  
CCZ  
0.5V  
28  
1. Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.  
1
2. Gain = K x 5.3 V; K = (I  
GAINMOD  
I ) x I  
OFFSET AC  
x (V  
EAO  
1.5).  
REV. 1.0.1 8/10/01  
5
FAN4822  
PRODUCT SPECIFICATION  
bined parasitic capacitance of D1 and Q1 (or optional ZVS  
capacitor CZVS). At t , the voltage across Q1 is sufficiently  
3
Functional Description  
Switching losses of wide input voltage range PFC boost con-  
verters increase dramatically as power levels increase above  
200 watts. The use of zero-voltage switching (ZVS) tech-  
niques improves the efficiency of high power PFCs by sig-  
nificantly reducing the turn-on losses of the boost MOSFET.  
ZVS is accomplished by using a second, smaller MOSFET,  
together with a storage element (inductor) to convert the  
turn-on losses of the boost MOSFET into useful output  
power.  
low that the controller turns Q2 off and Q1 on. Q1 then  
behaves as an ordinary PFC switch, storing energy in the  
boost inductor L1. The energy stored in L2 is completely dis-  
charged into the boost capacitor via D2 during the Q1 off-  
time and the value of L2 must be selected for discontinuous-  
mode operation.  
Component Selection  
Q1 Turn-Off  
Because the FAN4822 uses leading edge modulation, the  
PFC MOSFET (Q1) is always turned off at the end of each  
oscillator ramp cycle. For proper operation, the internal ZVS  
flip-flop must be reset every cycle during the oscillator dis-  
charge time. This is done by automatically resetting the ZVS  
comparator a short time after the drain voltage of the main Q  
has reached zero (refer to Figure 1 sense circuit). This sense  
circuit terminates the ZVS on time by sensing the main Q  
drain voltage reaching zero. It is then reset by way of a resis-  
tor pull-up to VCC (R6). The advantage of this circuit is that  
the ZVS comparator is not reset at the main Q turn off which  
occurs at the end of the clock cycle. This avoids the potential  
for improper reset of the internal ZVS flip-flop.  
The basic function of the FAN4822 is to provide a power  
factor corrected, regulated DC bus voltage using continuous,  
average current-mode control. Like Micro Linear’s family of  
PFC/PWM controllers, the FAN4822 employs leading-edge  
pulse width modulation to reduce system noise and permit  
frequency synchronization to a trailing edge PWM stage for  
the highest possible DC bus voltage bandwidth. For minimi-  
zation of switching losses, circuitry has been incorporated to  
control the switching of the ZVS FET.  
Theory of Operation  
Figure 1 shows a simplified schematic of the output and con-  
trol sections of a high power PFC circuit. Figure 2 shows the  
relationship of various waveforms in the circuit. Q1 func-  
tions as the main switching FET and Q2 provides the ZVS  
action. During each cycle, Q2 turns on before Q1, diverting  
the current in L1 away from D1 into L2. The current in L2  
increases linearly until at t it equals the current through L1.  
2
When these currents are equal, L1 ceases discharging current  
and is now charged through L2 and Q2. At time t , the drain  
2
voltage of Q1 begins to fall. The shape of the voltage wave-  
form is sinusoidal due to the interaction of L2 and the com-  
Another concern is the proper operation of the ZVS compar-  
ator during discontinuous mode operation (DCM), which  
will occur at the cusps of the rectified AC waveform and at  
light loads. Due to the nature of the voltage seen at the drain  
of the main boost Q during DCM operation, the ZVS com-  
parator can be fooled into forcing the ZVS Q on for the  
entire period. By adding a circuit which limits the maximum  
on time of the ZVS Q, this problem can be avoided. Q3 in  
Figure 1 provides this function.  
L1  
D1  
+
C1  
VREF  
13  
12  
VREF  
L2  
FAN4822  
CZVS(OPT)  
VC  
C
D2  
Q1  
R1  
C2  
R5  
R3  
R6  
PFC OUT  
11  
220  
22k  
22k  
Q2  
ZVS OUT  
10  
9
7
8
ZV SENSE  
GND  
C3  
33pF  
PWR GND  
C4  
330pF  
MAX ZVS  
ON TIME LIMIT  
R2  
R4  
51k  
Q3  
C5  
Figure 1. Simplified PFC/ZVS Schematic.  
6
REV. 1.0.1 8/10/01  
PRODUCT SPECIFICATION  
FAN4822  
Q1 Turn-On  
The turn-on event consists of the time it takes for the current  
through L2 to ramp to the L1 current plus the resonant event  
of L2 and the ZVS capacitor. The total event should occur in  
a minimum of 350–450ns, but can be longer at the risk of  
increasing the total harmonic distortion. Setting these times  
equal should minimize conducted and radiated emissions.  
A. SYSTEM  
CLOCK  
(INTERNAL)  
tQ1(OFF) = tIL2 + tRES = 400ns  
(1)  
B. RTCT  
Where IL2 is equal to IL1.  
The value of L2 is calculated to remain in discontinuous-  
mode:  
C. ZVS GATE (Q2)  
V
BUS × VRMS(MIN) × tIL2  
L2 = ----------------------------------------------------------------  
2 × POUT  
(2)  
The resonant event occurs in 1/4 of a full sinusoidal cycle.  
For example, when a 1/4 cycle occurs in 200ns, the fre-  
quency is 1.25MHz.  
D. VDS (Q2)  
1
1
fRES = ----------------------------------- = ---------------------  
4 × tRES  
2π  
(3)  
L2 × CZVS  
Rearranging and solving for L2:  
4 × tRES2  
π2 × CZVS  
L2 = --------------------------  
E. PFC GATE (Q1)  
(4)  
The resonant capacitor (CZVS) value is found by setting  
equations 2 and 4 equal to each other and solving for CZVS  
.
4 × tRES2  
× 2 × POUT  
CZVS = ----------------------------------------------------------------------------  
π2 × VBUS × VRMS(MIN) × tIL2  
F. VDS (Q1)  
(5)  
Application  
Figure 3 displays a typical application circuit for a 500W  
ZVS PFC supply. Full design details are covered in applica-  
tion note 33, FAN4822 Power Factor Correction With Zero  
Voltage Resonant Switching.  
G. IL2  
t1  
t3  
t2  
Figure 2. Timing Diagrams  
REV. 1.0.1 8/10/01  
7
FAN4822  
PRODUCT SPECIFICATION  
Figure 3. FAN4822 Schematic.  
8
REV. 1.0.1 8/10/01  
PRODUCT SPECIFICATION  
FAN4822  
Mechanical Dimensions inches (millimeters)  
Package: P14  
14-Pin PDIP  
0.740 - 0.760  
(18.79 - 19.31)  
14  
0.240 - 0.2600.295 - 0.325  
(6.09 - 6.61) (7.49 - 8.25)  
PIN 1 ID  
1
0.070 MIN  
(1.77 MIN)  
(4 PLACES)  
0.050 - 0.065 0.100 BSC  
(1.27 - 1.65) (2.54 BSC)  
0.015 MIN  
(0.38 MIN)  
0.170 MAX  
(4.32 MAX)  
SEATING PLANE  
0.008 - 0.012  
(0.20 - 0.31)  
0.016 - 0.022  
(0.40 - 0.56)  
0º - 15º  
0.125 MIN  
(3.18 MIN)  
Package: S16W  
16-Pin Wide SOIC  
0.400 - 0.414  
(10.16 - 10.52)  
16  
0.291 - 0.301 0.398 - 0.412  
(7.39 - 7.65) (10.11 - 10.47)  
PIN 1 ID  
1
0.024 - 0.034  
(0.61 - 0.86)  
(4 PLACES)  
0.050 BSC  
(1.27 BSC)  
0.095 - 0.107  
(2.41 - 2.72)  
0º - 8º  
0.012 - 0.020  
(0.30 - 0.51)  
0.022 - 0.042  
(0.56 - 1.07)  
0.009 - 0.013  
(0.22 - 0.33)  
0.090 - 0.094  
(2.28 - 2.39)  
0.005 - 0.013  
(0.13 - 0.33)  
SEATING PLANE  
REV. 1.0.1 8/10/01  
9
FAN4822  
PRODUCT SPECIFICATION  
Ordering Information  
Part Number  
PFC/PWM Frequency  
Package  
FAN4822IN  
FAN4822IM  
-40°C to 85°C  
-40°C to 85°C  
14-Pin PDIP (P14)  
16-Pin Wide SOIC (S16W)  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO  
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME  
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
8/10/01 0.0m 003  
Stock#DS30004803  
2001 Fairchild Semiconductor Corporation  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY