FAN5240QSC [FAIRCHILD]

Multi-Phase PWM Controller for AMD Mobile Athlon TM and Duron TM; 多相PWM控制器,用于AMD移动Athlon TM和Duron TM
FAN5240QSC
型号: FAN5240QSC
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Multi-Phase PWM Controller for AMD Mobile Athlon TM and Duron TM
多相PWM控制器,用于AMD移动Athlon TM和Duron TM

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 多相元件
文件: 总19页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FAN5240  
Multi-Phase PWM Controller for AMD Mobile  
TM  
TM  
Athlon and Duron  
Features  
General Description  
• CPU Core power: 0.925V to 2.0V output range  
• ±±1 reꢀerenꢁe preꢁcicon over temperature  
• Dynamcꢁ voltage iettcng wcth 5-bct DAC  
• 5V to 24V cnput voltage range  
The FAN5240 ci a icngle output 2-Phaie iynꢁhronoui buꢁk  
ꢁontroller to power AMD’i mobcle CPU ꢁore. The FAN5240  
cnꢁludei a 5-bct dcgctal-to-analog ꢁonverter (DAC) that  
adjuiti the ꢁore PWM output voltage ꢀrom 0.925VDC to  
2.0VDC, whcꢁh may be ꢁhanged durcng operatcon. Speꢁcal  
meaiurei are taken to allow the output to tranictcon wcth  
ꢁontrolled ilew rate to ꢁomply wcth AMD’i Power Now  
teꢁhnology. The FAN5240 cnꢁludei a preꢁcicon reꢀerenꢁe,  
and a proprcetary arꢁhcteꢁture wcth cntegrated ꢁompeniatcon  
provcdcng exꢁellent itatcꢁ and dynamcꢁ ꢁore voltage regula-  
tcon. The regulator cnꢁludei ipeꢁcal ꢁcrꢁuctry whcꢁh balanꢁei  
the 2 phaie ꢁurrenti ꢀor maxcmum eꢀfiꢁcenꢁy.  
• 2 phaie cnterleaved iwctꢁhcng  
• Aꢁtcve droop to reduꢁe output ꢁapaꢁctor icze  
• Dcꢀꢀerentcal remote voltage ienie  
• Hcgh eꢀfiꢁcenꢁy:  
>901 eꢀfiꢁcenꢁy over wcde load range  
>801 eꢀfiꢁcenꢁy at lcght load  
• Exꢁellent dynamcꢁ reiponie wcth Voltage Feed-Forward  
and Average Current Mode ꢁontrol  
• Dynamcꢁ duty ꢁyꢁle ꢁlamp mcncmczei cnduꢁtor ꢁurrent  
bucld up  
• Loiileii ꢁurrent ienicng on low-icde MOSFET or  
Preꢁcicon ꢁurrent ienicng uicng ienie reicitor  
• Fault proteꢁtconi: Over-voltage, Over-ꢁurrent, and  
Thermal Shut-down  
At lcght loadi, when the filter cnduꢁtor ꢁurrent beꢁomei  
dciꢁontcnuoui, the ꢁontroller operatei cn a hyiteretcꢁ mode,  
dramatcꢁally cmprovcng iyitem eꢀfiꢁcenꢁy. The hyiteretcꢁ  
mode oꢀ operatcon ꢁan be cnhcbcted by the FPWM ꢁontrol  
pcn.  
• Controli: Enable, Forꢁed PWM, Power Good, Power  
Good Delay  
• QSOP28, TSSOP28  
The FAN5240 monctori the output voltage and ciiuei a  
PGOOD (Power-Good) when ioꢀt itart ci ꢁompleted and the  
output ci cn regulatcon. A pcn ci provcded to add delay to  
PGOOD wcth an external ꢁapaꢁctor.  
Applications  
• AMD Mobcle AthlonCPU VCORE Regulator  
• AMD Mobcle DuronCPU VCORE Regulator  
A buclt-cn over-voltage proteꢁtcon (OVP) ꢀorꢁei the lower  
MOSFET on to prevent the output ꢀrom exꢁeedcng a iet  
voltage. The PWM ꢁontroller'i overꢁurrent ꢁcrꢁuctry monc-  
tori the ꢁonverter load by ienicng the voltage drop aꢁroii the  
lower MOSFET. The overꢁurrent threihold ci iet by an exter-  
nal reicitor. Iꢀ preꢁcicon overꢁurrent proteꢁtcon ci requcred,  
an optconal external ꢁurrent-ienie reicitor may be uied.  
REV. 1.1.7 8/29/02  
FAN5240  
PRODUCT SPECIFICATION  
Typical Application  
VIN (BATTERY)  
= 5 to 24V  
VIN  
21  
C1  
C7  
C2  
+5  
D2  
VCC  
BOOT1  
+5  
28  
25  
C3 C4  
Q1  
C8  
HDRV1  
24  
23  
SW1  
+5  
Phase 1  
Q2  
Q3  
R1  
LDRV1  
27  
R2  
PGOOD  
EN  
19  
14  
PGND1  
ISNS1  
26  
22  
R6  
VCORE  
VCORE +  
VCORE D  
C5  
18  
17  
C12 C13 C14  
C15 C16  
FPWM  
12  
VID0  
VID1  
VID2  
VID3  
VID4  
11  
10  
9
D1  
+5  
BOOT2  
3
VIN  
C9  
Q4  
HDRV2  
SW2  
8
C6  
Q6  
4
5
7
Phase 2  
SS  
C11  
20  
16  
Q5  
C10  
DELAY  
LDRV2  
1
R3  
R4  
ILIM  
PGND2  
ISNS2  
13  
15  
2
6
AGND  
Figure 1. AMD Mobile Athlon/Duron CPU Core Supply  
Table 1. BOM for Figure 1  
Description  
Capacitor 22µF, Ceramic X7R 25V  
Capacitor 1µF, Ceramic  
Qty  
2
Ref.  
Vendor  
Part Number  
C1, C2  
C3,C7,C9  
C4–C6, C8, C11, C12 Any  
TDK  
3
Any  
Capacitor 0.1µF, Ceramic  
Capacitor 0.22µF, Ceramic  
Capacitor 270µF, 2V, ESR 15mΩ  
10K, 5% Resistor  
6
1
C10  
Any  
4
C13–C16  
R1  
Panasonic EEFUE0D271R  
2
Any  
Any  
Any  
1K, 1% Resistor  
1
R2, R3, R6  
R4  
56.2K, 1% Resistor  
2
Schottky Diode 40V  
2
D1, D2  
L1, L2  
Fairchild  
MBR0540  
Inductor 1.6µH, 20A, 2.4mΩ  
N-Channel SO-8 MOSFET, 11mΩ  
N-Channel SO-8 SyncFET™ MOSFET, 6mΩ  
1
Panasonic ETQP6F0R8LFA  
1
Q1, Q4  
Q2, Q3, Q5, Q6  
Fairchild  
Fairchild  
FDS6694  
1
FDS6676S  
2
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
Pin Configuration  
LDRV2  
PGND2  
BOOT2  
HDRV2  
SW2  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
LDRV1  
PGND1  
BOOT1  
HDRV1  
SW1  
2
3
4
5
ISNS2  
VID4  
6
ISNS1  
VIN  
7
FAN5240  
VID3  
8
VID2  
SS  
9
VID1  
PGOOD  
VCORE+  
VCORED  
DELAY  
AGND  
10  
11  
12  
13  
14  
VID0  
FPWM  
ILIM  
EN  
QSOP-28 or TSSOP-28  
= 90°C/W  
θ
JA  
Pin Definitions  
Pin  
Number  
Pin  
Name  
Pin Function Description  
1
LDRV2 Low-Side Drive. The low-side (lower) MOSFET driver output.  
27  
LDRV1  
2
PGND2 Power Ground. The return for the low-side MOSFET driver.  
26  
PGND1  
3
BOOT2 BOOT. The positive supply for the upper MOSFET driver. Connect as shown in Figure 1.  
25  
BOOT1  
4
HDRV2 High-Side Drive. The high-side (upper) MOSFET driver output.  
24  
HDRV1  
5
23  
SW2  
SW1  
Switching node. The return for the high-side MOSFET driver.  
6
22  
ISNS2  
ISNS1  
Current Sense input. Monitors the voltage drop across the lower MOSFET or external  
sense resistor for current feedback.  
7 - 11  
VID4 -  
VID0  
Voltage Identification Code. Input to VID DAC. Sets the output voltage according to the  
codes set as defined in Table 2. These inputs have 1µA internal pull-up.  
12  
FPWM  
Forced PWM mode. When logic high, inhibits the chip from entering hysteretic operating  
mode. If tied low, hysteretic mode will be allowed.  
13  
14  
ILIM  
EN  
Current Limit. A resistor from this pin to GND sets the current limit.  
ENABLE. This pin enables IC operation when either left open, or pulled up to VCC.  
Toggling EN will also reset the chip after a latched fault condition.  
15  
16  
AGND  
Analog Ground. This is the signal ground reference for the IC. All voltage levels are  
measured with respect to this pin.  
DELAY Power Good / Over-Current Delay. A capacitor to GND on this pin delays the PGOOD  
from going high as well delaying the over-current shutdown.  
18  
17  
VCORE+ VCORE Output Sense. Differential sensing of the output voltage. Used for regulation as  
VCOREwell as PGOOD, under-voltage and over-voltage protection and monitoring. A resistor in  
series with this VCORE+ sets the output voltage droop.  
19  
PGOOD Power Good Flag. An open-drain output that will pull LOW when the core output below  
825mV. PGOOD delays its low to high transition for a time determined by CDELAY when  
VCORE rises above 875mV.  
REV. 1.1.7 8/29/02  
3
FAN5240  
PRODUCT SPECIFICATION  
Pin Denitions (continued)  
Pin  
Number  
Pin  
Name  
Pin Function Description  
20  
SS  
Soft Start. A capacitor from this pin to GND programs the slew rate of the converter during  
initialization as well as in operation. This pin is used as the reference against which the  
output is compared. During initialization, this pin is charged with a 25µA current source.  
Once this pin reaches 0.5V, its function changes, and it assumes the value of the voltage  
as set by the VID programming. The current driving this pin is then limited to 500µA, that  
together with C sets a controlled slew rate for VID code changes.  
SS  
21  
28  
VIN  
Input voltage from battery. This voltage is used by the oscillator for feed-forward  
compensation of input voltage variation.  
VCC  
VCC. This pin powers the chip. The IC starts to operate when voltage on this pin exceeds  
4.6V (UVLO rising) and shuts down when it drops below 4.3V (UVLO falling).  
Absolute Maximum Ratings  
Absolute maximum ratings are the values beyond which the device may be damaged or have its useful life  
impaired. Functional operation under these conditions is not implied.  
Parameter  
Min.  
Typ.  
Max.  
6.5  
Units  
V
VCC Supply Voltage:  
VIN  
27  
V
BOOT, SW, HDRV Pins  
BOOT to SW  
All Other Pins  
33  
V
6.5  
V
0.3  
10  
65  
VCC+0.3  
150  
V
Junction Temperature (T )  
J
°C  
°C  
°C  
Storage Temperature  
150  
Lead Soldering Temperature, 10 seconds  
300  
Recommended Operating Conditions  
Parameter  
Supply Voltage VCC  
Supply Voltage VIN  
Conditions  
Min.  
4.75  
6
Typ.  
Max.  
Units  
V
5
5.25  
24  
V
Ambient Temperature (T )  
20  
85  
°C  
A
4
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
Electrical Specications  
(VCC = 5V, VIN = 6V24V, and T = recommended operating ambient temperature range using circuit of Figure 1,  
A
unless otherwise noted.)  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
Power Supplies  
VCC Current  
Operating, C = 10pF  
L
2
10  
mA  
µA  
µA  
µA  
V
Shut-down (EN=0)  
Operating  
1
VIN Current  
25  
Shut-down (EN=0)  
Rising VCC  
1
UVLO Threshold  
4.3  
3.8  
4.45  
3.95  
4.6  
4.10  
Falling VCC  
V
Regulator / Control Functions  
Output voltage  
per Table 2  
0.925  
2.00  
V
dB  
MHz  
V/µS  
µA  
V
Error Amplifier Gain  
Error Amplifier GBW  
Error Amplifier Slew Rate  
VCORE+ Input Current  
ILIM Voltage  
86  
2.7  
1
25  
30  
35  
R
C
= 30KΩ  
0.89  
0.91  
ILIM  
ILIM T  
HOLDOFF  
= 22nF  
1.16  
2.35  
2
mS  
V
DELAY  
Over-voltage Threshold  
Over-voltage Protection delay  
EN, input threshold  
2.2  
2
2.5  
0.8  
5
µS  
V
Logic LOW  
Logic HIGH  
V
Phase to Phase current mismatch  
IC contribution only  
%
Guaranteed by design  
Over-Temperature Shut-down  
Over-Temperature Hysteresis  
Output Drivers (note 1)  
150  
25  
°C  
°C  
HDRV Output Resistance  
Sourcing  
Sinking  
3.8  
1.6  
3.8  
0.8  
5
3
LDRV Output Resistance  
Sourcing  
Sinking  
5
1.5  
Oscillator  
Frequency  
255  
300  
2
345  
KHz  
V
Ramp Amplitude, pkpk  
Ramp Offset  
Ramp Gain  
VIN = 16V  
0.5  
125  
V
RampAmplitude  
----------------------------------------------  
VIN  
mV/V  
Reference, DAC and Soft-Start  
VID input threshold  
Logic LOW  
Logic HIGH  
to VCC  
0.8  
V
V
2.0  
VID pull-up current  
1
µA  
%
DAC output accuracy  
1  
20  
1
Soft Start Charging current (I  
)
SS  
V
V
< 90% of Programmed output  
> 90% of Programmed output  
27  
34  
µA  
µA  
SS  
350  
500  
650  
SS  
Note 1: Guaranteed by slew rate testing.  
REV. 1.1.7 8/29/02  
5
FAN5240  
PRODUCT SPECIFICATION  
Electrical Specications (continued)  
Parameter  
PGOOD  
Conditions  
Min.  
Typ.  
Max.  
Units  
VCORE Lower Threshold  
Falling Edge  
Rising Edge  
800  
850  
825  
875  
12  
850  
900  
mV  
mV  
mS  
V
PGOOD Output Delay  
PGOOD Output Low  
Leakage Current  
Low to High, CDELAY = 22nF  
IPGOOD = 4mA  
0.5  
1
VPULLUP = 5V  
µA  
5V  
VDD  
CBOOT  
BOOT  
EN  
SS  
VIN  
Q1  
POR/UVLO  
HYST  
HDRV  
SW  
HYST  
VCORE  
L OUT  
+
VOUT'  
DAC  
Soft Start &  
OVP  
Q2  
COUT  
FPWM  
VDD  
PGOOD  
LDRV  
Q
VIN  
PWM  
PGND  
OSC  
RAMP CLK  
S
R
S/H  
PWM/HYST  
PWM  
EA1  
DUTY  
CYCLE  
CLAMP  
RSENSE1  
ILIM  
det.  
MODE  
ISNS1  
ISNS2  
A
CURRENT  
PROCESSING  
RSENSE2  
ISNS1-ISNS2  
ISNS1+ISNS2  
5
ISNS1 ISNS2  
A2  
VCORE+  
A1  
VOUT'  
30mA  
ILIM  
B
VCORE-  
TO PH 2  
MODULATOR  
ISNS2-ISNS1  
1K  
R6  
Figure 2. IC Block Diagram  
6
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
Output Voltage Programming  
Circuit Description  
The output voltage oꢀ the ꢁonverter ci programmed by an  
cnternal DAC cn dciꢁrete itepi oꢀ 25mV ꢀrom 0.925V to  
±.300V and then cn 50mV itepi ꢀrom ±.300V to 2.00V:  
Overview  
The FAN5240 ci a 2-phaie, icngle output power management  
IC, whcꢁh iupplcei the low-voltage, hcgh-ꢁurrent power to  
modern proꢁeiiori ꢀor notebook PCi. Uicng very ꢀew exter-  
nal ꢁomponenti, the IC ꢁontroli a preꢁcicon programmable  
iynꢁhronoui buꢁk ꢁonverter drcvcng external N-Channel  
power MOSFETi. The output voltage ci adjuitable ꢀrom  
0.925V to 2.0V by ꢁhangcng the DAC (VID) ꢁode iettcngi  
(iee Table 2). The output voltage oꢀ the ꢁore ꢁonverter ꢁan be  
ꢁhanged on-the-fly wcth programmable ilew rate, whcꢁh  
meeti a key requcrement oꢀ AMD'i Mobcle Athlon/Duron  
proꢁeiiori.  
Table 2. Output voltage VID  
VID4 VID3 VID2 VID1 VID0 VOUT to CPU  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.000  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
0.000  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
The ꢁonverter ꢁan operate cn two modei: fixed ꢀrequenꢁy  
PWM, and varcable ꢀrequenꢁy hyiteretcꢁ dependcng on the  
load. At loadi lower than the pocnt where filter cnduꢁtor ꢁur-  
rent beꢁomei dciꢁontcnuoui, hyiteretcꢁ mode oꢀ operatcon ci  
aꢁtcvated. Swctꢁhover ꢀrom PWM to hyiteretcꢁ operatcon at  
lcght loadi cmprovei the ꢁonverter'i eꢀfiꢁcenꢁy and prolongi  
battery run tcme. Ai the filter cnduꢁtor reiumei ꢁontcnuoui  
ꢁurrent, the PWM mode oꢀ operatcon ci reitored.  
1 - Logic High or open, 0 = Logic Low  
VID0–4 pcni wcll aiiume a logcꢁ ± level cꢀ leꢀt open ai eaꢁh  
cnput ci pulled up wcth a ±µA cnternal ꢁurrent iourꢁe.  
REV. 1.1.7 8/29/02  
7
FAN5240  
PRODUCT SPECIFICATION  
The PGOOD delay (TDLY, Fcgure 3) ꢁan be programmed  
Initialization, Soft Start and PGOOD  
wcth a ꢁapaꢁctor to GND on pcn ±6 (C  
):  
DELAY  
Aiiumcng EN ci hcgh, FAN5240 ci cnctcalczed when power ci  
applced on VCC. Should VCC drop below the UVLO threih-  
old, an cnternal Power-On Reiet ꢀunꢁtcon dciablei the ꢁhcp.  
CDELAY(in nF) = 1.8 × TDLY(in mS)  
(3)  
For ±2mS oꢀ TDLY, C  
DELAY  
= 22nF.  
The IC attempti to regulate the VCORE output aꢁꢁordcng to  
the voltage that appeari on the SS pcn (V ). Durcng itart-up  
SS  
oꢀ the ꢁonverter, thci voltage ci cnctcally 0, and rciei lcnearly  
to 901 oꢀ the VID programmed voltage vca the ꢁurrent iup-  
C
ci typcꢁally ꢁhoien to provcde ±mS oꢀ "blankcng"  
DELAY  
ꢀor the over-ꢁurrent ihut-down (see Over-Current Sensing,  
on page ±2).  
plced to C by the 25µA cnternal ꢁurrent iourꢁe. The tcme ct  
SS  
takei to reaꢁh thci threihold ci:  
The ꢀollowcng ꢁondctconi iet the PGOOD pcn low:  
±. Under-voltage - VCORE ci below a fixed voltage.  
0.9 × VVID × CSS  
(±)  
T90% = --------------------------------------------  
25  
2. Chcp ihut-down due to over-temperature or over-ꢁurrent  
ai defined below.  
where T  
901  
ci cn ieꢁondi cꢀ C ci cn µF.  
SS  
At that pocnt, the ꢁurrent iourꢁe ꢁhangei to 500µA, whcꢁh  
eitablcihei the ilew rate oꢀ voltage ꢁhangei at the output cn  
reiponie to ꢁhangei cn VID.  
Converter Operation (see Figure 2)  
At nomcnal ꢁurrent the ꢁonverter operatei cn fixed ꢀrequenꢁy  
PWM mode. The output voltage ci ꢁompared wcth a reꢀer-  
enꢁe voltage iet by the DAC, whcꢁh appeari on the SS pcn.  
The dercved error icgnal ci amplcfied by an cnternally ꢁom-  
peniated error amplcfier and applced to the cnvertcng cnput  
oꢀ the PWM ꢁomparator. To provcde output voltage droop ꢀor  
enhanꢁed dynamcꢁ load regulatcon, a icgnal proportconal to  
the output ꢁurrent ci added to the voltage ꢀeedbaꢁk icgnal  
at the + cnput oꢀ A±. Scnꢁe the proꢁeiior ipeꢁcfiei a +±00mV/  
-50mV toleranꢁe on VCORE, a fixed poictcve oꢀꢀiet oꢀ 30  
mV ci ꢁreated wcth a 30µA ꢁurrent iourꢁe and external ±K  
reicitor. Phaie load balanꢁcng ci aꢁꢁomplcihed by addcng  
a icgnal proportconal to the dcꢀꢀerenꢁe oꢀ the two phaie  
ꢁurrenti beꢀore the error amplcfier (at nodei A and B). Thci  
ꢀeedbaꢁk iꢁheme cn ꢁonjunꢁtcon wcth a PWM ramp propor-  
tconal to the cnput voltage allowi ꢀor ꢀait and itable loop  
reiponie over a wcde range oꢀ cnput voltage and output  
ꢁurrent varcatconi. For the iake oꢀ eꢀfiꢁcenꢁy and maxcmum  
icmplcꢁcty, the ꢁurrent ienie icgnal ci dercved ꢀrom the volt-  
age drop aꢁroii the lower MOSFET durcng cti ꢁonduꢁtcon  
tcme. Thci ꢁurrent ienie icgnal ci uied to iet droop leveli ai  
well ai ꢀor phaie balanꢁcng and ꢁurrent lcmctcng.  
Thci dual ilope approaꢁh helpi to provcde iaꢀe rcie oꢀ volt-  
agei and ꢁurrenti cn the ꢁonverteri durcng cnctcal itart-up and  
at the iame tcme ieti a ꢁontrolled ipeed oꢀ the ꢁore voltage  
ꢁhange when the proꢁeiior ꢁommandi to do io.  
1.5V  
1.35V  
SS  
EN  
TDLY  
PGOOD  
Figure 3. Soft-Start function  
C
typcꢁally ci ꢁhoien baied on the ilew rate deicred cn  
SS  
reiponie to a VID ꢁhange. For example, cꢀ the ipeꢁ requcrei a  
500mV itep to oꢁꢁur cn ±00µS:  
The PWM ꢁontroller hai a buclt-cn duty ꢁyꢁle ꢁlamp cn the  
path ꢀrom the error amplcfier to the PWM ꢁomparator.  
Durcng a ievere load itep, the output icgnal ꢀrom the error  
amp ꢁan go to cti racl, puihcng the duty ꢁyꢁle to almoit ±001  
ꢀor a icgncfiꢁant amount oꢀ tcme. Thci ꢁould ꢁauie a ievere  
rcie cn the cnduꢁtor ꢁurrent, eipeꢁcally at hcgh battery volt-  
age, and lead to a long reꢁovery tcme or even ꢀaclure oꢀ the  
ꢁonverter. To prevent thci, the output oꢀ the error amplcfier ci  
ꢁlamped to a fixed value aꢀter two ꢁloꢁk ꢁyꢁlei cꢀ a large  
output voltage exꢁuricon ci deteꢁted. Senictcvcty oꢀ thci  
ꢁcrꢁuct ci iet cn iuꢁh a way ai not to aꢀꢀeꢁt the PWM ꢁontrol  
durcng tranicenti normally expeꢁted ꢀrom the load.  
ISS  
500µA  
-------------------  
500mV  
------------------  
CSS  
=
t =  
100µS = 0.1µF  
(2)  
VDAC  
Aiiumcng VID ci iet to ±.5V, wcth thci value oꢀ C , the  
SS  
tcme ꢀor the output voltage to rcie to 0.9 oꢀ V  
uicng equatcon ±:  
ci ꢀound  
VID  
1.35V × 0.1  
T90% = ------------------------------ = 5.4mS  
25  
The tranictcon ꢀrom 901 VID to ±001 VID oꢁꢁupcei 0.51  
oꢀ the total ioꢀt-itart tcme, io TSS ci eiientcally T  
.
901  
8
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
ꢁauiei the output voltage (ai preiented at VSNS) to drop  
Operation Mode Control  
below the hyiteretcꢁ regulatcon level (20mV below VREF),  
the mode ci ꢁhanged to PWM on the next ꢁloꢁk ꢁyꢁle. Thci  
cniurei the ꢀull power requcred by the cnꢁreaie cn output  
ꢁurrent.  
The mode-ꢁontrol ꢁcrꢁuct ꢁhangei the ꢁonverter’i mode oꢀ  
operatcon ꢀrom PWM to Hyiteretcꢁ and vcia veria, baied  
on the voltage polarcty oꢀ the SW node when the lower  
MOSFET ci ꢁonduꢁtcng and juit beꢀore the upper MOSFET  
turni on. For ꢁontcnuoui cnduꢁtor ꢁurrent, the SW node ci  
negatcve when the lower MOSFET ci ꢁonduꢁtcng and the  
ꢁonverteri operate cn fixed-ꢀrequenꢁy PWM mode ai ihown  
cn Fcgure 4. Thci mode oꢀ operatcon aꢁhcevei hcgh eꢀfiꢁcenꢁy  
at nomcnal load. When the load ꢁurrent deꢁreaiei to the pocnt  
where the cnduꢁtor ꢁurrent flowi through the lower MOSFET  
cn the ‘reverie’ dcreꢁtcon, the SW node beꢁomei poictcve,  
and the mode ci ꢁhanged to hyiteretcꢁ, whcꢁh aꢁhcevei hcgher  
eꢀfiꢁcenꢁy at low ꢁurrenti by deꢁreaicng the eꢀꢀeꢁtcve iwctꢁh-  
cng ꢀrequenꢁy.  
In hyiteretcꢁ mode, the PWM ꢁomparator and the error  
amplcfier that provcde ꢁontrol cn PWM mode are cnhcbcted  
and the hyiteretcꢁ ꢁomparator ci aꢁtcvated. In hyiteretcꢁ  
mode the low icde MOSFET ci operated ai a iynꢁhronoui  
reꢁtcfier, where the voltage aꢁroii V  
DS(ON)  
ci monctored,  
and cti gate iwctꢁhed oꢀꢀ when V ) goei poictcve  
DS(ON  
(ꢁurrent flowcng baꢁk ꢀrom the load) bloꢁkcng reverie  
ꢁonduꢁtcon  
The hyiteretcꢁ ꢁomparator cnctcatei a PFM icgnal to turn on  
HDRV when the output voltage (at VSNS) ꢀalli below the  
lower threihold (±0mV below VREF) and termcnatei the  
PFM icgnal when VSNS rciei over the hcgher threihold  
(5mV above VREF).  
To prevent aꢁꢁcdental mode ꢁhange or “mode ꢁhatter” the  
tranictcon ꢀrom PWM to Hyiteretcꢁ mode oꢁꢁuri when the  
SW node ci poictcve ꢀor ecght ꢁonieꢁutcve ꢁloꢁk ꢁyꢁlei  
(iee Fcgure 4). The polarcty oꢀ the SW node ci iampled at the  
end oꢀ the lower MOSFET'i ꢁonduꢁtcon tcme. At the tranic-  
tcon between PWM and hyiteretcꢁ mode both the upper and  
lower MOSFETi are turned oꢀꢀ. The phaie node wcll ‘rcng’  
baied on the output cnduꢁtor and the paraictcꢁ ꢁapaꢁctanꢁe on  
the phaie node and iettle out at the value oꢀ the output volt-  
age.  
The iwctꢁhcng ꢀrequenꢁy ci prcmarcly a ꢀunꢁtcon oꢀ:  
±. Spread between the two hyiteretcꢁ threiholdi  
2.  
I
LOAD  
3. Output Induꢁtor and Capaꢁctor ESR  
The boundary value oꢀ cnduꢁtor ꢁurrent, where ꢁurrent  
beꢁomei dciꢁontcnuoui, ꢁan be eitcmated by the ꢀollowcng  
expreiicon.  
A tranictcon baꢁk to PWM (Contcnuoui Conduꢁtcon Mode or  
CCM) mode oꢁꢁuri when the cnduꢁtor ꢁurrent rciei iuꢀfi-  
ꢁcently to itay poictcve ꢀor 8 ꢁonieꢁutcve ꢁyꢁlei. Thci oꢁꢁuri  
when:  
(VIN V  
)VOUT  
ILOAD(DIS) = ----------------------O----U----T-------------------  
(4)  
2FSWLOUTVIN  
VHYSTERESIS  
ILOAD(CCM) = ----------------------------------------  
(5)  
2 ESR  
Hysteretic Mode  
Converiely, the tranictcon ꢀrom Hyiteretcꢁ mode to PWM  
mode oꢁꢁuri when the SW node ci negatcve ꢀor 8 ꢁonieꢁutcve  
ꢁyꢁlei.  
where V  
= ±5mV and ESR ci the equcvalent  
HYSTERESIS  
iercei reicitanꢁe oꢀ C  
.
OUT  
Beꢁauie oꢀ the dcꢀꢀerent ꢁontrol meꢁhancimi, the value oꢀ the  
load ꢁurrent where tranictcon cnto CCM operatcon takei plaꢁe  
ci typcꢁally hcgher ꢁompared to the load level at whcꢁh tranic-  
tcon cnto hyiteretcꢁ mode oꢁꢁuri.  
A iudden cnꢁreaie cn the output ꢁurrent wcll alio ꢁauie a  
ꢁhange ꢀrom hyiteretcꢁ to PWM mode. Thci load cnꢁreaie  
ꢁauiei an cnitantaneoui deꢁreaie cn the output voltage due to  
the voltage drop on the output ꢁapaꢁctor ESR. Iꢀ the load  
VCORE  
PWM Mode  
Hysteretic Mode  
IL  
0
1
2
3
4
5
6
7
8
VCORE  
Hysteretic Mode  
3
PWM Mode  
IL  
0
1
2
4
5
6
7
8
Figure 4. Transitioning between PWM and Hysteretic Mode  
REV. 1.1.7 8/29/02  
9
FAN5240  
PRODUCT SPECIFICATION  
Wcth Aꢁtcve Droop, the output voltage varcei wcth the load ai  
cꢀ a reicitor were ꢁonneꢁted cn iercei wcth the ꢁonverter’i out-  
put, cn other wordi, ct'i eꢀꢀeꢁt ci to racie the output reicitanꢁe  
oꢀ the ꢁonverter.  
Current Processing Section  
The ꢀollowcng dciꢁuiicon reꢀeri to Fcgure 6.  
Setting RSENSE  
Eaꢁh phaie ꢁurrent ci iampled about 200nS aꢀter the SW  
node ꢁroiiei 0V. For proper ꢁonverter operatcon, ꢁhooie an  
RSENSE value oꢀ:  
1.2  
VDROOP  
R
DS(ON) IMAX  
RSENSE = ----------------------------------------  
40µA  
whcꢁh ci about ±K ꢀor the ꢁomponenti cn Fcgure ±.  
ILOAD  
IMAX  
Active Droop  
Figure 5. Active Droop  
The ꢁore ꢁonverter cnꢁorporatei a proprcetary output voltage  
droop method ꢀor optcmum handlcng oꢀ ꢀait load tranicenti  
ꢀound cn modern proꢁeiiori.  
To get the moit ꢀrom the Aꢁtcve Droop, cti magnctude ihould  
be iꢁaled to matꢁh the output ꢁapaꢁctor’i ESR voltage drop.  
“Aꢁtcve droop” or voltage poictconcng ci now wcdely uied cn  
the ꢁomputer power applcꢁatconi. The teꢁhncque ci baied on  
racicng the ꢁonverter voltage at lcght load cn antcꢁcpatcon oꢀ a  
itep cnꢁreaie cn load ꢁurrent, and ꢁonveriely, lowercng  
VCORE cn antcꢁcpatcon oꢀ a itep deꢁreaie cn load ꢁurrent.  
VDROOP = IMAX × ESR  
(6)  
Aꢁtcve Droop allowi the icze and ꢁoit oꢀ the output ꢁapaꢁc-  
tori requcred to handle CPU ꢁurrent tranicenti to be reduꢁed.  
The reduꢁtcon may be almoit a ꢀaꢁtor oꢀ 2 when ꢁompared to  
a iyitem wcthout Aꢁtcve Droop.  
S/H  
B-A  
ISNS1-ISNS2  
V to I  
A
B
RSENSE  
ISNS2  
ISNS1  
Σ
ISNS1  
in +  
in D  
ISNS2-ISNS1  
A-B  
ISNS2  
5
ISNS1  
5
ISNS1  
8
LDRV1  
PGND1  
To A1 (+)  
RILIM  
ILIM  
0.9V  
2.5V  
I2 =  
ILIM  
ILIM det. 1  
ILIM mirror  
Figure 6. Current Limit and Active Droop Circuits  
10  
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
Addctconally, the CPU power dciicpatcon ci alio ilcghtly  
reduꢁed ai ct ci proportconal to the applced voltage iquared  
and even ilcght voltage deꢁreaie tranilatei to a meaiurable  
reduꢁtcon cn power dciicpated.  
The ꢁurrent through eaꢁh R reicitor (ISNS) ci iam-  
SENSE  
pled ihortly aꢀter LDRV ci turned on. That ꢁurrent ci held ꢀor  
the remacnder oꢀ the ꢁyꢁle, and then cnjeꢁted to produꢁe an  
oꢀꢀiet to VCORE+ through the external ±K reicitor (R6 cn  
Fcgure ±). Thci ꢁreatei a voltage at the cnput to the error  
amplcfier that rciei wcth cnꢁreaicng ꢁurrent, ꢁauicng the regu-  
lator’i output to droop ai the ꢁurrent cnꢁreaiei.  
ILOAD  
upper lim  
Vout  
ILOAD RDS(ON)  
(no droop)  
VDROOP = -------------------------------------------  
3 RSENSE  
(7)  
VES  
lower lim  
upper lim  
Gate Driver section  
VES  
Vout  
droop ESR  
The gate ꢁontrol logcꢁ tranilatei the cnternal PWM ꢁontrol  
icgnal cnto the MOSFET gate drcve icgnali provcdcng  
neꢁeiiary amplcfiꢁatcon, level ihcꢀtcng and ihoot-through  
proteꢁtcon. Alio, ct hai ꢀunꢁtconi that help optcmcze the IC  
perꢀormanꢁe over a wcde range oꢀ operatcng ꢁondctconi.  
Scnꢁe MOSFET iwctꢁhcng tcme ꢁan vary dramatcꢁally ꢀrom  
type to type and wcth the cnput voltage, the gate ꢁontrol logcꢁ  
provcdei adaptcve dead tcme by monctorcng the gate-to-  
iourꢁe voltagei oꢀ both upper and lower MOSFETi. The  
lower MOSFET drcve ci not turned on untcl the gate-to-  
iourꢁe voltage oꢀ the upper MOSFET hai deꢁreaied to leii  
than approxcmately ± volt. Scmclarly, the upper MOSFET ci  
not turned on untcl the gate-to-iourꢁe voltage oꢀ the lower  
MOSFET hai deꢁreaied to leii than approxcmately ± volt.  
Thci allowi a wcde varcety oꢀ upper and lower MOSFETi to  
be uied wcthout a ꢁonꢁern ꢀor icmultaneoui ꢁonduꢁtcon, or  
ihoot-through.  
lower lim  
Figure 7. Effect of Active Droop on ESR  
The proꢁeiior regulatcon wcndow cnꢁludcng tranicenti ci  
ipeꢁcfied ai +±00mV..–50mV. To aꢁꢁommodate the droop,  
the output voltage oꢀ the ꢁonverter ci racied by about 30mV  
at no load.  
The ꢁonverter reiponie to the load itep ci ihown cn Fcgure 8.  
At zero load ꢁurrent, the output voltage ci racied ~30mV  
above nomcnal value oꢀ ±.5V. When the load ꢁurrent  
cnꢁreaiei, the output voltage droopi down approxcmately  
55mV. Due to uie oꢀ Aꢁtcve Droop, the ꢁonverter’i output  
voltage adaptcvely ꢁhangei wcth the load ꢁurrent allowcng  
better utclczatcon oꢀ the regulatcon wcndow.  
There muit be a low – reicitanꢁe, low – cnduꢁtanꢁe path  
between the drcver pcn and the MOSFET gate ꢀor the adap-  
tcve dead-tcme ꢁcrꢁuct to work properly. Any delay along that  
path wcll iubtraꢁt ꢀrom the delay generated by the adaptcve  
dead-tcme ꢁcrꢁct and a ihoot-through ꢁondctcon may oꢁꢁur.  
Frequency Loop Compensation  
Due to the cmplemented ꢁurrent mode ꢁontrol, the modulator  
hai a icngle pole reiponie wcth -± ilope at ꢀrequenꢁy deter-  
mcned by load  
1
FPO = -----------------------  
(8)  
2πROCO  
where R ci load reicitanꢁe, C ci load ꢁapaꢁctanꢁe. For thci  
O
O
Figure 8. Converter response to 5A load step  
type oꢀ modulator Type 2 ꢁompeniatcon ꢁcrꢁuct ci uiually  
iuꢀfiꢁcent. To reduꢁe the number oꢀ external ꢁomponenti and  
icmplcꢀy the deicgn taik, the PWM ꢁontroller hai an cnter-  
nally ꢁompeniated error amplcfier. Fcgure 9 ihowi a Type 2  
amplcfier and cti reiponie along wcth the reiponiei oꢀ a ꢁur-  
rent mode modulator and oꢀ the ꢁonverter. The Type 2 amplc-  
fier, cn addctcon to the pole at the orcgcn, hai a zero-pole pacr  
that ꢁauiei a flat gacn regcon at ꢀrequenꢁcei between the zero  
and the pole.  
REV. 1.1.7 8/29/02  
11  
FAN5240  
PRODUCT SPECIFICATION  
Over-Current sensing (see Figure 10)  
C2  
When the ꢁcrꢁuct'i ꢁurrent lcmct icgnal (“ILIM det” ai ihown  
cn Fcgure 6) goei hcgh, a pulie-ikcppcng ꢁcrꢁuct ci aꢁtcvated  
and a ±6-ꢁloꢁk ꢁyꢁle ꢁounter ci itarted. HDRV wcll be cnhcb-  
cted ai long ai the ienied ꢁurrent ci hcgher than the ILIM  
value. Thci lcmcti the ꢁurrent iupplced by the DC cnput.  
R2 C1  
R1  
VIN  
+
REF  
EAOut  
RESET  
Clock  
16 Clock  
Counter and  
Logic  
Q TIMER  
START  
ILIM det. 1  
ILIM det. 2  
Modulator  
Shut-down  
18  
14  
0
DELAY  
FP0  
FZ  
FP  
Figure 10. Over-current shut-down delay logic  
Iꢀ ILIM det goei hcgh durcng ꢁounti 9-±6 oꢀ the ꢁounter, the  
overꢁurrent delay tcmer ci itarted and the ±6-ꢁloꢁk ꢁounter  
itarti agacn. Thci tcmer delayi the ihut-down oꢀ the ꢁhcp and  
Figure 9. Compensation  
cti tcme ci a ꢀunꢁtcon oꢀ the value oꢀ C  
.
DELAY  
1
FZ = --------------------- = 6 kHz  
2πR2C1  
(9a)  
(9b)  
CDELAY(in nF)  
1
THOLDOFF(in mS) = ---------------------------------------  
(±0)  
FP = --------------------- = 600 kHz  
2πR2C2  
19  
Over-ꢁurrent muit deteꢁted at leait onꢁe durcng the firit 8  
ꢁloꢁk ꢁyꢁlei and onꢁe durcng the 2nd 8 ꢁloꢁk ꢁyꢁlei oꢀ the  
±6-ꢁyꢁle ꢁounter ꢀor the tcmer to ꢁontcnue tcmcng. Iꢀ the over-  
ꢁurrent ꢁondctcon doei not oꢁꢁur at leait onꢁe per 8 ꢁloꢁk  
ꢁounti durcng any ꢁloꢁk ꢁounter ꢁyꢁle whcle the tcmer ci  
hcgh, the tcmer and the over-ꢁurrent deteꢁtcon ꢁcrꢁuct are  
reiet, preventcng ihutdown. The ꢁloꢁk ꢁounter ꢁoutcnuei to  
ꢁount and look ꢀor ILIM det puliei cn thci manner untcl  
ecther:  
Thci regcon ci alio aiioꢁcated wcth phaie ‘bump’ or reduꢁed  
phaie ihcꢀt. The amount oꢀ phaie ihcꢀt reduꢁtcon dependi on  
how wcde the regcon oꢀ flat gacn ci and hai a maxcmum value  
oꢀ 90 degreei. To ꢀurther icmplcꢀy the ꢁonverter ꢁompenia-  
tcon, the modulator gacn ci kept cndependent oꢀ the cnput  
voltage varcatcon by provcdcng ꢀeed-ꢀorward oꢀ VIN to the  
oiꢁcllator ramp.  
The zero ꢀrequenꢁy, the amplcfier hcgh ꢀrequenꢁy gacn and  
the modulator gacn are ꢁhoien to iatciꢀy moit typcꢁal applc-  
ꢁatconi. The ꢁroiiover ꢀrequenꢁy wcll appear at the pocnt  
where the modulator attenuatcon equali the amplcfier hcgh  
ꢀrequenꢁy gacn. The only taik that the iyitem deicgner hai to  
ꢁomplete ci to ipeꢁcꢀy the output filter ꢁapaꢁctori to poictcon  
the load macn pole iomewhere wcthcn one deꢁade lower than  
the amplcfier zero ꢀrequenꢁy. Wcth thci type oꢀ ꢁompeniatcon  
plenty oꢀ phaie margcn ci eaicly aꢁhceved due to zero-pole  
pacr phaie ‘booit’.  
±. the IC ci ihut-down beꢁauie the tcmer tcmed out:  
Iꢀ the tcmer pulie ci allowed to fincih by tcmcng out, the  
IC ci ihut-down and ꢁan only be reitarted by removcng  
power or togglcng the EN pcn.  
2. ILIM det doei not go hcgh at leait onꢁe per 8 ꢁloꢁk  
ꢁounti. In thci ꢁaie, the tcmer and over-ꢁurrent ihutdown  
logcꢁ are reiet, and a ꢁhcp ihut-down ci averted.  
PGOOD wcll go LOW cꢀ the IC ihuti down ꢀrom over-  
ꢁurrent.  
Condctconal itabclcty may oꢁꢁur only when the macn load  
pole ci poictconed too muꢁh to the leꢀt icde on the ꢀrequenꢁy  
axci due to exꢁeiicve output filter ꢁapaꢁctanꢁe. In thci ꢁaie,  
the ESR zero plaꢁed wcthcn the ±0kHz...50kHz range gcvei  
iome addctconal phaie ‘booit’. Fortunately, there ci an oppo-  
icte trend cn mobcle applcꢁatconi to keep the output ꢁapaꢁctor  
ai imall ai poiicble.  
Setting the Current Limit  
ISNS ci ꢁompared to the ꢁurrent eitablcihed when a 0.9 V  
cnternal reꢀerenꢁe drcvei the ILIM pcn. The threihold ci  
determcned at the pocnt when the  
ILOAD RDS(ON)  
ISNS 0.9V  
-------------- --------------  
>
. Scnꢁe ISNS = -------------------------------------------  
Protection  
8
RILIM  
RSENSE  
The ꢁonverter output ci monctored and proteꢁted agacnit  
ihort ꢁcrꢁuct (over-ꢁurrent), and over-voltage ꢁondctconi.  
thereꢀore,  
8 • (RSENSE  
RDS(ON)  
)
0.9V  
ILIMIT  
-------------- -----------------------------------  
RILIM  
=
×
(±±)  
12  
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
Scnꢁe the toleranꢁe on the ꢁurrent lcmct ci largely dependent  
on the ratco oꢀ the external reicitori ct ci ꢀacrly aꢁꢁurate cꢀ the  
The over-ꢁurrent ꢁomparator ci iampled juit aꢀter LDRV ci  
turned on, when the ꢁurrent ci near cti peak cn the ꢁyꢁle.  
Aiiumcng 201 cnduꢁtor rcpple ꢁurrent, we ꢁan then add ±/2  
oꢀ the rcpple ꢁurrent, or ±01. An addctconal ꢀaꢁtor oꢀ ±.2  
aꢁꢁounti ꢀor the cnaꢁꢁuraꢁy cn the cnctcal (room temperature)  
voltage drop on the Swctꢁhcng Node icde oꢀ R  
SENSE  
ci an  
aꢁꢁurate repreientatcon oꢀ the load ꢁurrent. When uicng the  
MOSFET ai the ienicng element, the varcatcon oꢀ R  
DS(ON)  
ꢁauiei proportconal varcatcon cn the ISNS. Thci value not  
only varcei ꢀrom devcꢁe to devcꢁe, but alio hai a typcꢁal  
junꢁtcon temperature ꢁoeꢀfiꢁcent oꢀ about 0.41 / °C (ꢁoniult  
the MOSFET dataiheet ꢀor aꢁtual valuei), io the aꢁtual  
ꢁurrent lcmct iet pocnt wcll deꢁreaie propotconal to cnꢁreaicng  
MOSFET dce temperature. The iame dciꢁuiicon applcei to  
R
oꢀ the MOSFETi wcth an addctconal ꢀaꢁtor oꢀ ±.4 to  
DS(ON)  
aꢁꢁommodate the rcie oꢀ the MOSFET R  
DS(ON)  
atcng wcth T @ ±25°C. Wcth a maxcmum load ꢁurrent oꢀ  
±2.5A/phaie, the target ꢀor I  
LIMIT  
when oper-  
J
(per phaie) would be:  
20A  
2
ILIMIT > 1.1 1.2 1.4 12.5A + ---------- 42A  
(±2ꢁ)  
the V  
DROOP  
ꢁalꢁulatcon.  
io uicng equatcon ±±, wcth R  
FDS6688 MOSFETi, R  
ILIM  
= 3mꢀor the 2 parallel  
DS(ON)  
56K:  
Q2  
LDRV  
Over-Voltage Protection  
RSENSE  
ISNS  
21  
22  
Should the output voltage exꢁeed 2.35V due to an upper  
MOSFET ꢀaclure, or ꢀor other reaioni, the overvoltage  
proteꢁtcon ꢁomparator wcll ꢀorꢁe the LDRV hcgh. Thci aꢁtcon  
aꢁtcvely pulli down the output voltage and, cn the event oꢀ  
the upper MOSFET ꢀaclure, wcll eventually blow the battery  
ꢀuie. Ai ioon ai the output voltage dropi below the threih-  
old, the OVP ꢁomparator ci dciengaged.  
PGND  
Figure 11. Improving current sensing accuracy  
More aꢁꢁurate ienicng ꢁan be aꢁhceved by uicng a reicitor  
(R±) cnitead oꢀ the R oꢀ the FET ai ihown cn Fcgure  
Thci OVP iꢁheme provcdei a ‘ioꢀt’ ꢁrowbar ꢀunꢁtcon whcꢁh  
helpi to taꢁkle ievere load tranicenti and doei not cnvert the  
output voltage when aꢁtcvated — a ꢁommon problem ꢀor  
OVP iꢁhemei wcth a latꢁh.  
DS(ON)  
±±. Thci approaꢁh ꢁauiei hcgher loiiei, but yceldi greater  
aꢁꢁuraꢁy cn both V and I . R± ci a low value  
DROOP LIMIT  
(e.g. ±0m) reicitor.  
Over-Temperature Protection  
The ꢁurrent lcmct (I ) iet pocnt ꢁhoien needi to aꢁꢁom-  
LIMIT  
The ꢁhcp cnꢁorporatei an over temperature proteꢁtcon ꢁcrꢁuct  
that ihuti the ꢁhcp down when a dce temperature oꢀ ±50°C ci  
reaꢁhed. Normal operatcon ci reitored at dce temperature  
below ±25°C wcth cnternal Power On Reiet aiierted, reiult-  
cng cn a ꢀull ioꢀt-itart ꢁyꢁle.  
modate rcpple ꢁurrent, ilew ꢁurrent, and varcabclcty cn the  
MOSFET'i R  
.
DS(ON)  
dV  
-------  
ILIMIT > ILOAD + C  
(±2a)  
OUT dt  
dV  
-------  
Slew ꢁurrent ( C  
) ci the ꢁurrent requcred ꢀor the  
OUT dt  
output voltage to ilew upwardi durcng VID ꢁode ꢁhangei,  
icnꢁe the ꢁcrꢁuct wcll lcmct the regulator’i output ꢁurrent by  
dV  
-------  
term we  
pulie ikcppcng when I  
LIMIT  
ci reaꢁhed. The  
dt  
uied earlcer cn the dciꢁuiicon (iet up by the C ) wai  
SS  
oꢀ 4000µF, the  
500mV/±00µS or 5V/mS. Aiiumcng C  
OUT  
at thci rate ci:  
ꢁurrent requcred to ilew C  
OUT  
dV  
-------  
(±2b)  
C
= 4mF 5V/mS = 20A  
OUT dt  
whcꢁh ci ꢁontrcbuted roughly equally ꢀrom eaꢁh phaie,  
thereꢀore, ±/2 oꢀ the ilew ꢁurrent ꢁomei ꢀrom a icngle phaie.  
REV. 1.1.7 8/29/02  
13  
FAN5240  
PRODUCT SPECIFICATION  
The load tranicent requcrementi are a ꢀunꢁtcon oꢀ the ilew  
rate (dc/dt) and the magnctude oꢀ the tranicent load ꢁurrent.  
Modern mcꢁroproꢁeiiori produꢁe tranicent load ratei cn  
exꢁeii oꢀ ±0A/µi. Hcgh ꢀrequenꢁy ꢁeramcꢁ ꢁapaꢁctori plaꢁed  
beneath the proꢁeiior ioꢁket cnctcally iupply the tranicent  
and reduꢁe the ilew rate ieen by the bulk ꢁapaꢁctori. The  
bulk ꢁapaꢁctor valuei are generally determcned by the total  
allowable ESR rather than aꢁtual ꢁapaꢁctanꢁe requcrementi.  
Design and Component Selection  
Guidelines  
Ai an cnctcal itep, define operatcng voltage range and mcnc-  
mum and maxcmum load ꢁurrenti ꢀor the ꢁontroller. For thci  
dciꢁuiicon,  
IOUT Max  
VIN  
25A  
5.5 to 21 V  
0.925 to 2 V  
Hcgh ꢀrequenꢁy deꢁouplcng ꢁapaꢁctori ihould be plaꢁed ai  
ꢁloie to the proꢁeiior power pcni ai phyicꢁally poiicble.  
Coniult wcth the proꢁeiior manuꢀaꢁturer ꢀor ipeꢁcfiꢁ  
deꢁouplcng requcrementi. Uie only ipeꢁcalczed low-ESR  
eleꢁtrolytcꢁ ꢁapaꢁctori cntended ꢀor iwctꢁhcng-regulator  
applcꢁatconi ꢀor the bulk ꢁapaꢁctori. The bulk ꢁapaꢁctor’i  
ESR wcll determcne the output rcpple voltage and the cnctcal  
voltage drop aꢀter a tranicent. In moit ꢁaiei, multcple eleꢁtro-  
lytcꢁ ꢁapaꢁctori oꢀ imall ꢁaie icze perꢀorm better than a  
icngle large ꢁaie ꢁapaꢁctor.  
VOUT  
Output Inductor Selection  
The mcncmum praꢁtcꢁal output cnduꢁtor value ci the one that  
keepi cnduꢁtor ꢁurrent juit on the boundary oꢀ ꢁontcnuoui  
ꢁonduꢁtcon at iome mcncmum load. The cnduitry itandard  
praꢁtcꢁe ci to ꢁhooie the rcpple ꢁurrent to be iomewhere ꢀrom  
±51 to 351 oꢀ the nomcnal ꢁurrent. At lcght load, the rcpple  
ꢁurrent alio determcnei the pocnt where the ꢁonverter wcll  
automatcꢁally iwctꢁh to hyiteretcꢁ mode oꢀ operatcon (I  
to iuitacn hcgh eꢀfiꢁcenꢁy. The ꢀollowcng equatconi help to  
ꢁhooie the proper value oꢀ the output filter cnduꢁtor.  
)
MIN  
Input Capacitor Selection  
The cnput ꢁapaꢁctor ihould be ieleꢁted by cti rcpple ꢁurrent  
ratcng. For a 2 phaie ꢁonverter, the RMS ꢁurrenti ci ꢁalꢁu-  
lated:  
VOUT  
ESR  
,
I = 2 × IMIN = ------------------  
IPK  
IRMS  
=
2D 4D2  
-------  
(±4)  
2
where I ci the cnduꢁtor rcpple ꢁurrent, whcꢁh we wcll ꢁhooie  
ꢀor 201 oꢀ the ꢀull load ꢁurrent (±2.5A cn eaꢁh phaie) and  
V  
OUT  
ci the maxcmum output rcpple voltage allowed.  
Thci equatcon produꢁei the worit ꢁaie value at maxcmum  
duty ꢁyꢁle. For our example, that oꢁꢁuri when VIN = 5.5V  
and VOUT = 2V. For 25A maxcmum output the maxcmum  
V
IN VOUT VOUT  
(±3)  
----------------------------- --------------  
L =  
×
FSW × ∆I  
VIN  
RMS ꢁurrent at C  
:
IN  
IRMS(MAX) = 5.6A  
ꢀor thci example we’ll uie:  
V
= 20V, V = ±.5V  
OUT  
Power MOSFET Selection  
For the example cn the ꢀollowcng dciꢁuiicon, we wcll be  
ieleꢁtcng ꢁomponenti ꢀor:  
IN  
I = 201 *±2.5A (per phaie) = 2.5A  
= 300KHz.  
F
SW  
Thereꢀore,  
L ±.8µH  
VIN ꢀrom 5V to 20V  
V
OUT  
= ±.5V @ I = ±2.5A/phaie  
LOAD(MAX)  
The cnduꢁtor'i ꢁurrent ratcng ihould be ꢁhoien per the  
The FAN5240 ꢁonverter’i output voltage ci very low wcth  
reipeꢁt to the cnput voltage, thereꢀore the Lower MOSFET  
(Q2) ci ꢁonduꢁtcng the ꢀull load ꢁurrent ꢀor moit oꢀ the ꢁyꢁle.  
Thereꢀore, Q2 ihould be ieleꢁted to be a MOSFET wcth low  
I
ꢁalꢁulated above. Some tranicent ꢁurrenti over the  
LIMIT  
cnduꢁtor ꢁurrent ratcng may be tolerable cꢀ the cnduꢁtor’i  
dL  
dI  
------  
iaturatcon ꢁharaꢁtercitcꢁ  
ci iuꢀfiꢁcently “ioꢀt”.  
R
to mcncmcze ꢁonduꢁtcon loiiei.  
DS(ON)  
Output Capacitor Selection  
In ꢁontrait, Q± ci on ꢀor a maxcmum oꢀ 201 (when VIN =  
5V) oꢀ the ꢁyꢁle, and cti ꢁonduꢁtcon loii wcll have leii oꢀ an  
cmpaꢁt. Q±, however, ieei moit oꢀ the iwctꢁhcng loiiei, io  
Q±’i prcmary ieleꢁtcon ꢁrcterca ihould be gate ꢁharge  
The output ꢁapaꢁctor iervei two major ꢀunꢁtconi cn a iwctꢁh-  
cng power iupply. Along wcth the cnduꢁtor ct filteri the  
iequenꢁe oꢀ puliei produꢁed by the iwctꢁher, and ct iupplcei  
the load tranicent ꢁurrenti. The filtercng requcrementi are a  
ꢀunꢁtcon oꢀ the iwctꢁhcng ꢀrequenꢁy and the rcpple ꢁurrent  
allowed, and are uiually eaiy to iatciꢀy cn hcgh ꢀrequenꢁy  
ꢁonverteri.  
(Q  
).  
G(SW)  
14  
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
moit oꢀ t oꢁꢁuri when V = V we ꢁan uie a ꢁonitant  
GS SP  
ꢁurrent aiiumptcon ꢀor the drcver to icmplcꢀy the ꢁalꢁulatcon  
oꢀ t :  
S
High-Side Losses:  
S
CISS  
CRSS  
CISS  
VDS  
QG(SW)  
IDRIVER  
QG(SW)  
-------------------- -----------------------------------------------------  
tS  
=
(±6)  
VDD VSP  
------------------------------------------------  
DRIVER + RGATE  
R
For the hcgh-icde MOSFET, V = VIN, whcꢁh ꢁan be ai  
DS  
hcgh ai 20V cn a typcꢁal portable applcꢁatcon. Q2, however,  
iwctꢁhei on or oꢀꢀ wcth cti parallel ihottky dcode ꢁonduꢁtcng,  
ID  
thereꢀore V 0.5V. Scnꢁe P  
DS SW  
ci proportconal to V ,  
DS  
Q2'i iwctꢁhcng loiiei are neglcgcble and we ꢁan ieleꢁt Q2  
baied on R only.  
QGS  
QGD  
VGS  
DS(ON)  
4.5V  
VSP  
VTH  
Care ihould alio be taken to cnꢁlude the delcvery oꢀ the  
MOSFET'i gate power ( P ) cn ꢁalꢁulatcng the power  
QG(SW)  
GATE  
dciicpatcon requcred ꢀor the FAN5240:  
t1  
CISS = CGS || CGD  
t2  
t3  
t4  
t5  
PGATE = QG × VDD × FSW  
(±7)  
Low-Side Losses  
Figure 12. Switching losses and Q  
G
Conduꢁtcon loiiei ꢀor Q2 are gcven by:  
VIN  
5V  
PCOND = (1 D) × IOUT2 × RDS(ON)  
(±8)  
CGD  
RD  
RGATE  
HDRV  
SW  
19  
20  
G
where R  
DS(ON)  
ci the R  
DS(ON)  
oꢀ the MOSFET at the  
CGS  
VOUT  
hcgheit operatcng junꢁtcon temperature and D = -------------- ci  
VIN  
the mcncmum duty ꢁyꢁle ꢀor the ꢁonverter. Scnꢁe D  
ci 51  
MIN  
ꢀor portable ꢁomputeri, (±-D) ±, ꢀurther icmplcꢀycng the  
ꢁalꢁulatcon.  
Figure 13. Drive Equivalent Circuit  
Aiiumcng iwctꢁhcng loiiei are about the iame ꢀor both the  
rcicng edge and ꢀallcng edge, Q±’i iwctꢁhcng loiiei, ai ꢁan be  
ieen by Fcgure ±2, are gcven by:  
The maxcmum power dciicpatcon (P  
) ci a ꢀunꢁtcon oꢀ  
the maxcmum allowable dce temperature oꢀ the low-icde  
D(MAX)  
MOSFET, the θ , and the maxcmum allowable ambcent  
J-A  
temperature rcie:  
PUPPER = PSW + PCOND  
(±5a)  
(±5b)  
VDS × IL  
T
J(MAX) TA(MAX)  
---------------------  
PSW  
=
× 2 × tS FSW  
PD(MAX) = ------------------------------------------------  
2
θJ A  
VOUT  
PCOND  
=
× IOUT2 × RDS(ON)  
(±5ꢁ)  
--------------  
θ
, dependi prcmarcly on the amount oꢀ PCB area that ꢁan  
J-A  
VIN  
be devoted to heat icnkcng (iee FSC app note AN-±029 ꢀor  
SO-8 MOSFET thermal cnꢀormatcon).  
where R  
ci @T and:  
J(MAX)  
DS(ON)  
t ci the iwctꢁhcng percod (rcie or ꢀall tcme) and ci predomc-  
S
nantly the ium oꢀ t2, t3 (Fcgure ±2), a ꢀunꢁtcon oꢀ the cmped-  
anꢁe oꢀ the drcver and the Q  
oꢀ the MOSFET. Scnꢁe  
G(SW)  
REV. 1.1.7 8/29/02  
15  
FAN5240  
PRODUCT SPECIFICATION  
Keep the wcrcng traꢁei ꢀrom the IC to the MOSFET gate and  
iourꢁe ai ihort ai poiicble and ꢁapable oꢀ handlcng peak ꢁur-  
renti oꢀ 2A. Mcncmcze the area wcthcn the gate-iourꢁe path to  
reduꢁe itray cnduꢁtanꢁe and elcmcnate paraictcꢁ rcngcng at the  
gate.  
Layout Considerations  
Swctꢁhcng ꢁonverteri, even durcng normal operatcon,  
produꢁe ihort puliei oꢀ ꢁurrent whcꢁh ꢁould ꢁauie iubitan-  
tcal rcngcng and be a iourꢁe oꢀ EMI cꢀ layout ꢁonitracni are  
not obierved.  
Loꢁate imall ꢁrctcꢁal ꢁomponenti lcke the ioꢀt-itart ꢁapaꢁctor  
and ꢁurrent ienie reicitori ai ꢁloie ai poiicble to the reipeꢁ-  
tcve pcni oꢀ the IC.  
There are two ieti oꢀ ꢁrctcꢁal ꢁomponenti cn a DC-DC  
ꢁonverter. The iwctꢁhcng power ꢁomponenti proꢁeii large  
amounti oꢀ energy at hcgh rate and are nocie generatori.  
The low power ꢁomponenti reiponicble ꢀor bcai and ꢀeed-  
baꢁk ꢀunꢁtconi are ienictcve to nocie.  
The FAN5240 utclczei advanꢁed paꢁkagcng teꢁhnology that  
wcll have lead pctꢁh oꢀ 0.6mm. Hcgh perꢀormanꢁe analog  
iemcꢁonduꢁtori utclczcng narrow lead ipaꢁcng may requcre  
ipeꢁcal ꢁonicderatconi cn PWB deicgn and manuꢀaꢁturcng. It  
ci ꢁrctcꢁal to macntacn proper ꢁleanlcneii oꢀ the area iur-  
roundcng theie devcꢁei. It ci not reꢁommended to uie any  
type oꢀ roicn or aꢁcd ꢁore iolder, or the uie oꢀ flux cn ecther  
the manuꢀaꢁturcng or touꢁh up proꢁeii ai theie may ꢁontrcb-  
ute to ꢁorroicon or enable eleꢁtromcgratcon and/or eddy ꢁur-  
renti near the ienictcve low ꢁurrent icgnali. When ꢁhemcꢁali  
iuꢁh ai theie are uied on or near the PWB, ct ci iuggeited  
that the entcre PWB be ꢁleaned and drced ꢁompletely beꢀore  
applycng power.  
A multc-layer prcnted ꢁcrꢁuct board ci reꢁommended.  
Dedcꢁate one iolcd layer ꢀor a ground plane. Dedcꢁate  
another iolcd layer ai a power plane and break thci plane  
cnto imaller cilandi oꢀ ꢁommon voltage leveli.  
Notcꢁe all the nodei that are iubjeꢁted to hcgh dV/dt voltage  
iwcng iuꢁh ai SW, HDRV and LDRV, or example. All iur-  
roundcng ꢁcrꢁuctry wcll tend to ꢁouple the icgnali ꢀrom theie  
nodei through itray ꢁapaꢁctanꢁe. Do not overicze ꢁopper  
traꢁei ꢁonneꢁted to theie nodei. Do not plaꢁe traꢁei ꢁon-  
neꢁted to the ꢀeedbaꢁk ꢁomponenti adjaꢁent to theie traꢁei.  
It ci not reꢁommended to uie Hcgh Denicty Interꢁonneꢁt  
Syitemi, or mcꢁro-vcai on theie icgnali. The uie oꢀ blcnd or  
burced vcai ihould be lcmcted to the low ꢁurrent icgnali only.  
The uie oꢀ normal thermal vcai ci leꢀt to the dciꢁretcon oꢀ the  
deicgner.  
16  
REV. 1.1.7 8/29/02  
PRODUCT SPECIFICATION  
FAN5240  
Mechanical Dimensions  
28-Pin QSOP  
Notes:  
Inches  
Millimeters  
Symbol  
Notes  
1. Symbols are defined in the "MO Series Symbol List" in  
Section 2.2 of Publication Number 95.  
Min.  
Max.  
Min.  
Max.  
A
0.053  
0.004  
-
0.069  
0.010  
0.061  
0.012  
0.010  
0.394  
0.157  
1.35  
0.10  
-
1.75  
0.25  
1.54  
0.30  
0.25  
10.00  
3.98  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
A1  
A2  
B
3. Dimension "D" does not include mold flash, protrusions  
or gate burrs. Mold flash, protrusions shall not exceed  
0.25mm (0.010 inch) per side.  
0.008  
0.007  
0.386  
0.150  
0.20  
0.18  
9.81  
3.81  
9
4. Dimension "E" does not include interlead flash or  
protrusions. Interlead flash and protrusions shall not  
exceed 0.25mm (0.010 inch) per side.  
C
D
E
3
4
5. The chamber on the body is optional. If it is not present,  
a visual index feature must be located within the  
crosshatched area.  
e
0.025 BSC  
0.635 BSC  
H
h
0.228  
0.244  
5.80  
0.26  
0.41  
6.19  
0.49  
1.27  
0.0099 0.0196  
5
6
7
6. "L" is the length of terminal for soldering to a substrate.  
7. "N" is the maximum number of terminals.  
0.016  
0.050  
L
N
α
28  
28  
8. Terminal numbers are shown for reference only.  
0°  
8°  
0°  
8°  
9. Dimension "B" does not include dambar protrusion.  
Allowable dambar protrusion shall be 0.10mm (0.004  
inch) total in excess of "B" dimension at maximum  
material condition.  
10. Controlling dimension: INCHES. Converted millimeter  
dimensions are not necessarily exact.  
D
E
H
C
A1  
A
A2  
α
SEATING  
PLANE  
C –  
L
B
LEAD COPLANARITY  
ccc C  
e
REV. 1.1.7 8/29/02  
17  
FAN5240  
PRODUCT SPECIFICATION  
Mechanical Dimensions  
28-Pin TSSOP  
9.7 0.1  
0.51 TYP  
28  
15  
B –  
0.2  
B A  
0.65  
0.42  
14  
ALL Lead Tips  
PIN # 1 IDENT  
LAND PATTERN RECOMMENDATION  
1.2 MAX  
0.1 C  
ALL LEAD TIPS  
+0.15  
0.10  
0.90  
See Detail A  
0.090.20  
C –  
0.10 0.05  
A B C  
0.65  
0.190.30  
0.13  
12.00° Top & Botom  
R0.16  
R0.31  
GAGE PLANE  
.025  
DIMENSIONS ARE IN MILLIMETERS  
0°8°  
0.61 0.1  
NOTES:  
SEATING PLANE  
A. Conforms to JEDEC registration MO-153, variation AB,  
Ref. Note 6, dated 7/93.  
1.00  
B. Dimensions are in millimeters.  
C. Dimensions are exclusive of burrs, mold flash, and tie bar extensions.  
D Dimensions and Tolerances per ANsI Y14.5M, 1982  
DETAIL A  
18  
REV. 1.1.7 8/29/02  
FAN5240  
PRODUCT SPECIFICATION  
Ordering Information  
Part Number  
FAN5240QSC  
FAN5240QSCX  
FAN5240MTC  
FAN5240MTCX  
Temperature Range  
-10°C to 85°C  
Package  
QSOP-28  
QSOP-28  
TSSOP-28  
TSSOP-28  
Packing  
Rails  
-10°C to 85°C  
Tape and Reel  
Rails  
-10°C to 85°C  
-10°C to 85°C  
Tape and Reel  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO  
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME  
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
8/29/02 0.0m 003  
Stock#DS30005240  
2002 Fairchild Semiconductor Corporation  

相关型号:

FAN5240QSCX

Multi-Phase PWM Controller for AMD Mobile Athlon TM and Duron TM
FAIRCHILD

FAN5240_06

Multi-Phase PWM Controller for AMD Mobile Athlon and Duron
FAIRCHILD

FAN5250

Mobile Processor Core-Voltage Regulator
FAIRCHILD

FAN5250QSC

Mobile Processor Core-Voltage Regulator
FAIRCHILD

FAN5250QSCX

Mobile Processor Core-Voltage Regulator
FAIRCHILD

FAN5307

High-Efficiency Step-Down DC-DC Converter
FAIRCHILD

FAN5307MP15X

High-Efficiency Step-Down DC-DC Converter
FAIRCHILD

FAN5307MP18X

High-Efficiency Step-Down DC-DC Converter
FAIRCHILD

FAN5307MP18X_NL

Switching Regulator, Current-mode, 0.7A, 1200kHz Switching Freq-Max, 3 X 3 MM, LEAD FREE, MO-229WEEA, MLP-6
FAIRCHILD

FAN5307MPX

High-Efficiency Step-Down DC-DC Converter
FAIRCHILD