FAN53601 [FAIRCHILD]

6 MHz 600 mA / 1 A Synchronous Buck Regulator; 6兆赫600毫安/ 1 A同步降压稳压器
FAN53601
型号: FAN53601
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

6 MHz 600 mA / 1 A Synchronous Buck Regulator
6兆赫600毫安/ 1 A同步降压稳压器

稳压器
文件: 总14页 (文件大小:996K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
October 2012  
FAN53601 / FAN53611  
6 MHz 600 mA / 1 A Synchronous Buck Regulator  
Features  
Description  
The FAN53601/11 is a 6 MHz, step-down switching voltage  
regulator, available in 600 mA or 1 A options, that delivers a  
fixed output from an input voltage supply of 2.3 V to 5.5 V.  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
600 mA or 1 A Output Current Capability  
24 µA Typical Quiescent Current  
6 MHz Fixed-Frequency Operation  
Best-in-Class Load Transient Response  
Best-in-Class Efficiency  
Using  
a
proprietary architecture with synchronous  
rectification, the FAN53601/11 is capable of delivering a  
peak efficiency of 92%, while maintaining efficiency over  
80% at load currents as low as 1 mA.  
The regulator operates at a nominal fixed frequency of  
6 MHz, which reduces the value of the external components  
to as low as 470 nH for the output inductor and 4.7 µF for the  
output capacitor. In addition, the Pulse Width Modulation  
(PWM) modulator can be synchronized to an external  
frequency source.  
2.3 V to 5.5 V Input Voltage Range  
0.8 V to 2 V Fixed Output Voltage  
Low Ripple Light-Load PFM Mode  
Forced PWM and External Clock Synchronization  
Internal Soft-Start  
At moderate and light loads, Pulse Frequency Modulation  
(PFM) is used to operate the device in Power-Save Mode  
with a typical quiescent current of 24 µA. Even with such a  
low quiescent current, the part exhibits excellent transient  
response during large load swings. At higher loads, the  
system automatically switches to fixed-frequency control,  
operating at 6 MHz. In Shutdown Mode, the supply current  
drops below 1 µA, reducing power consumption. For  
applications that require minimum ripple or fixed frequency,  
PFM Mode can be disabled using the MODE pin.  
Input Under-Voltage Lockout (UVLO)  
Thermal Shutdown and Overload Protection  
Optional Output Discharge  
6-Bump WLCSP, 0.4 mm Pitch  
Applications  
.
.
.
.
.
6-Bump WLCSP, 0.4mm Pitch  
3G, 4G, WiFi®, WiMAX™, and WiBro® Data Cards  
Tablets  
The FAN53601/11 is available in 6-bump, 0.4 mm pitch,  
Wafer-Level Chip-Scale Package (WLCSP).  
MODE  
SW  
VIN  
EN  
DSC, DVC  
Netbooks®, Ultra-Mobile PCs  
A1  
B1  
C1  
A2  
B2  
C2  
L1  
CIN  
2.2 F  
470nH  
FB  
GND  
COUT  
F
All trademarks are the property of their respective owners.  
Figure 1. Typical Application  
Ordering Information  
Output  
Max. Output  
Active  
Temperature  
Range  
Part Number  
Package  
Packing  
Voltage(1)  
Current  
Discharge(2)  
FAN53611AUC11X  
FAN53611UC123X  
FAN53601UC182X  
Notes:  
1.100 V  
1.233 V  
1.820 V  
1 A  
Yes  
No  
WLCSP-6,  
0.4 mm Pitch  
Tape and  
Reel  
1 A  
–40 to +85°C  
600 mA  
No  
1. Other voltage options available on request. Contact a Fairchild representative.  
2. All voltage and output current options are available with or without active discharge. Contact a Fairchild representative.  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
Pin Configurations  
Figure 2. Bumps Facing Down  
Figure 3. Bumps Facing Up  
Pin Definitions  
Pin #  
Name  
Description  
MODE. Logic 1 on this pin forces the IC to stay in PWM Mode. A logic 0 allows the IC to  
automatically switch to PFM during light loads. The regulator also synchronizes its switching  
frequency to four times the frequency provided on this pin. Do not leave this pin floating.  
A1  
MODE  
B1  
C1  
C2  
SW  
FB  
Switching Node. Connect to output inductor.  
Feedback / VOUT. Connect to output voltage.  
GND  
Ground. Power and IC ground. All signals are referenced to this pin.  
Enable. The device is in Shutdown Mode when voltage to this pin is < 0.4 V and enabled when  
> 1.2 V. Do not leave this pin floating.  
B2  
A2  
EN  
VIN  
Input Voltage. Connect to input power source.  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
2
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above  
the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended  
exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings  
are stress ratings only.  
Symbol  
VIN  
Parameter  
Min.  
–0.3  
–0.3  
–0.3  
–0.3  
Max.  
7.0  
VIN + 0.3(3)  
VIN + 0.3(3)  
VIN + 0.3(3)  
Units  
Input Voltage  
V
V
V
V
VSW  
Voltage on SW Pin  
EN and MODE Pin Voltage  
Other Pins  
VCTRL  
Human Body Model per JESD22-A114  
Charged Device Model per JESD22-C101  
3.5  
1.5  
Electrostatic Discharge  
Protection Level  
ESD  
kV  
TJ  
TSTG  
TL  
Junction Temperature  
Storage Temperature  
–40  
–65  
+150  
+150  
+260  
°C  
°C  
°C  
Lead Soldering Temperature, 10 Seconds  
Note:  
3. Lesser of 7 V or VIN+0.3 V.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating  
conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding  
them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min.  
2.3  
0
Typ.  
Max.  
5.5  
600  
1
Units  
V
VCC  
Supply Voltage Range  
Output Current for FAN53601  
Output Current for FAN53611  
Inductor  
mA  
A
IOUT  
0
L
CIN  
COUT  
TA  
470  
2.2  
4.7  
nH  
µF  
μF  
Input Capacitor  
Output Capacitor  
1.6  
–40  
–40  
12.0  
+85  
Operating Ambient Temperature  
Operating Junction Temperature  
°C  
TJ  
+125  
°C  
Thermal Properties  
Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 1s2p  
boards in accordance to JEDEC standard JESD51. Special attention must be paid to not exceed junction temperature TJ(max) at a  
given ambient temperate TA.  
Symbol  
Parameter  
Typical  
Unit  
Junction-to-Ambient Thermal Resistance  
150  
°C/W  
JA  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
3
Electrical Characteristics  
Minimum and maximum values are at VIN = VEN = 2.3 V to 5.5 V, VMODE = 0 V (AUTO Mode), TA = -40°C to +85°C; circuit of  
Figure 1, unless otherwise noted. Typical values are at TA = 25°C, VIN = VEN = 3.6 V.  
Symbol Parameter  
Power Supplies  
Conditions  
Min.  
Typ.  
Max.  
Units  
No Load, Not Switching  
PWM Mode  
24  
8
50  
µA  
mA  
µA  
V  
IQ  
Quiescent Current  
I(SD)  
Shutdown Supply Current  
EN = GND  
0.25  
2.15  
200  
1.00  
2.27  
VUVLO Under-Voltage Lockout Threshold Rising VIN  
VUVHYST Under-Voltage Lockout Hysteresis  
Logic Inputs: EN and MODE Pins  
mV  
VIH  
VIL  
Enable HIGH-Level Input Voltage  
Enable LOW-Level Input Voltage  
1.2  
V
V
0.4  
VLHYST Logic Input Hysteresis Voltage  
IIN Enable Input Leakage Current  
Switching and Synchronization  
100  
mV  
µA  
Pin to VIN or GND  
0.01  
1.00  
fSW  
Switching Frequency(4)  
VIN = 3.6 V, TA = 25°C  
5.4  
1.3  
6.0  
1.5  
6.6  
1.7  
MHz  
MHz  
fSYNC  
MODE Synchronization Range(4)  
Square Wave at MODE Input  
Regulation  
ILOAD = 0 to 1 A  
PWM Mode  
1.207  
1.207  
1.784  
1.784  
1.075  
1.075  
1.233  
1.233  
1.820  
1.820  
1.100  
1.100  
180  
1.272  
1.259  
1.875  
1.856  
1.136  
1.125  
300  
1.233 V  
1.820 V  
1.100 V  
ILOAD = 0 to 1 A  
PWM Mode  
Output Voltage  
Accuracy  
VO  
V
ILOAD = 0 to 1 A  
PWM Mode  
tSS  
Soft-Start  
From EN Rising Edge  
µs  
Output Driver  
PMOS On Resistance  
NMOS On Resistance  
VIN = VGS = 3.6 V  
175  
165  
1100  
1750  
230  
150  
15  
m  
m  
mA  
mA  
RDS(on)  
VIN = VGS = 3.6 V  
Open-Loop for FAN53601  
Open-Loop for FAN53611  
EN = GND  
900  
1250  
2000  
ILIM(OL) PMOS Peak Current Limit  
1500  
RDIS  
Output Discharge Resistance  
Thermal Shutdown  
TTSD  
THYS  
°C  
Thermal Shutdown Hysteresis  
°C  
Notes:  
4. Limited by the effect of tOFF minimum (see Operation Description section).  
5. The Electrical Characteristics table reflects open-loop data. Refer to the Operation Description and Typical Characteristics  
Sections for closed-loop data.  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
4
Typical Performance Characteristics  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, and TA = 25°C.  
95%  
90%  
85%  
80%  
75%  
70%  
92%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
68%  
66%  
64%  
62%  
60%  
- 40C, AUTO  
+25C, AUTO  
+85C, AUTO  
- 40C, PWM  
+25C, PWM  
+85C, PWM  
2.7 VIN  
3.6 VIN  
4.2 VIN  
5.0 VIN  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 4. Efficiency vs. Load Current and  
Figure 5. Efficiency vs. Load Current  
Input Voltage, Auto Mode, Dotted for Decreasing Load  
and Temperature, Auto Mode, Dotted for FPWM  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
- 40C, AUTO  
+25C, AUTO  
+85C, AUTO  
- 40C, PWM  
+25C, PWM  
+85C, PWM  
68%  
66%  
64%  
62%  
60%  
2.7 VIN  
3.6 VIN  
4.2 VIN  
5.0 VIN  
68%  
66%  
64%  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 6. Efficiency vs. Load Current and  
Figure 7. Efficiency vs. Load Current  
Input Voltage, VOUT = 1.23 V, Auto Mode, Dotted  
for Decreasing Load  
and Temperature, VOUT=1.23 V, Auto Mode,  
Dotted for FPWM  
3
3
2.7VIN, AUTO  
3.6VIN, AUTO  
4.2VIN, AUTO  
5.0VIN, AUTO  
2.7VIN, PWM  
3.6VIN, PWM  
4.2VIN, PWM  
5.0VIN, PWM  
2.7VIN, AUTO  
3.6VIN, AUTO  
4.2VIN, AUTO  
5.0VIN, AUTO  
2.7VIN, PWM  
3.6VIN, PWM  
4.2VIN, PWM  
5.0VIN, PWM  
2
1
2
1
0
0
-1  
-2  
-1  
-2  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 8. VOUT (%) vs. Load Current and Input Voltage,  
Normalized to 3.6 VIN, 500 mA Load, FPWM, Dotted for  
Auto Mode  
Figure 9. VOUT (%) vs. Load Current and Input Voltage,  
VOUT=1.23 V, Normalized to 3.6 VIN, 500 mA Load, FPWM,  
Dotted for Auto Mode  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
5
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, and TA = 25°C.  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
PWM  
PFM  
PWM  
PFM  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 10. PFM / PWM Boundary vs. Input Voltage  
Figure 11. PFM / PWM Boundary vs. Input Voltage,  
VOUT=1.23 V  
35  
15  
- 40C, EN=VIN  
- 40C  
+25C, EN=VIN  
+85C, EN=VIN  
- 40C, EN=1.8V  
+25C  
+85C  
12  
30  
+25C, EN=1.8V  
+85C, EN=1.8V  
9
6
3
0
25  
20  
15  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 12. Quiescent Current vs. Input Voltage and  
Temperature, Auto Mode; EN=VIN Solid, Dotted for  
EN=1.8 V (-40oC, +25oC, +85oC)  
Figure 13. Quiescent Current vs. Input Voltage and  
Temperature, Mode=EN=VIN (FPWM)  
25  
7,500  
6,000  
4,500  
2.7VIN, AUTO  
3.6VIN, AUTO  
5.0VIN, AUTO  
20  
2.7VIN, PWM  
3.6VIN, PWM  
5.0VIN, PWM  
15  
10  
5
3,000  
2.7VIN, AUTO  
3.6VIN, AUTO  
5.0VIN, AUTO  
1,500  
2.7VIN, PWM  
3.6VIN, PWM  
5.0VIN, PWM  
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000  
Load Current (mA)  
Load Current (mA)  
Figure 14. Output Ripple vs. Load Current and  
Input Voltage, FPWM, Dotted for Auto Mode  
Figure 15. Frequency vs. Load Current and  
Input Voltage, Auto Mode, Dotted for FPWM  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
6
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, and TA = 25°C.  
Figure 16. Load Transient, 10-200-10 mA, 100 ns Edge  
Figure 17. Load Transient, 200-800-200 mA, 100 ns Edge  
Figure 18. Line Transient, 3.3-3.9-3.3 VIN, 10 µs Edge,  
Figure 19. Line Transient, 3.3-3.9-3.3 VIN, 10 µs Edge,  
36 mA Load  
600 mA Load  
Figure 20. Combined Line / Load Transient, 3.9-3.3 VIN,  
Figure 21. Combined Line / Load Transient, 3.3-3.9 VIN,  
10 µs Edge, 400-36 mA Load, 100 ns Edge 3.9-3.3 VIN,  
10 µs Edge  
10 µs Edge, 36-400 mA Load, 100 ns Edge  
Figure 22. Startup, 50 Load  
Figure 23. Startup, 3 Load  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
7
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, and TA = 25°C.  
Figure 24. Shutdown, 10k Load, No Output Discharge Figure 25. Shutdown, No Load, Output Discharge Enabled  
Figure 26. Over-Current, Load Increasing Past Current  
Limit, FAN53601  
Figure 27. 250 mFault, Rapid Fault, Hiccup, FAN53601  
Figure 28. Over-Current, Load Increasing Past Current  
Limit, FAN53611  
Figure 29. 250 mFault, Rapid Fault, Hiccup, FAN53611  
70  
70  
36mA Load  
24mA Load  
600mA Load  
500mA Load  
60  
60  
50  
40  
30  
20  
50  
40  
30  
20  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
Frequency (KHz)  
Figure 30. PSRR, 50 and 3 Load  
Figure 31. PSRR, 50 and 3 Load, VOUT=1.23 V  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
8
Operation Description  
The FAN53601/11 is a 6 MHz, step-down switching voltage  
regulator available in 600 mA or 1 A options that delivers a  
fixed output from an input voltage supply of 2.3 V to 5.5 V.  
The current required to charge COUT during soft-start  
commonly referred to as “displacement current” is given as:  
dV  
Using  
a
proprietary architecture with synchronous  
(1)  
IDISP COUT  
rectification, the FAN53601/11 is capable of delivering a  
peak efficiency of 92%, while maintaining efficiency over  
80% at load currents as low as 1 mA.  
dt  
dV  
where  
refers to the soft-start slew rate.  
dt  
The regulator operates at a nominal fixed frequency of  
6 MHz, which reduces the value of the external components  
to as low as 470 nH for the output inductor and 4.7 µF for the  
output capacitor. In addition, the PWM modulator can be  
synchronized to an external frequency source.  
To prevent shut down during soft-start, the following condition  
must be met:  
(2)  
I
I  
I  
DISP  
LOAD MAX(DC)  
where IMAX(DC) is the maximum load current the IC is  
guaranteed to support.  
Control Scheme  
The FAN53601/11 uses a proprietary, non-linear, fixed-  
frequency PWM modulator to deliver a fast load transient  
response, while maintaining a constant switching frequency  
over a wide range of operating conditions. The regulator  
performance is independent of the output capacitor ESR,  
allowing for the use of ceramic output capacitors. Although  
this type of operation normally results in a switching frequency  
that varies with input voltage and load current, an internal  
frequency loop holds the switching frequency constant over a  
large range of input voltages and load currents.  
Startup into Large COUT  
Multiple soft-start cycles are required for no-load startup if  
COUT is greater than 15 F. Large COUT requires light initial  
load to ensure the FAN53601/11 starts appropriately. The IC  
shuts down for 1.3 ms when IDISP exceeds ILIMIT for more  
than 200 s of current limit. The IC then begins a new soft-  
start cycle. Since COUT retains its charge when the IC is off,  
the IC reaches regulation after multiple soft-start attempts.  
For very light loads, the FAN53601/11 operates in  
discontinuous current (DCM) single-pulse PFM Mode, which  
produces low output ripple compared with other PFM  
architectures. Transition between PWM and PFM is  
seamless, allowing for a smooth transition between DCM  
and CCM.  
MODE Pin  
Logic 1 on this pin forces the IC to stay in PWM Mode. A  
logic 0 allows the IC to automatically switch to PFM during  
light loads. If the MODE pin is toggled with a frequency  
between 1.3 MHz and 1.7 MHz, the converter synchronizes  
its switching frequency to four times the frequency on the  
MODE pin.  
Combined  
with  
exceptional  
transient  
response  
characteristics, the very low quiescent current of the  
controller maintains high efficiency; even at very light loads;  
while preserving fast transient response for applications  
requiring tight output regulation.  
The MODE pin is internally buffered with a Schmitt trigger,  
which allows the MODE pin to be driven with slow rise and  
fall times. An asymmetric duty cycle for frequency  
synchronization is also permitted as long as the minimum  
time below VIL(MAX) or above VIH(MAX) is 100 ns.  
Enable and Soft-Start  
When EN is LOW, all circuits are off and the IC draws ~50 nA  
of current. When EN is HIGH and VIN is above its UVLO  
threshold, the regulator begins a soft-start cycle. The output  
ramp during soft-start is a fixed slew rate of 50 mV/s from 0  
to 1 VOUT, then 12.5 mV/s until the output reaches its  
setpoint. Regardless of the state of the MODE pin, PFM Mode  
is enabled to prevent current from being discharged from COUT  
if soft-start begins when COUT is charged.  
Current Limit, Fault Shutdown, and Restart  
A heavy load or short circuit on the output causes the current  
in the inductor to increase until a maximum current threshold  
is reached in the high-side switch. Upon reaching this point,  
the high-side switch turns off, preventing high currents from  
causing damage. The regulator continues to limit the current  
cycle-by-cycle. After 16 cycles of current limit, the regulator  
triggers an over-current fault, causing the regulator to shut  
down for about 1.3 ms before attempting a restart.  
In addition, all voltage options can be ordered with a feature  
that actively discharges FB to ground through a 230 path  
when EN is LOW. Raising EN above its threshold voltage  
activates the part and starts the soft-start cycle. During soft-  
start, the internal reference is ramped using an exponential  
RC shape to prevent overshoot of the output voltage. Current  
limiting minimizes inrush during soft-start.  
If the fault is caused by short circuit, the soft-start circuit  
attempts to restart and produces an over-current fault after  
about 200 s, which results in a duty cycle of less than 15%,  
limiting power dissipation.  
The closed-loop peak-current limit is not the same as the  
open-loop tested current limit, ILIM(OL), in the Electrical  
Characteristics table. This is primarily due to the effect of  
propagation delays of the IC current limit comparator.  
The current-limit fault response protects the IC in the event  
of an over-current condition present during soft-start. As a  
result, the IC may fail to start if heavy load is applied during  
startup and/or if excessive COUT is used.  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
9
The calculation for switching frequency is given by:  
Under-Voltage Lockout (UVLO)  
When EN is HIGH, the under-voltage lockout keeps the part  
from operating until the input supply voltage rises high  
enough to properly operate. This ensures no misbehavior of  
the regulator during startup or shutdown.  
1
fSW min  
, 6MHz  
(3)  
tSW (MAX )  
where:  
VOUT IOUT ROFF  
IOUT RON VOUT  
Thermal Shutdown (TSD)  
tSW (MAX ) 40ns 1  
(4)  
V
IN  
When the die temperature increases, due to a high load  
condition and/or a high ambient temperature; the output  
switching is disabled until the die temperature falls sufficiently.  
The junction temperature at which the thermal shutdown  
activates is nominally 150°C with a 15°C hysteresis.  
where:  
ROFF = RDSON _ N DCRL  
ON = RDSON _ P DCRL  
R
Minimum Off-Time Effect on Switching  
Frequency  
tOFF(MIN) is 40 ns. This imposes constraints on the maximum  
VOUT  
that the FAN53601/11 can provide or the maximum  
VIN  
output voltage it can provide at low VIN while maintaining a  
fixed switching frequency in PWM Mode.  
When VIN is LOW, fixed switching is maintained as long as:  
VOUT  
1tOFF(MIN) fSW 0.7 .  
VIN  
The switching frequency drops when the regulator cannot  
provide sufficient duty cycle at 6 MHz to maintain regulation.  
This occurs when VOUT is 1.82 V and VIN is below 2.7 V at  
high load currents (see Figure 32).  
7,500  
6,000  
4,500  
2.7VIN, AUTO  
2.3VIN, AUTO  
2.7VIN, PWM  
2.3VIN, PWM  
3,000  
1,500  
0
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Figure 32. Frequency vs. Load Current to Demonstrate  
tOFFMIN Effect, VIN=2.3 V and 2.7 V, VOUT=1.82 V,  
Auto Mode, FPWM Dotted  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
10  
Applications Information  
Selecting the Inductor  
The increased RMS current produces higher losses through  
the RDS(ON) of the IC MOSFETs, as well as the inductor DCR.  
The output inductor must meet both the required inductance  
and the energy-handling capability of the application. The  
inductor value affects average current limit, the PWM-to-  
PFM transition point, output voltage ripple, and efficiency.  
Increasing the inductor value produces lower RMS currents,  
but degrades transient response. For a given physical  
inductor size, increased inductance usually results in an  
inductor with lower saturation current and higher DCR.  
The ripple current (I) of the regulator is:  
Table 1 shows the effects of inductance higher or lower than  
the recommended 1 H on regulator performance.  
VOUT  
VIN  
VIN VOUT  
L fSW  
I   
(5)  
Output Capacitor  
The maximum average load current, IMAX(LOAD), is related to  
the peak current limit, ILIM(PK), by the ripple current, given by:  
Table 2 suggests 0402 capacitors. 0603 capacitors may  
further improve performance in that the effective capacitance  
is higher. This improves transient response and output ripple.  
I  
2
(6)  
IMAX(LOAD) ILIM(PK)  
Increasing COUT has no effect on loop stability and can  
therefore be increased to reduce output voltage ripple or to  
improve transient response. Output voltage ripple, VOUT, is:  
The transition between PFM and PWM operation is  
determined by the point at which the inductor valley current  
crosses zero. The regulator DC current when the inductor  
current crosses zero, IDCM, is:  
2
f
C  
2D  
ESR  
1
SW  
OUT  
V  
 I  
OUT  
L
(9)  
1D  
8f  
C  
SW OUT  
I  
2
(7)  
IDCM  
Input Capacitor  
The 2.2 F ceramic input capacitor should be placed as  
close as possible between the VIN pin and GND to minimize  
the parasitic inductance. If a long wire is used to bring power  
to the IC, additional “bulk” capacitance (electrolytic or  
tantalum) should be placed between CIN and the power  
source lead to reduce the ringing that can occur between the  
inductance of the power source leads and CIN.  
The FAN53601/11 is optimized for operation with L = 470 nH,  
but is stable with inductances up to 1H (nominal). The  
inductor should be rated to maintain at least 80% of its value  
at ILIM(PK)  
.
Efficiency is affected by the inductor DCR and inductance  
value. Decreasing the inductor value for a given physical size  
typically decreases the DCR; but because I increases, the  
RMS current increases, as do the core and skin effect losses.  
The effective capacitance value decreases as VIN increases  
due to DC bias effects.  
I2  
12  
2
(8)  
IRMS  
IOUT(DC)  
Table 1. Effects of Changes in Inductor Value (from 470nH Recommended Value) on Regulator Performance  
Inductor Value  
Increase  
IMAX(LOAD)  
Increase  
Decrease  
VOUT  
Decrease  
Increase  
Transient Response  
Degraded  
Decrease  
Improved  
Table 2. Recommended Passive Components and their Variation Due to DC Bias  
Component  
Description  
Vendor  
Min.  
Typ.  
Max.  
470 nH,  
2012,90 m,  
1.1 A  
Murata LQM21PNR47MC0  
Murata LQM21PNR54MG0  
Hitachi Metals HLSI 201210R47  
L1  
300 nH 470 nH 520 nH  
Murata or Equivalent GRM155R60J225ME15  
GRM188R60J225KE19D  
2.2 F, 6.3 V,  
CIN  
1.0 F  
1.6 F  
2.2 F  
4.7 F  
X5R, 0402  
Murata or Equivalent GRM155R60G475M  
GRM155R60E475ME760  
4.7 F, X5R,  
COUT  
0402  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
11  
PCB Layout Guidelines  
There are only three external components: the inductor and  
the input and output capacitors. For any buck switcher IC,  
including the FAN53601/11, it is important to place a low-ESR  
input capacitor very close to the IC, as shown in Figure 33.  
The input capacitor ensures good input decoupling, which  
helps reduce noise appearing at the output terminals and  
ensures that the control sections of the IC do not behave  
erratically due to excessive noise. This reduces switching  
cycle jitter and ensures good overall performance. It is  
important to place the common GND of CIN and COUT as close  
as possible to the C2 terminal. There is some flexibility in  
moving the inductor further away from the IC; in that case,  
VOUT should be considered at the COUT terminal.  
Figure 33. PCB Layout Guidance  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
12  
Physical Dimensions  
F
0.03 C  
E
A
2X  
0.40  
B
D
A1  
BALL A1  
INDEX AREA  
(Ø0.20)  
Cu Pad  
0.40  
F
(Ø0.30)  
Solder Mask  
Opening  
0.03 C  
2X  
TOP VIEW  
RECOMMENDED LAND PATTERN  
(NSMD PAD TYPE)  
0.06 C  
E
0.378±0.018  
0.208±0.021  
0.625  
0.547  
0.05 C  
SEATING PLANE  
D
C
SIDE VIEWS  
Ø0.260±0.010  
6X  
NOTES:  
0.40  
A. NO JEDEC REGISTRATION APPLIES.  
B. DIMENSIONS ARE IN MILLIMETERS.  
0.005  
C A B  
C
B
A
C. DIMENSIONS AND TOLERANCES PER  
ASMEY14.5M, 1994.  
(Y) +/-0.018  
F
0.40  
D. DATUM C, THE SEATING PLANE IS DEFINED  
BY THE SPHERICAL CROWNS OF THE BALLS.  
2
1
(X) +/-0.018  
E. PACKAGE TYPICAL HEIGHT IS 586 MICRONS  
±39 MICRONS (547-625 MICRONS).  
BOTTOM VIEW  
F. FOR DIMENSIONS D, E, X, AND Y SEE  
PRODUCT DATASHEET.  
G. DRAWING FILENAME: UC006ACrev4.  
Figure 1. 6-Bump WLCSP, 0.4mm Pitch  
Product-Specific Dimensions  
Product  
D
E
X
Y
FAN53611AUC11X  
FAN53611UC123X  
FAN53601UC182X  
1.160 ±0.030  
1.160 ±0.030  
1.160 ±0.030  
0.860 ±0.030  
0.860 ±0.030  
0.860 ±0.030  
0.230  
0.230  
0.230  
0.180  
0.180  
0.180  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without  
notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most  
recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which  
covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
13  
© 2010 Fairchild Semiconductor Corporation  
FAN53601 / FAN53611 • Rev. 1.0.1  
www.fairchildsemi.com  
14  

相关型号:

FAN53601AUC105X

6 MHz, 600mA / 1 A Synchronous Buck Regulator
ONSEMI

FAN53601AUC10X

6 MHz, 600mA / 1 A Synchronous Buck Regulator
ONSEMI

FAN53601UC182X

6 MHz 600 mA / 1 A Synchronous Buck Regulator
FAIRCHILD

FAN53601UC182X

6 MHz, 600mA / 1 A Synchronous Buck Regulator
ONSEMI

FAN53602UC123X

1.2A Synchronous Buck Regulator
ONSEMI

FAN5361

6MHz, 600mA TinyBuck⑩ Synchronous Buck Regulator
FAIRCHILD

FAN5361

6 MHz, 600 mA / 750 mA Synchronous Buck Regulator
ONSEMI

FAN53610AUC29X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
FAIRCHILD

FAN53610AUC29X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
ONSEMI

FAN53610AUC30X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
ONSEMI

FAN53610AUC33X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
ONSEMI

FAN53611

6 MHz 600 mA / 1 A Synchronous Buck Regulator
FAIRCHILD