FAN6757MRMX [FAIRCHILD]

Switching Controller, Current-mode, 68kHz Switching Freq-Max, PDSO8;
FAN6757MRMX
型号: FAN6757MRMX
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Switching Controller, Current-mode, 68kHz Switching Freq-Max, PDSO8

开关 光电二极管
文件: 总17页 (文件大小:1345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
November 2013  
FAN6757mWSaver® PWM Controller  
Features  
Description  
The FAN6757 is a next-generation Green Mode PWM  
controller with innovative mWSaver® technology, which  
dramatically reduces standby and no-load power  
consumption, enabling conformance to worldwide  
Standby Mode efficiency guidelines.  
An innovative AX-CAP® method minimizes losses in the  
EMI filter stage by eliminating X-cap discharge resistors  
while meeting IEC61010-1 safety requirements.  
.
Single-Ended Topologies, such as Flyback and  
Forward Converters  
.
mWSaver® Technology  
- Achieves Low No-Load Power Consumption:  
<50 mW at 230 VAC (EMI Filter Loss Included)  
- Eliminates X Capacitor Discharge Resistor Loss  
with AX-CAP® Technology  
- Linearly Decreases Switching Frequency  
Protections ensure safe operation of the power system  
in various abnormal conditions. A proprietary frequency-  
hopping function decreases EMI emission. Built-in  
synchronized slope compensation allows more stable  
Peak-Current-Mode control over a wide range of input  
voltage and load conditions. The proprietary internal line  
compensation ensures constant output power limit over  
the entire universal line voltage range.  
to 23 kHz  
- Burst Mode Operation at Light-Load Condition  
- 500 V High-Voltage JFET Startup Circuit to  
Eliminate Startup Resistor Loss  
.
Highly Integrated with Rich Features  
- Proprietary Frequency Hopping to Reduce EMI  
- High-Voltage Sampling to Detect Input Voltage  
Requiring a minimum number of external components,  
FAN6757 provides a basic platform that is well suited for  
cost-effective flyback converter designs that require  
extremely low standby power consumption.  
- Peak-Current-Mode Control with Slope  
Compensation  
- Cycle-by-Cycle Current Limiting with Line  
Applications  
Compensation  
- Leading-Edge Blanking (LEB)  
- Built-In 7 ms Soft-Start  
Flyback power supplies that demand extremely low  
standby power consumption, such as:  
.
Advanced Protections  
.
.
Adapters for Notebooks, Printers, Game Consoles  
- Brown-In/Brownout Recovery  
Open-Frame SMPS for LCD TV, LCD Monitors,  
Printers  
- Internal Overload / Open-Loop Protection (OLP)  
- VDD Under-Voltage Lockout (UVLO)  
- VDD Over-Voltage Protection (VDD OVP)  
- Over-Temperature Protection (OTP)  
- Current-Sense Short-Circuit Protection (SSCP)  
Ordering Information  
Protections(1)  
Operating  
Temperature Range  
Packing  
Method  
Part Number  
OLP  
Package  
OVP  
OTP SSCP  
A/R  
8-Pin, Small-Outline  
Package (SOP)  
Tape &  
Reel  
FAN6757MRMX  
A/R  
L
L
-40 to +105°C  
Note:  
1. A/R = Auto Recovery Mode protection, L = Latch Mode protection.  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
 
Application Diagram  
+
VAC  
VO  
-
FAN6757  
1
2
GND  
GATE  
VDD  
8
7
FB  
3
4
NC  
HV  
SENSE  
RT  
6
5
Figure 1. Typical Application  
Internal Block Diagram  
NC  
3
HV  
4
VDDOVP  
Latch  
OTP  
SSCP  
OLP  
Line  
Sensing  
Re-Start  
Protection  
Protection  
Brownout Function  
Soft  
Driver  
High/Low Line  
Compensation  
8
GATE  
VLimit  
VPWM  
S
R
Q
OSC  
Internal  
BIAS  
SSCP  
Comparator  
VDD  
7
VSSCP-H/L  
SSCP  
UVLO  
tD-SSCP  
VRESET  
Soft-Start  
Comparator  
VDD-ON  
VRESTART  
/
Pattern  
Generator  
Soft-Start  
VLimit  
Current Limit  
Comparator  
VRESET  
Blanking  
Circuit  
SENSE  
6
Green  
Mode  
VDD  
OVP  
tD-VDDOVP  
PWM  
Comparator  
VDD-OVP  
VFB-OPEN  
Max.  
Duty  
Slope  
VPWM  
Compensation  
IRT  
ZFB  
RT  
5
tD-OTP1  
3R  
R
OTP  
FB  
2
OLP  
tD-OLP  
VRTTH1  
OLP  
Comparator  
tD-OTP2  
VRTTH2  
VFB-OLP  
1
GND  
Figure 2. Functional Block Diagram  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
2
Marking Information  
Z - Plant Code  
X - 1-Digit Year Code  
Y - 1-Digit Week Code  
TT - 2-Digit Die Run Code  
T - Package Type (M=SOP)  
M - Manufacture Flow Code  
ZXYTT  
6757  
TM  
Figure 3. Top Mark  
Pin Configuration  
SOP-8  
GND  
FB  
1
2
3
4
8
7
6
5
GATE  
VDD  
SENSE  
RT  
NC  
HV  
Figure 4. Pin Configuration (Top View)  
Pin Definitions  
Pin #  
Name  
Description  
Ground. This pin is used for the ground potential of all the pins. A 0.1 µF decoupling capacitor  
placed between VDD and GND is recommended.  
1
GND  
Feedback. The output voltage feedback information from the external compensation circuit is fed  
into this pin. The PWM duty cycle is determined from this pin and the current-sense signal from  
Pin 6. The FAN6757 performs open-loop protection: if the FB voltage is higher than a threshold  
voltage (around 4.6 V) for more than 57.5 ms, the controller latches off the PWM.  
2
3
FB  
NC  
No connection  
High-Voltage Startup. This pin is connected to the line input or bulk capacitor, via 200 kΩ  
resistors, to achieve brownout and high/low line compensation. If the voltage of the HV pin is  
lower than the brownout voltage (AC line peak voltage less than 100 V) and lasts for 65 ms,  
PWM output turns off. High/low line compensation dominates the OCP level and cycle-by-cycle  
current limit, to solve the unequal OCP level and power-limit problems under universal input.  
4
HV  
Over-Temperature Protection. An external NTC thermistor is connected from this pin to the  
GND pin. The impedance of the NTC thermistor decreases at high temperatures. Once the  
voltage of the RT pin drops below the threshold voltage, the controller latches off the PWM. If the  
RT pin is not connected to an NTC resistor for over-temperature protection, it is recommended to  
place one 100 resistor to ground to prevent from noise interference. This pin is limited by an  
internal clamping circuit.  
5
RT  
Current Sense. The sensed voltage is used for peak-current-mode control and cycle-by-cycle  
current limiting.  
6
7
8
SENSE  
VDD  
Power Supply. The internal protection circuit disables PWM output as long as VDD exceeds the  
OVP trigger point.  
Gate Drive Output. The totem-pole output driver for the power MOSFET. It is internally clamped  
below 14.5 V.  
GATE  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VVDD  
Parameter  
Min.  
Max.  
Units  
DC Supply Voltage(1,2)  
FB Pin Input Voltage  
30  
7.0  
V
V
VFB  
-0.3  
-0.3  
-0.3  
VSENSE SENSE Pin Input Voltage  
7.0  
V
VRT  
VHV  
PD  
RT Pin Input Voltage  
7.0  
V
HV Pin Input Voltage  
500  
400  
150  
+125  
+150  
+260  
6.5  
V
Power Dissipation (TA50°C)  
mW  
ϴJA  
TJ  
Thermal Resistance (Junction-to-Air)  
Operating Junction Temperature  
C/W  
C  
-40  
-55  
TSTG  
TL  
Storage Temperature Range  
C  
Lead Temperature (Wave Soldering or IR, 10 Seconds)  
C  
Human Body Model, JEDEC:JESD22-A114  
Charged Device Model, JEDEC:JESD22-C101 All Pins except HV Pin(3)  
All Pins except HV Pin(3)  
ESD  
kV  
2.0  
Notes:  
1. All voltage values, except differential voltages, are given with respect to the network ground terminal.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
3. ESD level on the HV pin is CDM=1 kV and HBM=1 kV.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. We does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Resistance on HV Pin  
Min.  
Typ.  
Max.  
Unit  
RHV  
150  
200  
250  
kΩ  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
4
 
 
 
Electrical Characteristics  
VDD=15 V and TJ=TA=25C unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
VDD Section  
VDD-ON  
Threshold Voltage to Startup  
VDD Rising  
16  
17  
18  
V
V
Threshold Voltage to Stop Switching in  
Normal Mode  
VUVLO  
VDD Falling  
VDD Falling  
VDD Falling  
VDD Falling  
VDD Falling  
5.5  
6.5  
7.5  
Threshold Voltage to enable HV Startup  
to Charge VDD in Normal Mode  
VRESTART  
VDD-OFF  
VDD-OLP  
VDD-LH  
4.7  
11  
7
V
V
V
V
Threshold Voltage to Stop Operating in  
Protection Mode  
10  
6
12  
8
Threshold Voltage to Enable HV Startup  
to Charge VDD in Protection Mode  
Threshold Voltage to Release Latch  
Mode  
3.5  
4.0  
4.5  
Minimum Voltage of VDD Pin for  
Enabling Brown-in to Avoid Startup Fail  
VUVLO VUVLO VUVLO  
VDD-AC  
IDD-ST  
V
+2.5  
+3.0  
+3.5  
Startup Current  
VDD=VDD-ON 0.16 V  
30  
µA  
mA  
VDD=15 V, VFB=3 V,  
Gate Open  
IDD-OP1  
Supply Current in PWM Operation  
1.8  
800  
190  
VDD=15 V, VFB <1.4 V,  
Gate Off  
IDD-OP2  
IDD-OLP  
ILH  
Supply Current when PWM Stops  
µA  
µA  
µA  
V
Internal Sink Current when VDD-  
OLP<VDD<VDD-OFF in Protection Mode  
VDD = VDD-OLP + 0.1 V  
VDD = 5 V  
90  
30  
140  
Internal Sink Current when VDD<VDD-OLP  
in Latch-Protection Mode  
Threshold Voltage for VDD Over-Voltage  
Protection  
VDD-OVP  
23.5  
110  
24.5  
205  
25.5  
300  
VDD Over-Voltage Protection Debounce  
Time  
tD-VDDOVP  
HV Section  
IHV  
µs  
VAC=90 V (VDC=120 V),  
VDD=0 V  
Inherent Current Limit of HV Pin  
Threshold Voltage for Brownout  
Threshold Voltage for Brown-In  
VAC-ON VAC-OFF  
1.50  
90  
3.25  
100  
110  
5.00  
110  
120  
mA  
V
DC Source Series,  
R=200 kΩ to HV Pin  
VAC-OFF  
VAC-ON  
VAC  
DC Source Series,  
R=200 kΩ to HV Pin  
100  
V
DC Source Series,  
R=200 kΩ to HV Pin  
8
12  
65  
16  
90  
V
tD-AC-OFF Debounce Time for Brownout  
40  
95  
ms  
ms  
Work Period of HV-Sampling Circuit in  
Standby Mode  
tS-WORK  
VFB<VFB-ZDC  
140  
185  
Rest Period of HV-Sampling Circuit in  
Standby Mode  
tS-REST  
VFB<VFB-ZDC  
180  
VDC  
260  
VDC  
320  
VDC  
ms  
V
VHV-DIS  
HV Discharge Threshold  
RHV=200 kΩ to HV Pin  
×0.45 ×0.51 ×0.56  
tD-HV-DIS  
tHV-DIS  
Debounce Time for HV Discharge  
HV Discharge Time  
75  
115  
510  
155  
660  
ms  
ms  
360  
Continued on the following page…  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
5
Electrical Characteristics  
VDD=15 V and TJ=TA=25C unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
Oscillator Section  
Center Frequency  
Hopping Range (VFB>VFB-N  
VFB>VFB-G  
62  
65  
68  
fOSC  
tHOP  
Frequency in Normal Mode  
Hopping Period  
kHz  
ms  
)
±3.55 ±4.25 ±4.95  
5.12  
20  
6.40  
23  
7.68  
26  
Center Frequency  
Hopping Range (Increase  
VFB from VFB-G Until Hopping ±1.25 ±1.50 ±1.75  
Starts)  
fOSC-G  
Green-Mode Frequency  
kHz  
fDV  
fDT  
Frequency Variation vs. VDD Deviation  
VDD=11 V to 22 V  
5
%
%
Frequency Variation vs. Temperature  
Deviation  
5
TA=-40 to 105C  
Feedback Input Section  
Input Voltage to Current-Sense  
Attenuation  
AV  
1/4.50 1/3.75 1/3.00  
V/V  
ZFB  
Pull High Impedance at Normal Mode  
17  
5.2  
4.3  
45.0  
2.6  
2.1  
19  
5.4  
4.6  
57.5  
2.8  
2.3  
21  
5.6  
4.9  
70.0  
3.0  
2.5  
kΩ  
V
VFB-OPEN Output High Voltage  
FB Pin Open  
VFB-OLP  
tD-OLP  
VFB-N  
FB Open-Loop Trigger Level  
V
Delay of FB Pin Open-Loop Protection  
Green-Mode Entry FB Voltage  
ms  
V
VFB-G  
Green-Mode Ending FB Voltage  
V
FB Threshold Voltage for Zero-Duty  
Recovery at Normal Mode  
VFB-ZDCR  
VFB-ZDC  
1.9  
1.8  
2.1  
2.0  
2.3  
2.2  
V
V
FB Threshold Voltage for Zero-Duty at  
Normal Mode  
Current-Sense Section  
tPD  
Delay to Output  
100  
265  
250  
330  
ns  
ns  
tLEB  
Leading-Edge Blanking Time  
200  
Current Limit at Low Line  
(VAC-RMS=86 V)  
VDC=122 V,  
Series R=200 kΩ to HV  
VLIMIT-L  
VLIMIT-H  
VSSCP-L  
0.43  
0.46  
0.39  
50  
0.49  
0.42  
70  
V
V
Current Limit at High Line  
(VAC-RMS=259 V)  
VDC=366 V,  
Series R=200 kΩ to HV  
0.36  
30  
Threshold Voltage for SENSE Short-  
Circuit Protection  
VDC=122 V,  
Series R=200 kΩ to HV  
mV  
Threshold Voltage for SENSE Short-  
Circuit Protection  
VDC=366 V,  
Series R=200 kΩ to HV  
VSSCP-H  
tON-SSCP  
tD-SSCP  
tSS  
80  
4.00  
110  
5
100  
4.55  
170  
7
120  
5.10  
230  
9
mV  
µs  
On Time for VSSCP-(L/H) Checking  
VSENSE<VSSCP-(L/H)  
VSENSE<VSSCP-(L/H)  
Startup Time  
Debounce Time for SENSE Short-  
Circuit Protection  
µs  
Soft-Startup Time  
ms  
Continued on the following page…  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
6
Electrical Characteristics  
VDD=15 V and TJ=TA=25C unless otherwise noted.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
GATE Section  
DCYMAX Maximum Duty Cycle  
75.0  
82.5  
90.0  
1.5  
%
V
VGATE-L  
Gate Low Voltage  
VDD=15 V, IO=50 mA  
VDD=12 V, IO=50 mA  
VDD=15 V, CL=1 nF  
VDD=15 V, CL=1 nF  
VDD=22 V  
VGATE-H  
Gate High Voltage  
8
85  
V
tr  
tf  
Gate Rising Time (10~90%)  
Gate Falling Time (10~90%)  
110  
40  
135  
50  
ns  
ns  
V
30  
VGATE-CLAMP Gate Output Clamping Voltage  
11.0  
14.5  
18.0  
RT Section  
IRT  
Output Current of RT Pin  
100  
µA  
V
Threshold Voltage, Latch Protection  
(Generally Used for External OTP  
Triggering)  
V
RTTH2VRT VRTTH1  
,
VRTTH1  
1.000 1.035 1.070  
After 14.5 ms Latch Off  
Second Latch Protection Threshold  
Voltage  
V
RTTH2 0.7 V,  
VRTTH2  
ROTP  
0.65  
9.66  
11.0  
0.70  
0.75  
V
After 185 µs Latch Off  
Value of VRTTH1/IRT  
10.50 11.34  
kΩ  
ms  
Debounce Time, First Latch Protection  
Triggering  
tD-OTP1  
VRTTH2 VRT VRTTH1  
14.5  
185  
18.0  
260  
Debounce Time, Second Latch  
Protection Triggering  
tD-OTP2  
VRT< VRTTH2  
110  
µs  
Over-Temperature Protection Section (OTP)  
TOTP Protection Junction Temperature  
+135  
°C  
°C  
TOTP  
-
TRESTART Restart Junction Temperature  
25  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
7
Typical Characteristics  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
9.6  
-40 -30 -15  
0
25 50 75 85 100 125  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Temperature (ºC)  
Figure 5. VRESTART vs. Temperature  
Figure 6. VDD-OFF vs. Temperature  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
8
7
6
5
4
3
2
1
0
-40 -30 -15  
0
25 50 75 85 100 125  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Temperature (ºC)  
Figure 7. VDD-OLP vs. Temperature  
Figure 8. VDD-LH vs. Temperature  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Figure 9. TD-OLP vs. Temperature  
Figure 10.ILH vs. Temperature  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
8
Typical Characteristics  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
115  
110  
105  
100  
95  
90  
85  
80  
-40 -30 -15  
0
25 50 75 85 100 125  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Temperature (ºC)  
Figure 11.VAC-ON vs. Temperature  
Figure 12.VAC-OFF vs. Temperature  
80  
75  
70  
65  
60  
55  
50  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
-40 -30 -15  
0
25 50 75 85 100 125  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Temperature (ºC)  
Figure 13.fOSC vs. Temperature  
Figure 14.1/AV vs. Temperature  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
-40 -30 -15  
0
25 50 75 85 100 125  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Temperature (ºC)  
Figure 15.ZFB vs. Temperature  
Figure 16.VFB-OPEN vs. Temperature  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
9
Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
-40 -30 -15  
0
25 50 75 85 100 125  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Temperature (ºC)  
Figure 17. DCYMAX vs. Temperature  
Figure 18.VLIMIT-L vs. Temperature  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
-40 -30 -15  
0
25 50 75 85 100 125  
-40 -30 -15  
0
25 50 75 85 100 125  
Temperature (ºC)  
Temperature (ºC)  
Figure 19.VLIMIT-H vs. Temperature  
Figure 20.tLEB vs. Temperature  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
10  
Functional Description  
Current Mode Control  
switching, reducing switching loss for lower power  
consumption, as shown in Figure 23.  
FAN6757 employs peak current-mode control, as shown  
in Figure 21. An opto-coupler (such as the H11A817A)  
and a shunt regulator (such as the KA431) are typically  
used to implement the feedback network. Comparing  
the feedback voltage with the voltage across the Rsense  
resistor makes it possible to control the switching duty  
cycle. The built-in slope compensation stabilizes the  
current loop and prevents sub-harmonic oscillation.  
VO  
VFB  
VFB.ZDCR  
VFB.ZDC  
5.4 V  
IDrain  
VO  
ZFB  
FB  
2
PWM  
3R  
Switching  
Disabled  
Switching  
Disabled  
Comparator  
GATE  
Gate  
driver  
KA431  
8
Figure 23. Burst Switching in Green Mode  
R
Operating Current  
SENSE  
+
Secondary  
side  
6
Primary side  
In normal conditions, operating current is less than  
1.8 mA (IDD-OP1). When VFB<1.4 V, operating current is  
further reduced below 800 µA (IDD-OP2) by disabling  
several blocks of the FAN6757. The low operating  
current improves light-load efficiency and reduces the  
requirement of VDD hold-up capacitance.  
+
Slope  
compensatin  
Figure 21. Current Mode Control Circuit Diagram  
Green-Mode Operation  
High-Voltage Startup and Line Sensing  
The FAN6757 modulates the PWM frequency as a  
function of the FB voltage to improve the medium- and  
light-load efficiency, as shown in Figure 22. Since the  
output power is proportional to the FB voltage in current-  
mode control, the switching frequency decreases as  
load decreases. In heavy-load conditions, the switching  
frequency is fixed at 65 kHz. Once VFB decreases below  
VFB-N (2.8 V), the PWM frequency starts linearly  
decreasing from 65 kHz to 23 kHz to reduce switching  
losses. As VFB drops to VFB-G (2.3 V), where switching  
frequency is decreased to 23 kHz, the switching  
frequency is fixed to avoid acoustic noise.  
The HV pin is typically connected to the AC line input  
through two external diodes and one resistor (RHV), as  
shown in Figure 24. When the AC line voltage is  
applied, the VDD hold-up capacitor is charged by the line  
voltage through the diodes and resistor. After VDD  
reaches the turn-on threshold voltage (VDD-ON), the  
startup circuit charging VDD capacitor is switched off and  
VDD is supplied by the auxiliary winding of the  
transformer. Once the FAN6757 starts up, it continues  
operation until VDD drops below 6.5 V (VUVLO). The IC  
startup time with a given AC line input voltage is:  
2 2  
fS  
VACIN  
tSTARTUP RHV CDD ln  
(1)  
fOSC  
2 2  
VACIN  
VDDON  
RHV  
HV  
4
fOSC-G  
7
+
VDD  
Good  
VDD  
-
VFB-ZDC VFB-ZDCR VFB-G  
VFB-N  
VFB  
CDD  
VDD-ON  
/
VRESTART  
Figure 22. VFB vs. PWM Frequency  
CX  
RLS  
When VFB falls below VFB-ZDC (2.0 V) as load decreases  
further, the FAN6757 enters Burst Mode operation,  
where PWM switching is disabled. Then the output  
voltage starts to drop, causing the feedback voltage to  
rise. Once VFB rises above VFB-ZDCR (2.1 V), switching  
resumes. Burst Mode alternately enables and disables  
Sampling  
Circuit  
Brown-in/out  
Function  
AC Line  
VLIMIT  
VOCP  
High/ Low Line  
Compensation  
Figure 24. Startup Circuit  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
11  
 
 
 
 
The HV pin detects the AC line voltage using a switched  
voltage divider consisting of an external resistor (RHV  
increases. The current-limit level is also proportional to  
the RHV resistor value and the power-limit level can be  
tuned using the RHV resistor.  
)
and an internal resistor (RLS), as shown in Figure 24.  
The internal line-sensing circuit detects line voltage  
using a sampling circuit and a peak-detection circuit.  
Since the voltage divider causes power consumption  
when it is switched on, the switching is driven by a  
signal with a very narrow pulse width to minimize power  
loss. The sampling frequency is also adaptively  
changed according to the load condition to minimize  
power consumption in light-load condition.  
5.4 V  
ZFB  
PWM  
3R  
Comparator  
2
OSC  
FB  
SS  
comparator  
R
GATE  
Q
Q
S
R
DRV  
8
VSS  
+
Based on the detected line voltage, brown-in and  
brownout thresholds are determined as:  
+
Slope  
compensation  
VLIMIT  
Current limit  
comparator  
SENSE  
HV  
RHV VAC ON  
Line  
Sensing  
Power Limit Line  
Compensation  
6
VBROWN-IN (RMS)   
VBROWN-OUT (RMS)   
4
(2)  
(3)  
200k  
2
RHV VAC OFF  
Figure 25. Pulse-by-pulse Current Limit Circuit  
200k  
2
VLIMIT (V)  
0.5  
Since the internal resistor (RLS=1.62 k) of the voltage  
divider is much smaller than RHV, the thresholds are  
given as a function of RHV  
.
0.45  
Note that VDD must be larger than VDD-AC to start up,  
even though sensed line voltage satisfies Equation 2.  
RHV=240 k  
AX-CAP® Discharge  
RHV=200 kΩ  
0.4  
The EMI filter in the front end of the Switched-Mode  
Power Supply (SMPS) typically includes a capacitor  
across the AC line connector. Most of the safety  
regulations, such as UL 1950 and IEC61010-1, require  
the capacitor be discharged to a safe level within a  
given time when AC plug is removed from its receptacle.  
Typically, discharge resistors across the capacitor are  
used to ensure the capacitor is discharged naturally,  
which introduces power loss as long as it is connected  
to the receptacle.  
RHV=160 kΩ  
0.35  
0.3  
70  
110  
150  
190  
230  
270  
Line Voltage (VAC  
)
Figure 26. Current Limit vs. Line Voltage  
The innovative AX-CAP® technology intelligently  
discharges the filter capacitor only when the power  
supply is unplugged from the power outlet. Since the  
AX-CAP® discharge circuit is disabled in normal  
operation, the power loss in the EMI filter can be  
virtually removed.  
Under-Voltage Lockout (UVLO)  
As shown in Figure 27, as long as protection is not  
triggered, the turn-off threshold of VDD is fixed internally  
at VUVLO (6.5 V). When Protection Mode is triggered, the  
VDD level to terminate PWM gate switching is changed  
to VDD-OFF (11 V), as shown in Figure 28. When VDD  
drops below VDD-OFF, switching is terminated and the  
operating current from VDD is reduced to IDD-OLP to slow  
The discharge of the capacitor is achieved through the  
HV pin. Once AC outlet detaching is detected, the  
FAN6757 discharges the capacitor across the AC line  
connector by the external resistor on the HV pin.  
down the discharge of VDD until VDD reaches VDD-OLP  
.
This delays re-startup after shutdown by protection to  
minimize the input power and voltage/current stress of  
switching devices during fault condition.  
High/Low Line Compensation for Constant  
Power Limit  
FAN6757 has pulse-by-pulse current limit, as shown in  
Figure 25, to limit the maximum input power with a given  
input voltage. If the output consumes beyond this  
maximum power, the output voltage drops triggering the  
overload protection.  
VDD  
VDD-ON  
17 V  
6.5 V  
4.7 V  
VUVLO  
VRESTART  
As shown in Figure 25, the high/low line compensation  
block adjusts the current-limit level, VLIMIT, based on the  
line voltage. Figure 26 shows how the pulse-by-pulse  
current-limit level changes with the line voltage for  
different RHV resistors. To maintain the constant output  
power limit regardless of line voltage, the cycle-by-cycle  
current-limit level, VLIMIT, decreases as line voltage  
GATE  
t
Figure 27. VDD UVLO at Normal Mode  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
12  
 
 
 
function. For OTP applications, an NTC thermistor,  
RNTC, usually in series with a resistor RA, is connected  
between the RT pin and ground. The internal current  
source, IRT, (100 µA) introduces voltage on RT as:  
VDD  
17 V  
VDD-ON  
11 V  
7 V  
VRT IRT (RNTC RA )  
(4)  
VDD-OFF  
VDD-OLP  
At high ambient temperature, RNTC decreases reducing  
VRT. When VRT is lower than VRTTH1 (1.035 V) for longer  
than tD-OTP1 (14.5 ms), the protection is triggered and the  
FAN6757 enters latch mode protection.  
GATE  
The OTP can be also trigged by pulling down the RT pin  
voltage using an opto-coupler or transistor. Once VRT is  
less than VRTTH2 (0.7 V) for longer than tD-OTP2 (185 µs),  
the protection is triggered and latch mode protection  
begins.  
t
Figure 28. VDD UVLO at Protection Mode  
Leading-Edge Blanking (LEB)  
When OTP is not used, it is recommended to place a  
10 kΩ resistor between this pin and ground to prevent  
noise interference.  
Each time the power MOSFET is switched on, a turn-on  
spike occurs on the sense resistor. To avoid premature  
termination of the switching pulse, a leading-edge  
blanking time, tLEB, is introduced. During this blanking  
period, the current-limit comparator is disabled and  
cannot switch off the gate driver.  
Sense-Pin Short-Circuit Protection  
FAN6757 provides safety protection for Limited Power  
Source (LPS) test. When the current-sense resistor is  
short circuited by a soldering defect during production,  
the current-sensing information is not properly obtained,  
which results in unstable operation of the power supply.  
Gate Output / Soft Driving  
The BiCMOS output stage has a fast totem-pole gate  
driver. The output driver is clamped by an internal  
14.5 V Zener diode to protect power MOSFET gate from  
over voltage. A soft driving is implemented to minimize  
electromagnetic interference (EMI) by reducing the  
switching noise.  
To protect the power supply against a short circuit  
across the current-sense resistor, the FAN6757 shuts  
down when the current-sense voltage is very low, even  
with a relatively large duty cycle. As shown in Figure 29,  
the current-sense voltage is sampled tON-SSCP (4.55 µs)  
after the gate turn-on. If the sampled voltage (VS-CS) is  
lower than VSSCP for 11 consecutive switching cycles  
(170 µs), the FAN6757 shuts down immediately. VSSCP  
varies linearly with the line voltage. At 122 V DC input, it  
is typically 50 mV (VSSCP-L); while at 366 V DC, it is  
typically100 mV (VSSCP-H).  
VDD Over-Voltage Protection (OVP)  
VDD over-voltage protection prevents IC damage from  
over-voltage exceeding the IC voltage rating. When the  
VDD voltage exceeds 24.5 V, the protection is triggered.  
This protection is typically caused by open circuit of the  
secondary-side feedback network.  
tD-SSCP  
Soft-Start  
An internal soft-start circuit progressively increases the  
pulse-by-pulse current-limit level of the MOSFET for  
7 ms during startup to establish the correct working  
conditions for the transformers and capacitors.  
VS-CS  
VSENSE  
GATE  
Over-Temperature Protection (OTP)  
tON-SSCP  
Figure 29. Timing Diagram of SSCP  
The RT pin provides adjustable Over-Temperature  
Protection (OTP) and an external latch triggering  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
13  
 
Typical Application Circuit  
Application  
PWM Controller  
Input Voltage Range  
Output  
65 W Notebook Adapter  
FAN6757MRMX  
85 VAC ~ 265 VAC  
19 V, 3.42 A  
X-cap  
0.33F/275V  
BD1  
CDO RDO  
1nF/100V 23.5  
2A/600V  
LO  
1.5H  
TF1  
510H  
+
VAC  
ZDSN  
P6KE150A  
DO  
20A/150V  
CO1  
CO2  
VO  
1000F/  
25V  
470F/  
25V  
DSN  
FR107  
CIN  
120F/  
400V  
-
1N4007  
1N4007  
Q1  
FQPF7N65C  
RG  
20  
RSENSE  
0.176  
RHV  
200k  
FAN6757  
RLPF  
100  
1
2
GND  
GATE  
VDD  
8
7
RD  
1.2k  
FB  
R1  
200k  
3
4
NC  
HV  
SENSE  
RT  
6
5
CLPF  
470pF  
PC817A  
RF  
4.7k  
CF  
2.2nF  
CFB  
1nF  
DDD  
1N4935  
RA  
5.6k  
CDD  
47F/ 50V  
KA431  
RNTC  
100k  
R2  
30k  
Figure 30. Schematic of Typical Application Circuit  
Transformer Schematic Diagram  
.
.
Core: Ferrite Core RM-10  
Bobbin: RM-10  
RM-10  
4
3-Layer Tape  
S
F
N4  
N1  
5
3-Layer Tape  
Shielding  
1-Layer Tape  
N2  
N3  
N2  
N4  
6
3-Layer Tape  
3-Layer Tape  
Shielding  
1-Layer Tape  
7
N1  
N3  
9
Bobbin  
Figure 31. Transformer Specification  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
14  
Winding Specification  
Pin (Start Finish)  
Wire  
Turns  
Winding Method  
Remark  
N1  
4 → 5  
0.5φ×1  
19  
Solenoid Winding  
Enameled Copper Wire  
Insulation: Polyester Tape, t = 0.025 mm, 1 Layer  
Shielding: Adhesive Tape of Copper Foil, t = 0.025×7 mm, 1.2 Layers, Open Loop, Connected to Pin 4  
Insulation: Polyester Tape t = 0.025 mm, 3 Layers  
N2  
Insulation: Polyester Tape, t = 0.025mm, 3 Layers  
N3 9 → 7 0.4φ×1  
Insulation: Polyester Tape, t = 0.025 mm, 1 Layer  
S → F  
0.9φ×1  
8
Solenoid Winding  
Triple Insulated Wire  
7
Solenoid Winding  
Enameled Copper Wire  
Shielding: Adhesive Tape of Copper Foil, t = 0.025×7 mm, 1.2 Layers, Open Loop, Connected to Pin 4  
Insulation: Polyester Tape t = 0.025 mm, 3 Layers  
N4  
5 → 6  
0.5φ×1  
19  
Solenoid Winding  
Enameled Copper Wire  
Insulation: Polyester Tape t = 0.025 mm, 3 Layers  
Electrical Characteristics  
Pin  
Specification  
510 H ±5%  
Remark  
1 kHz, 1 V  
Primary-Side Inductance  
46  
46  
Primary-Side Effective Leakage Inductance  
Short All Other Pins  
20 H Maximum  
Typical Performance  
Table 1. Power Consumption  
Input Voltage  
Output Power  
Actual Output Power  
Input Power  
Specification  
No Load  
0.25 W  
0.5 W  
0 W  
0.045 W  
0.360 W  
0.711 W  
Input Power < 0.05 W  
Input Power < 0.5 W  
Input Power < 1 W  
230 VAC  
0.255 W  
0.521 W  
Table 2. Efficiency  
Output Power  
16.25 W  
32.5 W  
48.75 W  
86.92%  
87.82%  
65 W  
Average  
115 V 60 Hz  
230 V 50 Hz  
87.84%  
87.88%  
87.42%  
87.95%  
86.23%  
87.69%  
87.10%  
87.83%  
© 2013 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6757 • Rev. 1.0.1  
15  
Physical Dimensions  
5.00  
4.80  
A
0.65  
3.81  
8
5
B
1.75  
6.20  
5.80  
4.00  
3.80  
5.60  
1
4
PIN ONE  
INDICATOR  
1.27  
1.27  
(0.33)  
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
0.25  
0.10  
0.25  
0.19  
C
1.75 MAX  
0.10  
0.51  
0.33  
OPTION A - BEVEL EDGE  
0.50  
0.25  
x 45°  
R0.10  
R0.10  
GAGE PLANE  
OPTION B - NO BEVEL EDGE  
0.36  
NOTES: UNLESS OTHERWISE SPECIFIED  
8°  
0°  
0.90  
0.40  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-012, VARIATION AA.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.  
E) DRAWING FILENAME: M08Arev14  
F) FAIRCHILD SEMICONDUCTOR.  
SEATING PLANE  
(1.04)  
DETAIL A  
SCALE: 2:1  
Figure 32. 8-Pin, SOP-8 Package  
Package drawings are provided as a service to customers considering our components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact our representative to verify or obtain the most recent  
revision. Package specifications do not expand the terms of our worldwide terms and conditions, specifically the warranty therein,  
which covers our products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/dwg/M0/M08A.pdf.  
© 2013 Fairchild Semiconductor Corporation  
FAN6757 • Rev. 1.0.1  
16  
© 2013 Fairchild Semiconductor Corporation  
FAN6757 • Rev. 1.0.1  
17  

相关型号:

FAN6791

Highly Integrated, Dual-PWM Combination Controller
FAIRCHILD

FAN6791MY

Highly Integrated, Dual-PWM Combination Controller
FAIRCHILD

FAN6791MY

DUAL SWITCHING CONTROLLER, 68kHz SWITCHING FREQ-MAX, PDSO16, GREEN, MS-012AC, SOIC-16
ROCHESTER

FAN6791MY

用于反激或正向转换器的双 PWM 组合控制器
ONSEMI

FAN6791NY

Highly Integrated, Dual-PWM Combination Controller
FAIRCHILD

FAN6793

Highly Integrated, Dual-PWM Combination Controller
FAIRCHILD

FAN6793MY

Highly Integrated, Dual-PWM Combination Controller
FAIRCHILD

FAN6793MY

DUAL SWITCHING CONTROLLER, 68kHz SWITCHING FREQ-MAX, PDSO16, GREEN, MS-012AC, SOIC-16
ROCHESTER

FAN6793NY

Highly Integrated, Dual-PWM Combination Controller
FAIRCHILD

FAN6793NY

DUAL SWITCHING CONTROLLER, 68kHz SWITCHING FREQ-MAX, PDIP16, GREEN, MS-001BB, DIP-16
ROCHESTER

FAN6861

Low-Cost, Highly Integrated, Green-Mode PWM Controller for Peak Power Management
FAIRCHILD

FAN6861TY

Low-Cost, Highly Integrated, Green-Mode PWM Controller for Peak Power Management
FAIRCHILD