FAN7031MTFX [FAIRCHILD]

Audio Amplifier, PDSO20,;
FAN7031MTFX
型号: FAN7031MTFX
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Audio Amplifier, PDSO20,

放大器 光电二极管 商用集成电路
文件: 总20页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FAN7031  
2W Stereo Power Amplifier with Four Selectable  
Gain Setting and Headphone Drive  
Features  
Description  
• 1.85W  
and 2.45W  
Power Per Each Channel Into  
RMS  
The FAN7031 is a dual fully differential power amplifier in a  
20-pin TSSOP-EP thermally enhanced package. When  
delivering 1.85W of continuous RMS power into 4speaker  
at 5V supply, the FAN7031 has less than 1% of THD+N over  
the entire audible frequency range, 20Hz to 20kHz. To save  
power consumption in the portable applications, the  
FAN7031 provides shutdown function. Setting the shutdown  
pin to ground level, the FAN7031 falls into shutdown mode  
and consumes less than 4µA over all supply voltage range,  
2.7V to 5.5V. Two gain setting pins(G0 and G1) control the  
gain of the FAN7031. The gain is selectable to 6dB, 10dB,  
15.6dB and 21.6dB. The FAN7031 provides the single-  
RMS  
4Load With Less Than 1% and 10% THD+N,  
Respectively  
• Selectable Gain Via Internal Gain Control Circuit Which  
Eliminates External Gain Setting Resistors : 6dB, 10.3dB,  
15.6dB, 21.6dB(Select)  
• Low Quiescent Current : Typical 5.5mA@5V  
• Low Shutdown Current : Typical 0.04µA@5V  
• Fully Differential Input, Which Immunes the Common  
Mode Noise  
• Stereo Headphone Drive  
• Active Low Shutdown Logic  
• Guaranteed Stability Under No Load Condition  
• Thermally Enhanced Surface-Mount 20TSSOP-EP  
Package  
ended(SE) operation by setting SE/BTL pin to above V /2.  
DD  
Using SE/BTL pin and a mechanical switch which provides  
at the headphone jack, SE mode and BTL mode are automat-  
ically determined. Additional components such as resistors  
for gain setting and bootstrap capacitors are not needed,  
making the FAN7031 well suited for portable sound systems  
and other hand-held sound equipment. Target applications  
include notebook and desktop computers and portable audio  
equipment.  
20-TSSOP-EP  
1
Rev. 1.0.1  
©2003 Fairchild Semiconductor Corporation  
FAN7031  
Internal Block Diagram  
RIN-  
ROUT+  
RIN+  
ROUT-  
CONTROL  
BIAS  
G0  
G1  
SE/BTL  
TSD  
VDD/2  
BYPASS  
Gain Control  
SE/BTL  
Control  
Current  
Source  
SD  
LIN-  
LOUT+  
LOUT-  
LIN+  
2
FAN7031  
Pin Assignments  
GND  
G0  
G1  
LOUT+  
LIN-  
PVDD2  
RIN+  
LOUT-  
LIN+  
BYPASS  
1
20  
GND  
SD  
ROUT+  
RIN-  
VDD  
PVDD1  
ROUT-  
NC  
SE/BTL  
GND  
Heat Sink  
10  
11  
Pin Description  
Pin No  
Symbol  
I/O  
Decription  
1*  
2
3
4
5
GND  
G0  
G1  
LOUT+  
LIN-  
-
I
I
O
I
Ground  
Gain Selection Input(MSB)  
Gain Selection Input(LSB)  
Left Channel (+) Output  
Left Channel (-) Input  
6**  
7
8
9
10  
11*  
PVDD2  
RIN+  
LOUT-  
LIN+  
BYPASS  
GND  
I
I
O
I
O
-
Left Channel Power Supply Voltage  
Right Channel (+) Input  
Left Channel (-) Output  
Left Channel (+) Input  
Bypass Capacitor Connect  
Ground  
Single-Ended & BTL Selection:  
GND SE/BTL VDD/2:BTL Mode  
VDD/2 < SE/BTL VDD: SE Mode  
12  
SE/BTL  
I
13  
14  
15**  
16**  
17  
NC  
-
O
I
I
I
No Connection  
ROUT-  
PVDD1  
VDD  
RIN-  
ROUT+  
Right Channel (-) Output  
Right Channel Power Supply Voltage  
Power Supply Voltage  
Right Channel (-) Input  
Right Channel (+) Output  
18  
O
Shutdown Logic Low  
19  
SD  
I
SD=VDD: Chip Enable  
SD=GND: Chip Shutdown  
20*  
GND  
-
Ground  
* All GND is internally tied together.  
** For the best performance, VDD, PVDD1 and PVDD2 must be the same voltage level(strongly recommend).  
3
FAN7031  
Absolute Maximum Ratings  
Parameter  
Maximum Supply Voltage  
Power Dissipation  
Operating Temperature  
Storage Temperature  
Junction Temperature  
Symbol  
VDDmax  
Value  
6.0V  
Internally Limited  
-40 ~ +85  
-65 ~ +150  
150  
Unit  
V
W
°C  
°C  
°C  
Remark  
P
D
See Derating Curve  
T
OPG  
T
STG  
T
J
30.4  
112.5  
Multi Layer Board  
Single Layer Board  
Thermal Resistance  
(Junction to Ambient)  
Rthja  
°C/W  
ESD Rating (Human Body Model)  
2000  
V
Note1 : Rthja was derived using a JEDEC multi layer and single layer.  
Operating Ratings  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Voltage  
V
DD  
2.7  
-
5.5  
V
4
FAN7031  
Electrical Characteristics  
(V  
DD  
= 5.0V, Ta = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Conditions  
RL=4Ω, Av=6dB  
No Input, No Load  
SD = GND  
THD+N =1%, RL = 4, f = 1kHz  
THD+N =10%, RL = 4, f = 1kHz  
Min. Typ. Max. Unit  
Offset Voltage  
Supply Current  
Shutdown Current  
V
OFF  
-25  
-
25  
10  
4
mV  
mA  
µA  
W
I
-
-
-
-
5.5  
DD  
I
0.04  
1.85  
2.45  
SD  
-
Output Power  
P
O
-
W
SE/BTL=GND, G0=GND, G1=GND,  
Vin=4Vpp, No Load  
SE/BTL=GND, G0=GND, G1=VDD,  
Vin=2.44Vpp, No Load  
SE/BTL=GND, G0=VDD, G1=GND,  
Vin=1.34Vpp, No Load  
SE/BTL=GND, G0=VDD, G1=VDD,  
Vin=0.66Vpp, No Load  
-
-
-
-
6
-
-
-
-
dB  
dB  
dB  
dB  
10.3  
15.6  
21.3  
BTL Mode Gain  
SE Mode Gain  
Av  
SE/BTL=VDD,  
-
-
4.3  
0.2  
70  
-
0.75  
-
dB  
%
Vin=2.44Vpp, No Load  
Total Harmonic Distortion + Noise THD+N  
Power Supply Rejection Ratio PSRR  
P = 1W, RL=4, f = 20kHz  
O
C
= 0.47µF, RL=4, BTL Mode,  
byp  
40  
dB  
VDD=500mVpp, f = 1kHz  
Electrical Characteristics (Continued)  
(V  
DD  
= 3.3 V, Ta = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Conditions  
RL=4Ω, Av=6dB  
No Input, No Load  
SD = GND  
THD+N =10%, RL = 4Ω, f=1kHz  
Min. Typ. Max. Unit  
Offset Voltage  
Supply Current  
Shutdown Current  
Output Power  
V
OFF  
-25  
-
25  
8
4
mV  
mA  
µA  
W
I
-
-
-
-
4.3  
DD  
I
0.08  
1.02  
0.2  
SD  
P
O
-
Total Harmonic Distortion + Noise THD+N  
P
= 0.5W, RL = 4Ω, f = 20kHz  
0.75  
%
O
C
= 0.47µF, RL=4, BTL Mode,  
byp  
Power Supply Rejection Ratio PSRR  
40  
70  
-
dB  
VDD=330mVpp, f = 1kHz  
Electrical Characteristics (Continued)  
(V  
DD  
= 2.7 V, Ta = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Conditions  
RL=4Ω, Av=6dB  
No Input, No Load  
SD = GND  
THD+N =10%, RL = 4Ω, f=1kHz  
Min. Typ. Max. Unit  
Offset Voltage  
Supply Current  
Shutdown Current  
Output Power  
V
OFF  
-25  
-
25  
7
4
mV  
mA  
µA  
W
I
-
-
-
-
4.1  
DD  
I
0.04  
0.54  
0.2  
SD  
P
O
-
Total Harmonic Distortion + Noise THD+N  
P
= 0.25W, RL = 4Ω, f = 20kHz  
0.75  
%
O
C
= 0.47µF, RL=4, BTL Mode,  
byp  
Power Supply Rejection Ratio PSRR  
-
65  
-
dB  
VDD=270mVpp, f = 1kHz  
5
FAN7031  
Performance Characteristics  
10  
5
10  
5
BTL mode  
VDD=5V  
RL=8ohm  
Av=6dB  
2
1
2
1
20kHz  
0.5  
0.5  
20kHz  
0.2  
0.2  
0.1  
1kHz  
0.1  
1kHz  
0.05  
0.05  
0.02  
0.01  
20Hz  
0.02  
0.01  
20Hz  
BTL mode  
VDD=5V  
0.005  
0.005  
RL=4ohm  
Av=6dB  
0.002  
0.001  
0.002  
0.001  
10m  
20m  
50m  
100m  
200m  
Output Power [W]  
500m  
1
2
3
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Output Power [W]  
Figure 1. THD+N vs. Output Power  
Figure 2. THD+N vs. Output Power  
10  
5
10  
5
BTL mode  
VDD=3.3V  
RL=8ohm  
Av=6dB  
2
1
2
1
20kHz  
0.5  
0.5  
20kHz  
0.2  
0.1  
0.2  
0.1  
1kHz  
1kHz  
20Hz  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
20Hz  
BTL mode  
VDD=3.3V  
RL=4ohm  
Av=6dB  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
10m  
20m  
50m  
100m  
200m  
500m  
1
Output Power [W]  
Output Power [W]  
Figure 3. THD+N vs. Output Power  
Figure 4. THD+N vs. Output Power  
10  
5
10  
5
BTL mode  
VDD=2.7V  
RL=8ohm  
Av=6dB  
2
1
2
1
20kHz  
1kHz  
0.5  
0.5  
20kHz  
0.2  
0.1  
0.2  
0.1  
1kHz  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
20Hz  
20Hz  
BTL mode  
VDD=2.7V  
RL=4ohm  
Av=6dB  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10m  
20m  
50m  
100m  
200m  
500m  
1
10m  
20m  
50m  
100m  
200m  
500m  
1
Output Power [W]  
Figure 5. THD+N vs. Output Power  
Figure 6. THD+N Ovustp.ut OPowuert[pW]ut Power  
6
FAN7031  
Performance Characteristics(Continued)  
10  
10  
5
BTL mode  
Single-ended mode  
20kHz  
21.6dB  
5
VDD=5V  
VDD=5V  
RL=4ohm  
15.6dB  
RL=32ohm  
10.3dB  
2
2
1
Av=4.3dB  
6dB  
1
0.5  
0.5  
0.2  
0.2  
0.1  
20kHz  
0.1  
1kHz  
0.05  
0.05  
1kHz  
6dB  
10.3dB  
20Hz  
0.02  
0.01  
0.02  
0.01  
15.6dB  
21.6dB  
100u  
200u  
500u  
1m  
2m  
5m  
10m  
20m  
50m  
100m 200m  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
Output Power [W]  
Output Power [W]  
Figure 7. THD+N vs. Output Power  
Figure 8. THD+N vs. Gain  
10  
5
10  
5
20kHz  
21.6dB  
20kHz  
21.6dB  
15.6dB  
15.6dB  
10.3dB  
10.3dB  
2
1
2
1
6dB  
6dB  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
1kHz  
1kHz  
6dB  
6dB  
BTL mode  
BTL mode  
VDD=2.7V  
RL=4ohm  
10.3dB  
10.3dB  
VDD=3.3V  
RL=4ohm  
0.02  
0.01  
0.02  
0.01  
15.6dB  
15.6dB  
21.6dB  
21.6dB  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
10m  
20m  
50m  
100m  
200m  
500m  
1
Output Power [W]  
Figure 9. THD+N vs. Gain  
Figure 10. OTuHtpuDt P+owNer [Wv]s. Gain  
10  
5
10  
5
VDD=3.3V  
VDD=5V  
Output power = 500mW  
RL=4ohm  
Output power =1W  
RL=4ohm  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Figure 11. THD+NFvresqu.enFcyr[Hezq] uency  
Figure 12. THD+NFvresqu.enFcyr[Hez]quency  
7
FAN7031  
Performance Characteristics(Continued)  
10  
10  
5
5
VDD=2.7V  
Single-ended mode  
VDD=5V  
Output power = 250mW  
2
RL=4ohm  
Output power = 50mW  
RL=32ohm  
2
1
1
0.5  
0.2  
0.1  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.05  
0.005  
0.02  
0.01  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 13. THD+N vs. Frequency  
Figure 14. THD+N vs. Frequency  
+0  
+0  
-10  
VDD=5V  
-10  
VDD=5V  
Output power = 1W  
RL=4ohm  
Output power = 1W  
RL=8ohm  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
Left-to-Right  
Right-to-Left  
-90  
-90  
Right-to-Left  
-100  
-110  
-100  
-110  
Left-to-Right  
-120  
-120  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Figure 15. CrosstalFkreqvuesnc.yF[Hrz]equency  
Figure 16. Crosstalk vs. Frequency  
+0  
+0  
-10  
Single-ended mode  
-10  
VDD=5V+/-5%  
VDD=5V  
RL=4ohm  
-20  
-30  
-20  
-30  
Output power = 50mW  
RL=32ohm  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
Right-to-Left  
-90  
-90  
-100  
-110  
-100  
-110  
Left-to-Right  
-120  
-120  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Figure 17. CrosstalFkreqvuesnc.yF[Hrz]equency  
Figure 18. PSRR Fvresqu.enFcyr[eHzq] uency  
8
FAN7031  
Performance Characteristics(Continued)  
+0  
+0  
-10  
-10  
VDD=2.7V+/-5%  
RL=4ohm  
VDD=3.3V+/-5%  
RL=4ohm  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-100  
-110  
-120  
-120  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 19. PSRR vs. Frequency  
Figure 20. PSRR vs. Frequency  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Single-ended mode  
Single-ended mode  
VDD=5V+/-5%  
RL=32ohm  
VDD=3.3V+/-5%  
RL=32ohm  
Cbyp=0.47uF  
Cbyp=0.47uF  
-100  
-100  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 21. PSRR vs. Frequency  
Figure 22. PSRR vs. Frequency  
+0  
+0  
-10  
-10  
0.1µF  
0.47µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
F  
4.7µF  
10µF  
Single-ended mode  
VDD=2.7V+/-5%  
RL=32ohm  
Single-ended mode  
VDD=5V+/-5%  
RL=32ohm  
Cbyp=0.47uF  
-100  
-100  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 23. PSRR vs. Frequency  
Figure 24. PSRR vs. Bybass Capacitor  
9
FAN7031  
Performance Characteristics(Continued)  
+20  
+20  
+15  
G0=VDD, G1=VDD  
G0=VDD, G1=VDD  
G0=VDD, G1=GND  
+15  
G0=VDD, G1=GND  
+10  
+10  
+5  
G0=GND, G1=VDD  
G0=GND, G1=VDD  
G0=GND, G1=GND  
+5  
G0=GND, G1=GND  
VDD=5V  
VDD=3.3V  
No load  
No load  
Cin=0.47uF  
Cin=0.47uF  
+0  
+0  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Frequency [Hz]  
Frequency [Hz]  
Figure 25. BTL Mode Gain vs. Frequency  
Figure 26. BTL Mode Gain vs. Frequency  
6.0m  
5.0m  
4.0m  
3.0m  
2.0m  
1.0m  
0.0  
+20  
G0=VDD, G1=VDD  
+15  
+10  
+5  
G0=VDD, G1=GND  
G0=GND, G1=VDD  
G0=GND, G1=GND  
VDD=2.7V  
No load  
Cin=0.47uF  
+0  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
0
1
2
3
4
5
Frequency [Hz]  
Figure 27. BTL Mode Gain vs. Frequency  
Figure 28. IDDSvupsply.VSoltaugep[Vp] ly Voltage  
25.0n  
20.0n  
15.0n  
10.0n  
5.0n  
8.0m  
6.0m  
4.0m  
2.0m  
0.0  
VDD=5V  
VDD=3.3V  
VDD=2.7V  
0.0  
-1  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
Figure 29. Shutdown SCupuplyrVroeltanget[Vv] s. Supply Voltage  
Figure 30. IDD vs. Shutdown Pin Voltage  
Shutdown Pin Voltage [V]  
10  
FAN7031  
Performance Characteristics(Continued)  
5.5m  
4.5m  
4.0m  
3.5m  
3.0m  
2.5m  
5.0m  
BTL mode  
BTL mode  
4.5m  
Single-Ended  
4.0m  
Single-Ended  
mode  
mode  
3.5m  
VDD=3.3V  
VDD=5V  
3.0m  
0
1
2
3
4
5
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SE/BTL Pin Voltage [V]  
SE/BTL Pin Voltage [V]  
Figure 31. IDD vs. SE/BTL Pin Voltage  
Figure 32. IDD vs. SE/BTL Pin Voltage  
4.5m  
4.0m  
3.5m  
3.0m  
2.5m  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD=5V  
BTL mode  
Single-Ended  
mode  
VDD=3.3V  
VDD=2.7V  
THD less than 1%  
RL=8ohm  
VDD=2.7V  
f=1kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
SE/BTL Pin Voltage [V]  
Output Power [W]  
Figure 33. IDD vs. SE/BTL Pin Voltage  
Figure 34. Power Dissipation vs. Output Power  
3.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BTL mode  
f=1kHz  
VDD=5V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
RL=4ohm  
10% THD+N  
1% THD+N  
VDD=3.3V  
VDD=2.7V  
THD less than 1%  
RL=4ohm  
f=1kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Output Power [W]  
Supply Voltage [V]  
Figure 35. Power Dissipation vs. Output Power  
Figure 36. Output Power vs. Supply Voltage  
11  
FAN7031  
Performance Characteristics(Continued)  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
BTL mode  
VDD=5V  
f=1kHz  
BTL mode  
f=1kHz  
RL=8ohm  
1.5  
10% THD+N  
1.0  
10% THD+N  
1% THD+N  
1% THD+N  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
8
16  
24  
32  
40  
48  
56  
64  
Supply Voltage [V]  
RL-Load Resistance []  
Figure 37. Output Power vs. Supply Voltage  
Figure 38. Output Power vs. Load Resistance  
1.2  
0.7  
BTL mode  
BTL mode  
VDD=3.3V  
f=1kHz  
VDD=2.7V  
f=1kHz  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
10% THD+N  
10% THD+N  
1% THD+N  
1% THD+N  
0
8
16  
24  
32  
40  
48  
56  
64  
0
8
16  
24  
32  
40  
48  
56  
64  
RL-Load Resistance []  
RL-Load Resistance []  
Figure 39. Output Power vs. Load Resistance  
Figure 40. Output Power vs. Load Resistance  
800.0m  
700.0m  
600.0m  
500.0m  
400.0m  
300.0m  
200.0m  
100.0m  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Single-Ended mode  
VDD=3.3V  
Single-Ended mode  
VDD=5V  
f=1kHz  
f=1kHz  
10% THD+N  
1% THD+N  
10% THD+N  
1% THD+N  
0.0  
0
8
16  
24  
32  
40  
48  
56  
64  
0
8
16  
24  
32  
40  
48  
56  
64  
RL-Load Resistance []  
Figure 41. Output Power vs. Load Resistance  
Figure 42. Output PRoLw-LoaedrRevsissta.ncLe [o]ad Resistance  
12  
FAN7031  
Performance Characteristics(Continued)  
0.20  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Single-Ended mode  
VDD=2.7V  
f=1kHz  
M ulti La yer  
0.15  
0.10  
10% THD+N  
Single La ye r  
0.05  
1% THD+N  
0.00  
0
25  
50  
75  
100  
125  
150  
0
8
16  
24  
32  
40  
48  
56  
64  
Am bient Tem perature [°C]  
RL-Load Resistance []  
Figure 43. Output Power vs. Load Resistance  
Figure 44. Power Derating Curve  
13  
FAN7031  
Typical Application Circuits  
Single-Ended Inputs  
VDD  
10µF  
104  
VDD  
6,15,16  
0.47µF  
Right channel  
RIN- 17  
RIN+ 7  
Single ended Input  
18 ROUT+  
0.47µF  
Right  
Output  
(BTL)  
330µF  
14  
ROUT-  
VDD  
1kΩ  
VDD  
100kΩ  
SD  
BYPASS  
10  
19  
BIAS  
&
G0  
G1  
2
3
Stereo  
Output  
1µF  
CONTROL  
100kΩ  
SE/BTL  
10kΩ  
10kΩ  
10kΩ  
0.47µF  
12  
4
LIN+ 9  
LOUT+  
1kΩ  
Left channel Single  
ended Input  
5
LIN-  
330µF  
0.47µF  
Left  
Output  
(BTL)  
8
LOUT-  
1,11,20  
GND  
14  
FAN7031  
Typical Application Circuits(Continued)  
Differential Inputs  
VDD  
10µF  
104  
VDD  
6,15,16  
0.47µF  
Right channel  
RIN- 17  
RIN+ 7  
Differential Input  
18 ROUT+  
0.47µF  
Right  
Output  
(BTL)  
330µF  
14  
ROUT-  
VDD  
1kΩ  
VDD  
100kΩ  
BYPASS  
SD  
10  
19  
BIAS  
&
G0  
G1  
2
3
Stereo  
Output  
1µF  
CONTROL  
10kΩ  
10kΩ  
10kΩ  
0.47µF  
100kΩ  
SE/BTL  
12  
4
LIN+ 9  
LOUT+  
1kΩ  
Left channel  
5
LIN-  
Differential Input  
330µF  
0.47µF  
Left  
Output  
(BTL)  
8
LOUT-  
1,11,20  
GND  
15  
FAN7031  
Functional Description  
The FAN7031 is a stereo 2W amplifier capable of delivering 1.85W continuous RMS power into a 4-ohm load. This  
device has less than 0.75% THD+N across the entire frequency range at an output power of 1W. A thermally  
enhanced TSSOP package is used to allow for maximum dissipation of package heat.  
Gain selection is achieved by driving G0 and G1 inputs according to the table below.  
G0  
0
0
1
1
G1  
0
1
0
1
SE/BTL  
A
6dB  
10.3dB  
15.6dB  
21.6dB  
4.3dB  
Zin  
V
0
0
0
0
1
90kΩ  
55kΩ  
30kΩ  
15kΩ  
55kΩ  
X
X
Gain select pins are activated only when SE/BTL pin is set to low level. If SE/BTL pin is high, the amplifier configu-  
ration is changed as SE(single-ended) mode and the gain of SE amplifier is fixed to 4.3dB (about 1.64).  
Gain is varied by changing the taps on input resistors, and such change in gain will cause variation in the input  
impedance. Input impedance (Zin) is described in the above table. The impedance variation determines amplifier  
lowest bandwidth. Thus, input DC decoupling capacitors must be carefully selected.  
Applications Information  
PCB Layout and Supply Regulation  
Metal trace resistance between the BTL output and the parasitic resistance of the power supply line both heavily  
affect the output power. In order to obtain the maximum power depicted in the performance characteristics figures,  
outputs, power and ground lines need wide metal trace. The parasitic resistance of the power line increases ripple  
noise and degrades the THD and PSRR performance. To reduce such unwanted effect, large capacitor must be  
connected between V  
DD  
use a low ESR capacitor.  
pin and GND pin as close as possible. To improve power supply regulation performance,  
Power Supply Bypassing  
Selection of proper power supply bypassing capacitor is critical to obtaining lower noise as well as higher power  
supply rejection. Larger capacitors may help to increase immunity to the supply noise. However, considering eco-  
nomical design, attaching 10µF electrolytic capacitor or tantalum capacitor with 0.1µF ceramic capacitor as close  
as possible to the VDD pins are enough to get a good supply noise rejection.  
Selection of Input Capacitor  
Input capacitor blocks DC signal also low frequency input signal. Thus, this capacitor acts as a high pass filter. The  
-3dB frequency of this filter is determined by input capacitor and input impedance of the amplifier. The frequency is  
1
f
= ----------------------------  
3dB  
2π ⋅ Zin C  
As shown previously, the input impedance is changed by selecting gain. Considering smallest Zin (=15kW), the  
capacitance which meets f  
frequency of 20Hz is 0.53uF. Thus, selecting the capacitance higher than 0.53uF,  
-3dB  
the lowest frequency of audio signal can be amplified without gain loss.  
16  
FAN7031  
BLT Mode of Operation vs. Single Ended Mode of Operation  
The FAN7031 offers both BTL (Bridge-Tied Load) and SE (Single Ended) operation. When SE/BTL pin is low, BTL  
operation is selected. In BTL operation, maximum output power is increased 4 times comparing with SE operation  
at the same load, output swing and supply condition because output swing is doubled. Thus, BTL mode is useful to  
drive a speaker load. On the other hand, when SE/BTL pin is high, one amplifier configured BTL driver is turned off  
and only single amplifier is activated. In this mode, maximum output power is reduced and the quiescent power  
consumption is saved about half. Thus, SE mode is adequate for head-phone load. The output power of BTL and  
SE are expressed as follows respectively:  
2
Vp  
---------------  
P
=
,
BTL  
2 RL  
2
Vp  
---------------  
P
=
.
SE  
8 RL  
To use the amplifier in SE mode, the output DC voltage must be blocked not to increase power consumption. Thus,  
the load is tied to output via output DC blocking capacitor. The capacitor size can be chosen using above f-  
3dB  
equation. For example, assuming the load impedance is 32W, 249uF capacitor guarantees 20Hz signal transmis-  
sion to the load without gain reduction.  
Shutdown Mode  
The device moves to a shutdown mode when the shutdown pin is at 0V. For normal operation the shutdown pin  
should be at V . This pin should never be left unconnected.  
DD  
17  
FAN7031  
Mechanical Dimensions  
Package  
Dimensions in millimeters  
20TSSOP-EP  
18  
FAN7031  
Ordering Information  
Device  
Package  
Operating Temperature  
FAN7031MTF  
20TSSOP-EP  
-40°C ~ +85°C  
19  
FAN7031  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
8/11/03 0.0m 001  
Stock#DSxxxxxxxx  
2003 Fairchild Semiconductor Corporation  

相关型号:

FAN7033MP

2W Stereo Power Amplifier with Fixed Gain
FAIRCHILD

FAN7040

3W Mono BTL Amplifier with DC Volume Control
FAIRCHILD

FAN7040M

3W Mono BTL Amplifier with DC Volume Control
FAIRCHILD

FAN7040MX

3W Mono BTL Amplifier with DC Volume Control
FAIRCHILD

FAN7040MX

1 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO20, SOP-20
ROCHESTER

FAN7071

Landing Correction IC
FAIRCHILD

FAN7071S

Consumer Circuit, PSFM10, SIP-10
FAIRCHILD

FAN7071TS

Consumer Circuit, PSFM10, SIP-10
FAIRCHILD

FAN7080

Half Bridge Gate Driver
FAIRCHILD

FAN7080-GF085

Half Bridge Gate Driver
ONSEMI

FAN7080CM

Half Bridge Gate Driver
FAIRCHILD

FAN7080CM-F085

Micro Peripheral IC
FAIRCHILD