FAN8705 [FAIRCHILD]

5 Channel DSC Motor Driver; 5通道DSC电机驱动器
FAN8705
型号: FAN8705
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

5 Channel DSC Motor Driver
5通道DSC电机驱动器

驱动器 电动机控制 电机
文件: 总24页 (文件大小:529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 2005  
FAN8705  
5 Channel DSC Motor Driver  
Features  
Description  
n Built in power save function  
The FAN8705 is a DSC lens motor driver and it’s consist of con-  
stant current and constant voltage drive blocks suitable for shut-  
ter, single iris,auto-focus and zoom motor drive.  
n Built in UVLO function.  
n Constant current drive for shutter.  
n Low Ron resistance (1.1 @ 0.2A)  
n Constant voltage drive for CH1~CH3.  
n Pseudo sinewave control for AF.  
n Three input 2-2 phase control for AF  
n Built in short circuit protection.  
n TSD protection.  
40MLP5X5  
Applications  
n
DSC, Mobile phone camera  
Ordering Information  
Device  
Package  
Operating Temp.  
FAN8705  
40-MLP  
25°C ~ 80°C  
©2005 Fairchild Semiconductor Corporation  
FAN8705 Rev. 1.0.1  
1
www.fairchildsemi.com  
Pin Assignments  
IN1  
30  
PGND2  
29  
OUT5  
28  
OUT6  
27  
OUT7  
26  
OUT8  
25  
SGND  
24  
VREF  
23  
ADJ1  
22  
ADJ2  
21  
IN2  
31  
20 ADJ3  
19 PS  
IN3 32  
33  
34  
18  
VM2  
IN4  
SEL  
17 VDD  
16  
15  
14  
IN5 35  
VM3  
FAN8705
36  
37  
IN6  
IN7  
GAIN1  
GAIN2  
VM1 38  
13 VM4  
39  
40  
12  
11  
IN8  
IN9  
GAIN3  
FC2  
1
2
3
4
5
6
7
8
9
10  
1N10  
PGND1  
OUT1  
OUT2  
OUT3  
OUT4  
OUT9  
OUT10  
FC1  
RS  
2
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Pin Definitions  
Pin Number  
Pin Name  
IN10  
I/O  
I
Pin Function Description  
Remark  
1
Logic input 10  
2
PGND1  
OUT1  
OUT2  
OUT3  
OUT4  
OUT9  
OUT10  
FC1  
P
A
A
A
A
A
A
A
A
A
I
Power ground 1 for Out 1~4  
Motor output 1  
3
4
Motor output 2  
5
Motor output 3  
6
Motor output 4  
7
Motor output 9  
8
Motor output 10  
9
Compensation 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
RS  
Motor current sensing for Out9~10  
Compensation 2  
FC2  
GAIN3  
VM4  
Gain select for Out9~10  
Power supply for Out9~10  
Gain select for Out5~6  
Gain select for Out1~4  
Power supply for Out7~8  
Logic power supply  
CH1,2 logic input change  
Power save  
P
I
GAIN2  
GAIN1  
VM3  
I
P
P
I
VDD  
SEL  
PS  
I
ADJ3  
ADJ2  
ADJ1  
VREF  
SGND  
OUT8  
OUT7  
OUT6  
OUT5  
PGND2  
IN1  
A
A
A
A
P
A
A
A
A
P
I
Out9~10 current adjust  
Out5~6 voltage adjust  
Out1~4 voltage adjust  
Reference output  
Signal ground  
Motor output 8  
Motor output 7  
Motor output 6  
Motor output 5  
Power ground 2 for Out5~8  
Logic input 1  
IN2  
I
Logic input 2  
IN3  
I
Logic input 3  
VM2  
P
I
Power supply for Out5~6  
Logic input 4  
IN4  
IN5  
I
Logic input 5  
IN6  
I
Logic input 6  
IN7  
I
Logic input 7  
VM1  
P
I
Power supply for Out1~4  
Logic input 8  
IN8  
IN9  
I
Logic input 9  
3
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Block Diagram  
3
4
5
6
27  
26  
25  
7
28  
8
OUT7  
OUT1  
OUT2  
OUT10  
OUT3  
VM1  
OUT4  
OUT5  
OUT6  
OUT8  
OUT9  
VM4  
VM2  
VM3  
38  
33  
VM1  
VM2  
Constant  
voltage  
H-bridge  
CH1  
Constant  
voltage  
H-bridge  
CH2  
Constant  
voltage  
H-bridge  
CH3  
Constant  
current  
H-bridge  
CH5  
Saturated  
H-bridge  
CH4  
16 VM3  
13 VM4  
RS  
10  
PGND1  
29 PGND2  
PGND2  
2
PGND1  
7R  
R
R
ADJ3  
20  
Gain  
control  
Voltage  
Reference  
CH1,2  
CH3  
4.9X  
4.9X  
2R  
R
2R  
R
R
2R  
ADJ1  
ADJ2  
VREF  
FC1  
FC2  
9
22  
21  
23  
Feed back  
Compensation  
11  
CH1 CH2 CH3 CH4 CH5  
VDD  
17  
Output stage  
Reference out  
Logic  
GAIN control  
Logic  
Output stage  
TSD  
UVLO  
SGND  
24  
GAIN1 GAIN2  
GAIN3  
SEL  
18  
PS  
19  
IN1~IN10  
15  
14  
12  
4
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Equivalent Circuits  
Logic Input  
ADJ1, ADJ2  
30 31  
32 34  
23  
1K  
10K  
35 36  
37 39  
100K  
21 22  
40  
01  
30K  
18 12  
14 15  
FC1, FC2  
ADJ3  
VM  
23  
20  
70K  
09  
11  
30K  
OUT7, OUT8  
OUT1 ~ 6  
VM  
VM  
03 04  
05 06  
27 28  
25 26
50K  
5
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Equivalent Circuits  
OUT9, OUT10, RS  
PS  
VM  
100K  
100K  
19  
07  
08  
10  
6
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Absolute Maximum Ratings (Ta = 25°C)  
Parameter  
Symbol  
Value  
5.5  
Unit  
V
oC/W  
Maximum power supply voltage  
Thermal resistance  
VDD VM  
MAX, MAX  
Rja  
100/52  
1.25/2.4  
6.5  
Maximum power dissipation  
Maximum output voltage  
Maximum output current  
Operating temperature  
Storage temperature  
P
V
W
DMAX  
OMAX  
OMAX  
V
I
0.8  
A
T
OPR  
25 ~ 85  
55 ~ 150  
°C  
T
°C  
STG  
note  
1. Should not exceed P or ASO value.  
D
2. Refer: EIA/JESD 51-2 & EIA/JESD 51-3 & EIA/JESD 51-5 & EIA/JESD 51-7  
3. Case 1: Single layer PCB with 1 signal plane only, PCB size 76mm × 114mm × 1.6mm.  
4. Case 2: Multi layer PCB with 1 signal, 1 power and 1 ground planes, PCB size 76mm × 114mm × 1.6mm, Cu plane  
sizes for power and ground 74mm × 74mm × 0.035mm.  
Remark  
Case 1  
Case 2  
Pd is mea-  
sured base  
on the JE-  
DEC/  
Power  
plane(Cu)  
STD(JESD  
51-2)  
GND  
plane(Cu)  
PCB(glass-epoxy)  
Pd=1.25W  
Pd=1.8W  
Recommended Operating Conditions (Ta = 25°C)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Supply voltage  
VDD  
2.4  
5.0  
V
Power Dissipation Curve  
2.0  
1.5  
Case2  
Case1  
1.0  
SOA  
0.5  
0
0
25  
50  
75  
100  
125  
150  
175  
Ambient temperature, Ta [°C]  
PCB condition : When mounted on 76.2mm  
×
114mm  
×
1.57mm PCB (glass epoxy material).  
7
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
FAN8705 Electrical Characteristics  
(Ta = 25°C, VDD =VM = 3V unless otherwise specified)  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Total  
Standby current  
I
PS = L  
PS = H  
-
-
-
1
-
1
3
µA  
mA  
V
STB  
VDD Operating current  
Low voltage protection off  
Low voltage protection on  
I
OPR  
V
-
2.39  
-
UVLOF  
V
1.8  
-
V
UVLO  
Input stage  
Logic input high voltage  
Logic input low voltage  
Logic input high current  
Logic input low current  
V
0.7XVDD  
-
-
-
V
V
IH  
V
-
-
0.3XVDD  
IL  
I
V
V
= 3V  
= 0V  
40  
-
60  
-
µA  
µA  
IH  
input  
input  
I
IL  
- 1  
Output Stage  
Ron resistance(CH1~CH4)  
Ron resistance(CH5)  
R
I =200mA (Upper+Lower)  
-
1.1  
0.9  
1.5  
1.3  
ON1  
ON2  
O
R
I =200mA (Upper+Lower)  
O
-
Constant voltage output  
Constant current accuracy  
Vin=0.4V  
1.85  
279  
1.95  
300  
2.05  
321  
V
mA  
Reference  
Reference voltage  
V
IREF=2mA  
0.93  
0.98  
1.03  
V
REF  
8
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Switching characteristics  
(Ta = 25°C, VDD =VM = 3V unless otherwise specified)  
CH1,2,3 Constant voltage H-bridge switching time note1  
T
Input rising time = 20ns  
Input 50% output 50%  
ON  
Output turn on time  
Output turn off time  
Output rising time  
Output falling time  
1.5  
0.03  
1.5  
3
µS  
µS  
µS  
µS  
T
OFF  
Input rising time = 20ns  
Input 50% output 50%  
0.1  
3
T
Input rising time = 20ns  
Output voltage 10% to 90%  
r
T
Input rising time = 20ns  
Output voltage 90% to 10%  
f
0.03  
0.1  
CH4 Saturated H-bridge switching time note1  
T
Input rising time = 20ns  
Input 50% output 50%  
ON4  
Output turn on time  
Output turn off time  
Output rising time  
Output falling time  
0.2  
0.15  
0.1  
0.5  
0.3  
0.3  
0.1  
µS  
µS  
µS  
µS  
T
OFF4  
Input rising time = 20ns  
Input 50% output 50%  
T
Input rising time = 20ns  
Output voltage 10% to 90%  
r4  
T
Input rising time = 20ns  
Output voltage 90% to 10%  
f4  
0.03  
CH5 Constant current switching time note1  
T
Input rising time = 20ns  
Input 50% output 50%  
ON5  
Output turn on time  
Output turn off time  
Output rising time  
Output falling time  
0.5  
0.07  
0.1  
1
µS  
µS  
µS  
µS  
T
OFF5  
Input rising time = 20ns  
Input 50% output 50%  
0.2  
0.3  
0.1  
T
Input rising time = 20ns  
Output voltage 10% to 90%  
r5  
T
Input rising time = 20ns  
Output voltage 90% to 10%  
f5  
0.03  
note  
1. Guaranteed by design. not tested  
Brake mode  
Rotation mode  
100%  
100%  
V
IN  
VIN  
50%  
50%  
0%  
50%  
50%  
T
OFF  
T
ON  
T
ON  
T
OFF  
100%  
90%  
90%  
90%  
90%  
I
OUT  
50%  
10%  
50%  
10%  
50%  
50%  
10%  
I
OUT  
-100%  
Hi- impedance 10%  
T
f
T
r
T
f
T
r
9
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Operation Truth Table  
OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT  
IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 SEL  
Remark  
1
Z
Z
L
2
Z
Z
H
L
3
4
5
6
7
8
9
10  
Standby  
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
Rotation  
Rotation  
Z
L
H
L
CH1  
CH2  
H
H
H
Z
H
Z
L
L
L
L
H
L
Z
L
Z
H
L
Z
Rotation  
Rotation  
H
H
H
Z
H
Z
Z
Z
L
L
L
H
L
Z
Z
H
L
Z
Z
L
Z
CH1  
~
CH2  
Rotation  
H
H
Rotation  
H
H
H
L
L
L
H
L
Z
Z
H
L
Z
Z
L
Z
2-2  
phase  
Z
Rotation  
H
H
Rotation  
H
H
L
L
L
H
L
Z
L
Z
H
L
Z
Rotation  
CH3  
CH4  
CH5  
Rotation  
H
H
H
L
H
L
Brake  
Z
L
L
L
H
L
Z
L
Z
H
L
Rotation  
*
Rotation  
H
H
H
L
H
L
Brake  
Z
L
L
L
H
L
Z
L
Z
H
L
Rotation  
Rotation  
Z
H
H
H
Z
H
Z
Gain control  
H-bridge output control voltage  
Remark  
CH1,CH2  
CH 3  
Gain control Input  
L
ADJ1  
0.67XADJ1  
ADJ2  
GAIN1  
H
L
GAIN2  
H
0.33XADJ2  
ADJ3  
L
GAIN3  
CH 5  
H
0.33XADJ3  
10  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Typical Performance Characteristics  
Figure 1. VDD vs I  
Figure 2. VDD vs I  
STB  
OPR  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.0  
0
1
2
3
4
5
6
-200.0  
0
1
2
3
4
5
6
VDD (V)  
VDD (V)  
Figure 3. VDD vs IDD  
Figure 4.I  
vs V  
(VDD = 3V)  
REF  
REF  
1.20  
1.040  
1.020  
1.000  
0.980  
0.960  
0.940  
0.920  
0.900  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
0
1
2
3
4
5
6
0
1
2
3
4
5
IREF (mA)  
VDD (V)  
Figure 3. R  
vs I (VDD = 3V)  
M
Figure 4.R  
vs VM (VDD = 3V)  
ON  
ON  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
RON1  
RON1  
RON2  
RON2  
0.0  
0.2  
0.4  
0.6  
0.8  
1
2
3
4
5
IM (A)  
VM (V)  
11  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Application Information  
1. Channel 1 and Channel 2  
CH1 and CH2 are constant voltage driver. The output voltage can be calculated by following equations.  
when, Gain1 = low,.  
VMOTOR  
=
VADJ1  
×
4.9  
VDSON  
VADJ1  
×
4.9  
= 3.6V  
when, Gain1 = high  
2
--  
2
3
--  
VMOTOR  
=
VADJ1  
×
×
4.9  
VDSON  
VADJ1  
×
×
4.9  
=
2.4V  
3
where, V  
MOTOR  
0.1V@300mA. V  
is motor driving voltage. V  
is drain-source voltage of output lower MOSFET in on time, It’s less than  
DSON  
is about 0.75V typically as following equation. It can be adjusted by installing external resister R  
Calcu-  
ADJ1.  
ADJ1  
lated V  
should be less than power supply voltege VM1 for operating constant voltage mode.  
MOTOR  
3
4
--  
× Vref  
VADJ1  
=
VM1  
IN1,2  
IN3,4  
Vref  
OUT1,3  
OUT2,4  
R
ADJ1  
Constant  
Voltage  
H-bridge  
CH1,2  
L
V
ADJ1  
ADJ1  
4.9X  
R
R
H
2R  
PGND1  
GAIN1  
12  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
1.1 Stepping-Motor Drive  
1.1.1 Three Input 2-2 Phase Excitation  
SEL  
IN1/IN3  
IN2  
X
IN4  
X
OUT1  
OUT2  
OUT3  
OUT4  
Function  
L
Z
H
L
Z
L
Z
H
H
L
Z
L
Stand-by(Stop)  
H
H
H
H
L
L
S1  
S2  
S3  
S4  
H
H
L
H
H
L
L
H
H
L
H
H
L
H
H
L
note  
1. X : Don’t care.  
2. Z : High impedence.  
IN1 & IN3  
IN2  
IN4  
Dont care  
CH1  
Current  
High Impedence  
CH2  
Current  
S1  
S2  
S3  
S4  
VM1  
OUT1  
IN1  
IN2  
IN3  
IN4  
Constant  
Voltage  
H-bridge  
CH1  
STEP  
M
OUT2  
OUT3  
DSP  
or  
Micom  
Constant  
Voltage  
H-bridge  
CH2  
VDD  
SEL  
OUT4  
13  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
1.1.2 Four Input 1-2 Phase Excitation Mode1  
SEL  
IN1  
L
IN2  
L
IN3  
L
IN4  
L
OUT1  
OUT2  
OUT3  
OUT4  
Function  
Z
H
Z
L
Z
L
Z
H
H
H
Z
L
Z
L
Stand-by(Stop)  
H
L
H
L
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
L
X
H
L
Z
H
H
H
Z
L
L
H
H
H
H
X
H
L
L
H
H
L
X
L
Z
H
H
H
Z
H
H
H
H
H
X
L
L
H
Z
H
H
L
H
L
H
L
H
L
L
L
Z
note  
1. X : Don’t care.  
2. Z : High impedence.  
IN1  
IN2  
IN3  
IN4  
CH1  
Current  
CH2  
Current  
S1 S2 S3 S4 S5 S6 S7 S8  
Dont care  
High Impedence  
VM1  
OUT1  
IN1  
IN2  
IN3  
IN4  
Constant  
Voltage  
H-bridge  
CH1  
STEP  
M
OUT2  
OUT3  
DSP  
or  
Micom  
Constant  
Voltage  
H-bridge  
CH2  
VDD  
SEL  
OUT4  
14  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
1.1.3 Four Input 1-2 Phase Excitation Mode2  
SEL  
IN1  
L
IN2  
L
IN3  
L
IN4  
L
OUT1  
OUT2  
OUT3  
OUT4  
Function  
Z
H
Z
L
Z
L
Z
H
H
H
Z
L
Z
L
Stand-by(Stop)  
H
H
L
L
H
H
H
H
L
L
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
H
H
H
H
L
L
Z
H
H
H
Z
L
L
L
L
L
L
H
H
H
H
L
L
Z
H
H
H
Z
L
L
L
L
Z
H
H
L
H
H
L
L
L
L
L
L
Z
note  
1. Z : High impedence.  
IN1  
IN2  
IN3  
IN4  
CH1  
Current  
CH2  
Current  
S1 S2 S3 S4 S5 S6 S7 S8  
High Impedence  
VM1  
OUT1  
IN1  
IN2  
IN3  
Constant  
Voltage  
H-bridge  
CH1  
STEP  
M
OUT2  
OUT3  
DSP  
or  
Micom  
Constant  
Voltage  
H-bridge  
CH2  
IN4  
OUT4  
SEL  
15  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
1.1.4 Pseudo Sine Wave Excitation  
SEL  
IN1  
L
IN2  
L
IN3  
L
IN4  
L
GAIN1 OUT1 OUT2 OUT3 OUT4  
Function  
X
H
L
Z
H
Z
L
Z
L
Z
H
H
H
Z
L
Z
L
Stand-by(Stop)  
H
H
L
L
H
H
H
H
L
L
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
H
H
H
H
L
L
Z
H
H
H
Z
L
L
L
H
L
L
L
L
H
H
H
H
L
L
Z
H
H
H
Z
L
H
L
L
L
L
Z
H
H
L
H
H
L
L
H
L
L
L
L
L
Z
note  
1. X : Don’t care.  
2. Z : High impedence.  
IN1  
IN2  
IN3  
IN4  
GAIN1  
CH1  
Current  
CH2  
Current  
S1 S2 S3 S4 S5 S6 S7 S8  
Dont care  
High Impedence  
VM1  
OUT1  
IN1  
IN2  
IN3  
IN4  
Constant  
Voltage  
H-bridge  
CH1  
STEP  
M
OUT2  
OUT3  
DSP  
or  
Micom  
Constant  
Voltage  
H-bridge  
CH2  
GAIN1  
SEL  
OUT4  
16  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
2. Channel 3  
CH3 is constant voltage driver. The output voltage can be calculated by following equations.  
When, Gain2 = low,.  
VMOTOR  
=
VADJ2  
×
4.9  
VDSON  
VADJ2  
×
4.9  
= 3.6V  
when, Gain2 = high  
1
3
1
3
--  
--  
VMOTOR  
=
VADJ2  
×
×
4.9  
VDSON  
VADJ2  
×
×
4.9  
=
1.2V  
where, V  
MOTOR  
0.1V@300mA. V  
is motor driving voltage.  
V
is drain-source voltage of output lower MOSFET in on time, It’s less than  
DSON  
is about 0.75V typically as following equation. can be adjusted by installing external resister R  
Calculated  
ADJ2.  
ADJ2  
V
should be less than power supply voltege VM2 for operating constant voltage mode.  
MOTOR  
3
4
--  
× Vref  
VADJ2  
=
VM2  
IN5,6  
Vref  
OUT5  
OUT6  
R
ADJ2  
Constant  
Voltage  
H-bridge  
CH3  
L
V
ADJ2  
Iris  
4.9X  
2R  
R
R
ADJ2  
H
PGND2  
GAIN2  
3. Channel 4  
Channel 4 is operated by saturated H-bridge mode.  
VM3  
IN7  
IN8  
OUT7  
OUT8  
Saturated  
H-Bridge  
CH4  
DC  
M
PGND2  
17  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
4. Channel 5  
Channel 5 is constant current driver. motor current is determined by ADJ3 voltage V  
input and calculated by the following equation.  
, sensing resistance R  
and GAIN3  
SENSE  
ADJ3  
when, GAIN3 = Low  
VADJ3  
IMOTOR = ---------------------------------  
RSense  
+ RW  
when, GAIN3 = High  
VADJ3  
IMOTOR = ---------------------------------  
RSense RW  
× 1 3  
+
where, R is internal bonding resistance and metal resistance is around 0.05Ω  
W
VM4  
IN9,10  
Vref  
OUT9  
Constant  
7R  
ADJ3  
current  
H-bridge  
CH5  
Shutter  
L
V
ADJ3  
2R  
R
OUT10  
R
ADJ3  
H
R
W
RS  
FC1 FC2  
R
Sense  
GAIN3  
If oscillation or overshoot will be appeared in the output terminals, add external capacitors at FC1 and FC2 terminals. The output  
response time depend on the FC1/FC2 capacitance and interval of input signal.  
18  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
6. Saturated H-Bridge Drive  
Saturated H-bridge drive mode can be implemented using the constant current drive block or the constant voltage drive blocks.  
6.1 Saturated H-Bridge Drive Using Constant Current Drive Block  
Saturated H-bridge drive mode using the constant current dirve block can be operated with ADJ3 connected to VREF input and cur-  
rent sensing terminal RS connected to ground.  
VM4  
VREF  
ADJ3  
Voltage  
Reference  
OUT9  
Constant  
current  
H-bridge  
CH5  
DC  
M
OUT10  
IN9,10  
RS  
6.2 Saturated H-Bridge Drive Using Constant Voltage Drive Block  
GAIN1/GAIN2 pin is open or connected to ground and ADJ1/ADJ2 input should be connected to VREF when VM1/ VM2 is less than  
5V. If VM1/VM2 is more than 5V, ADJ1/ADJ2 input should be connected to power supply input.  
VM1/VM2  
OUT1,3/  
OUT5  
VREF  
Voltage  
Reference  
Constant  
Voltage  
DC  
M
ADJ1/  
ADJ2  
H-bridge  
CH1,2,3  
4.9X  
IN1,2,3,4/  
IN5,6  
OUT2,4/  
OUT6  
GAIN1/  
GAIN2  
19  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
5. Power Saving  
The typical timing chart to get 1 frame of still image or motion pictures for shutter operation is shown following fig. If shutter is fully  
opened within some time interval(to1) depending on shutter motor and mechanism, then we don’t need to operate shutter motor to be  
opened more in ’WEAK OPEN’(to2). In other words we simply maintain the shutter open. The method to maintain this is to reduce  
shutter current by control GAIN3 input. So, battery power can be saved. and ’WEAK CLOSE’ is the same.  
To : High speed shutter motor : 1/5000s  
Bulb shutter : > 1sec  
tc1  
tc2  
OPEN  
IDLE  
OPEN  
IDLE  
OPEN  
0 ~ OO  
WEAK  
OPEN  
to2  
OPEN  
Shutter motor  
CLOSE  
WEAK  
CLOSE  
to1  
20ms  
20ms  
Total Open  
Total Close  
Shutter  
Speed  
t0  
t1  
t2  
t3  
t4  
t5  
Effective  
Exposure  
time  
Image Data Storing Start  
To1  
To2  
IN9  
IN10  
GAIN3  
Ishutter  
T1  
T2  
20  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
7. Short Circuit Protection  
A short circuit can occur for many reasons , a short on the load, a mistake during the connection of the wires between the device and  
the load, an accidental short between the wires and so on. The outputs are not protected against the short circuit and if a short  
occurs, the big amount of current flowing through the outputs can destroy the device. To avoid this risk can be useful to add a circuitry  
to protect the device. FAN8705 have two types of short circuit protection, output to output short and output to ground short.  
8. Thermal Shutdown  
Thermal Shutdown Circuit turns OFF all outputs when the junction temperature typically reaches 175°C. It is intended to protect the  
device from failures due to excessive junction temperature.  
The Thermal Shutdown has the hysteresis of 25°C approximately.  
21  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Typical Application Circuits 1  
DC  
M
STEP  
M
Single  
iris  
Shutter  
OUT10  
Auto-focus  
Zoom  
3
4
5
6
27  
26  
25  
7
28  
8
OUT7  
OUT1  
OUT2  
OUT3  
VM1  
OUT4  
OUT5  
OUT6  
OUT8  
OUT9  
VM4  
VM2  
VM3  
38  
33  
VM1  
VM2  
Constant  
voltage  
H-bridge  
CH1  
Constant  
voltage  
H-bridge  
CH2  
Constant  
voltage  
H-bridge  
CH3  
Constant  
current  
H-bridge  
CH5  
Saturated  
H-bridge  
CH4  
16 VM3  
13 VM4  
RS  
10  
PGND1  
29 PGND2  
PGND2  
2
PGND1  
7R  
R
R
ADJ3  
20  
Gain  
control  
Reference  
1V  
CH1,2  
CH3  
4.9X  
4.9X  
2R  
R
2R  
R
R
2R  
ADJ1  
ADJ2  
VREF  
FC1  
FC2  
9
22  
21  
23  
Feed back  
Compensation  
11  
CH1 CH2 CH3 CH4 CH5  
VDD  
17  
24  
Output stage  
Reference out  
Logic  
GAIN control  
Logic  
Output stage  
TSD  
UVLO  
SGND  
GAIN1 GAIN2  
GAIN3  
PS  
19  
SEL  
18  
IN1~IN10  
15  
14  
12  
DSP  
22  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
Package Dimensions (Unit: mm)  
Recommended Design  
23  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  
24  
www.fairchildsemi.com  
FAN8705 Rev. 1.0.1  

相关型号:

FAN8725

Spindle Motor and 5-Channel Motor Driver
FAIRCHILD

FAN8727

Spindle + 4-CH Motor Drive IC
FAIRCHILD

FAN8727_04

Spindle + 4-CH Motor Drive IC
FAIRCHILD

FAN8727_NL

Spindle + 4-CH Motor Drive IC
FAIRCHILD

FAN8728

Spindle + 4-CH Input PWM Motor Drive IC
FAIRCHILD

FAN8729

Spindle+4-CH Motor Drive IC
FAIRCHILD

FAN8729_NL

Spindle+4-CH Motor Drive IC
FAIRCHILD

FAN8732BG

Spindle motor and 5-CH actuator driver [Spindle(PWM), Sled 2-CH(PWM) 3-CH(Linear)]
FAIRCHILD

FAN8732BGX

Spindle motor and 5-CH actuator driver [Spindle(PWM), Sled 2-CH(PWM) 3-CH(Linear)]
FAIRCHILD

FAN8732CG

Spindle motor and 5-CH actuator driver [Spindle(PWM), Sled 2-CH(PWM) 3-CH(Linear)]
FAIRCHILD

FAN8732CGX

Spindle motor and 5-CH actuator driver [Spindle(PWM), Sled 2-CH(PWM) 3-CH(Linear)]
FAIRCHILD

FAN8732G

Spindle motor and 5-CH actuator driver [Spindle(PWM), Sled 2-CH(PWM) 3-CH(Linear)]
FAIRCHILD