FDD8896 [FAIRCHILD]

N-Channel PowerTrench MOSFET; N沟道PowerTrench MOSFET的
FDD8896
型号: FDD8896
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel PowerTrench MOSFET
N沟道PowerTrench MOSFET的

晶体 晶体管 功率场效应晶体管 开关
文件: 总11页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
September 2004  
FDD8896 / FDU8896  
N-Channel PowerTrench® MOSFET  
30V, 94A, 5.7mΩ  
General Description  
Features  
This N-Channel MOSFET has been designed specifically to  
improve the overall efficiency of DC/DC converters using  
either synchronous or conventional switching PWM  
controllers. It has been optimized for low gate charge, low  
r
= 5.7m, V  
= 10V, I = 35A  
DS(ON)  
GS  
GS  
D
r
= 6.8m, V  
= 4.5V, I = 35A  
DS(ON)  
D
High performance trench technology for extremely low  
r
r
and fast switching speed.  
DS(ON)  
DS(ON)  
Low gate charge  
Applications  
High power and current handling capability  
DC/DC converters  
D
D
G
S
G
I-PAK  
(TO-251AA)  
D-PAK  
(TO-252)  
S
G D S  
MOSFET Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Ratings  
30  
Units  
V
V
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
V
DSS  
GS  
±20  
o
94  
85  
A
A
Continuous (T = 25 C, V  
= 10V) (Note 1)  
= 4.5V) (Note 1)  
= 10V, with R = 52 C/W)  
θJA  
C
GS  
GS  
o
I
Continuous (T = 25 C, V  
D
C
o
o
Continuous (T  
Pulsed  
= 25 C, V  
17  
A
amb  
GS  
Figure 4  
168  
A
E
P
Single Pulse Avalanche Energy (Note 2)  
Power dissipation  
mJ  
W
AS  
D
80  
o
o
Derate above 25 C  
0.53  
W/ C  
o
T , T  
Operating and Storage Temperature  
-55 to 175  
C
J
STG  
Thermal Characteristics  
o
R
θJC  
R
θJA  
R
θJA  
Thermal Resistance Junction to Case TO-252, TO-251  
1.88  
100  
52  
C/W  
o
Thermal Resistance Junction to Ambient TO-252, TO-251  
C/W  
2
o
Thermal Resistance Junction to Ambient TO-252, 1in copper pad area  
C/W  
Package Marking and Ordering Information  
Device Marking  
FDD8896  
Device  
FDD8896  
FDU8896  
Package  
TO-252AA  
TO-251AA  
Reel Size  
13”  
Tape Width  
Quantity  
12mm  
N/A  
2500 units  
75 units  
FDU8896  
Tube  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
Electrical Characteristics T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250µA, V = 0V  
GS  
30  
-
-
-
-
-
V
VDSS  
D
V
V
V
= 24V  
= 0V  
-
-
-
1
DS  
GS  
GS  
I
µA  
nA  
DSS  
GSS  
o
T
= 150 C  
250  
±100  
C
I
= ±20V  
On Characteristics  
V
Gate to Source Threshold Voltage  
V
I
= V , I = 250µA  
1.2  
-
2.5  
V
GS(TH)  
GS  
DS  
D
GS  
GS  
GS  
= 35A, V  
= 35A, V  
= 35A, V  
= 10V  
= 4.5V  
= 10V,  
-
-
0.0047 0.0057  
0.0057 0.0068  
D
I
I
D
r
Drain to Source On Resistance  
DS(ON)  
D
-
0.0075 0.0092  
o
T
= 175 C  
J
Dynamic Characteristics  
C
C
C
R
Input Capacitance  
-
-
-
-
-
-
-
-
-
-
2525  
490  
300  
2.1  
46  
-
-
pF  
pF  
pF  
ISS  
OSS  
RSS  
G
V
= 15V, V  
= 0V,  
GS  
DS  
Output Capacitance  
f = 1MHz  
Reverse Transfer Capacitance  
Gate Resistance  
-
V
V
V
V
= 0.5V, f = 1MHz  
= 0V to 10V  
-
GS  
GS  
GS  
GS  
Q
Q
Q
Q
Q
Q
Total Gate Charge at 10V  
Total Gate Charge at 5V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
60  
32  
3.0  
-
nC  
nC  
nC  
nC  
nC  
nC  
g(TOT)  
g(5)  
g(TH)  
gs  
= 0V to 5V  
24  
V
DD  
= 15V  
= 0V to 1V  
2.3  
6.9  
4.6  
9.8  
I
I
= 35A  
= 1.0mA  
D
g
-
gs2  
-
gd  
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
9
171  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
-
d(ON)  
106  
53  
41  
-
-
V
V
= 15V, I = 35A  
D
r
DD  
GS  
= 10V, R  
= 6.2Ω  
Turn-Off Delay Time  
Fall Time  
-
-
GS  
d(OFF)  
f
Turn-Off Time  
143  
OFF  
Drain-Source Diode Characteristics  
I
= 35A  
= 15A  
-
-
-
-
-
-
-
-
1.25  
1.0  
27  
V
V
SD  
V
t
Source to Drain Diode Voltage  
SD  
I
I
I
SD  
SD  
SD  
Reverse Recovery Time  
= 35A, dI /dt = 100A/µs  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 35A, dI /dt = 100A/µs  
12  
RR  
SD  
Notes:  
1: Package current limitation is 35A.  
2: Starting T = 25°C, L = 0.43mH, IAS= 28A, VDD = 27V, VGS = 10V.  
J
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
C
1.2  
100  
CURRENT LIMITED  
BY PACKAGE  
1.0  
75  
0.8  
0.6  
50  
0.4  
25  
0.2  
0
0
150  
0
25  
50  
75  
100  
125  
175  
25  
50  
75  
100  
125  
150  
175  
TC, CASE TEMPERATURE (oC)  
TC, CASE TEMPERATURE (oC)  
Figure 1. Normalized Power Dissipation vs Case  
Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
PDM  
0.1  
t1  
t2  
NOTES:  
DUTY FACTOR: D = t1/t2  
SINGLE PULSE  
0.01  
PEAK TJ = PDM x ZθJC x RθJC + TC  
1
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
1000  
TC = 25o  
C
FOR TEMPERATURES  
ABOVE 25oC DERATE PEAK  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
CURRENT AS FOLLOWS:  
VGS = 4.5V  
175 - TC  
I = I  
25  
150  
100  
30  
-1  
10-5  
10-4  
10-3  
10-2  
10  
100  
101  
t, PULSE WIDTH (s)  
Figure 4. Peak Current Capability  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
C
1000  
100  
10  
500  
If R = 0  
tAV= (L)(IAS)/(1.3*RATED BVDSS - VDD  
)
10µs  
If R0  
tAV= (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]  
100  
100µs  
STARTING TJ = 25o  
C
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY rDS(ON)  
10  
1ms  
1
10ms  
DC  
SINGLE PULSE  
TJ = MAX RATED  
STARTING TJ = 150o  
C
TC = 25o  
C
1
0.01  
0.1  
1
10  
VDS, DRAIN TO SOURCE VOLTAGE (V)  
60  
0.1  
1
10  
100  
tAV, TIME IN AVALANCHE (ms)  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching  
Capability  
100  
100  
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
VGS = 4V  
DUTY CYCLE = 0.5% MAX  
VDD = 15V  
80  
60  
40  
20  
0
80  
TC = 25oC  
VGS = 5V  
VGS = 3V  
60  
TJ = 25oC  
VGS = 10V  
40  
20  
VGS = 2.5V  
TJ = 175o  
C
TJ = -55o  
3.0  
C
0
0
0.2  
0.4  
0.6  
0.8  
1.5  
2.0  
2.5  
3.5  
VGS , GATE TO SOURCE VOLTAGE (V)  
VDS, DRAIN TO SOURCE VOLTAGE (V)  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
14  
1.6  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
ID = 35A  
12  
10  
8
1.4  
1.2  
1.0  
0.8  
0.6  
6
ID = 1A  
VGS = 10V, ID = 35A  
4
2
4
6
8
10  
-80  
-40  
0
40  
80  
120  
160  
200  
VGS , GATE TO SOURCE VOLTAGE (V)  
TJ, JUNCTION TEMPERATURE (oC)  
Figure 9. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
C
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
ID = 250µA  
VGS = VDS, ID = 250µA  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
TJ, JUNCTION TEMPERATURE (oC)  
TJ , JUNCTION TEMPERATURE (oC)  
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
5000  
10  
CISS = CGS + CGD  
VDD = 15V  
8
6
COSS CDS + CGD  
1000  
CRSS = CGD  
4
WAVEFORMS IN  
2
0
DESCENDING ORDER:  
ID = 35A  
ID = 5A  
VGS = 0V, f = 1MHz  
100  
0
10  
20  
30  
40  
50  
0.1  
1
10  
30  
VDS, DRAIN TO SOURCE VOLTAGE (V)  
Qg, GATE CHARGE (nC)  
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Current  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
Test Circuits and Waveforms  
VDS  
BVDSS  
tP  
L
VDS  
IAS  
VARY tP TO OBTAIN  
+
VDD  
RG  
REQUIRED PEAK IAS  
VGS  
VDD  
-
DUT  
tP  
IAS  
0V  
0
0.01Ω  
tAV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
VDS  
VDD  
Qg(TOT)  
VGS  
VDS  
L
VGS = 10V  
Qg(5)  
VGS  
+
Qgs2  
VDD  
VGS = 5V  
-
DUT  
VGS = 1V  
Ig(REF)  
0
Qg(TH)  
Qgs  
Qgd  
Ig(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
VDS  
tON  
td(ON)  
tOFF  
td(OFF)  
RL  
tr  
t
f
VDS  
90%  
90%  
+
VGS  
VDD  
10%  
10%  
-
0
DUT  
90%  
50%  
RGS  
VGS  
50%  
PULSE WIDTH  
VGS  
10%  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
thermal resistance of the heat dissipating path determines  
JM  
125  
100  
75  
RθJA = 33.32+ 23.84/(0.268+Area) EQ.2  
RθJA = 33.32+ 154/(1.73+Area) EQ.3  
the maximum allowable device power dissipation, P , in an  
DM  
application.  
Therefore the application’s ambient  
o
o
temperature, T ( C), and thermal resistance R  
( C/W)  
A
θJA  
must be reviewed to ensure that T  
is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
A
JM  
(EQ. 1)  
P
= -----------------------------  
50  
D M  
RθJA  
In using surface mount devices such as the TO-252  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
25  
0.01  
(0.0645)  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
is  
DM  
AREA, TOP COPPER AREA in2 (cm2)  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
defines the R  
for the device as a function of the top  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
23.84  
(0.268 + Area)  
R
= 33.32 + -------------------------------------  
(EQ. 2)  
θJA  
θJA  
Area in Inches Squared  
154  
R
= 33.32 + ----------------------------------  
(EQ. 3)  
(1.73 + Area)  
Area in Centimeters Squared  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
PSPICE Electrical Model  
.SUBCKT FDD8896 2 1 3 ; rev July 2003  
Ca 12 8 2.3e-9  
Cb 15 14 2.3e-9  
Cin 6 8 2.3e-9  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
DBREAK  
+
RSLC2  
5
51  
ESLC  
11  
-
50  
+
Ebreak 11 7 17 18 32.6  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
-
17  
18  
-
DBODY  
RDRAIN  
6
8
ESG  
EBREAK  
MWEAK  
EVTHRES  
+
16  
21  
+
-
19  
8
LGATE  
EVTEMP  
Evtemp 20 6 18 22 1  
GATE  
1
RGATE  
+
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
It 8 17 1  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
Lgate 1 9 4.6e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 1.7e-9  
7
RSOURCE  
RLSOURCE  
S1A  
S1B  
S2A  
RBREAK  
12  
RLgate 1 9 46  
RLdrain 2 5 10  
RLsource 3 7 17  
15  
13  
14  
13  
17  
18  
8
S2B  
RVTEMP  
19  
13  
CB  
CA  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 2.2e-3  
Rgate 9 20 2.1  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 2e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}  
.MODEL DbodyMOD D (IS=5E-12 IKF=10 N=1.01 RS=2.6e-3 TRS1=8e-4 TRS2=2e-7  
+ CJO=8.8e-10 M=0.57 TT=1e-16 XTI=0.9)  
.MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=9.4e-10 IS=1e-30 N=10 M=0.4)  
.MODEL MmedMOD NMOS (VTO=1.85 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25)  
.MODEL MstroMOD NMOS (VTO=2.34 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25)  
.MODEL MweakMOD NMOS (VTO=1.55 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25)  
.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7)  
.MODEL RdrainMOD RES (TC1=1e-4 TC2=8e-6)  
.MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)  
.MODEL RsourceMOD RES (TC1=7.5e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-1.7e-3 TC2=-8.8e-6)  
.MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
SABER Electrical Model  
rev July 2003  
template FDD8896 n2,n1,n3 =m_temp  
electrical n2,n1,n3  
number m_temp=25  
{
var i iscl  
dp..model dbodymod = (isl=5e-12,ikf=10,nl=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-16,xti=0.9)  
dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=9.4e-10,isl=10e-30,nl=10,m=0.4)  
m..model mmedmod = (type=_n,vto=1.85,kp=10,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=2.34,kp=350,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=1.55,kp=0.05,is=1e-30, tox=1,rs=0.1)  
LDRAIN  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2)  
c.ca n12 n8 = 2.3e-9  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
c.cb n15 n14 = 2.3e-9  
c.cin n6 n8 = 2.3e-9  
ISCL  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
spe.ebreak n11 n7 n17 n18 = 32.6  
GATE  
1
RGATE  
+
6
18  
22  
-
EBREAK  
+
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
i.it n8 n17 = 1  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
l.lgate n1 n9 = 4.6e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 1.7e-9  
S1B  
S2B  
RVTEMP  
19  
13  
CB  
CA  
IT  
14  
-
+
+
res.rlgate n1 n9 = 46  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 17  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7  
res.rdrain n50 n16 = 2.2e-3, tc1=1e-4,tc2=8e-6  
res.rgate n9 n20 = 2.1  
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 2e-3, tc1=7.5e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-1.7e-3,tc2=-8.8e-6  
res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))  
}
}
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
PSPICE Thermal Model  
JUNCTION  
th  
REV 23 July 2003  
FDD8896T  
CTHERM1 TH 6 9e-4  
CTHERM2 6 5 1e-3  
CTHERM3 5 4 2e-3  
CTHERM4 4 3 3e-3  
CTHERM5 3 2 7e-3  
CTHERM6 2 TL 8e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 3.0e-2  
RTHERM2 6 5 1.0e-1  
RTHERM3 5 4 1.8e-1  
RTHERM4 4 3 2.8e-1  
RTHERM5 3 2 4.5e-1  
RTHERM6 2 TL 4.6e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDD8896T  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =9e-4  
ctherm.ctherm2 6 5 =1e-3  
ctherm.ctherm3 5 4 =2e-3  
ctherm.ctherm4 4 3 =3e-3  
ctherm.ctherm5 3 2 =7e-3  
ctherm.ctherm6 2 tl =8e-2  
4
3
2
rtherm.rtherm1 th 6 =3.0e-2  
rtherm.rtherm2 6 5 =1.0e-1  
rtherm.rtherm3 5 4 =1.8e-1  
rtherm.rtherm4 4 3 =2.8e-1  
rtherm.rtherm5 3 2 =4.5e-1  
rtherm.rtherm6 2 tl =4.6e-1  
}
tl  
CASE  
©2004 Fairchild Semiconductor Corporation  
FDD8896 / FDU8896 Rev. C  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
Power247™  
POWEREDGE™  
PowerSaver™  
PowerTrench  
QFET  
Stealth™  
ISOPLANAR™  
LittleFET™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
MSXPro™  
OCX™  
OCXPro™  
FAST  
FASTr™  
FPS™  
FRFET™  
GlobalOptoisolator™  
GTO™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
EcoSPARK™  
E2CMOS™  
EnSigna™  
FACT™  
SuperFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
QS™  
QT Optoelectronics™ TinyLogic  
HiSeC™  
I2C™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
µSerDes™  
TINYOPTO™  
TruTranslation™  
UHC™  
i-Lo™  
ImpliedDisconnect™  
FACT Quiet Series™  
UltraFET  
OPTOLOGIC  
OPTOPLANAR™  
PACMAN™  
POP™  
SILENT SWITCHER VCX™  
SMART START™  
SPM™  
Across the board. Around the world.™  
The Power Franchise  
ProgrammableActive Droop™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVESTHE RIGHTTO MAKE CHANGES WITHOUTFURTHER NOTICETOANY  
PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUMEANYLIABILITY  
ARISING OUTOFTHEAPPLICATION OR USE OFANYPRODUCTOR CIRCUITDESCRIBED HEREIN; NEITHER DOES IT  
CONVEYANYLICENSE UNDER ITS PATENTRIGHTS, NORTHE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I12  

相关型号:

FDD8896-F085

30 V、94 A、4.7 mΩ、l DPAKN 沟道 PowerTrench®
ONSEMI

FDD8896_08

N-Channel PowerTrench㈢ MOSFET
FAIRCHILD

FDD8896_12

N-Channel PowerTrench® MOSFET 30V, 94A, 5.7mΩ
FAIRCHILD

FDD8896_NF054

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDD8896_NL

Power Field-Effect Transistor, 17A I(D), 30V, 0.068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
FAIRCHILD

FDD8896_SBSW004

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDD8N50NZTM

N-Channel UniFETTM II MOSFETï€
FAIRCHILD

FDD8N50NZTM

功率 MOSFET,N 沟道,UniFETTM II,500 V,6.5 A,850 mΩ,DPAK
ONSEMI

FDD9407-F085

N 沟道,PowerTrench®,40V,100A,2.0mΩ
ONSEMI

FDD9407L-F085

N 沟道,逻辑电平,PowerTrench® MOSFET,40 V,100 A,1.7 mΩ
ONSEMI

FDD9409-F085

N 沟道,PowerTrench® MOSFET,40 V,90 A,3.2 mΩ
ONSEMI

FDD9409L

N-Channel Logic Level PowerTrench MOSFET
ONSEMI