FDP10AN06A0 [FAIRCHILD]

N-Channel PowerTrench MOSFET 60V, 75A, 10.5mз; N沟道PowerTrench MOSFET的60V , 75A , 10.5mз
FDP10AN06A0
型号: FDP10AN06A0
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel PowerTrench MOSFET 60V, 75A, 10.5mз
N沟道PowerTrench MOSFET的60V , 75A , 10.5mз

文件: 总11页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2002  
FDB10AN06A0 / FDP10AN06A0  
N-Channel PowerTrench® MOSFET  
60V, 75A, 10.5mΩ  
Features  
Applications  
rDS(ON) = 9.5m(Typ.), VGS = 10V, ID = 75A  
Qg(tot) = 28nC (Typ.), VGS = 10V  
Low Miller Charge  
Motor / Body Load Control  
ABS Systems  
Powertrain Management  
Low Qrr Body Diode  
Injection Systems  
UIS Capability (Single Pulse and Repetitive Pulse)  
Qualified to AEC Q101  
DC-DC converters and Off-line UPS  
Distributed Power Architectures and VRMs  
Primary Switch for 12V and 24V systems  
Formerly developmental type 82560  
D
S
DRAIN  
(FLANGE)  
GATE  
SOURCE  
DRAIN  
GATE  
G
DRAIN  
SOURCE  
(FLANGE)  
TO-263AB  
FDB SERIES  
TO-220AB  
FDP SERIES  
MOSFET Maximum Ratings TC = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
60  
V
V
±20  
Continuous (TC = 25oC, VGS = 10V)  
Continuous (TC = 100oC, VGS = 10V)  
Continuous (Tamb = 25oC, VGS = 10V) with RθJA = 43oC/W)  
Pulsed  
75  
A
ID  
54  
12  
A
A
Figure 4  
429  
A
EAS  
Single Pulse Avalanche Energy (Note 1)  
Power dissipation  
mJ  
W
135  
PD  
Derate above 25oC  
0.9  
W/oC  
oC  
TJ, TSTG  
Operating and Storage Temperature  
-55 to 175  
Thermal Characteristics  
RθJC  
RθJA  
RθJA  
Thermal Resistance Junction to Case TO-220, TO-263  
1.11  
62  
oC/W  
oC/W  
oC/W  
Thermal Resistance Junction to Ambient TO-220, TO-263 (Note 2)  
Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area  
43  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a  
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems  
certification.  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
Package Marking and Ordering Information  
Device Marking  
FDB10AN06A0  
FDP10AN06A0  
Device  
Package  
TO-263AB  
TO-220AB  
Reel Size  
330mm  
Tube  
Tape Width  
24mm  
Quantity  
800 units  
50 units  
FDB10AN06A0  
FDP10AN06A0  
N/A  
Electrical Characteristics TC = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250µA, VGS = 0V  
60  
-
-
-
-
-
-
V
V
DS = 50V  
1
IDSS  
µA  
nA  
VGS = 0V  
TC = 150oC  
-
250  
±100  
IGSS  
VGS = ±20V  
-
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250µA  
2
-
-
4
V
I
I
D = 75A, VGS = 10V  
D = 37A, VGS = 6V  
0.0095 0.0105  
0.017 0.027  
-
rDS(ON)  
Drain to Source On Resistance  
ID = 75A, VGS = 10V,  
TJ = 175oC  
-
0.021 0.023  
Dynamic Characteristics  
CISS  
Input Capacitance  
-
-
-
1840  
340  
110  
28  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
VDS = 25V, VGS = 0V,  
f = 1MHz  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
-
VGS = 0V to 10V  
37  
4.6  
-
VGS = 0V to 2V  
-
-
-
-
3.5  
VDD = 30V  
D = 75A  
Ig = 1.0mA  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain MillerCharge  
I
11.7  
8.2  
Qgs2  
-
Qgd  
7.4  
-
Switching Characteristics (VGS = 10V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
8
206  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
128  
27  
36  
-
V
V
DD = 30V, ID = 75A  
GS = 10V, RGS = 10Ω  
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
94  
Drain-Source Diode Characteristics  
I
I
SD = 75A  
SD = 40A  
-
-
-
-
-
-
-
-
1.25  
1.0  
27  
V
V
VSD  
Source to Drain Diode Voltage  
trr  
Reverse Recovery Time  
ISD = 75A, dISD/dt = 100A/µs  
ISD = 75A, dISD/dt = 100A/µs  
ns  
nC  
QRR  
Reverse Recovered Charge  
23  
Notes:  
1: Starting T = 25°C, L = 8.58mH, I = 10A.  
J
AS  
2: Pulse Width = 100s  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
Typical Characteristics TC = 25°C unless otherwise noted  
1.2  
80  
1.0  
60  
0.8  
0.6  
40  
0.4  
20  
0.2  
0
0
150  
0
25  
50  
75  
100  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
0.01  
PEAK T = P  
x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
1000  
o
T
= 25 C  
C
FOR TEMPERATURES  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
70  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
Typical Characteristics TC = 25°C unless otherwise noted  
500  
100  
500  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
AV  
- V  
DD  
)
10µs  
AS  
DSS  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
t
- V ) +1]  
DD  
100µs  
AV  
AS  
DSS  
100  
1ms  
o
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
10  
1
LIMITED BY r  
10ms  
DS(ON)  
10  
DC  
SINGLE PULSE  
o
STARTING T = 150 C  
J
T
= MAX RATED  
J
o
T
= 25 C  
C
0.1  
1
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
0.1  
t , TIME IN AVALANCHE (ms)  
AV  
1
10  
0.01  
V
DS  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
150  
150  
PULSE DURATION = 80µs  
V
= 10V  
GS  
V
= 7V  
GS  
DUTY CYCLE = 0.5% MAX  
125  
100  
75  
50  
25  
0
125  
100  
75  
50  
25  
0
V
= 15V  
DD  
o
T
= 25 C  
J
V
= 6V  
GS  
o
T
= 25 C  
C
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 175 C  
J
o
T
= -55 C  
J
V
= 5V  
GS  
4
5
6
7
8
0
1
V , DRAIN TO SOURCE VOLTAGE (V)  
DS  
2
3
4
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
25  
20  
15  
10  
5
2.5  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
2.0  
1.5  
1.0  
0.5  
V
= 6V  
GS  
V
= 10V  
GS  
V
= 10V, I = 75A  
GS  
D
0
20  
40  
I , DRAIN CURRENT (A)  
60  
80  
-80  
-40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
Typical Characteristics TC = 25°C unless otherwise noted  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS D  
GS  
I
= 250µA  
D
-80  
-40  
0
40  
80  
120  
o
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
3000  
10  
V
= 30V  
DD  
C
= C + C  
GS GD  
ISS  
8
6
4
2
0
1000  
C
C
+ C  
OSS  
DS GD  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
100  
50  
I
I
= 75A  
= 12A  
D
D
V
= 0V, f = 1MHz  
GS  
0
5
10  
15  
20  
25  
30  
0.1  
1
10  
60  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
g
DS  
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
L
DS  
V
GS  
V
= 10V  
GS  
V
GS  
+
Q
gs2  
V
DD  
-
DUT  
V
= 2V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
-
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
V
10%  
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
80  
60  
40  
20  
R
= 26.51+ 19.84/(0.262+Area) EQ.2  
θJA  
R
= 26.51+ 128/(1.69+Area) EQ.3  
θJA  
application.  
Therefore the applications ambient  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
(EQ. 1)  
P
= -----------------------------  
DM  
Rθ JA  
In using surface mount devices such as the TO-263  
package, the environment in which it is applied will have a  
significant influence on the parts current and maximum  
power dissipation ratings. Precise determination of PDM is  
complex and influenced by many factors:  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designers preliminary application evaluation. Figure 21  
defines the RθJA for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
19.84  
(0.262 + Area)  
R
= 26.51 + ------------------------------------  
(EQ. 2)  
θ JA  
θ JA  
Area in Inches Squared  
128  
R
= 26.51 + ---------------------------------  
(EQ. 3)  
(1.69 + Area)  
Area in Centimeters Squared  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
PSPICE Electrical Model  
.SUBCKT FDP10AN06A0 2 1 3 ;  
Ca 12 8 7e-10  
rev July 2002  
Cb 15 14 7e-10  
Cin 6 8 1.8e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
Ebreak 11 7 17 18 68.4  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
MMED  
It 8 17 1  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 7e-9  
Ldrain 2 5 1.0e-9  
LSOURCE  
CIN  
SOURCE  
3
7
Lsource 3 7 3e-9  
RSOURCE  
RLSOURCE  
RLgate 1 9 70  
RLdrain 2 5 10  
RLsource 3 7 30  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
-
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 1.6e-3  
Rgate 9 20 3.6  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 6e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),7))}  
.MODEL DbodyMOD D (IS=9E-12 N=1.06 RS=2.7e-3 TRS1=2.4e-3 TRS2=1.1e-6  
+ CJO=1.25e-9 M=5.3e-1 TT=4e-9 XTI=3.9)  
.MODEL DbreakMOD D (RS=2.7e-1 TRS1=1e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=4.7e-10 IS=1e-30 N=10 M=0.44)  
.MODEL MmedMOD NMOS (VTO=3.6 KP=5.5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.6)  
.MODEL MstroMOD NMOS (VTO=4.4 KP=80 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=3.06 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=36 RS=0.1)  
.MODEL RbreakMOD RES (TC1=9e-4 TC2=5e-7)  
.MODEL RdrainMOD RES (TC1=2.5e-2 TC2=7.8e-5)  
.MODEL RSLCMOD RES (TC1=1e-3 TC2=3.5e-5)  
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-5.9e-3 TC2=-1.3e-5)  
.MODEL RvtempMOD RES (TC1=-2.3e-3 TC2=1.3e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8 VOFF=-5)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-8)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-1.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-2)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
SABER Electrical Model  
REV July 2002  
template FDP10AN06A0 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=9e-12,nl=1.06,rs=2.7e-3,trs1=2.4e-3,trs2=1.1e-6,cjo=1.25e-9,m=5.3e-1,tt=4e-9,xti=3.9)  
dp..model dbreakmod = (rs=2.7e-1,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=4.7e-10,isl=10e-30,nl=10,m=0.44)  
m..model mmedmod = (type=_n,vto=3.6,kp=5.5,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=4.4,kp=80,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=3.06,kp=0.03,is=1e-30, tox=1,rs=0.1)  
LDRAIN  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-5)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-5,voff=-8)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-1.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-2)  
c.ca n12 n8 = 7e-10  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
c.cb n15 n14 = 7e-10  
c.cin n6 n8 = 1.8e-9  
ISCL  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
spe.ebreak n11 n7 n17 n18 = 68.4  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
i.it n8 n17 = 1  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
l.lgate n1 n9 = 7e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 3e-9  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
res.rlgate n1 n9 = 70  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 30  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=9e-4,tc2=5e-7  
res.rdrain n50 n16 = 1.6e-3, tc1=2.5e-2,tc2=7.8e-5  
res.rgate n9 n20 = 3.6  
res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=3.5e-5  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 6e-3, tc1=1e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-5.9e-3,tc2=-1.3e-5  
res.rvtemp n18 n19 = 1, tc1=-2.3e-3,tc2=1.3e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 7))  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
SPICE Thermal Model  
JUNCTION  
th  
REV 23 July 2002  
FDP10AN06A0T  
CTHERM1 TH 6 3.2e-3  
CTHERM2 6 5 3.3e-3  
CTHERM3 5 4 3.4e-3  
CTHERM4 4 3 3.5e-3  
CTHERM5 3 2 6.4e-3  
CTHERM6 2 TL 1.9e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 5.5e-4  
RTHERM2 6 5 5.0e-3  
RTHERM3 5 4 4.5e-2  
RTHERM4 4 3 1.5e-1  
RTHERM5 3 2 3.37e-1  
RTHERM6 2 TL 3.5e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDP10AN06A0T  
template thermal_model th tl  
thermal_c th, tl  
{
4
3
2
ctherm.ctherm1 th 6 =3.2e-3  
ctherm.ctherm2 6 5 =3.3e-3  
ctherm.ctherm3 5 4 =3.4e-3  
ctherm.ctherm4 4 3 =3.5e-3  
ctherm.ctherm5 3 2 =6.4e-3  
ctherm.ctherm6 2 tl =1.9e-2  
rtherm.rtherm1 th 6 =5.5e-4  
rtherm.rtherm2 6 5 =5.0e-3  
rtherm.rtherm3 5 4 =4.5e-2  
rtherm.rtherm4 4 3 =1.5e-1  
rtherm.rtherm5 3 2 =3.37e-1  
rtherm.rtherm6 2 tl =3.5e-1  
}
tl  
CASE  
©2002 Fairchild Semiconductor Corporation  
FDB10AN06A0 / FDP10AN06A0 Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FACT™  
ImpliedDisconnectPACMAN™  
SPM™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLTFRFET™  
DOME™  
FACT Quiet SeriesISOPLANAR™  
POP™  
Stealth™  
®
FAST  
FASTr™  
LittleFET™  
MicroFET™  
MicroPak™  
Power247™  
PowerTrench  
QFET™  
SuperSOT-3  
SuperSOT-6  
SuperSOT-8  
SyncFET™  
®
GlobalOptoisolatorMICROWIRE™  
QS™  
EcoSPARK™  
E CMOS™  
EnSigna™  
GTO™  
MSX™  
MSXPro™  
OCX™  
OCXPro™  
OPTOLOGIC  
OPTOPLANAR™  
QT OptoelectronicsTinyLogic™  
2
HiSeC™  
Quiet Series™  
TruTranslation™  
2
I C™  
RapidConfigure™  
RapidConnect™  
SILENT SWITCHER VCX™  
SMART START™  
UHC™  
UltraFET  
®
Across the board. Around the world.™  
The Power Franchise™  
®
®
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I  

相关型号:

FDP10G

IDC DIP & TRANSITION PLUGS .100 [2.54] CENTERLINE
ADAM-TECH

FDP10G30

DIP Connector, 10 Contact(s), 2 Row(s), Male, 0.1 inch Pitch, IDC Terminal, Black Insulator, Plug
ADAM-TECH

FDP10GGY

DIP Connector, 10 Contact(s), 2 Row(s), Male, 0.1 inch Pitch, IDC Terminal, Gray Insulator, Plug
ADAM-TECH

FDP10N50F

N-Channel MOSFET 500V, 9A, 0.85Ω
FAIRCHILD

FDP10N50U

Power Field-Effect Transistor, 8A I(D), 500V, 1.05ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, TO-220, 3 PIN
FAIRCHILD

FDP10N60NZ

N-Channel UniFETTM II MOSFET 600 V, 10 A, 750 m
FAIRCHILD

FDP10N60NZ

Power MOSFET,N 沟道,UniFETTMII,600V,10A,750mΩ,TO-220
ONSEMI

FDP10N60ZU

N-Channel MOSFET, FRFET 600V, 9A, 0.8Ω
FAIRCHILD

FDP10T

IDC DIP & TRANSITION PLUGS .100 [2.54] CENTERLINE
ADAM-TECH

FDP10T30

DIP Connector, 10 Contact(s), 2 Row(s), Male, IDC Terminal, Plug
ADAM-TECH

FDP10TGY

DIP Connector, 10 Contact(s), 2 Row(s), Male, 0.1 inch Pitch, IDC Terminal, Gray Insulator, Plug
ADAM-TECH

FDP11N50

Power Field-Effect Transistor, 11A I(D), 500V, 0.725ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD