FGB40N6S2S62Z [FAIRCHILD]

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-263AB;
FGB40N6S2S62Z
型号: FGB40N6S2S62Z
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-263AB

栅 瞄准线 功率控制 晶体管
文件: 总11页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2001  
FGH40N6S2, FGP40N6S2, FGB40N6S2  
600V, SMPS II Series N-Channel IGBT  
General Description  
Features  
The FGH40N6S2, FGP40N6S2, and FGB40N6S2 are Low  
Gate Charge, Low Plateau Voltage SMPS II IGBTs combin-  
ing the fast switching speed of the SMPS IGBTs along with  
lower gate charge and plateau voltage and avalanche capa-  
bility (UIS). These LGC devices shorten delay times, and  
reduce the power requirement of the gate drive. These de-  
vices are ideally suited for high voltage switched mode pow-  
er supply applications where low conduction loss, fast  
switching times and UIS capability are essential. SMPS II  
LGC devices have been specially designed for:  
• 100kHz Operation at 390V,24A  
• 200kHZ Operation at 390V, 18A  
• 600V Switching SOA Capability  
Typical Fall Time. . . . . . . . . . . 85ns at TJ = 125oC  
• Low Gate Charge . . . . . . . . . 35nC at VGE = 15V  
• Low Plateau Voltage . . . . . . . . . . . . .6.5V Typical  
• UIS Rated . . . . . . . . . . . . . . . . . . . . . . . . . 260mJ  
• Low Conduction Loss  
Power Factor Correction (PFC) circuits  
Full bridge topologies  
Half bridge topologies  
Push-Pull circuits  
Uninterruptible power supplies  
Zero voltage and zero current switching circuits  
Formerly Developmental Type TA49438.  
Symbol  
Package  
JEDEC STYLE TO-247  
JEDEC STYLE TO-220AB  
JEDEC STYLE TO-263AB  
C
E
C
E
C
G
G
C
G
G
E
E
Device Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
BV  
Parameter  
Collector to Emitter Breakdown Voltage  
Collector Current Continuous, T = 25°C  
Ratings  
Units  
600  
75  
V
A
A
A
V
V
CES  
I
C25  
C
I
Collector Current Continuous, T = 110°C  
35  
C110  
C
I
Collector Current Pulsed (Note 1)  
Gate to Emitter Voltage Continuous  
Gate to Emitter Voltage Pulsed  
180  
±20  
±30  
CM  
V
GES  
GEM  
V
SSOA  
Switching Safe Operating Area at T = 150°C, Figure 2  
200A at 600V  
260  
J
E
Pulsed Avalanche Energy, I = 20A, L = 1.3mH, V = 50V  
mJ  
W
AS  
CE  
DD  
P
Power Dissipation Total T = 25°C  
290  
D
C
Power Dissipation Derating T > 25°C  
2.33  
W/°C  
°C  
C
T
Operating Junction Temperature Range  
Storage Junction Temperature Range  
-55 to 150  
-55 to 150  
J
T
°C  
STG  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
Package Marking and Ordering Information  
Device Marking  
40N6S2  
Device  
Package  
TO-247  
Tape Width  
Quantity  
FGH40N6S2  
FGP40N6S2  
FGB40N6S2  
-
-
40N6S2  
TO-220AB  
TO-263AB  
40N6S2  
Electrical Characteristics T = 25°C unless otherwise noted  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off State Characteristics  
BV  
BV  
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
I
I
= 250mA, V = 0  
600  
10  
-
28  
-
-
-
V
V
CES  
ECS  
C
C
GE  
= 10mA, V = 0  
GE  
I
V
= 600V  
T = 25°C  
-
-
-
250  
2.0  
±250  
mA  
mA  
nA  
CES  
CE  
J
T = 125°C  
-
J
I
Gate to Emitter Leakage Current  
V
= ± 20V  
-
GES  
GE  
On State Characteristics  
V
Collector to Emitter Saturation Voltage  
I
V
= 20A,  
T = 25°C  
-
-
1.9  
1.7  
2.7  
2.0  
V
V
CE(SAT)  
C
J
= 15V  
GE  
T = 125°C  
J
Dynamic Characteristics  
Q
Gate Charge  
I
V
= 20A,  
V
V
= 15V  
= 20V  
-
-
35  
45  
42  
55  
nC  
nC  
V
G(ON)  
C
GE  
= 300V  
CE  
GE  
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Plateau Voltage  
I
I
= 250mA, V = 600V  
3.5  
-
4.3  
6.5  
5.0  
8.0  
GE(TH)  
C
C
CE  
V
= 20A, V = 300V  
V
GEP  
CE  
Switching Characteristics  
SSOA  
Switching SOA  
T = 150°C, R = 3W, V =  
GE  
200  
-
-
A
J
G
15V, L = 100mH, V = 600V  
CE  
t
Current Turn-On Delay Time  
Current Rise Time  
IGBT and Diode at T = 25°C,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
-
ns  
ns  
ns  
ns  
mJ  
mJ  
mJ  
ns  
ns  
ns  
ns  
mJ  
mJ  
mJ  
d(ON)I  
J
I
= 20A,  
t
CE  
10  
-
rI  
d(OFF)I  
V
V
R
= 390V,  
= 15V,  
= 3W  
CE  
GE  
t
Current Turn-Off Delay Time  
Current Fall Time  
35  
-
t
55  
-
-
fI  
G
E
E
E
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
Current Turn-On Delay Time  
Current Rise Time  
115  
200  
195  
14  
ON1  
ON2  
OFF  
L = 200mH  
Test Circuit - Figure 20  
-
260  
-
t
IGBT and Diode at T = 125°C  
J
d(ON)I  
I
= 20A,  
t
CE  
18  
-
rI  
d(OFF)I  
V
V
R
= 390V,  
= 15V,  
= 3W  
CE  
GE  
t
Current Turn-Off Delay Time  
Current Fall Time  
68  
85  
105  
-
t
85  
fI  
G
E
E
E
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
115  
380  
375  
ON1  
ON2  
OFF  
L = 200mH  
Test Circuit - Figure 20  
450  
600  
Thermal Characteristics  
R
Thermal Resistance Junction-Case  
-
-
0.43  
°C/W  
qJC  
NOTE:  
2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss  
ON1  
of the IGBT only. E  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T  
J
ON2  
as the IGBT. The diode type is specified in figure 20.  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of  
OFF  
the input pulse and ending at the point where the collector current equals zero (I = 0A). All devices were tested per  
CE  
JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produc-  
es the true total Turn-Off Energy Loss.  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
Typical Performance Curves  
250  
200  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
o
T
= 150 C, R = 3  
W
, V = 15V, L = 100mH  
J
G
GE  
150  
100  
50  
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
TC, CASE TEMPERATURE (oC)  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
Figure 1. DC Collector Current vs Case  
Temperature  
Figure 2. Minimum Switching Safe Operating Area  
1000  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
900  
800  
700  
600  
500  
400  
300  
200  
V
= 390V, R = 3W  
, T =125oC  
J
CE  
G
TC  
VGE  
15V  
75oC  
ISC  
VGE = 10V  
100  
10  
1
fMAX1 = 0.05 / (td(OFF)I + td(ON)I  
)
fMAX2 = (PD - PC) / (EON2 + EOFF  
)
tSC  
PC = CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
R
ØJC = 0.49oC/W, SEE NOTES  
TJ = 125oC, RG = 3  
W, L = 200mH, VCE = 390V  
10  
11  
12  
13  
14  
15  
1
10  
30  
60  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
VGE, GATE TO EMITTER VOLTAGE (V)  
Figure 3. Operating Frequency vs Collector to  
Emitter Current  
Figure 4. Short Circuit Withstand Time  
40  
40  
DUTY CYCLE < 0.5%, VGE = 15V  
DUTY CYCLE < 0.5%, VGE = 15V  
PULSE DURATION = 20  
PULSE DURATION = 20ms  
ms  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
TJ = 125oC  
TJ = 125oC  
TJ = 25oC  
TJ = 150oC  
TJ = 150oC  
TJ = 25oC  
0
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
VCE, COLLECTOR TO EMITTER VOLTAGE (V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
CE, COLLECTOR TO EMITTER VOLTAGE (V)  
V
Figure 5. Collector to Emitter On-State Voltage  
Figure 6. Collector to Emitter On-State Voltage  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
Typical Performance Curves (Continued)  
1200  
1000  
800  
600  
400  
200  
0
1400  
RG = 3W, L = 200mH, VCE = 390V  
RG = 3W, L = 200mH, VCE = 390V  
1200  
1000  
800  
600  
400  
200  
0
TJ = 125oC, VGE = 10V, VGE = 15V  
TJ = 125oC, VGE = 10V, VGE = 15V  
TJ = 25oC, VGE = 10V, VGE = 15V  
TJ = 25oC, VGE = 10V, VGE = 15V  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 7. Turn-On Energy Loss vs Collector to  
Emitter Current  
Figure 8. Turn-Off Energy Loss vs Collector to  
Emitter Current  
60  
20  
RG = 3W, L = 200mH, VCE = 390V  
RG = 3W, L = 200mH, VCE = 390V  
50  
16  
12  
8
TJ = 25oC, TJ = 125oC, VGE = 10V  
40  
30  
20  
10  
0
TJ = 125oC, VGE = 15V, VGE = 10V  
TJ = 25oC, TJ = 125oC, VGE = 15V  
4
TJ = 25oC, VGE = 10V, VGE =15V  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
I
CE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 9. Turn-On Delay Time vs Collector to  
Emitter Current  
Figure 10. Turn-On Rise Time vs Collector to  
Emitter Current  
80  
100  
RG = 3W, L = 200mH, VCE = 390V  
RG = 3W, L = 200mH,  
VCE = 390V  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
TJ = 125oC, VGE = 10V OR 15V  
VGE = 10V, VGE = 15V, TJ = 125oC  
TJ = 25oC, VGE = 10V OR 15V  
VGE = 10V, VGE = 15V, TJ = 25oC  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
ICE, COLLECTOR TO EMITTER CURRENT (A)  
I
CE, COLLECTOR TO EMITTER CURRENT (A)  
Figure 11. Turn-Off Delay Time vs Collector to  
Emitter Current  
Figure 12. Fall Time vs Collector to Emitter  
Current  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
Typical Performance Curves (Continued)  
16  
14  
12  
10  
8
200  
DUTY CYCLE < 0.5%, VCE = 10V  
PULSE DURATION = 250ms  
175  
150  
125  
100  
75  
V
= 600V  
CE  
V
= 400V  
CE  
6
TJ = 25oC  
VCE = 200V  
50  
4
TJ = -55oC  
TJ = 125oC  
25  
2
0
0
3
4
5
6
7
8
9
10  
11  
12  
0
5
10  
15  
Q , GATE CHARGE (nC)  
G
20  
25  
30  
35  
V
GE, GATE TO EMITTER VOLTAGE (V)  
Figure 13. Transfer Characteristic  
Figure 14. Gate Charge  
100  
10  
1
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
o
T
= 125 C, L = 200  
m
H, V = 390V, V = 15V  
RG = 3  
W, L = 200mH, VCE = 390V, VGE = 15V  
J
CE  
GE  
ETOTAL = EON2 + EOFF  
E
= E  
+ E  
TOTAL  
ON2 OFF  
ICE = 40A  
I
= 40A  
= 20A  
CE  
I
CE  
ICE = 20A  
ICE = 10A  
I
= 10A  
CE  
0.1  
1
2
5
10  
20  
50 100 200  
500 1000  
25  
50  
75  
100  
125  
150  
T
C, CASE TEMPERATURE (oC)  
R
, GATE RESISTANCE (W)  
G
Figure 15. Total Switching Loss vs Case  
Temperature  
Figure 16. Total Switching Loss vs Gate  
Resistance  
4.0  
3.0  
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%  
o
PULSE DURATION = 250  
m
s, T = 25 C  
J
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
2.5  
2.0  
C
IES  
1.5  
1.0  
0.5  
0.0  
I
= 30A  
CE  
I
= 40A  
CE  
I
= 20A  
CE  
C
OES  
C
I
= 10A  
8
RES  
CE  
6
7
9
10  
11  
12  
13  
14  
15  
16  
0
20  
40  
60  
80  
100  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
Figure 17. Capacitance vs Collector to Emitter  
Voltage  
Figure 18. Collector to Emitter On-State Voltage vs  
Gate to Emitter Voltage  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
Typical Performance Curves (Continued)  
0
10  
0.50  
0.20  
0.10  
t
1
P
D
-1  
10  
t
2
0.05  
DUTY FACTOR, D = t / t  
1
2
0.02  
0.01  
PEAK T = (P X Zq X Rq ) + T  
J
D
JC  
JC  
C
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
Figure 19. IGBT Normalized Transient Thermal Impedance, Junction to Case  
Test Circuit and Waveforms  
FGH50N6S2D  
DIODE TA49392  
90%  
OFF  
10%  
V
GE  
E
ON2  
E
L = 200mH  
V
CE  
R
= 3W  
G
90%  
10%  
+
I
CE  
t
t
FGH50N6S2  
d(OFF)I  
V
= 390V  
rI  
DD  
t
fI  
-
t
d(ON)I  
Figure 20. Inductive Switching Test Circuit  
Figure 21. Switching Test Waveforms  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
Handling Precautions for IGBTs  
Operating Frequency Information  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating  
device performance for a specific application. Other  
typical frequency vs collector current (ICE) plots are  
possible using the information shown for a typical  
unit in Figures 5, 6, 7, 8, 9 and 11. The operating  
frequency plot (Figure 3) of a typical device shows  
fMAX1 or fMAX2; whichever is smaller at each point.  
The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic  
discharge of energy through the devices. When  
handling these devices, care should be exercised to  
assure that the static charge built in the handler’s  
body capacitance is not discharged through the  
device. With proper handling and application  
procedures, however, IGBTs are currently being  
extensively used in production by numerous  
equipment manufacturers in military, industrial and  
consumer applications, with virtually no damage  
problems due to electrostatic discharge. IGBTs can  
be handled safely if the following basic precautions  
are taken:  
fMAX1 is defined by fMAX1 = 0.05/(td(OFF)I+ td(ON)I).  
Deadtime (the denominator) has been arbitrarily held  
to 10% of the on-state time for a 50% duty factor.  
Other definitions are possible. td(OFF)I and td(ON)I are  
defined in Figure 21. Device turn-off delay can  
establish an additional frequency limiting condition  
for an application other than TJM. td(OFF)I is important  
when controlling output ripple under a lightly loaded  
condition.  
1. Prior to assembly into a circuit, all leads should be  
kept shorted together either by the use of metal  
shorting springs or by the insertion into conduc-  
tive material such as “ECCOSORBD™ LD26” or  
equivalent.  
2. When devices are removed by hand from their  
carriers, the hand being used should be  
grounded by any suitable means - for example,  
with a metallic wristband.  
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON2).  
The allowable dissipation (PD) is defined by  
PD = (TJM - TC)/RqJC. The sum of device switching  
and conduction losses must not exceed PD. A 50%  
duty factor was used (Figure 3) and the conduction  
losses (PC) are approximated by PC = (VCE x ICE)/2.  
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed  
from circuits with power on.  
EON2 and EOFF are defined in the switching  
waveforms shown in Figure 21. EON2 is the integral  
of the instantaneous power loss (ICE x VCE) during  
turn-on and EOFF is the integral of the instantaneous  
power loss (ICE x VCE) during turn-off. All tail losses  
are included in the calculation for EOFF; i.e., the  
collector current equals zero (ICE = 0)  
5. Gate Voltage Rating - Never exceed the gate-  
voltage rating of VGEM. Exceeding the rated VGE  
can result in permanent damage to the oxide  
layer in the gate region.  
6. Gate Termination - The gates of these devices  
are essentially capacitors. Circuits that leave the  
gate open-circuited or floating should be avoided.  
These conditions can result in turn-on of the  
device due to voltage buildup on the input  
capacitor due to leakage currents or pickup.  
7. Gate Protection - These devices do not have an  
internal monolithic Zener diode from gate to  
emitter. If gate protection is required an external  
Zener is recommended.  
ECCOSORBDä is a Trademark of Emerson and Cumming, Inc.  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
TO-247  
3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE  
A
TERM. 4  
ØP  
INCHES  
MILLIMETERS  
E
ØS  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
4.82  
NOTES  
A
b
0.180  
0.046  
0.060  
0.095  
0.020  
0.800  
0.605  
0.190  
0.051  
0.070  
0.105  
0.026  
0.820  
0.625  
4.58  
1.17  
-
Q
1.29  
2, 3  
ØR  
b
b
1.53  
1.77  
1, 2  
1
2
D
2.42  
2.66  
1, 2  
c
0.51  
0.66  
1, 2, 3  
D
E
e
20.32  
15.37  
20.82  
15.87  
-
-
L1  
b1  
b2  
0.219 TYP  
0.438 BSC  
0.090  
5.56 TYP  
11.12 BSC  
2.29  
4
4
5
-
L
c
e
1
b
J
0.105  
0.640  
0.155  
0.144  
0.220  
0.205  
0.270  
2.66  
16.25  
3.93  
3.65  
5.58  
5.20  
6.85  
1
1
2
3
3
2
1
L
0.620  
0.145  
0.138  
0.210  
0.195  
0.260  
15.75  
3.69  
3.51  
5.34  
4.96  
6.61  
J1  
e
BACK VIEW  
L
1
-
1
e1  
ØP  
Q
-
ØR  
-
ØS  
-
NOTES:  
1. Lead dimension and finish uncontrolled in L .  
1
2. Lead dimension (without solder).  
3. Add typically 0.002 inches (0.05mm) for solder coating.  
4. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimen-  
sion D.  
5. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimen-  
sion D.  
6. Controlling dimension: Inch.  
7. Revision 1 dated 1-93.  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
TO-263AB  
SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE  
INCHES  
MIN  
MILLIMETERS  
NOTE  
S
-
4, 5  
4, 5  
4, 5  
2
4, 5  
-
-
7
7
-
SYMBOL  
MAX  
0.180  
0.052  
0.034  
0.055  
-
MIN  
4.32  
1.22  
0.77  
1.15  
7.88  
0.46  
MAX  
4.57  
1.32  
0.86  
1.39  
-
0.55  
10.79  
10.28  
E
A
A
0.170  
0.048  
0.030  
0.045  
0.310  
0.018  
0.405  
0.395  
A1  
A
1
H1  
b
TERM. 4  
b
b
1
D
L
2
c
0.022  
0.425 10.29  
0.405 10.04  
D
E
e
L2  
L1  
0.100 TYP  
0.200 BSC  
2.54 TYP  
5.08 BSC  
1
3
e
1
H
0.045  
0.095  
0.175  
0.090  
0.050  
0.315  
0.055  
1.15  
1.39  
2.66  
4.95  
2.79  
1.77  
-
1
b
b1  
c
e
J
0.105  
0.195  
0.110  
0.070  
-
2.42  
4.45  
2.29  
1.27  
8.01  
-
-
1
J1  
e1  
L
0.450  
(11.43)  
L
L
L
4, 6  
3
2
TERM. 4  
1
2
3
L3  
NOTES:  
0.350  
(8.89)  
1. These dimensions are within allowable dimensions of  
Rev. C of JEDEC TO-263AB outline dated 2-92.  
b
2
0.700  
(17.78)  
2. L and b dimensions established a minimum mounting  
3
2
surface for terminal 4.  
3. Solder finish uncontrolled in this area.  
4. Dimension (without solder).  
0.150  
(3.81)  
3
1
5. Add typically 0.002 inches (0.05mm) for solder plating.  
0.080 TYP (2.03)  
0.062 TYP (1.58)  
6. L is the terminal length for soldering.  
1
7. Position of lead to be measured 0.120 inches (3.05mm)  
from bottom of dimension D.  
8. Controlling dimension: Inch.  
MINIMUM PAD SIZE RECOMMENDED FOR  
SURFACE-MOUNTED APPLICATIONS  
9. Revision 10 dated 5-99.  
4.0mm  
TO-263AB  
24mm TAPE REEL  
1.5mm  
DIA. HOLE  
1.75mm  
USER DIRECTION OF FEED  
2.0mm  
C
L
24mm  
16mm  
COVER TAPE  
40mm MIN.  
ACCESS HOLE  
30.4mm  
13mm  
330mm  
100mm  
GENERAL INFORMATION  
1. 800 PIECES PER REEL.  
2. ORDER IN MULTIPLES OF FULL REELS ONLY.  
24.4mm  
3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
TO-220AB  
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE  
A
INCHES  
MILLIMETERS  
MIN  
E
ØP  
SYMBOL  
MIN  
MAX  
MAX  
4.57  
1.32  
0.86  
1.39  
0.48  
15.49  
4.06  
10.41  
0.76  
NOTES  
A1  
A
0.170  
0.048  
0.030  
0.045  
0.014  
0.590  
-
0.180  
0.052  
0.034  
0.055  
0.019  
0.610  
0.160  
0.410  
0.030  
4.32  
1.22  
0.77  
1.15  
0.36  
14.99  
-
-
Q
H1  
A
-
1
b
3, 4  
TERM. 4  
D
b
2, 3  
1
E1  
45o  
c
2, 3, 4  
D1  
D
-
-
L1  
D
1
b1  
E
0.395  
-
10.04  
-
-
L
b
E
-
c
1
e
0.100 TYP  
0.200 BSC  
0.235  
2.54 TYP  
5.08 BSC  
6.47  
5
5
-
60o  
e
1
2
e
3
1
J1  
H
0.255  
0.110  
0.550  
0.150  
0.153  
0.112  
5.97  
2.54  
13.47  
3.31  
3.79  
2.60  
1
1
e1  
J
0.100  
0.530  
0.130  
0.149  
0.102  
2.79  
13.97  
3.81  
6
-
L
L
2
-
1
ØP  
Q
3.88  
2.84  
-
NOTES:  
1. These dimensions are within allowable dimensions of Rev. J of JEDEC TO-  
220AB outline dated 3-24-87.  
2. Lead dimension and finish uncontrolled in L .  
1
3. Lead dimension (without solder).  
4. Add typically 0.002 inches (0.05mm) for solder coating.  
5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimen-  
sion D.  
6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimen-  
sion D.  
7. Controlling dimension: Inch.  
8. Revision 2 dated 7-97.  
©2001 Fairchild Semiconductor Corporation  
FGH40N6S2, FGP40N6S2, FGB40N6S2 Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DenseTrench™  
DOME™  
EcoSPARK™  
E2CMOS™  
Ensigna™  
FAST®  
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
OPTOPLANAR™  
PACMAN™  
POP™  
STAR*POWER™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TinyLogic™  
TruTranslation™  
UHC™  
Power247™  
PowerTrench®  
QFET™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MICROWIRE™  
OPTOLOGIC™  
QS™  
QTOptpelectronics™  
Quiet Series™  
SILENTSWITCHER®  
SMART START™  
FACT™  
FACT Quiet Series™  
UltraFET®  
VCX™  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H3  
©2001 Fairchild Semiconductor Corporation  

相关型号:

FGB40N6S2T

75A, 600V, N-CHANNEL IGBT, TO-263AB, D2PAK-3
ROCHESTER

FGB40N6S2T

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-263AB, D2PAK-3
FAIRCHILD

FGB40N6S2_NL

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, D2PAK-3
FAIRCHILD

FGB40T65SP

Field Stop Trench IGBT
ONSEMI

FGB40T65SPD

Field Stop Trench IGBT
ONSEMI

FGB40T65SPD-F085

IGBT,650V,40A,场截止沟槽
ONSEMI

FGB40T65SP_F085

Field Stop Trench IGBT
ONSEMI

FGB5065G2-F085

EcoSPARK®2 HV-HE IGBT500 mJ, 650 V, N-Channel PTC Heater IGBT
ONSEMI

FGB5N60UNDF

600V, 5A Short Circuit Rated IGBT
FAIRCHILD

FGB5N60UNDF

IGBT,600V,5A,短路额定
ONSEMI

FGB7N60UNDF

600V, 7A Short Circuit Rated IGBT
FAIRCHILD

FGB7N60UNDF

IGBT,600V,7A,短路额定
ONSEMI