FGH50N3 [FAIRCHILD]

300V, PT N-Channel IGBT; 300V , PT N沟道IGBT
FGH50N3
型号: FGH50N3
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

300V, PT N-Channel IGBT
300V , PT N沟道IGBT

双极性晶体管
文件: 总8页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2002  
FGH50N3  
300V, PT N-Channel IGBT  
General Description  
Features  
The FGH50N3 is a MOS gated high voltage switching  
device combining the best features of MOSFETs and  
bipolar transistors. These devices have the high input  
impedance of a MOSFET and the low on-state conduction  
loss of a bipolar transistor. The much lower on-state voltage  
• Low V  
. . . . . . . . . . . . . . . . . . . < 1.4V max  
CE(SAT)  
• Low E  
. . . . . . . . . . . . . . . . . . . . . . . . . < 200µJ  
OFF  
• SCWT (@ T = 125°C). . . . . . . . . . . . . . . . . > 8µs  
J
o
o
drop varies only moderately between 25 C and 150 C.  
• 300V Switching SOA Capability  
This IGBT is ideal for many high voltage switching  
applications operating at high frequencies where low  
conduction losses are essential. This device has been  
optimized for medium frequency switch mode power  
supplies.  
• Positive V  
50A  
Temperature Coefficient above  
CE(SAT)  
Formerly Developmental Type TA49485  
Package  
Symbol  
E
C
C
G
TO-247  
G
COLLECTOR  
(FLANGE)  
E
Device Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
BV  
Parameter  
Collector to Emitter Breakdown Voltage  
Collector Current Continuous, T = 25°C  
Ratings  
Units  
300  
V
A
A
A
V
V
CES  
I
75  
C25  
C
I
Collector Current Continuous, T = 110°C  
75  
240  
C110  
C
I
Collector Current Pulsed (Note 1)  
Gate to Emitter Voltage Continuous  
Gate to Emitter Voltage Pulsed  
CM  
V
±20  
GES  
GEM  
V
±30  
SSOA  
Switching Safe Operating Area at T = 150°C, Figure 2  
150A at 300V  
800  
J
E
Single Pulse Avalanche Energy, I = 30A, L = 1.78mH, V = 50V  
mJ  
mJ  
W
AS  
CE  
DD  
E
Single Pulse Reverse Avalanche Energy, I = 30A, L = 1.78mH, V = 50V  
800  
ARV  
EC  
DD  
P
Power Dissipation Total T = 25°C  
463  
D
C
Power Dissipation Derating T > 25°C  
3.7  
W/°C  
°C  
C
T
Operating Junction Temperature Range  
Storage Junction Temperature Range  
Short Circuit Withstand Time (Note 2)  
-55 to 150  
-55 to 150  
8
J
T
°C  
STG  
t
µs  
SC  
CAUTION: Stresses above those listed in “Device Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
2. VCE(PK) = 180V, TJ = 125°C, VGE = 12Vdc, RG = 5Ω  
©2002 Fairchild Semiconductor Corporation  
FGH50N3 Rev. A  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Tape Width  
Quantity  
FGH50N3  
FGH50N3  
TO-247  
N/A  
30  
Electrical Characteristics T = 25°C unless otherwise noted  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off State Characteristics  
BV  
BV  
Collector to Emitter Breakdown Voltage I = 250µA, V = 0V  
300V  
15V  
-
-
-
-
-
-
-
-
V
V
CES  
ECS  
CE  
GE  
Emitter to Collector Breakdown Voltage I = 10mA, V = 0V  
EC  
GE  
I
Collector to Emitter Leakage Current  
Gate to Emitter Leakage Current  
V
= 300V  
= ± 20V  
T = 25°C  
250  
2.0  
±250  
µA  
mA  
nA  
CES  
CE  
J
T = 125°C  
-
-
J
I
V
GES  
GE  
On State Characteristics  
V
Collector to Emitter Saturation Voltage  
I
V
= 30A  
T = 25°C  
-
-
1.30  
1.25  
1.4  
1.4  
V
V
CE(SAT)  
CE  
J
= 15V  
GE  
T = 125°C  
J
Dynamic Characteristics  
Q
Gate Charge  
I
V
= 30A  
V
V
= 15V  
= 20V  
-
-
180  
228  
4.8  
7.0  
-
-
nC  
nC  
V
G(ON)  
CE  
GE  
= 150V  
CE  
GE  
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Plateau Voltage  
I
I
= 250µA, V = V  
4.0  
-
5.5  
-
GE(TH)  
CE  
CE  
CE  
GE  
V
= 30A, V = 150V  
V
GEP  
CE  
Switching Characteristics  
SSOA  
Switching SOA  
T = 150°C, R = 5,  
150  
-
-
A
J
G
V
= 15V , L = 25µH,  
GE  
Vce = 300V  
t
Current Turn-On Delay Time  
Current Rise Time  
IGBT and Diode at T = 25°C,  
-
-
-
-
-
-
-
-
-
-
-
-
20  
15  
-
ns  
ns  
ns  
ns  
µJ  
µJ  
ns  
ns  
ns  
ns  
µJ  
µJ  
d(ON)I  
J
I
= 30A,  
t
CE  
-
-
rI  
d(OFF)I  
V
V
R
= 180V,  
= 15V,  
= 5,  
CE  
GE  
t
t
Current Turn-Off Delay Time  
Current Fall Time  
135  
12  
t
-
fI  
G
E
E
Turn-On Energy (Note 1)  
Turn-Off Energy (Note 2)  
Current Turn-On Delay Time  
Current Rise Time  
130  
92  
-
ON2  
OFF  
L = 100µH,  
Test Circuit - Figure 20  
120  
-
t
IGBT and Diode at T = 125°C,  
19  
d(ON)I  
J
I
= 30A,  
t
CE  
13  
-
rI  
d(OFF)I  
V
V
R
= 180V,  
= 15V,  
= 5,  
CE  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
155  
7
190  
15  
270  
200  
t
fI  
G
E
E
Turn-On Energy (Note 1)  
Turn-Off Energy (Note 2)  
225  
135  
ON2  
OFF  
L = 100µH,  
Test Circuit - Figure 20  
Thermal Characteristics  
R
Thermal Resistance Junction-Case  
TO-247  
-
-
0.27  
°C/W  
θJC  
NOTE:  
1. E  
ON2  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT.  
J
The diode type is specified in figure 20.  
2. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of  
OFF  
the input pulse and ending at the point where the collector current equals zero (I = 0A). All devices were tested per  
CE  
JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produc-  
es the true total Turn-Off Energy Loss.  
©2002 Fairchild Semiconductor Corporation  
FGH50N3 Rev. A  
Typical Performance Curves T = 25°C unless otherwise noted  
J
200  
160  
120  
80  
175  
150  
125  
100  
75  
o
V
= 15V  
T = 150 C, R = 5, V = 15V, L = 25µH  
J G GE  
GE  
PACKAGE LIMITED  
50  
40  
25  
0
0
25  
50  
75  
100  
125  
150  
0
50  
100  
150  
200  
250  
300  
350  
o
T
, CASE TEMPERATURE ( C)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
C
Figure 1. DC Collector Current vs Case  
Temperature  
Figure 2. Minimum Switching Safe Operating Area  
30  
25  
20  
15  
10  
5
800  
700  
600  
500  
400  
300  
200  
500  
o
o
T
T
= 125 C, R = 5, L = 100µH, V = 180V  
V
= 180V, R = 5, T = 125 C  
J
G
CE  
CE  
G
J
400  
300  
o
75 C  
C =  
V
= 15V  
t
I
SC  
GE  
SC  
200  
V
= 10V  
GE  
f
f
= 0.05 / (t  
+ t  
)
MAX1  
d(OFF)I  
d(ON)I  
= (P - P ) / (E  
+ E  
)
MAX2  
D
C
ON2  
OFF  
100  
60  
P
= CONDUCTION DISSIPATION  
C
(DUTY FACTOR = 50%)  
o
R
= 0.27 C/W, SEE NOTES  
ØJC  
0
2
10  
20  
100  
9
10  
V
11  
12  
13  
14  
15  
16  
I
, COLLECTOR TO EMITTER CURRENT (A)  
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
Figure 3. Operating Frequency vs Collector to  
Emitter Current  
Figure 4. Short Circuit Withstand Time  
60  
60  
DUTY CYCLE < 0.5%, V = 10V  
GE  
DUTY CYCLE < 0.5%, V = 15V  
GE  
PULSE DURATION = 250µs  
PULSE DURATION = 250µs  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
o
o
T
= 25 C  
J
T = 25 C  
J
o
o
T
= 150 C  
T
= 150 C  
J
J
o
o
T
= 125 C  
T = 125 C  
J
J
0.25  
0.5  
0.75  
1.0  
1.25  
1.5  
1.75  
2.0  
0.25  
0.5  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
0.75  
1.0  
1.25  
1.5  
1.75  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
Figure 5. Collector to Emitter On-State Voltage  
Figure 6. Collector to Emitter On-State Voltage  
©2002 Fairchild Semiconductor Corporation  
FGH50N3 Rev. A  
Typical Performance Curves T = 25°C unless otherwise noted (Continued)  
J
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
R
= 5, L = 100µH, V = 180V  
R
= 5, L = 100µH, V = 180V  
G
CE  
G
CE  
o
o
T
= 25 C, T = 125 C, V = 10V  
J GE  
J
o
T
= 125 C, V = 10V, V = 15V  
J
GE  
GE  
o
o
o
T
= 25 C, V = 10V, V = 15V  
T
= 25 C, T = 125 C, V = 15V  
J
GE  
GE  
J
J
GE  
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
Figure 7. Turn-On Energy Loss vs Collector to  
Emitter Current  
Figure 8. Turn-Off Energy Loss vs Collector to  
Emitter Current  
35  
100  
R
= 5, L = 100µH, V = 180V  
R = 5, L = 100µH, V = 180V  
G CE  
G
CE  
80  
60  
40  
20  
0
30  
25  
20  
15  
o
o
T
= 25 C, T = 125 C, V = 10V  
J GE  
J
o
o
T
= 25 C, T = 125 C, V = 10V  
J GE  
J
o
o
T
= 25 C, T = 125 C, V = 15V  
J GE  
J
o
o
T
= 25 C, T = 125 C, V =15V  
J
J
GE  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
Figure 9. Turn-On Delay Time vs Collector to  
Emitter Current  
Figure 10. Turn-On Rise Time vs Collector to  
Emitter Current  
170  
24  
R
= 5, L = 100µH, V = 180V  
R
= 5, L = 100µH, V = 180V  
G
CE  
G
CE  
160  
150  
140  
130  
120  
110  
100  
20  
16  
12  
8
o
o
T
= 25 C, T = 125 C, V = 15V  
J GE  
J
o
T
= 25 C, V = 10V, 15V  
J
GE  
o
T
= 125 C, V = 10V, 15V  
GE  
J
4
o
o
T
= 25 C, T = 125 C, V = 10V  
J GE  
J
0
0
10  
20  
30  
40  
50  
60  
0
10  
I , COLLECTOR TO EMITTER CURRENT (A)  
CE  
20  
30  
40  
50  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
Figure 11. Turn-Off Delay Time vs Collector to  
Emitter Current  
Figure 12. Fall Time vs Collector to Emitter  
Current  
©2002 Fairchild Semiconductor Corporation  
FGH50N3 Rev. A  
Typical Performance Curves T = 25°C unless otherwise noted (Continued)  
J
250  
200  
150  
100  
50  
16  
14  
12  
10  
8
o
DUTY CYCLE < 0.5%, V = 10V  
CE  
I
= 1mA, R = 5, T = 25 C  
G(REF)  
L
J
PULSE DURATION = 250µs  
V
= 300V  
CE  
6
o
T
= 25 C  
J
V
= 200V  
CE  
4
V
= 100V  
50  
CE  
o
T
= 125 C  
J
2
o
T
= -55 C  
J
0
0
5
6
7
8
9
10  
11  
0
25  
75  
100  
125  
150  
175  
200  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
Q
, GATE CHARGE (nC)  
G
Figure 13. Transfer Characteristic  
Figure 14. Gate Charge  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
40  
10  
o
R
= 5, L = 100µH, V = 180V, V = 15V  
CE GE  
G
T
= 125 C, L = 100µH, V = 180V, V = 15V  
J
CE  
GE  
E
= E  
+ E  
TOTAL  
ON2 OFF  
ETOTAL = EON2 + EOFF  
I
= 60A  
CE  
I
I
= 60A  
= 30A  
= 15A  
CE  
CE  
I
I
= 30A  
= 15A  
CE  
CE  
1
I
CE  
0.1  
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
o
T
, CASE TEMPERATURE ( C)  
R
, GATE RESISTANCE ()  
C
G
Figure 15. Total Switching Loss vs Case  
Temperature  
Figure 16. Total Switching Loss vs Gate  
Resistance  
10  
3.5  
DUTY CYCLE < 0.5%  
o
FREQUENCY = 1MHz  
PULSE DURATION = 250µs, T = 25 C  
J
3.0  
2.5  
2.0  
1.5  
1.0  
C
IES  
I
= 60A  
CE  
C
OES  
1.0  
I
= 30A  
CE  
I
= 15A  
CE  
C
RES  
0.1  
0.05  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
Figure 17. Capacitance vs Collector to Emitter  
Voltage  
Figure 18. Collector to Emitter On-State Voltage vs  
Gate to Emitter Voltage  
©2002 Fairchild Semiconductor Corporation  
FGH50N3 Rev. A  
Typical Performance Curves T = 25°C unless otherwise noted (Continued)  
J
0
10  
0.50  
0.20  
t
1
0.10  
0.05  
P
D
-1  
10  
10  
t
2
DUTY FACTOR, D = t / t  
1
2
0.02  
0.01  
PEAK T = (P X Z  
X R ) + T  
J
D
θ
JC  
θJC C  
SINGLE PULSE  
-2  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
Figure 19. IGBT Normalized Transient Thermal Impedance, Junction to Case  
Test Circuit and Waveforms  
FFH30US30S  
DIODE 49449  
90%  
OFF  
10%  
V
GE  
E
ON2  
E
L = 100µH  
V
CE  
R
= 5Ω  
G
90%  
10%  
+
I
CE  
t
t
FGH50N3  
d(OFF)I  
V
= 180V  
rI  
DD  
t
fI  
-
t
d(ON)I  
Figure 20. Inductive Switching Test Circuit  
Figure 21. Switching Test Waveforms  
©2002 Fairchild Semiconductor Corporation  
FGH50N3 Rev. A  
Handling Precautions for IGBTs  
Operating Frequency Information  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating  
device performance for a specific application. Other  
typical frequency vs collector current (ICE) plots are  
possible using the information shown for a typical  
unit in Figures 5, 6, 7, 8, 9 and 11. The operating  
frequency plot (Figure 3) of a typical device shows  
fMAX1 or fMAX2; whichever is smaller at each point.  
The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic  
discharge of energy through the devices. When  
handling these devices, care should be exercised to  
assure that the static charge built in the handlers  
body capacitance is not discharged through the  
device. With proper handling and application  
procedures, however, IGBTs are currently being  
extensively used in production by numerous  
equipment manufacturers in military, industrial and  
consumer applications, with virtually no damage  
problems due to electrostatic discharge. IGBTs can  
be handled safely if the following basic precautions  
are taken:  
fMAX1 is defined by fMAX1 = 0.05/(td(OFF)I+ td(ON)I).  
Deadtime (the denominator) has been arbitrarily held  
to 10% of the on-state time for a 50% duty factor.  
Other definitions are possible. td(OFF)I and td(ON)I are  
defined in Figure 21. Device turn-off delay can  
establish an additional frequency limiting condition  
for an application other than TJM. td(OFF)I is important  
when controlling output ripple under a lightly loaded  
condition.  
1. Prior to assembly into a circuit, all leads should be  
kept shorted together either by the use of metal  
shorting springs or by the insertion into conduc-  
tive material such as ECCOSORBDLD26or  
equivalent.  
2. When devices are removed by hand from their  
carriers, the hand being used should be  
grounded by any suitable means - for example,  
with a metallic wristband.  
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON2).  
The allowable dissipation (PD) is defined by  
PD = (TJM - TC)/RθJC. The sum of device switching  
and conduction losses must not exceed PD. A 50%  
duty factor was used (Figure 3) and the conduction  
losses (PC) are approximated by PC = (VCE x ICE)/2.  
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed  
from circuits with power on.  
EON2 and EOFF are defined in the switching  
waveforms shown in Figure 21. EON2 is the integral  
of the instantaneous power loss (ICE x VCE) during  
turn-on and EOFF is the integral of the instantaneous  
power loss (ICE x VCE) during turn-off. All tail losses  
are included in the calculation for EOFF; i.e., the  
collector current equals zero (ICE = 0)  
5. Gate Voltage Rating - Never exceed the gate-  
voltage rating of VGEM. Exceeding the rated VGE  
can result in permanent damage to the oxide  
layer in the gate region.  
6. Gate Termination - The gates of these devices  
are essentially capacitors. Circuits that leave the  
gate open-circuited or floating should be avoided.  
These conditions can result in turn-on of the  
device due to voltage buildup on the input  
capacitor due to leakage currents or pickup.  
7. Gate Protection - These devices do not have an  
internal monolithic Zener diode from gate to  
emitter. If gate protection is required an external  
Zener is recommended.  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
©2002 Fairchild Semiconductor Corporation  
FGH50N3 Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
PACMAN™  
POP™  
Power247™  
PowerTrench  
QFET™  
QS™  
SPM™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
ImpliedDisconnect™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
FACT™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT Quiet Series™  
â
FAST  
â
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
I2C™  
QT Optoelectronics™ TinyLogic™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
TruTranslation™  
UHC™  
UltraFET  
MSXPro™  
OCX™  
â
OCXPro™  
OPTOLOGIC  
Across the board. Around the world.™  
The Power Franchise™  
ProgrammableActive Droop™  
â
â
SILENT SWITCHER VCX™  
SMARTSTART™  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I1  

相关型号:

FGH50N6S2

600V, SMPS II Series N-Channel IGBT
FAIRCHILD

FGH50N6S2D

600V, SMPS II Series N-Channel IGBT with Anti-Parallel StealthTM Diode
FAIRCHILD

FGH50N6S2D

600V,SMPS II IGBT
ONSEMI

FGH50N6S2D_NL

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-247
FAIRCHILD

FGH50N6S2_NL

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-247, TO-247, 3 PIN
FAIRCHILD

FGH50T65SQD-F155

IGBT,650V,50A,场截止 4 沟槽
ONSEMI

FGH50T65UPD

650 V, 50 A Field Stop Trench IGBT
FAIRCHILD

FGH50T65UPD

650V,50A,场截止沟槽 IGBT
ONSEMI

FGH60N60SF

600V, 60A Field Stop IGBT
FAIRCHILD

FGH60N60SFD

600V, 60A Field Stop IGBT
FAIRCHILD

FGH60N60SFDTU

600V, 60A Field Stop IGBT
FAIRCHILD

FGH60N60SFDTU

IGBT,场截止,600V,60A
ONSEMI