FIN3386 [FAIRCHILD]

Low Voltage 28-Bit Flat Panel Display Link Serializers/Deserializers; 低电压28位平板显示器连接串行器/解串器
FIN3386
型号: FIN3386
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Low Voltage 28-Bit Flat Panel Display Link Serializers/Deserializers
低电压28位平板显示器连接串行器/解串器

显示器
文件: 总18页 (文件大小:551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
October 2003  
Revised April 2005  
FIN3385 FIN3383 •  
FIN3384 FIN3386  
Low Voltage 28-Bit Flat Panel Display Link  
Serializers/Deserializers  
General Description  
Features  
Low power consumption  
The FIN3385 and FIN3383 transform 28 bit wide parallel  
LVTTL (Low Voltage TTL) data into 4 serial LVDS (Low  
Voltage Differential Signaling) data streams. A phase-  
locked transmit clock is transmitted in parallel with the data  
stream over a separate LVDS link. Every cycle of transmit  
clock 28 bits of input LVTTL data are sampled and trans-  
mitted.  
20 MHz to 85 MHz shift clock support  
1V common-mode range around 1.2V  
Narrow bus reduces cable size and cost  
High throughput (up to 2.38 Gbps throughput)  
Internal PLL with no external component  
Compatible with TIA/EIA-644 specification  
Devices are offered 56-lead TSSOP packages  
The FIN3386 and FIN3384 receive and convert the 4/3  
serial LVDS data streams back into 28/21 bits of LVTTL  
data. Refer to Table 1 for a matrix summary of the Serializ-  
ers and Deserializers available. For the FIN3385, at a  
transmit clock frequency of 85MHz, 28 bits of LVTTL data  
are transmitted at a rate of 595Mbps per LVDS channel.  
These chipsets are an ideal solution to solve EMI and cable  
size problems associated with wide and high-speed TTL  
interfaces.  
Ordering Code:  
Order Number Package Number  
Package Description  
FIN3383MTD  
FIN3384MTD  
FIN3385MTD  
FIN3386MTD  
MTD56  
MTD56  
MTD56  
MTD56  
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide  
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide  
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide  
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide  
Devices also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering code.  
TABLE 1. Display Panel Link Serializers/Deserializers Chip Matrix  
Part  
CLK Frequency LVTTL IN  
LVDS OUT  
LVDS IN  
LVTTL OUT  
Package  
56 TSSOP  
56 TSSOP  
56 TSSOP  
56 TSSOP  
FIN3385  
FIN3383  
FIN3386  
FIN3384  
85  
66  
85  
66  
28  
28  
4
4
4
4
28  
28  
© 2005 Fairchild Semiconductor Corporation  
DS500864  
www.fairchildsemi.com  
Block Diagrams  
Functional Diagram for FIN3385 and FIN3383  
Receiver Functional Diagram for FIN3386 and FIN3384  
www.fairchildsemi.com  
2
TRANSMITTERS  
Pin Descriptions  
Pin Names I/O Type Number of Pins  
Description of Signals  
LVTTL Level Input  
TxIn  
I
I
28/21  
1
TxCLKIn  
LVTTL Level Clock Input  
The rising edge is for data strobe.  
TxOut  
TxOut  
O
O
O
O
I
4/3  
4/3  
1
Positive LVDS Differential Data Output  
Negative LVDS Differential Data Output  
Positive LVDS Differential Clock Output  
Negative LVDS Differential Clock Output  
Rising Edge Clock (HIGH), Falling Edge Clock (LOW)  
TxCLKOut  
TxCLKOut  
R_FB  
1
1
PwrDn  
I
1
LVTTL Level Power-Down Input  
Assertion (LOW) puts the outputs in High Impedance state.  
PLL VCC  
PLL GND  
LVDS VCC  
LVDS GND  
VCC  
I
I
I
I
I
I
1
2
1
3
3
5
Power Supply Pin for PLL  
Ground Pins for PLL  
Power Supply Pin for LVDS Output  
Ground Pins for LVDS Output  
Power Supply Pins for LVTTL Input  
Ground pins for LVTTL Input  
No Connect  
GND  
NC  
Connection Diagram  
Truth Table  
Inputs  
Outputs  
TxCLKOut  
FIN3383 and FIN3385 (28:4 Transmitter)  
Pin Assignment for TSSOP  
PwrDn  
(Note 1)  
TxIn  
TxCLKIn  
TxOut  
Active  
Active  
L/H/Z  
Active  
F
H
H
H
H
L
L/H  
L/H  
L
L/H  
X (Note 2)  
L/H  
Active  
F
F
X
L
X (Note 2)  
Z
X
Z
H
L
X
Z
F
HIGH Logic Level  
LOW Logic Level  
Don’t Care  
High Impedance  
Floating  
Note 1: The outputs of the transmitter or receiver will remain in a  
High Impedance state until V reaches 2V.  
CC  
Note 2: TxCLKOut will settle at a free running frequency when the  
part is powered up, PwrDn is HIGH and the TxCLKIn is a steady logic  
level (L/H/Z).  
3
www.fairchildsemi.com  
RECEIVERS  
Pin Descriptions  
Number  
of Pins  
Pin Names I/O Type  
Description of Signals  
Negative LVDS Differential Data Input  
RxIn  
RxIn  
I
I
4/3  
4/3  
1
Positive LVDS Differential Data Input  
Negative LVDS Differential Clock Input  
Positive LVDS Differential Clock Input  
RxCLKIn  
RxCLKIn  
RxOut  
I
I
1
O
28/21 LVTTL Level Data Output  
Goes HIGH for PwrDn LOW  
RxCLKOut  
PwrDn  
O
I
1
1
LVTTL Clock Output  
LVTTL Level Input  
Refer to Transmitter and Receiver Power-Up and Power-Down Operation Truth Table  
PLL VCC  
PLL GND  
LVDS VCC  
LVDS GND  
VCC  
I
I
I
I
I
I
1
2
1
3
4
5
Power Supply Pin for PLL  
Ground Pins for PLL  
Power Supply Pin for LVDS Input  
Ground Pins for LVDS Input  
Power Supply for LVTTL Output  
Ground Pin for LVTTL Output  
No Connect  
GND  
NC  
Connection Diagram  
FIN3386 and FIN3384 (4:28 Receiver)  
Pin Assignment for TSSOP  
www.fairchildsemi.com  
4
Transmitter and Receiver Power-Up/Power-Down Operation Truth Table  
The outputs of the transmitter remain in the High-Impedance state until the power supply reaches 2V. The following table  
shows the operation of the transmitter during power-up and power-down and operation of the PwrDn pin.  
Transmitter  
PwrDn  
Normal  
2V  
VCC  
TxIn  
2V  
X
Z
2V  
2V  
Active  
X
2V  
2V  
X
Active  
Active  
Active  
Active  
H
TxOut  
Z
TxCLKIn  
TxCLKOut  
PwrDn  
X
Z
X
H/L/Z  
(Note 3)  
H
Z
L
L
H
H
Receiver  
PwrDn  
RxIn  
RxOut  
X
Z
X
Active  
L/H  
Active  
P
(Note 4)  
H
(Note 4)  
P
L
RxCLKIn  
RxCLKOut  
PwrDn  
VCC  
X
Z
X
(Note 5)  
L
Active  
Active  
H
(Note 4)  
(Note 5)  
H
Active  
(Note 5)  
H
(Note 4)  
(Note 5)  
H
L
2V  
2V  
2V  
2V  
2V  
2V  
H
L
P
X
Z
HIGH Logic Level  
LOW Logic Level  
Last Valid State  
Don’t Care  
High-Impedance  
Note 3: If the transmitter is powered up and PwrDn is inactive HIGH and the clock input goes to any state LOW, HIGH, or Z then the internal PLL will go to a  
known low frequency and stay until the clock starts normal operation again.  
Note 4: If the input is terminated and un-driven (Z) or shorted or open. (fail safe condition)  
Note 5: For PwrDn or fail safe condition the RxCLKOut pin will go LOW for Panel Link devices and HIGH for Channel Link devices.  
Note 6: Shorted here means ( inputs are shorted to each other, or inputs are shorted to each other and Ground or V , or either inputs are shorted to  
CC  
Ground or V ) with no other Current/Voltage sources (noise) applied. If the V is still in the valid range (greater than 100mV) and VCM is in the valid range  
CC  
ID  
(0V to 2.4V) then the input signal is still recognized and the part will respond normally.  
5
www.fairchildsemi.com  
Absolute Maximum Ratings(Note 7)  
Recommended Operating  
Conditions  
Power Supply Voltage (VCC  
)
-0.3V to +4.6V  
0.5V to 4.6V  
-0.3V to +4.6V  
Continuous  
TTL/CMOS Input/Output Voltage  
LVDS Input/Output Voltage  
Supply Voltage (VCC  
)
3.0V to 3.6V  
Operating Temperature (TA)(Note 7)  
Maximum Supply Noise Voltage  
10°C to 70°C  
LVDS Output Short Circuit Current (IOSD  
)
Storage Temperature Range (TSTG  
)
65 C to 150 C  
150 C  
(VCCNPP  
)
100 mVP-P (Note 8)  
Maximum Junction Temperature (TJ)  
Lead Temperature (TL)  
(Soldering, 4 seconds)  
ESD Rating (HBM, 1.5 k , 100 pF)  
I/O to GND  
Note 7: Absolute maximum ratings are DC values beyond which the device  
may be damaged or have its useful life impaired. The datasheet specifica-  
tions should be met, without exception, to ensure that the system design is  
reliable over its power supply, temperature, and output/input loading vari-  
ables. Fairchild does not recommend operation outside datasheet specifi-  
cations.  
260 C  
10.0 kV  
6.5 kV  
400V  
All Pins  
Note 8: 100mV V noise should be tested for frequency at least up to  
CC  
2 MHz. All the specification below should be met under such a noise.  
ESD Rating (MM, 0 , 200 pF)  
Transmitter DC Electrical Characteristics  
Over supply voltage and operating temperature ranges, unless otherwise specified. (Note 9)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Transmitter LVTTL Input Characteristics  
V
V
V
Input High Voltage  
Input Low Voltage  
Input Clamp Voltage  
Input Current  
2.0  
V
V
V
V
IH  
CC  
GND  
0.8  
1.5  
IL  
I
18 mA  
0.79  
1.8  
0
IK  
IK  
I
V
V
0.4V to 4.6V  
GND  
10.0  
IN  
IN  
A
10.0  
250  
IN  
Transmitter LVDS Output Characteristics (Note 10)  
Output Differential Voltage  
Magnitude Change from Differential LOW-to-HIGH  
V
TBD  
1.25  
450  
35.0  
mV  
mV  
V
OD  
V
V
OD  
OD  
R
100 , See Figure 1  
L
V
Offset Voltage  
1.125  
1.375  
OS  
V
Offset Magnitude Change from Differential LOW-to-HIGH  
Short Circuit Output Current  
mV  
mA  
OS  
I
I
V
0V  
3.5  
1.0  
5.0  
OS  
OUT  
Disabled Output Leakage Current  
DO 0V to 4.6V, PwrDn 0V  
10.0  
A
OZ  
Transmitter Supply Current  
I
28:4 Transmitter Power Supply Current  
for Worst Case Pattern (With Load)  
(Note 11)  
32.5 MHz  
31.0  
32.0  
37.0  
42.0  
49.5  
55.0  
60.5  
66.0  
CCWT  
R
100  
,
40.0 MHz  
66.0 MHz  
85.0 MHz  
L
mA  
See Figure 3  
I
I
Powered Down Supply Current  
28:4 Transmitter Supply Current  
for 16 Grayscale (Note 11)  
PwrDn 0.8V  
10.0  
29.0  
30.0  
35.0  
39.0  
55.0  
41.8  
44.0  
49.5  
55.0  
A
CCPDT  
CCGT  
32.5 MHz  
40.0 MHz  
65.0 MHz  
85.0 MHz  
See Figure 21  
(Note 12)  
mA  
Note 9: All Typical values are at T  
25 C and with V  
3.3V.  
Note 10: Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltage are referenced to  
ground unless otherwise specified (except and V ).  
A
CC  
V
OD  
OD  
Note 11: The power supply current for both transmitter and receiver can be different with the number of active I/O channels.  
Note 12: The 16-grayscale test pattern tests device power consumption for a typicalLCD display pattern. The test pattern approximates signal switching  
needed to produce groups of 16 vertical strips across the display.  
www.fairchildsemi.com  
6
Transmitter AC Electrical Characteristics  
Over supply voltage and operating temperature ranges, unless otherwise specified.  
Symbol Parameter Test Conditions  
Transmit Clock Period  
Min  
11.76  
0.35  
0.35  
1.0  
Typ  
T
Max  
50.0  
0.65  
0.65  
6.0  
Units  
ns  
T
t
t
t
t
t
t
TCP  
Transmit Clock (TxCLKIn) HIGH Time  
Transmit Clock Low Time  
See Figure 5  
0.5  
0.5  
TCH  
TCL  
CLKT  
JIT  
T
TxCLKIn Transition Time (Rising and Failing)  
TxCLKIn Cycle-to-Cycle Jitter  
TxIn Transition Time  
(10% to 90%) See Figure 6  
ns  
ns  
ns  
3.0  
1.5  
6.0  
XIT  
LVDS Transmitter Timing Characteristics  
t
t
t
t
t
t
Differential Output Rise Time (20% to 80%)  
Differential Output Fall Time (80% to 20%)  
TxIn Setup to TxCLNIn  
0.75  
0.75  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
TLH  
See Figure 4  
THL  
2.5  
0
STC  
See Figure 5 (f 85 MHz)  
See Figure 12, (Note 13)  
TxIn Holds to TCLKIn  
HTC  
TPDD  
TCCD  
Transmitter Power-Down Delay  
100  
5.5  
6.8  
Transmitter Clock Input to Clock Output Delay  
Transmitter Clock Input to Clock Output Delay  
(T  
25 C and with V  
3.3V)  
A
CC  
ns  
See Figure 9  
2.8  
Transmitter Output Data Jitter (f 40 MHz) (Note 14)  
t
t
t
t
t
t
t
Transmitter Output Pulse Position of Bit 0  
Transmitter Output Pulse Position of Bit 1  
Transmitter Output Pulse Position of Bit 2  
Transmitter Output Pulse Position of Bit 3  
Transmitter Output Pulse Position of Bit 4  
Transmitter Output Pulse Position of Bit 5  
Transmitter Output Pulse Position of Bit 6  
0.25  
0
0.25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPPB0  
TPPB1  
TPPB2  
TPPB3  
TPPB4  
TPPB5  
TPPB6  
See Figure 16  
a 0.25  
a
a 0.25  
1
2a 0.25  
3a 0.25  
4a 0.25  
5a 0.25  
6a 0.25  
2a  
3a  
4a  
5a  
6a  
2a 0.25  
3a 0.25  
4a 0.25  
5a 0.25  
6a 0.25  
a
f x 7  
Transmitter Output Data Jitter (f 65 MHz) (Note 14)  
t
t
t
t
t
t
t
Transmitter Output Pulse Position of Bit 0  
Transmitter Output Pulse Position of Bit 1  
Transmitter Output Pulse Position of Bit 2  
Transmitter Output Pulse Position of Bit 3  
Transmitter Output Pulse Position of Bit 4  
Transmitter Output Pulse Position of Bit 5  
Transmitter Output Pulse Position of Bit 6  
0.2  
0
0.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPPB0  
TPPB1  
TPPB2  
TPPB3  
TPPB4  
TPPB5  
TPPB6  
See Figure 16  
a 0.2  
a
a 0.2  
1
2a 0.2  
3a 0.2  
4a 0.2  
5a 0.2  
6a 0.2  
2a  
3a  
4a  
5a  
6a  
2a 0.2  
3a 0.2  
4a 0.2  
5a 0.2  
6a 0.2  
a
f x 7  
Transmitter Output Data Jitter (f 85 MHz) (Note 14)  
t
t
t
t
t
t
t
t
Transmitter Output Pulse Position of Bit 0  
Transmitter Output Pulse Position of Bit 1  
Transmitter Output Pulse Position of Bit 2  
Transmitter Output Pulse Position of Bit 3  
Transmitter Output Pulse Position of Bit 4  
Transmitter Output Pulse Position of Bit 5  
Transmitter Output Pulse Position of Bit 6  
FIN3385 Transmitter Clock Out Jitter  
(Cycle-to-Cycle)  
0.2  
0
a
0.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPPB0  
TPPB1  
TPPB2  
TPPB3  
TPPB4  
TPPB5  
TPPB6  
JCC  
See Figure 16  
a 0.2  
a 0.2  
1
2a 0.2  
3a 0.2  
4a 0.2  
5a 0.2  
6a 0.2  
2a  
3a  
4a  
5a  
6a  
350  
210  
110  
2a 0.2  
3a 0.2  
4a 0.2  
5a 0.2  
6a 0.2  
370  
a
f x 7  
f
f
f
40 MHz  
65 MHz  
85 MHz  
230  
ps  
See Figure 20  
150  
t
Transmitter Phase Lock Loop Set Time (Note 15)  
See Figure 22, (Note 14)  
10.0  
ms  
TPLLS  
Note 13: Outputs of all transmitters stay in 3-STATE until power reaches 2V. Both clock and data output begins to toggle 10ms after V  
reaches 3V and  
CC  
Power-Down pin is above 1.5V.  
Note 14: This output data pulse position works for TTL inputs except the LVDS output bit mapping difference (see Figure 14). Figure 16 shows the skew  
between the first data bit and clock output. Also 2-bit cycle delay is guaranteed when the MSB is output from transmitter.  
Note 15: This jitter specification is based on the assumption that PLL has a ref clock with cycle-to-cycle input jitter less than 2ns.  
7
www.fairchildsemi.com  
Receiver DC Electrical Characteristics  
Over supply voltage and operating temperature ranges, unless otherwise specified. (Note 16)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
LVTTL/CMOS DC Characteristics  
V
V
V
V
V
Input High Voltage  
2.0  
GND  
2.7  
V
V
V
V
V
V
A
IH  
CC  
Input Low Voltage  
0.8  
IL  
Output High Voltage  
Output Low Voltage  
Input Clamp Voltage  
Input Current  
I
I
I
0.4 mA  
2mA  
3.3  
OH  
OL  
IK  
OH  
OL  
IK  
0.06  
0.79  
0.3  
1.5  
18 mA  
0V to 4.6V  
0V,  
I
I
V
V
10.0  
10.0  
IN  
IN  
Input/Output Power Off Leakage Current  
OFF  
CC  
10.0  
120  
A
All LVTTL Inputs/Outputs 0V to 4.6V  
0V  
I
Output Short Circuit Current  
V
60.0  
mA  
OS  
OUT  
Receiver LVDS Input Characteristics  
V
V
V
Differential Input Threshold HIGH  
Differential Input Threshold LOW  
Input Common Mode Range  
Input Current  
Figure 2, Table 2  
Figure 2, Table 2  
Figure 2, Table 2  
100  
mV  
mV  
V
TH  
TL  
100  
0.05  
2.35  
10.0  
10.0  
ICM  
I
V
V
2.4V, V  
CC  
3.6V or 0V  
3.6V or 0V  
A
IN  
IN  
IN  
0V, V  
A
CC  
Receiver Supply Current  
I
I
4:28 Receiver Power Supply Current  
for Worst Case Pattern (With Load)  
(Note 17)  
32.5 MHz  
70.0  
75.0  
114  
CCWR  
CCWR  
C
8 pF,  
40.0 MHz  
66.0 MHz  
85.0 MHz  
32.5 MHz  
40.0 MHz  
66.0 MHz  
85.0 MHz  
L
mA  
See Figure 3  
135  
60.0  
65.0  
100  
115  
3:21 Receiver Power Supply Current  
for Worst Case Pattern (With Load)  
(Note 17)  
49.0  
53.0  
78.0  
90.0  
C
8 pF,  
L
mA  
A
See Figure 3  
I
t
t
t
t
t
t
t
t
Powered Down Supply Current  
Receiver Clock Output (RxCLKOut) Period  
RxCLKOut LOW Time  
PwrDn 0.8V (RxOut stays LOW)  
NA  
T
55.0  
50.0  
6.0  
CCPDT  
RCOP  
RCOL  
RCOH  
RSRC  
RHRC  
ROLH  
ROHL  
RCCD  
11.76  
4.0  
See Figure 8  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
RxCLKOut HIGH Time  
(f 85MHz)  
4.5  
6.5  
RxOut Valid Prior to RxCLKOut  
RxOut Valid After RxCLKOut  
(Rising Edge Strobe)  
3.5  
3.5  
Output Rise Time (20% to 80%)  
Output Fall Time (80% to 20%)  
Receiver Clock Input to Clock Output Delay  
C
8 pF,  
2.0  
1.8  
3.5  
3.5  
L
See Figure 4  
See Figure 20, (Note 18)  
3.5  
5.0  
7.5  
ns  
T
25 C and V  
3.3V  
A
CC  
t
t
t
t
t
t
t
t
t
t
Receiver Power-Down Delay  
See Figure 13  
1.0  
1.19  
2.87  
4.55  
6.23  
7.91  
9.59  
11.27  
s
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ms  
RPDD  
Receiver Input Strobe Position of Bit 0  
Receiver Input Strobe Position of Bit 1  
Receiver Input Strobe Position of Bit 2  
Receiver Input Strobe Position of Bit 3  
Receiver Input Strobe Position of Bit 4  
Receiver Input Strobe Position of Bit 5  
Receiver Input Strobe Position of Bit 6  
RxIN Skew Margin  
0.49  
2.17  
3.85  
5.53  
7.21  
8.89  
10.57  
290  
0.84  
2.52  
4.20  
5.88  
7.56  
9.24  
10.92  
RSPB0  
RSPB1  
RSPB2  
RSPB3  
RSPB4  
RSPB5  
RSPB6  
RSKM  
RPLLS  
See Figure 17 (f 85MHz)  
See Figure 17, (Note 19)  
See Figure 11  
Receiver Phase Lock Loop Set Time  
10.0  
Note 16: All Typical values are at T  
25 C and with V  
3.3V. Positive current values refer to the current flowing into device and negative values means  
current flowing out of pins. Voltage are referenced to ground unless otherwise specified (except and V ).  
Note 17: The power supply current for the receiver can be different with the number of active I/O channels.  
Note 18: Total channel latency from Sewrializer to deserializer is (T ). There is the clock period.  
Note 19: Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.  
A
CC  
V
OD  
OD  
t
TCCD  
www.fairchildsemi.com  
8
Receiver AC Electrical Characteristics (66MHz)  
Symbol  
Parameter  
Receiver Clock Output (RxCLKOut) Period  
RxCLKOut LOW Time  
Test Conditions  
See Figure 8  
Min  
15.0  
10.0  
10.0  
6.5  
Typ  
T
Max  
Units  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
50.0  
RCOP  
RCOL  
RCOH  
RSRC  
RHRC  
RCOL  
RCOH  
RSRC  
RHRC  
ROLH  
ROHL  
RCCD  
11.0  
12.2  
11.6  
11.6  
6.3  
ns  
RxCLKOut HIGH Time  
See Figure 8  
ns  
RxOut Valid Prior to RxCLKOut  
RxOut Valid After RxCLKOut  
RxCLKOut LOW Time  
(Rising Edge Strobe)  
(f 40 MHz)  
ns  
6.0  
ns  
5.0  
9.0  
9.0  
ns  
RxCLKOut HIGH Time  
See Figure 8, (Note 20)  
(Rising Edge Strobe)  
(f 66 MHz)  
5.0  
7.6  
ns  
RxOut Valid Prior to RxCLKOut  
RxOut Valid After RxCLKOut  
Output Rise Time (20% to 80%)  
Output Fall Time (80% to 20%)  
Receiver Clock Input to Clock Output Delay  
4.5  
7.3  
ns  
4.0  
6.3  
ns  
C
8 pF, (Note 20)  
2.0  
5.0  
5.0  
ns  
L
See Figure 8  
1.8  
ns  
See Figure 10, (Note 21)  
3.5  
5.0  
7.5  
ns  
T
25 C and V  
3.3V  
A
CC  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Receiver Power-Down Delay  
See Figure 13  
1.0  
2.15  
5.8  
s
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RPDD  
Receiver Input Strobe Position of Bit 0  
Receiver Input Strobe Position of Bit 1  
Receiver Input Strobe Position of Bit 2  
Receiver Input Strobe Position of Bit 3  
Receiver Input Strobe Position of Bit 4  
Receiver Input Strobe Position of Bit 5  
Receiver Input Strobe Position of Bit 6  
Receiver Input Strobe Position of Bit 0  
Receiver Input Strobe Position of Bit 1  
Receiver Input Strobe Position of Bit2  
Receiver Input Strobe Position of Bit 3  
Receiver Input Strobe Position of Bit 4  
Receiver Input Strobe Position of Bit 5  
Receiver Input Strobe Position of Bit 6  
RxIn Skew Margin  
1.0  
4.5  
1.4  
5.0  
RSPB0  
RSPB1  
RSPB2  
RSPB3  
RSPB4  
RSPB5  
RSPB6  
RSPB0  
RSPB1  
RSPB2  
RSPB3  
RSPB4  
RSPB5  
RSPB6  
RSKM  
See Figure 17  
(f 40 MHz)  
8.1  
8.5  
9.15  
12.6  
16.3  
19.9  
23.6  
1.4  
11.6  
15.1  
18.8  
22.5  
0.7  
11.9  
15.6  
19.2  
22.9  
1.1  
2.9  
3.3  
3.6  
See Figure 17  
(f 65 MHz)  
5.1  
5.5  
5.8  
7.3  
7.7  
8.0  
9.5  
9.9  
10.2  
12.4  
14.6  
11.7  
13.9  
490  
400  
12.1  
14.3  
f
f
40 MHz  
66 MHz  
ps  
See Figure 17, (Note 22)  
t
Receiver Phase Lock Loop Set Time  
See Figure 11  
10.0  
ms  
RPLLS  
Note 20: For the receiver with falling-edge strobe, the definition of setup/hold time will be slightly different from the one with rising-edge strobe. The clock ref-  
erence point is the time when the clock falling edge passes through 2V. For hold time t  
, the clock reference point is the time when falling edge passes  
RHRC  
through 0.8V.  
Note 21: Total channel latency from Sewrializer to deserializer is (T  
t
)
(2*T  
t
). There is the clock period.  
TCCD  
RCCD  
Note 22: Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.  
9
www.fairchildsemi.com  
FIGURE 1. Differential LVDS Output DC Test Circuit  
Note A: For all input pulses, t or t  
1 ns.  
R
F
Note B: C includes all probe and jig capacitance.  
L
FIGURE 2. Differential Receiver Voltage Definitions and Propagation Delay and Transition Time Test Circuit  
TABLE 2. Receiver Minimum and Maximum Input Threshold Test Voltages  
Applied Voltages  
(V)  
Resulting Differential Input Voltage Resulting Common Mode Input Voltage  
(mV)  
VID  
(V)  
VIC  
VIA  
VIB  
1.25  
1.15  
2.4  
2.3  
0.1  
0
1.15  
1.25  
2.3  
2.4  
0
100  
100  
100  
100  
100  
100  
600  
600  
600  
600  
600  
600  
1.2  
1.2  
2.35  
2.35  
0.05  
0.05  
1.2  
0.1  
0.9  
1.5  
1.8  
2.4  
0
1.5  
0.9  
2.4  
1.8  
0.6  
0
1.2  
2.1  
2.1  
0.3  
0.6  
0.3  
www.fairchildsemi.com  
10  
AC Loading and Waveforms  
Note: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVTTL/CMOS I/O. Depending on the valid strobe edge of  
transmitter, the TxCLKIn can be either rising or falling edge data strobe.  
FIGURE 3. Worst CaseTest Pattern  
FIGURE 4. Transmitter LVDS Output Load and Transition Times  
FIGURE 5. Transmitter Setup/Hold and HIGH/LOW Times (Rising Edge Strobe)  
FIGURE 6. Transmitter Input Clock Transition Time  
11  
www.fairchildsemi.com  
AC Loading and Waveforms (Continued)  
FIGURE 7. Transmitter Outputs Channel-to-Channel Skew  
Note: For the receiver with falling-edge strobe, the definition of setup/hold time will be slightly different from the one with rising-edge strobe. The clock refer-  
ence point is the time when the clock falling edge passes through 2V. For hold time t  
, the clock reference point is the time when falling edge passes  
RHRC  
through 0.8V.  
FIGURE 8. (Receiver) Setup/Hold and HIGH/LOW Times  
FIGURE 9. Transmitter Clock In to Clock Out Delay (Rising Edge Strobe)  
FIGURE 10. Receiver Clock In to Clock Out Delay (Falling Edge Strobe)  
www.fairchildsemi.com  
12  
AC Loading and Waveforms (Continued)  
FIGURE 11. Receiver Phase Lock Loop Set Time  
FIGURE 12. Transmitter Power-Down Delay  
FIGURE 13. Receiver Power-Down Delay  
13  
www.fairchildsemi.com  
AC Loading and Waveforms (Continued)  
Note: The information in this diagram shows the relationship between clock out and the first data bit. A 2-bit cycle delay is guaranteed when the MSB is out-  
put from the transmitter.  
FIGURE 14. 28 Parallel LVTTL Inputs Mapped to 4 Serial LVDS Outputs  
Note: This output data pulse position works for both transmitter with 28 or 21 TTL inputs except the LVDS output bit mapping difference. All the information  
in this diagram tells that the skew between the first data bit and clock output. Also 2-bit cycle delay is guaranteed when the MSB is output from transmitter.  
FIGURE 15. 21 Parallel LVTTL Inputs Mapped to 3 Serial LVDS Outputs  
www.fairchildsemi.com  
14  
AC Loading and Waveforms (Continued)  
FIGURE 16. Transmitter Output Pulse Bit Position  
FIGURE 17. Receiver Input Bit Position  
15  
www.fairchildsemi.com  
AC Loading and Waveforms (Continued)  
Note: t  
is the budget for the cable skew and source clock skew plus ISI (Inter-Symbol Interference).  
RSKM  
Note: The minimum and maximum pulse position values are based on the bit position of each of the 7 bits within the LVDS data stream across PVT  
(Process, Voltage Supply, and Temperature).  
FIGURE 18. Receiver LVDS Input Skew Margin  
Note: Test setup used considers no requirement for separation of RMS and deterministic jitter. Other hardware setup such as Wavecrest boxes can be used  
if no M1 software is available, but the test methodology in Figure 20 should be followed.  
FIGURE 19. Transmitter Clock Out Jitter Measurement Setup  
Note: This jitter pattern is used to test the jitter response (Clock Out) of the device over the power supply range with worst jitter 3ns (cycle-to-cycle) clock  
input. The specific test methodology is as follows:  
Switching input data TxIn0 to TxIn20 at 0.5 MHz, and the input clock is shifted to left 3ns and to the right 3ns when data is HIGH.  
The 3 ns cycle-to-cycle input jitter is the static phase error between the two clock sources. Jumping between two clock sources to simulate the worst  
case of clock edge jump (3 ns) from graphical controllers. Cycle-to-cycle jitter at TxCLK out pin should be measured cross V range with 100mV noise  
CC  
(V noise frequency 2 MHz).  
CC  
FIGURE 20. Timing Diagram of Transmitter Clock Input with Jitter  
www.fairchildsemi.com  
16  
AC Loading and Waveforms (Continued)  
Note: The 16-grayscale test pattern tests device power consumption for a typicalLCD display pattern. The test pattern approximates signal switching  
needed to produce groups of 16 vertical strips across the display.  
FIGURE 21. 16 GrayscaleTest Pattern  
FIGURE 22. Transmitter Phase Lock Loop Time  
17  
www.fairchildsemi.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide  
Package Number MTD56  
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and  
Fairchild reserves the right at any time without notice to change said circuitry and specifications.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD  
SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the  
body, or (b) support or sustain life, and (c) whose failure  
to perform when properly used in accordance with  
instructions for use provided in the labeling, can be rea-  
sonably expected to result in a significant injury to the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be rea-  
sonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
www.fairchildsemi.com  
18  

相关型号:

FIN3386MTD

Low Voltage 28-Bit Flat Panel Display Link Serializers/Deserializers
FAIRCHILD

FIN3386MTDX

Low-Voltage, 28-Bit, Flat-Panel Display Link Serializer / Deserializer
FAIRCHILD

FIN3386MTDX

低电压,28 位,平板显示屏链路串化器/去串化器
ONSEMI

FIN4.00RD

SLEEVING 4" ID FBRGLASS 50' RED
ETC

FIN4.00RD25

SLEEVING 4" ID FBRGLASS 25' RED
ETC

FIN424C

20-Bit Ultra-Low-Power Serializer / Deserializer for μController and RGB Displays
FAIRCHILD

FIN424CMLX

LINE TRANSCEIVER, QCC32, 5 X 5 MM, GREEN, MO-220WHHD-4, MLP-32
ROCHESTER

FIN424CMLX

Line Transceiver, 5 X 5 MM, GREEN, MO-220WHHD-4, MLP-32
FAIRCHILD

FIN425CMLX

20-Bit Ultra-Low-Power Serializer / Deserializer for μController and RGB Displays
FAIRCHILD

FIN425CMLX

LINE TRANSCEIVER, QCC32, 5 X 5 MM, GREEN, MO-220WHHD-4, MLP-32
ROCHESTER

FINALLETTEROFTP8305AAP

NSTL Compatibility Test Report
ETC

FINF050-100CLA1

50GHz Interleaver
FINISAR