FMS9884AKAC140 [FAIRCHILD]

3x8-Bit, 108/140/175 Ms/s Triple Video A/D Converter with Clamps; 3×8位, 108/140/175 MS / s的三路视频A / D转换器,线夹
FMS9884AKAC140
型号: FMS9884AKAC140
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

3x8-Bit, 108/140/175 Ms/s Triple Video A/D Converter with Clamps
3×8位, 108/140/175 MS / s的三路视频A / D转换器,线夹

转换器 模数转换器
文件: 总29页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FMS9884A  
Graphics Digitizer  
3x8-Bit, 108/140/175 Ms/s Triple Video A/D Converter with Clamps  
is via registers, accessible through an SMBus/I2C compatible  
serial port.  
Features  
• 3-channels  
• 100/140/175 Ms/s conversion rate  
• Programmable Clamps  
• Adjustable Gain and offset  
Input amplitude range is 500–1000mV with either DC or AC  
coupling. Lower reference of AC coupled inputs is estab-  
lished with input clamps that are either internally generated  
or externally provided.  
• Internal Reference Voltage  
• I2C/SMBus compatible Serial Port  
• Pin Compatible with AD9884A  
Common to the three channels are clamp pulses, a bandgap  
reference voltage and clocks derived from a PLL or an external  
source. Digital data levels are 2.5–3.3 volt CMOS compliant.  
Applications  
• Flat panel displays and projectors  
Power can be derived from a single +3.3 Volt power supply. For  
• RGB Graphics Processing  
175 MHz applications see special VPLL requirements. Package  
is a 128-lead MQFP. Performance specifications are guaran-  
teed over 0°C to 70°C range.  
Description  
As a fully integrated analog interface, the FMS9884A can digi-  
tize RGB graphics with resolutions up to 1600 x 1200/65Hz  
Product Number  
FMS9884AKAC100  
FMS9884AKAC140  
FMS9884AKAC175  
Speed  
refresh or 1600 x 1200/85Hz using alternate pixel sampling.  
ADC sampling clock can be derived from either an external  
source or incoming horizontal sync signal using the internal  
PLL. Output data is released through either one port at full  
rate or both ports, each running at half-rate. Setup and control  
108 Ms/s  
140 Ms/s  
175 Ms/s  
Block Diagram  
RPD7-0  
DRA7-0  
A/D  
Converter  
Gain &  
Offset  
Clamp  
Clamp  
Clamp  
RIN  
Switch  
Switch  
Switch  
DRB7-0  
GPD7-0  
BPD7-0  
DGA7-0  
DGB7-0  
Gain &  
Offset  
A/D  
Converter  
GIN  
DBA7-0  
DBB7-0  
Gain &  
Offset  
A/D  
Converter  
BIN  
Reference  
VREFIN  
VREFOUT  
SCK  
CLAMP  
INVSCK  
XCK  
ICLAMP  
DCK  
DCK  
HSOUT  
Timing  
Generator  
HS  
PXCK  
HSIN  
COAST  
LPF  
PLL  
SDA  
SCL  
A0  
A1  
SYNC  
STRIPPER  
ACSIN  
Control  
DCSOUT  
PWRDN  
REV. 1.2.2 12/7/01  
PRODUCT SPECIFICATION  
FMS9884A  
Output Data Configuration  
Architectural Overview  
Output data number format for each channel is binary: 00 cor-  
responds to the lowest input; FF corresponds to the highest  
input. Data can be released in either of two timing formats:  
Three separate digitizer channels are controlled by common  
timing signals derived from the Timing Generator. A/D clock  
signals can be derived from either a PLL or an external clock  
XCK. With the PLL selected, A/D clocks track the incoming  
horizontal sync signal connected to the HSIN input. Setup is  
controlled by registers that are accessible through the serial  
interface.  
1. Single 8-bit port at pixel rates up to 175Ms/s.  
2. Dual 8-bit ports, each running at half the conversion  
rate. Maximum rate is 88Ms/s per port. Data streams  
may be parallel or interleaved.  
Conversion Channels  
Timing and Control  
Timing and Control logic encompasses the Timing Generator,  
PLL and Serial Interface.  
Typical RGB graphics signals, RIN, GIN, BIN are ground ref-  
erenced with 700mV amplitude. If a sync signal is embedded  
then the usual format is sync on green with the sync tip at  
ground, the black level elevated to 300mV and peak green at  
1000mV.  
Timing Generator  
All internal clock and synchronization signals are generated  
by the Timing Generator. Master Clock source is either the  
PLL or the external clock input, XCK. Bit XCKSEL selects  
the Master Clock source. Two clocks are generated.  
AC coupled video signals must be level shifted to establish  
the lower level of the conversion range by clamping to the  
black level of the back porch (see Figure 1). Clamp pulses  
are derived from internal Timing and Control logic or from  
the external CLAMP input.  
Sampling clock, SCK is supplied to all three A/D converters.  
Phase of SCK can be adjusted in 32 11.25 degree phase  
increments using the 5-bit PHASE register.  
DCK is the output data clock. DCK and DCK are supplied as  
outputs for synchronizing data transfer from the digitizer  
outputs.  
RIN, GIN, BIN  
ICLAMP  
Horizontal sync applied to the input, HSIN is propagated by  
the Timing and Control to the HSOUT output with a delay  
that aligns leading and trailing edges with the output data.  
Figure 1. Clamping to the back-porch  
Gain and Offset  
Gain and Offset registers serve two functions: adjustment of  
contrast and brightness by setting RGB values in tandem;  
matching the gain and offsets between channels, by setting  
RGB values individually to obtain the same output levels.  
Phase Locked Loop  
With a horizontal sync signal connected to the HSIN input  
pin, the PLL generates a high frequency internal clock signal,  
PXCK that is fed to the Timing and Control logic. Frequency  
of PXCK is set by the register programmable PLL divide  
ratio, PLLN.  
A/D conversion range can be matched to the amplitude of the  
incoming video signal by programming Gain Registers GR,  
GG and GB, which vary sensitivity (LSB/volt) over a 2:1  
range. Incoming video signal amplitudes varying from 0.5 to  
1.0 volt can be accommodated.  
COAST is an input that disables the PLL lock to the horizontal  
sync input, HSIN. If HSIN is to be disregarded for a period  
such as the vertical sync interval, COAST allows the VCO  
frequency to be maintained. Omission of horizontal sync  
pulses during the vertical interval can cause tearing at the top  
of a picture, if COAST is not used.  
Input offset voltage of each converter is programmable in 1  
LSB steps through the 6-bit OSR, OSG and OSB registers.  
Range of adjustment is equivalent to –31 to +32 LSB.  
Two pixels per clock mode is set by programming the PLL  
to half the pixel rate. By toggling the INVCK pin between  
frames, even and odd pixels can be read on alternate frames.  
A/D Converter  
Each A/D converter digitizes the analog input into 8-bit data  
words. Latency is 5–61/2 clock cycles, depending upon the  
data out format.  
Serial Interface  
Registers are accessed through an I2C/SMBus compatible  
serial port. Four serial addresses are pin selectable.  
VREFIN is the source of reference voltage for the three A/D  
converters. VREFIN can be connected to either the internal  
bandgap voltage, VREFOUT or an external voltage.  
2
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
Pin Assignments (128-Lead MQFP (KA) Package)  
GND  
VDDO  
DRA7  
DRA6  
DRA5  
DRA4  
DRA3  
DRA2  
103  
104  
105  
106  
107  
108  
109  
110  
64  
63  
62  
61  
60  
59  
58  
57  
VDDO  
GND  
DBB0  
DBB1  
DBB2  
DBB3  
DBB4  
DBB5  
DRA1  
DRA0  
111  
112  
56  
55  
DBB6  
DBB7  
54  
53  
52  
51  
50  
49  
48  
47  
GND  
VDDO  
DCK  
113  
114  
115  
116  
117  
118  
119  
120  
VDDO  
GND  
GND  
GND  
VDDP  
GND  
DCK  
HSOUT  
DCSOUT  
GND  
VDDP  
GND  
VDDO  
GND  
GND  
GND  
121  
122  
123  
46  
45  
44  
NC  
LPF  
XCK  
43  
42  
41  
40  
39  
VDDP  
GND  
COAST  
HSIN  
GND  
VDDA  
PWRDN  
VREFOUT  
VREFIN  
VDDA  
124  
125  
126  
127  
128  
REV. 1.2.2 12/7/01  
3
PRODUCT SPECIFICATION  
FMS9884A  
Pin Assignments  
No.  
1
Name  
NC  
No.  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Name  
VDDP  
VDDP  
GND  
NC  
No.  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Name  
DBA7  
DBA6  
DBA5  
DBA4  
DBA3  
DBA2  
DBA1  
DBA0  
GND  
No.  
97  
Name  
DRB5  
DRB4  
DRB3  
DRB2  
DRB1  
DRB0  
GND  
2
NC  
98  
3
NC  
99  
4
VDDA  
GND  
GND  
RIN  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
5
NC  
6
NC  
7
GND  
HSIN  
COAST  
GND  
VDDP  
XCK  
8
VDDA  
GND  
VDDA  
VDDA  
GND  
GND  
ACSIN  
GIN  
VDDO  
DRA7  
DRA6  
DRA5  
DRA4  
DRA3  
DRA2  
DRA1  
DRA0  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
VDDO  
DGB7  
DGB6  
DGB5  
DGB4  
DGB3  
DGB2  
DGB1  
DGB0  
GND  
LPF  
NC  
GND  
VDDP  
GND  
VDDP  
GND  
GND  
GND  
VDDO  
DBB7  
DBB6  
DBB5  
DBB4  
DBB3  
DBB2  
DBB1  
DBB0  
GND  
VDDO  
VDDA  
GND  
VDDA  
VDDA  
GND  
GND  
BIN  
VDDO  
DCK  
VDDO  
DGA7  
DGA6  
DGA5  
DGA4  
DGA3  
DGA2  
DGA1  
DGA0  
GND  
DCK  
HSOUT  
DCSOUT  
GND  
VDDA  
GND  
VDDA  
GND  
INVSCK  
CLAMP  
SDA  
SCL  
VDDO  
GND  
GND  
GND  
VDDA  
PWRDN  
VREFOUT  
VREFIN  
VDDA  
VDDO  
DRB7  
DRB6  
A0  
A1  
4
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
Pin Descriptions  
Pin Name  
Pin No. Type/Value Pin Function Description  
Converter Channels  
RIN, GIN, BIN 7, 15, 22  
Input  
Analog Inputs.  
DRA7-0  
105–112  
Output  
Red Channel Port A Data Output. Full rate/half rate, interleaved/  
parallel data depending upon selected mode.  
DRB7-0  
95–102  
Output  
Red Channel Port B Data Output. Active for dual port mode only with  
interleaved/parallel outputs. High impedance when inactive.  
DGA7-0  
DGB7-0  
DBA7-0  
DBB7-0  
85–92  
75–82  
65–72  
55–62  
Output  
Output  
Output  
Output  
Green Channel Port A Data Output. See red channel port A.  
Green Channel Port B Data Output. See red channel port B.  
Blue Channel Port A Data Output. See red channel port A.  
Blue Channel Port B Data Output. See red channel port B.  
Timing Generator  
CLAMP  
28  
27  
Input  
Input  
External Clamp Input.  
INVSCK  
Invert Sampling Clock. Inverts SCK, the internal clock sampling the  
analog inputs. Supports Alternate Pixel Sampling mode for capture  
pixel rates up to 350Ms/s.  
XCK  
44  
Input  
External Clock input. Enabled if register bit, XCKSEL = H. Replaces  
PXCK clock generated by PLL. If unused, connect to ground through a  
10kresistor.  
DCK  
DCK  
115  
116  
Output  
Output  
Output Data Clock. Clock for strobing output data to external logic.  
Output Data Clock Inverted. Inverted clock for strobing output data to  
external logic.  
HSOUT  
117  
Output  
Horizontal Sync Output. Reconstructed HSYNC delayed by  
FMS9884A latency and synchronized with DCK. Leading edge is  
synchronized to start of data output. Polarity is always active HIGH.  
Phase Locked Loop  
HSIN  
40  
Schmitt  
Input  
Horizontal Sync input. Schmitt trigger threshold is 1.5V. A 5V source  
should be clamped at 3.3V or current limited to prevent overdriving  
ESD protection diodes.  
COAST  
41  
PLL Coast. Maintain frequency of PLL output clock PXCK,  
disregarding HSIN. If horizontal sync is missing during the vertical sync  
interval, PXCK clock frequency can be maintained by asserting  
COAST.  
LPF  
45  
Passive  
PLL Low Pass Filter. Connect recommended PLL filter to LPF pin.  
(see Figure 19.)  
Sync Stripper  
ACSIN  
14  
Analog Composite Sync Input. Input to sync stripper with 150mV  
threshold.  
DCSOUT  
Control  
SDA  
118  
Digital Composite Sync Output. Output from sync stripper.  
29  
30  
Bi-directional Serial Port Data. Bi-directional data.  
SCL  
Input  
Input  
Input  
Input  
Serial Port Clock. Clock input.  
A0  
31  
Address bit 0. Lower bit of serial port address.  
Address bit 1. Upper bit of serial port address.  
A1  
32  
PWRDN  
125  
Power Down/Output Control. Powers down the FMS9884A and  
tri-states the outputs.  
REV. 1.2.2 12/7/01  
5
PRODUCT SPECIFICATION  
FMS9884A  
Pin Descriptions (Continued)  
Pin  
Name  
Pin No.  
Pin Function Description  
Power and Ground  
VDDA  
VDDP  
VDDO  
GND  
4, 8, 10, 11, 16, 18, 19, 23,  
25, 124, 128  
ADC Supply Voltages. Provide a quiet noise free voltage.  
33,34,43,48,50  
PLL Supply Voltage. Most sensitive supply voltage. Provide a very  
quiet noise free voltage.  
54, 64, 74, 84, 94, 104, 114, Digital Output Supply Voltage. Decouple judiciously to avoid  
120 propagation of switching noise.  
5, 6, 9,12, 13, 17, 20, 21, 24, Ground. Returns for all power supplies. Connect ground pins to a  
26, 35, 39, 42, 47, 49, 51, 52, solid ground plane.  
53, 63, 73, 83, 93, 103, 113,  
119, 121, 122, 123  
VREFIN  
127  
126  
Voltage Reference Input. Common reference input to RGB  
converters. Connect to VREFOUT, if internal reference is used.  
VREFOUT  
Voltage Reference Output. Internal band-gap reference output. Tie  
to ground through a 0.1µF capacitor.  
Addressable Memory  
Register Map  
Name  
Address  
Function  
Default (hex)  
PLLN11-4  
00  
PLL divide ratio, MSBs. PLLN + 1 = total number of  
69 (1693)  
pixels per horixontal line.  
PLLN3-0  
01  
PLL divide ratio, LSBs. PLLN + 1 = total number of pixels  
per horizontal line. PLLN3-0 stored in the four upper  
register bits 7-4.  
D0 (1693)  
PLLN3–0  
X X X X  
GR7-0  
GG7-0  
GB7-0  
02  
03  
04  
05  
Gain, red channel. Adjustable from 70 to 140%.  
Gain, green channel. Adjustable from 70 to 140%.  
Gain, blue channel. Adjustable from 70 to 140%.  
80  
80  
80  
80  
OSR5-0  
Offset, red channel. OSR5-0 stored in the six upper  
register bits 7-2. Default value is decimal 32.  
OSR5–0  
X X  
OSG5-0  
OSB5-0  
CD7-0  
06  
07  
08  
Offset, green channel. OSG5-0 stored in the six upper  
register bits 7-2. Default value is decimal 32.  
80  
80  
80  
OSG5–0  
X X  
Offset, blue channel. OSB5-0 stored in the six upper  
register bits 7-2. Default value is decimal 32.  
OSB5–0  
X X  
Clamp delay. Delay in pixels from trailing edge of  
horizontal sync.  
CW7-0  
09  
0A  
Clamp width. Width of clamp pulse in pixels.  
80  
F4  
CONFIG1  
Configuration Register No. 1  
6
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
Name  
Address  
Function  
Default (hex)  
PHASE7-0  
0B  
Sampling clock phase. PHASE4-0 stored in upper  
80  
register bits 7-3. PHASE sets the sampling clock phase in  
11.25° increments. Default value is decimal 16.  
PHASE4–0  
X X X  
PLLCTRL  
CONFIG2  
0C  
0D  
0E  
0F  
PLL Control  
Configuration  
Reserved  
24  
00  
0X  
00  
Reserved  
Register Definitions  
Configuration Register 1 (0A)  
Bit no.  
Name  
Type Description  
0
1
XCKSEL  
R/W  
R/W  
R/W  
R/W  
R/W  
External Clock Select. Select internal clock source.  
0: Internal PLL  
1: XCK input.  
2
3
4
5
XCLAMPOL  
XCLAMP  
External Clamp Polarity. Select clamp polarity.  
0: Active L.  
1: Active H.  
External Clamp Select. Select clamp source.  
0: Internally generated by PLL referenced to HSIN.  
1: External CLAMP input.  
COASTPOL  
HSPOL  
Coast Polarity. Select COAST input polarity.  
0: Active L.  
1: Active H.  
HSIN Polarity. Select horizontal sync input polarity. PLL is locked to selected  
edge:  
0: Falling edge.  
1: Rising edge.  
6
7
PARALLEL  
DEMUX  
R/W  
R/W  
Output Data Format. Select format of data outputs.  
0: Interleaved. DCK rising edge strobes port A data. DCK rising edge strobes  
port B data.  
1: Parallel. Rising edge of DCK strobes port A and port B data.  
Output Data Porting. Data released at full rate through one port or through  
two half-rate ports.  
0: Single 8-bit port.  
1: Dual 8-bit ports.  
PLL Configuration Register (0C)  
Bit no.  
1-0  
Name  
Type Description  
4-2  
IPUMP2-0  
R/W Charge Pump Current. Selects Charge Pump current (µA).  
(see Table 5. Charge Pump Current Codes)  
000: 50  
001: 100  
010: 150  
011: 250  
100: 350  
101: 500  
110: 750  
111: 1500  
REV. 1.2.2 12/7/01  
7
PRODUCT SPECIFICATION  
FMS9884A  
Bit no.  
Name  
Type Description  
6-5  
FVCO1-0  
R/W  
VCO Frequency Range. Selects VCO frequency range (MHz).  
00: 20–90  
01: 20–90  
10: 80–120  
11: 110–175  
7
R/W  
Reserved.  
0: Run.  
1: (reserved).  
Configuration Register 2 (0D)  
Bit no.  
Name  
Type Description  
0
3-1  
4
R
Reserved. Set to 0.  
Revision Number. Die revision number.  
REV  
OUTPHASE R/W  
Output Data Phase. In the dual port mode, selects either odd (1, 3, 5, …) or  
even (2, 4, 6 ….) samples following the HSYNC leading edge to be emitted  
from Port 1.  
0: Even samples to Port A, odd samples to Port B.  
1: Odd samples to Port A, even samples to Port B.  
7-5  
R/W  
Reserved. Set to 00.  
Test Register (0F)  
Bit no.  
Name  
Type Description  
R/W Reserved. After power-up, initialize this register with the default value 0x00.  
7-0  
Register 0F does not respond with an acknowledge during serial bus access.  
Consequently, ACK remains H instead of being pulled H.  
Inputs are optimized for a source resistance of 37.5 to 75.  
Functional Description  
There are two major sections within the FMS9884A  
Digitizer:  
To reduce noise sensitivity, the ultra-wide 500MHz input  
bandwidth may be reduced by adding a small series inductor  
prior to the 75terminating resistor. See Applications Section.  
1. Analog-to-digital Converter Channels, one for each  
channel, RGB and the voltage reference.  
Clamps  
If the incoming signals are not ground referenced, a clamp  
must be used to set the incoming video range relative to  
ground. Prior to each A/D converter, each channel includes a  
clamp that allows a capacitively coupled input to be referenced  
to the A/D converter bottom reference voltage when the  
clamp pulse is active. Source of the clamp signal is deter-  
mined by the XCLAMP bit.  
2. Timing and Control comprising the PLL, Timing  
Generator, Sync Stripper and Serial Interface.  
A/D Converter Channels  
Each of the three RGB channels consists of:  
1. A clamp to set the lower reference level of an AC  
coupled input.  
Internal clamp timing is generated by the Timing and Con-  
trol Block. Position and width of the internal clamp pulse,  
ICLAMP are programmable through registers CD and CW.  
External clamp input is selected by register bit XCLAMP  
and the external clamp polarity selected through register bit  
XCLAMPOL. To disable the clamp for DC coupled inputs,  
set XCLAMP = 1 with either of these conditions:  
2. Gain and offset stages to tune the converter to input  
signal levels.  
3. An Analog-to-Digital Converter to digitize the analog  
input.  
4. A commutating switch for dual port operation.  
1. XCLAMPOL = 0 with input CLAMP = H.  
2. XCLAMPOL = 1 with CLAMP = L.  
Analog Inputs  
Input signal range is 500 to 1000mV to support conversion of  
single-ended signals with a typical amplitude of 700mV p-p.  
With the clamp active, each input accommodates a negative  
300mV excursion.  
Best performance will be achieved with the clamp set active  
for most of the black signal level interval between the trail-  
ing edge of horizontal sync and the start of active video.  
8
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
Insufficient clamping can cause brightness changes at the top  
of the image and slow recovery from large changes in Aver-  
age Picture Level (APL). Recommended value of CD is  
0x10 to 0x20 for most standard video sources.  
Offset is set through the Single-Ended to Differential Amplifier  
which translates the ground referenced input to a differential  
voltage centered around A/D common mode bias voltage.  
The 6-bit Offset D/A converter injects a current into RLEVEL  
with two components:  
Analog-to-Digital Converter  
Figure 2 is a block diagram of the ADC core with gain and  
offset functions. G7-0, OS5-0, RGBIN and PD7-0 generically  
refer to the gain and offset register values, analog input and  
parallel data output of any RGB channel.  
1. IBIAS to establish the A/D common mode voltage.  
2.  
IOFFSET to set the offset from the common mode level.  
Voltage offset from the common mode voltage at the invert-  
ing input of the Track and Hold is:  
Core of the ADC block is a high speed A/D encoder with dif-  
ferential inputs. Within the A/D converter core are the fol-  
lowing elements:  
255 + G7–0  
---------------------------- --------  
500  
255  
VOS = ( OS5–0 – 31) •  
255  
D/A converter gain tracks A/D gain with 1 LSB of offset cor-  
responding to 1 LSB of gain. Increasing OSR5-0, OSG5-0, or  
OSB5-0 reduces brightness in the selected channel. Data out-  
put from the A/D converter is:  
1. Differential track and hold.  
2. Differential analog-to-digital converter.  
Setting the gain register value G7-0 (GR7-0, GG7-0, GB7-0),  
establishes the gain D/A converter voltage which is the A/D  
reference voltage. Increasing video gain reduces the contrast  
of the picture since the number of output codes is reduced.  
Conversion range is defined by the gain setting according to  
Table 1.  
D7–0 = S VIN ( OS5–0 – 31 )  
Impact of the offset values OSR5-0, OSG5-0, and OSB5-0 is  
shown in Table 2.  
Table 1. Gain Calibration  
Table 2. Offset Calibration  
G7-0  
0
Conversion Range (mV)  
OS5-0  
0
Output Offset (decimal)  
500  
700  
+31  
0
66h  
FFh  
1Fh  
3Fh  
1000  
-32  
A/D Converter sensitivity is:  
Sampling Clock PHASE Adjustment  
255  
255  
500  
Picture quality is strongly impacted by the PHASE4-0 value.  
If PHASE is not set correctly, any section of an image con-  
sisting of vertical lines may exhibit tearing.  
----------------------------  
255 + G7 – 0  
S = -------- •  
LSB mV  
VREF  
D/A  
G7-0  
Gain  
Register  
IBIAS + IOFFSET  
OS5-0  
Current  
D/A  
Offset  
Register  
A/D Core  
RGBIN  
Track &  
D7-0  
A/D  
+
Hold  
VOS  
RLEVEL  
-
SCK  
Figure 2. A/D Converter Architecture  
REV. 1.2.2 12/7/01  
9
PRODUCT SPECIFICATION  
FMS9884A  
PHASE  
PXCK/XCK  
SCK  
R
G
B
IN IN IN  
RGBn  
DCK  
D7-0  
Figure 3. Internal Sampling Clock, SCK Timing  
Figure 3 shows how an analog input, RINGINBIN is sampled  
by the rising edge of SCK after a delay PHASE from the ris-  
ing edge of either PXCK or XCK. SCK can be delayed up to  
32 steps in 11.25° increments by adjusting the register value,  
Zones of Serendipity  
PHASE4-0  
.
RIN, GIN, BIN  
SCK  
Output data, DCK and DCK are delayed in tandem with  
SCK relative to PXCK or XCK. There is a 5-51/2 clock  
latency between the data sample RGBn and the correspond-  
ing data out D7-0  
.
D7-0  
Ideally, incoming pixels would be trapezoidal with fast rise-  
times and the sampling edge of the A/D clock, SCK would  
be positioned along the level section of the incoming pixel  
waveform as shown in Figure 4. There is a narrow zone of  
uncertainly where sampling during pixel rise time would  
cause an error in the value of the A/D data output, D7-0,  
which is shown as a value, 0-255.  
Figure 5. Acceptable Pixel Sampling  
Referring to Figure 6, when the sample clock, SCK has some  
jitter, if the sampling edge occurs anywhere within the zone  
of uncertainty where the pixel rise time is steep, there will be  
amplitude modulation of the digitized data, D7-0, due to the  
sampling clock jitter. To avoid corruption of the image, set-  
ting the value PHASE7-0 is critical. PHASE4-0 should be  
trimmed to position the sampling edge of SCK within the  
zone of serendipity.  
Zones of Uncertainty  
RIN, GIN, BIN  
SCK  
Zones of Uncertainty  
D7-0  
RIN, GIN, BIN  
Figure 4. Ideal Pixel Sampling  
SCK  
D7-0  
In practice, high-resolution pixels have long rise-times. As  
shown in Figure 5, there are narrow zones of serendipity  
when the pixel amplitude is level. Samples are valid in these  
zones.  
Figure 6. Improper Pixel Sampling  
Voltage References  
An on-chip voltage reference is generated from a bandgap  
source. VREFOUT is the buffered output of this source that  
can be connected to VREFIN to supply a voltage reference  
that is common to the three converter channels.  
10  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
VREFIN, with a nominal voltage of 1.25V, is the source of the  
1. Single or dual output port.  
differential reference voltages for each A/D converter.  
Reference voltages supplied to the differential inputs of the  
2. Interleaved or parallel output data.  
3. 1-pixel or 2-pixel.  
comparators in the A/D converters are derived from VREFIN  
.
Levels are 3.3 volt CMOS with the output supply variable  
between 2.5 and 3.3 V. PWRDN = L sets the outputs  
high-impedance. PWRDN = H enables the outputs.  
Digital Data Outputs  
Input horizontal sync, HSIN and outgoing data, D[7..0] are  
resynchronized to the delayed sample clock, SCK. Output  
timing characteristics are defined in Figure 7. Latency of the  
first pixel, N varies according to the mode:  
HSIN  
PHASE  
N
PXCK/XCK  
SCK  
RGBIN  
S0  
DCK  
tDH  
DCK  
tDO  
D0  
D[7..0]  
HSOUT  
Figure 7. Output Timing  
Figures 13 through 21 depict data output timing relative to  
the sampling clock and inputs for all modes. Timing is refer-  
enced to the leading edge of HSIN when the first sample is  
taken at the rising edge of SCK. Status of register bit OUT-  
PHASE, determines if even samples are directed the A-port  
and odd samples are directed to the B-port; or vice versa.  
HS is the internal sync pulse generated from HSYNC. SCK  
is the internal A/D converter sampling clock.  
Output data transitions are synchronized with the falling  
edge of DCK. Output data should be strobed on the rising  
edge of DCK. A 5 to 6.5 clock cycle delay must be flushed  
before valid data is available.  
Note the timing of the HSOUT waveform:  
1. HSOUT is always active HIGH.  
Alternate Pixel Sampling Mode  
A logic H on the CKINV pin inverts the sampling phase of  
SCK. In the Alternate Pixel Sampling Mode:  
2. Only the leading edge of HSOUT is active or selected by  
the HSPOL register bit.  
1. PLL is run at half rate. SCK, DCK and DCK are half rate.  
2. CKINV is toggled between frames. (see Figure 18)  
3. HSOUT is aligned with DCK.  
4. Trailing edge is linked to HSIN.  
5. If HSIN does not terminate before mid-line, HSOUT is  
forced low. A 50% duty cycle indicates that HSPOL is  
incorrectly set.  
REV. 1.2.2 12/7/01  
11  
PRODUCT SPECIFICATION  
FMS9884A  
O1E2O1 O1 O1 O1  
E2 E2 E2 E2O1E2  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
O1  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
E2  
O E O E O E O E O E O E  
E2  
E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
O E O E O E O E O E O E  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2O1E2  
O1 O1 O1 O1 O1  
E2 E2 E2 E2 E2 E2  
O1  
O1 O1 O1 O1 O1  
E2  
E2 E2 E2 E2 E2  
O1  
O1 O1 O1 O1 O1  
Figure 10. Even Pixels from Frame 2  
Figure 8. Odd and Even Pixels in a Frame  
On one frame, even pixels are sampled. On the other, odd  
pixels are sampled.  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
O1E2 O1 E2O1E2O1E2 O1E2O1E2  
Alternate Pixel Sampling is similar to interlacing used in  
broadcast video, except that the columns of pixels are inter-  
laced instead of lines.  
E1 E1 E1 E1 E1 E1 E1  
O1 O1 O1 O1 O1 O1 O1  
E1 E1 E1 E1 E1 E1 E1  
O1 O1 O1 O1 O1 O1 O1  
E1 E1 E1 E1 E1 E1 E1  
O1 O1 O1 O1 O1 O1 O1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
O1E1O1E1O1E1O1E1O1E1O1E1O1E1  
Figure 11. Combined Frames 1 and 2 Output.  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
O3E2 O3E2 O3E2 O3E2 O3E2 O3E2  
Figure 9. Odd Pixels from Frame 1  
Figure 12. Subsequent Output Combining Frames 2 and 3  
RGBIN  
HSIN  
PXCK  
HS  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
5 PIPE DELAY  
SCK  
DATACK  
D0 D1 D2 D3 D4 D5 D6 D7  
DA7-0  
HSOUT  
Figure 13. Single Port Mode  
12  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
P2  
RGBIN P0 P1  
P3 P4 P5 P6 P7  
5 PIPE DELAY  
HSIN  
PXCK  
HS  
SCK  
DATACK  
DA7-0  
D0  
D2  
D4  
D6  
HSOUT  
Figure 14. Single Port Mode, Alternate Pixel Sampling, (Even Pixels)  
P0 P1 P2 P3 P4 P5 P6 P7  
RGBIN  
HSIN  
PXCK  
HS  
5.5 PIPE DELAY  
SCK  
DATACK  
DA7-0  
D1  
D3  
D5  
D7  
HSOUT  
Figure 15. Single Port Mode, Alternate Pixel Sampling, (Odd Pixels)  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
RGBIN  
HSIN  
PXCK  
HS  
5 PIPE DELAY  
SCK  
DATACK  
DA7-0  
D0  
D2  
D4  
D6  
DB7-0  
D1  
D3  
D5  
D7  
HSOUT  
Figure 16. Dual Port Mode, Interleaved Outputs  
REV. 1.2.2 12/7/01  
13  
PRODUCT SPECIFICATION  
FMS9884A  
RGBIN  
HSIN  
PXCK  
HS  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
6 PIPE DELAY  
SCK  
DATACK  
DA7-0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
HSOUT  
Figure 17. Dual Port Mode, Parallel Outputs  
P0 P1 P2 P3 P4 P5 P6 P7  
RGBIN  
HSIN  
PXCK  
HS  
5 PIPE DELAY  
SCK  
DATACK  
D0  
D4  
DA7-0  
DB7-0  
D2  
D6  
HSOUT  
Figure 18. Dual Port Mode, Interleaved Outputs, Alternate Pixel Sampling, (Even Pixels)  
P0 P1 P2 P3 P4 P5 P6 P7  
RGBIN  
HSIN  
PXCK  
HS  
5.5 PIPE DELAY  
SCK  
DATACK  
DA7-0  
DB7-0  
D1  
D5  
D3  
D7  
HSOUT  
Figure 19. Dual Port Mode, Interleaved Outputs, Alternate Pixel Sampling, (Odd Pixels)  
14  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
P1 P2 P3 P4  
P0  
P5 P6 P7  
RGBIN  
HSIN  
PXCK  
HS  
6 PIPE DELAY  
SCK  
DATACK  
D0  
D2  
D4  
D6  
DA7-0  
DB7-0  
HSOUT  
Figure 20. Dual Port Mode, Parallel Outputs, Alternate Pixel Sampling, (Even Pixels)  
P0 P1 P2 P3 P4 P5 P6 P7  
RGBIN  
HSIN  
PXCK  
HS  
6.5 PIPE DELAY  
SCK  
DATACK  
DA7-0  
D1  
D3  
D5  
D7  
DB7-0  
HSOUT  
Figure 21. Dual Port Mode, Parallel Outputs, Alternate Pixel Sampling, (Odd Pixels)  
The PLL consists of a phase comparator, charge pump VCO  
and ÷N counter, with the charge pump connected through the  
LPF pin to an external filter. These elements must be pro-  
grammed to match the incoming video source to be captured.  
Timing and Control  
Timing and Control logic encompasses the PLL, Timing  
Generator and Sync Stripper.  
Phase Locked Loop  
Two clock types originate in the PLL:  
Values of IPUMP and FVCO for Standard VESA timing  
parameters are shown in Table 3. Timing of many computer  
video outputs does not comply with VESA recommendations.  
PLLN should be optimized to avoid vertical noise bars on the  
displayed image.  
1. Data clocks DCK and DCK.  
2. Internal sampling clock SCK.  
Modes marked 2X are 2X-oversampled modes where the  
number of samples per horizontal line is doubled. To select  
this mode, the Phase-locked Loop Divide Ratio value must  
changed from PLL1x to:  
DCK and DCK are used to strobe data from the FMS9884A  
to following digital circuits. SCK is the ADC sample clock  
which has adjustable phase controlled through the PHASE  
register. DCK and DCK are phase aligned with SCK.  
PLL2x = 2 • (PLL1x + 1) – 1  
Reference for the PLL is the horizontal sync input, HSIN  
with polarity selected by the HSPOL bit.  
Values of IPUMP and FVCO are set through the PLL  
Configuration Register (0x0C). Recommended external filter  
components are shown in Figure 22. RF Quality 10%  
ceramic capacitors with X7R dielectrc are recommended.  
Frequency of the HSIN input is multiplied by the value PLLN  
+ 1 derived from the PLLN11-4 and PLLN3-0 registers. PLLN  
+ 1 should equal the number of pixels per horizontal line  
including active and blanked sections. Typically blanking is  
20–30% of active pixels. Divide ratios from 2–4095 are  
supported. SCK, DCK and DCK run at a rate PLLN + 1  
times the HSIN frequency.  
REV. 1.2.2 12/7/01  
15  
PRODUCT SPECIFICATION  
FMS9884A  
Table 3. Recommended IPUMP and FVCO values for Standard Display Formats  
Horizontal  
Standard  
Resolution  
Refresh Rate  
Frequency  
Sample Rate  
FVCO1-0  
IPUMP2-0  
VGA  
640 X 480  
60 Hz  
72 Hz  
75 Hz  
85 Hz  
31.5 kHz  
37.7 kHz  
37.5 kHz  
43.3 kHz  
25.175 MHz  
31.500 MHz  
31.500 MHz  
36.000 MHz  
01  
01  
01  
01  
100  
100  
100  
100  
2X  
640 X 480  
60 Hz  
67 Hz  
72 Hz  
75 Hz  
70 Hz  
31.5 kHz  
35 kHz  
37.7 kHz  
37.5 kHz  
31.5 kHz  
50 MHz  
31 MHz  
63 MHz  
72 MHz  
56.6 MHz  
01  
01  
01  
01  
01  
100  
100  
100  
100  
100  
720 X 400  
800 X 600  
SVGA  
XGA  
Mac  
56 Hz  
60 Hz  
72 Hz  
75 Hz  
85 Hz  
35.1 kHz  
37.9 kHz  
48.1 kHz  
46.9 kHz  
53.7 kHz  
36.000 MHz  
40.000 MHz  
50.000 MHz  
49.500 MHz  
56.250 MHz  
01  
01  
01  
01  
100  
100  
110  
110  
1024 X 768  
1024 X 768  
60 Hz  
70 Hz  
75 Hz  
80 Hz  
85 Hz  
48.4 kHz  
56.5 kHz  
60.0 kHz  
64.0 kHz  
68.3 kHz  
65.000 MHz  
75.000 MHz  
78.750 MHz  
85.500 MHz  
94.500 MHz  
01  
01  
10  
111  
111  
111  
60 Hz  
75 Hz  
75 Hz  
48 kHz  
60 kHz  
69 kHz  
64 MHz  
80 MHz  
100 MHz  
01  
10  
10  
111  
111  
111  
1152 X 870  
1152 X 900  
1280 X 1024  
1280 X 1024  
Sun  
HP  
66 Hz  
60 Hz  
62 kHz  
63 kHz  
93 MHz  
10  
10  
111  
111  
108 MHz  
SXGA  
60 Hz  
72 Hz  
75 Hz  
85 Hz  
64.0 kHz  
78.1 kHz  
80.0 kHz  
91.1 kHz  
108.000 MHz  
135.000 MHz  
135.000 MHz  
157.500 MHz  
10  
11  
11  
11  
111  
111  
111  
111  
UXGA  
1600 X 1200  
60 Hz  
65 Hz  
70 Hz  
75 Hz  
85 Hz  
75.0 kHz  
81.3 kHz  
87.5 kHz  
93.8 kHz  
106.3 kHz  
162.000 MHz  
175.500 MHz  
189.000 MHz*  
202.500 MHz*  
229.500 MHz*  
11  
11  
111  
111  
VESA Monitor Timing Standards and Guidelines, September 17, 1998  
1
* Graphics sampled at / incoming pixel rate using Alternate Pixel Sampling mode.  
2
Loop performance is established by setting:  
VDDP  
C1  
0.18µF  
1. VCO frequency range through FVCO1-0. (see Table 4)  
2. Charge Pump Current through IPUMP2-0. (see Table 5)  
3. External loop filter component values.  
C2  
0.018µF  
R1  
1.5K  
LPF  
Figure 22. Schematic, PLL Filter.  
16  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
Operation of COAST is depicted in Figure 23. HSOUT  
polarity is always positive. When COAST = L, HSOUT  
tracks HSIN (shown with postive polarity in Figure 23):  
Table 4. VCO Frequency Bands  
FVCO2-0 Frequency Range (MHz) KVCO (MHz/V)  
00  
2090  
60  
1. HSOUT rising edge tracks HSIN delayed by a few pixels.  
01  
10  
11  
2. HSOUT falling edge tracks the trailing edge of HSIN  
with no delay.  
80120  
90  
110175  
100  
When COAST = H, the PLL flywheels, disregarding the  
incoming HSIN references, while the HSOUT waveform  
depends upon the state of HSIN.  
Table 5. Charge Pump Current Levels  
IPUMP2-0  
000  
Current (µA)  
1. If HSIN = H:  
50  
100  
150  
250  
350  
500  
750  
1500  
a.) HSOUT rising edge remains locked to the PLL.  
001  
b.) HSOUT trailing edge falls after 50% of the HSOUT  
period has expired.  
010  
011  
2. HSIN transitions:  
100  
101  
a.) HSOUT rising edge remains locked to the PLL.  
110  
b.) HSOUT falling edge is terminated by the trailing  
edge of HSIN.  
111  
3. If HSIN = L, then HSOUT = L  
Setting SPHASE4-0 selects the sampling phase of SCK rela-  
tive to PXCK in 32 steps of 11.25°. Phase of the output data,  
DCK and DCK is slaved to the SCK phase.  
Timing Generator  
Timing and Control logic generates:  
Clock jitter is less than 5% of pixel period in all operating  
modes. At lower frequencies below 40MHz, the jitter rises  
but can be reduced by over-sampling at a 2X clock rate. Data  
should be read out of one port using the dual port mode. See  
Performance section for jitter specifications and plots.  
1. Internal sampling clock, SCK.  
2. Output data clocks, DCK and DCK.  
3. Output horizontal sync, HSOUT  
.
4. Internal clamp pulse, ICLAMP.  
COAST  
With HSPOL set correctly, ICLAMP delay follows the trail-  
ing edge of horizontal sync in (HSIN). Delay is set by the  
CD register. Width of ICLAMP is set by the CW register.  
Range of CD and CW values is 1–255 pixels.  
COAST = H disables PLL lock to HSIN, while the VCO  
frequency is retained. VCO frequency remains stable over  
several lines without updates from HSIN. COAST can be  
connected directly to the vertical sync signal or supplied by  
the graphics controller.  
HSIN  
Trailing edge terminates HSOUT  
COAST  
HSOUT  
50% Timeout  
Figure 23.  
REV. 1.2.2 12/7/01  
17  
PRODUCT SPECIFICATION  
FMS9884A  
Since the serial control port is design to interface with 3.3V  
logic, the pins must be protected by series connected 150Ω  
resistors if SDA and SCL signals originate from 5V logic.  
(See Applications Section)  
Sync Stripper  
Some video signals include embedded composite sync rather  
than separate horizontal and vertical sync signals, typically  
sync on green. Composite sync is extracted from Composite  
Video at the ACSIN pin.  
Table 6. Serial Interface Address Codes  
When the ACSIN signal falls below a 150mV ground refer-  
enced threshold, sync is detected. Composite Sync Output,  
DCSOUT reflects the ACSIN sync timing with non-inverted  
CMOS digital levels.  
A1-0  
00  
7-bit Address  
4C  
4D  
4E  
4F  
01  
10  
Power Down  
11  
PWRDN = L minimizes FMS9884A power consumption.  
Data outputs become high impedance. Clocks generation is  
stopped. Register contents are maintained. Sync stripping  
and the internal voltage reference function.  
Two signals comprise the bus: clock (SCL) and bi-directional  
data (SDA). When receiving and transmitting data through  
the serial interface, the FMS9884A acts as a slave, responding  
only to commands by the I2C/SMBus master.  
Serial Interface  
Register access is via a 2-wire I2C/SMBus compatible inter-  
face. As a slave device, the 7-bit address is selected by the  
Data received or transmitted on the SDA line must be stable  
for the duration of the positive-going SCL pulse. Data on  
SDA may change only when SCL = L. An SDA transition  
while SCL = H is interpreted as a start or stop signal.  
A
1-0 pins (see Table 6). Serial port pins SDA and SCL com-  
municate with the host SMBus/I2C controller which act as a  
master.  
SDA  
tBUFF  
tSTAH  
tDHO  
tDSU  
tSTASU  
tSTOSU  
tDAL  
SCL  
tDAH  
Figure 24. Serial Bus: Read/Write Timing  
SDA  
SCL  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ACK  
Figure 25. SerialBus: Typical Byte Transfer  
SDA  
SCL  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W\  
ACK  
Figure 26. Serial Bus: Slave Address with Read/Write Bit  
18  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
There are five steps within an I2C/SMBus cycle:  
After the last read, there must be a stop cycle comprising  
a LOW-to-HIGH transition of SDA while SCL is HIGH.  
(see Figure 24, right waveform)  
1. Start signal  
2. Slave address byte  
3. Pointer register address byte  
4. Data byte to read or write  
5. Stop signal  
A repeated start signal occurs when the master device driving  
the serial interface generates a start signal without first gener-  
ating a stop signal to terminate the current communication.  
This is used to change the mode of communication (read,  
write) between the slave and master without releasing the  
serial interface lines.  
When the Serial Bus interface is inactive, SCL = H and SDA  
= H. Communications are initiated by sending a start signal  
(Figure 24, left waveform) that is a HIGH-to-LOW transition  
on SDA while SCL is HIGH. A start signal alerts all slaved  
devices that a data transfer sequence is imminent.  
Serial Interface Read/Write Examples  
Examples below show how serial bus cycles can be linked  
together for multiple register read and write access cycles.  
For sequential register accesses, each ACK handshake ini-  
tiates further SCL clock cycles from the master to transfer  
the next data byte.  
As shown in Figure 26, after a start signal, the first eight bits of  
data comprise a seven bit slave address followed a single  
R/W bit (Read = H, Write = L) to set the direction of data  
transfer: read from; or write to the slave device. If the trans-  
mitted slave address matches the address of the FMS9884A  
which set by the state of the ADD pin, the FMS9884A  
acknowledges by pulling SDA LOW on the 9th SCL pulse  
(see Figure 26). If the addresses do not match or the register  
being accessed is 0x0F, the FMS9884A does not  
acknowledge.  
Write to one register  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte  
4. Data byte to base address  
5. Stop signal  
For each byte of data read or written, the MSB is the first bit  
of the sequence.  
Write to four consecutive registers  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte  
4. Data byte to base address  
5. Data byte to (base address + 1)  
6. Data byte to (base address + 2)  
7. Data byte to (base address + 3)  
8. Stop signal  
Data Transfer via Serial Interface  
If a slave device, such as the FMS9884A does not acknowl-  
edge the master device during a write sequence, SDA  
remains HIGH so the master can generate a stop signal. Dur-  
ing a read sequence, if the master device does not acknowl-  
edge by bringing SDA = L, the FMS9884A interprets SDA =  
H as “end of data.” SDA remains HIGH so the master can  
generate a stop signal (Figure 24, right waveform).  
Read from one register  
To write data to a specific FMS9884A control register, three  
bytes are sent:  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte (= base address)  
4. Stop signal (optional)  
5. Start signal  
6. Slave Address byte (R/W bit = HIGH)  
7. Data byte from base address  
8. Stop signal  
1. Write the slave address byte with bit R/W = L.  
2. Write the pointer byte.  
3. Write to the control register indexed by the pointer.  
After each byte is written, the pointer auto-increments to  
allow multiple data byte transfers within one write cycle.  
Data is read from the control registers of the FMS9884A in a  
similar manner, except that two data transfer operations are  
required:  
Read from four registers  
1. Start signal  
2. Slave Address byte (R/W bit = LOW)  
3. Pointer byte (= base address)  
4. Stop signal (optional)  
1. Write the slave address byte with bit R/W = L.  
2. Write the pointer byte.  
3. Write the slave address byte with bit R/W = H  
4. Read the control register indexed by the pointer.  
5. Start signal  
6. Slave Address byte (R/W bit = HIGH)  
7. Data byte from base address  
8. Data byte from (base address + 1)  
9. Data byte from (base address + 2)  
10. Data byte from (base address + 3)  
11. Stop signal  
After each byte is read, the pointer auto-increments to allow  
multiple data byte transfers within one read cycle.  
Preceding each slave write, there must be a start cycle.  
Following the pointer byte there should be a stop cycle.  
REV. 1.2.2 12/7/01  
19  
PRODUCT SPECIFICATION  
FMS9884A  
Absolute Maximum Ratings  
(beyond which the device may be damaged)1  
Parameter  
Power Supply Voltages  
VCC (Measured to GND)  
Digital Inputs  
Min.  
Typ.  
Max.  
Unit  
-0.5  
4
V
Applied voltage (Measured to GND)2  
Forced current3, 4  
-0.3  
-5.0  
VDDA  
5.0  
V
mA  
Analog Inputs  
Applied Voltage (Measured to GND)2  
Forced current3, 4  
-0.5  
VDDA  
10.0  
V
-10.0  
mA  
Digital Outputs  
Applied voltage (Measured to GND)2  
Forced current3, 4  
Forced current3, 4  
-0.5  
-6.0  
-8.0  
V
mA  
6.0  
8.0  
1
mA  
Short circuit duration (single output in HIGH state to ground)  
Temperature  
second  
Junction  
150  
300  
220  
150  
150  
°C  
°C  
°C  
°C  
V
Lead Soldering (10 seconds)  
Vapor Phase Soldering (1 minute)  
Storage  
-65  
Electrostatic Discharge5  
Notes:  
1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if  
Operating Conditions are not exceeded.  
2. Applied voltage must be current limited to specified range.  
3. Forcing voltage must be limited to specified range.  
4. Current is specified as conventional current flowing into the device.  
5. EIAJ test method.  
Operating Conditions  
Parameter  
VDDA  
Min.  
3.0  
3.0  
3.4  
2.2  
0
Nom.  
3.3  
Max.  
3.6  
3.6  
3.6  
3.6  
70  
Units  
ADC Power Supply Voltage  
PLL Power Supply Voltage  
V
VDDP  
140 Ms/s  
3.3  
V
V
> 140 Ms/s  
3.5  
VDDO  
TA  
Output Power Supply Voltage  
Ambient Temperature, Still Air  
A/D analog input range, min.  
A/D analog input range, max.  
2.53.3  
V
°C  
500  
mV p-p  
mV p-p  
1000  
20  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
Electrical Characteristics1  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
Power Supply Currents  
IDDA  
IDDD  
IDDP  
PD  
Supply current, ADC  
Supply current2, Digital Output  
Supply current, PLL  
Operating, 25°C  
Operating, 25°C  
Operating, 25°C  
0 to 70°C  
210 270  
mA  
mA  
mA  
30  
50  
40  
65  
Power dissipation  
950 1300 mW  
IPD  
Power-down current  
0 to 70°C  
15  
50  
20  
70  
mA  
PDD  
Powered-down disspation  
0 to 70°C  
mW  
Digital Inputs/Outputs  
CI  
Input Capacitance  
25°C  
3
7
pF  
pF  
µA  
µA  
V
CO  
Output Capacitance  
25°C  
IIH  
Input Current, HIGH  
0 to 70°C  
-1  
-1  
+1  
+1  
IIL  
Input Current, LOW  
0 to 70°C  
VIH  
VIL  
Input Voltage, HIGH  
0 to 70°C  
2.5  
Input Voltage, LOW  
0 to 70°C  
0.8  
V
IOHD  
IOHC  
IOLD  
IOLC  
VOH  
VOL  
Output Current, HIGH, data  
Output Current, HIGH, clock  
Output Current, LOW, data  
Output Current, LOW, clock  
Output Voltage, HIGH  
0 to 70°C  
4
8
4
8
mA  
mA  
mA  
mA  
V
0 to 70°C  
0 to 70°C  
0 to 70°C  
IOH = max., 0 to 70°C  
IOL = max., 0 to 70°C  
VDDO0.1  
Output Voltage, LOW (VDD3  
)
0.1  
V
Serial Bus I/O  
VSMIH Input Voltage, HIGH  
VSMIL Input Voltage, LOW  
VSMOL Output Voltage, LOW  
ISMOH Output Current, HIGH (Open Drain)  
ISMOL Output Current, LOW  
Analog Inputs  
0 to 70°C  
0 to 70°C  
ISMOL = max.  
0 to 70°C  
0 to 70°C  
2.5  
-1  
V
V
0.8  
0.1  
+1  
V
µA  
mA  
4
IB  
Input bias current  
Input Offset Voltage3  
0 to 70°C  
0 to 70°C  
-1  
1
µA  
EOS  
11  
mV  
Reference Output  
Output Voltage  
Temperature Coefficient  
0 to 70°C  
0 to 70°C  
1.15  
1.25 1.35  
50  
V
ppm/°C  
Notes:  
1. Unless otherwise stated, 0 to 70°C  
2. DEMUX = 1; DCK, DCK load = 15 pF; data load = 5 pF.  
3. For optimum performance, null the input offset by calibrating gain and offset (see Firmware section under Applications  
Information).  
REV. 1.2.2 12/7/01  
21  
PRODUCT SPECIFICATION  
FMS9884A  
Switching Characteristics  
Parameter  
Conditions Min. Typ. Max.  
Unit  
Analog-to-Digital Converters  
Conversion rate  
0 to 70°C  
0 to 70°C  
10  
175  
2.0  
Ms/s  
ns  
tSKEW  
Timing Generator  
HSIN input frequency  
Data to clock skew  
-0.5  
0 to 70°C  
0 to 70°C  
15  
110  
kHz  
Maximum PLL clock rate  
FMS9884AKAC100  
FMS9884AKAC140  
FMS9884AKAC175  
108  
140  
175  
MHz  
Minimum PLL clock rate  
0 to 70°C  
20  
MHz  
Serial Bus Interface  
tDAL  
tDAH  
SCL Pulse Width, LOW  
0 to 70°C  
0 to 70°C  
0 to 70°C  
0 to 70°C  
0 to 70°C  
0 to 70°C  
0 to 70°C  
0 to 70°C  
4.7  
4.0  
4.0  
4.7  
4.0  
4.7  
250  
0
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
SCL Pulse Width, HIGH  
tSTAH  
tSTASU  
tSTOSU  
tBUFF  
tDSU  
SDA Start Hold Time  
SCL to SDA Setup Time (Start)  
SCL to SDA Setup Time (Stop)  
SDA Stop Hold Time Setup  
SDA to SCL Data Setup Time  
SDA to SCL Data Hold Time  
tDHO  
System Performance Characteristics  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Analog to Digital Converter  
ELI  
Integral Linearity Error1  
Differential Linearity Error1  
Missing Codes  
0 to 70°C  
0 to 70°C  
0 to 70°C  
0 to 70°C  
0 to 70°C  
25°C  
-2.5  
-1.0  
2.5  
+1.0  
0
LSB  
LSB  
ELD  
Input full scale matching  
Offset adjustment range  
Gain tempco  
2
6
%FS2  
%FS2  
ppm/°C  
MHz  
ns  
22  
23.5  
280  
500  
2
25  
BW  
Analog bandwidth, full power  
Transient response  
25°C  
25°C  
tOV  
Over-voltage recovery time  
25°C  
1.5  
ns  
Phase Locked Loop  
tPP Peak-to-peak PLL Jitter @  
MHz  
25.175  
31.5  
40  
25°C  
6.5  
4.1  
3.3  
2.3  
1.5  
1.0  
0.8  
0.7  
0.8  
ns  
49.5  
78.75  
108  
135  
162  
175  
22  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
System Performance Characteristics (continued)  
Parameter  
Thermal  
Conditions  
Min.  
Typ.  
Max.  
Unit  
θJC  
θJA  
Resistance, junction-to-case  
Resistance, junction-to-ambient  
8.4  
35  
°C/W  
°C/W  
Notes:  
1. Calibrated to 700 mV input.  
2. Percentage of Full Scale (uncalibrated).  
7
6
5
4
3
2
1
0
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Pixel Clock (MHz)  
Figure 27. Pixel Clock Jitter vs. Frequency  
AC Coupled Digitizer  
Applications Information  
Shown in Figure 28 is an implementation of a video digitizer  
with AC coupled RGB inputs. Horizontal sync input, HS is  
passed through a voltage divider which attenuates the 5.0 V  
logic HIGH excursion to the 3.3 V HIGH input level of the  
FMS9884A. Vertical sync is also attenuated to make the  
VSOUT level compatible with 3.3 V pixel processing fol-  
lowing the FMS9884A.  
Two applications circuits are reviewed:  
1. AC coupled digitizer with clamp.  
2. AC coupled digitizer with dual ported outputs and sync  
stripping.  
To minimize component count, use of the following on-chip  
circuits is recommended:  
1. ADC sampling clock.  
Output data is three channel port A data only with a maxi-  
mum rate of 175Ms/s 24-bit pixels. Data is clocked out on  
the negative edge of DCK. HSOUT defines the active video  
along a line, while incoming vertical sync, VSIN is propa-  
gated as VSOUT to the output data to synchronize handling  
of digitized frames of output data.  
2. Clamp.  
3. Voltage reference  
4. Dual ported data outputs  
Optimum PLL Configuration Register (address 0x0C) set-  
tings for typical graphics modes are listed in Table 3. Unless  
otherwise indicated, all modes are compliant with VESA  
specifications. For unlisted modes, values should be adjusted  
to optimize performance.  
Control is through the serial port with 150resistors  
inserted to allow interfacing with 5V logic. If the serial bus is  
operates with 3.3V levels, these resistors are unnecessary.  
By adjusting the values in the gain (GR, GG, GB) and offset  
(OSR, OSG, OSB) registers, the input conversion range can  
be matched to the incoming analog signals.  
To use the FMS9884A in applications where the PLL clock  
frequency will exceed 140 MHz, the PLL power supply  
voltage must be 3.4 V min. For applications up to and  
including 140 MHz, the PLL supply can be 3.0 V min.  
REV. 1.2.2 12/7/01  
23  
PRODUCT SPECIFICATION  
FMS9884A  
C1  
.047µF  
VDDA  
VDDO  
VDDP  
J1  
RED  
GREEN  
BLUE  
3
1
2
C2  
0.18µF  
C4  
.047µF  
U1  
4
5
6
7
8
9
10  
11  
12  
13  
14  
R1  
75  
AD9884  
C6  
33  
34  
43  
48  
50  
55  
C7  
.047µF  
0.018µF  
DB _B7  
DB _B6  
DB _B5  
DB _B4  
DB _B3  
DB _B2  
D B_B1  
DB _B0  
PVD  
PVD  
PVD  
PVD  
PVD  
56  
57  
58  
R2  
1.5K  
59  
60  
61  
62  
R3  
75  
HS  
VSIN  
7
RIN  
15  
BA[7..0]  
GA[7..0]  
RA[7..0]  
15  
22  
27  
28  
40  
75  
R4  
GIN  
65  
BA7  
DB _A7  
DB _A6  
DB _A5  
DB _A4  
DB _A3  
DB _A2  
DB _A1  
DB _A0  
SVGA  
66  
67  
68  
69  
70  
71  
BA6  
BA5  
BA4  
BA3  
BA2  
BA1  
BIN  
R5  
1K  
CLKINV  
CLAMP  
72  
BA0  
R6  
1K  
HSIN  
41  
44  
45  
29  
75  
COAST  
CKEXT  
FILT  
DG_B7  
DG_B6  
DG_B5  
DG_B4  
DG_B3  
DG_B2  
DG_B1  
DG_B0  
76  
77  
78  
79  
80  
81  
82  
R7  
1.8K  
R10 150  
R11 150  
SDA  
SCL  
SDA  
SCL  
A0  
30  
31  
32  
14  
85  
86  
87  
88  
89  
90  
91  
GA7  
GA6  
GA5  
GA4  
GA3  
GA2  
GA1  
DG_A7  
DG_A6  
DG_A5  
DG_A4  
DG_A3  
DG_A2  
DG_A1  
DG_A0  
DR_B7  
DR_B6  
DR_B5  
DR_B4  
DR_B3  
DR_B2  
R8  
1.8K  
A1  
ACSIN  
1
2
3
36  
37  
38  
46  
92  
GA0  
NC1  
NC2  
NC3  
NC4  
NC5  
NC6  
NC7  
95  
VDD  
96  
97  
98  
99  
100  
101  
102  
127  
REFIN  
DR_B1  
DR_B0  
R9  
10K  
115  
105 RA7  
106 RA6  
DATACK  
DATACK  
HSOUT  
PWRDN  
DR_A7  
DR_A6  
DR_A5  
DR_A4  
DR_A3  
DR_A2  
DR_A1  
116  
117  
125  
126  
RA5  
108 RA4  
109 RA3  
107  
110 RA2  
111 RA1  
112 RA0  
DR_A0  
REFOUT  
118  
DCSOUT  
C19  
0.1µF  
DCK  
HSOUT  
VSOUT  
Figure 28. Schematic, VGA Digitizer, Single-Port Outputs  
DCK and DCK clocks should be timed to strobe data that is  
valid between transitions.  
VGA Source with Dual Ported Outputs  
Shown in Figure 29 is a more complex implementation of a  
video digitizer. Incoming RGB video has sync-on-green.  
Output data is dual ported. COAST is shown to free wheel  
the PLL when horizontal sync is inactive or 2H pulse are  
present.  
Composite Sync from the Sync Stripper output CSOUT is  
supplied to the HSYNC input as a reference for the internal  
PLL. CSSOUT contains horizontal and vertical sync signals  
that can be extracted by subsequent Sync processing logic. If  
the vertical sync pulse omits horizontal sync or if serrations  
or equalizing pulses are present, then the sync processing  
logic should emit a COAST signal to disengage the PLL  
from the HSYNC input during the Vertical Sync interval.  
RGB inputs signals are AC coupled to the FMS9884A RGB  
inputs with the green input connected to the Sync Separator  
input, CVIN.  
Output data is three channel dual port data with a maximum  
rate of 70Ms/s per port. Port A data is synchronzed to the  
negative edge of DCK. Port B data transitions on:  
Vertical and horizontal sync waveforms within CSSOUT  
signal frame the active video area.  
1. Positive edge of DCK in the Parallel Data Out Mode.  
2. Negative edge of DCK in the Interleaved Data Out  
Mode.  
24  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
C1  
.047µF  
VPLL  
VADC  
VDD  
J1  
RED  
GREEN  
BLUE  
1
2
3
4
C2  
0.18µF  
C3  
.047µF  
U1  
C5  
.047µF  
R1  
75  
5
6
7
AD9884  
BB[7..0]  
C4  
0.018µF  
33  
34  
43  
48  
50  
55 BB7  
56 BB6  
8
9
10  
11  
12  
13  
14  
15  
PVD  
PVD  
PVD  
PVD  
PVD  
DB _B7  
R2  
1.5K  
DB _B6  
DB _B5  
R4  
75  
57  
BB5  
R3  
75  
58 BB4  
59 BB3  
DB _B4  
DB _B3  
DB _B2  
D B_B1  
DB _B0  
60 BB2  
61 BB1  
62 BB0  
7
RIN  
BA[7..0]  
GB[7..0]  
15  
22  
27  
28  
40  
GIN  
65 BA7  
DB _A7  
DB _A6  
DB _A5  
DB _A4  
DB _A3  
DB _A2  
DB _A1  
DB _A0  
SVGA  
66 BA6  
67 BA5  
68 BA4  
69 BA3  
70 BA2  
71 BA1  
BIN  
CLKINV  
CLAMP  
72 BA0  
HSIN  
41  
44  
45  
29  
75 GB7  
76 GB6  
77 GB5  
78 GB4  
79 GB3  
80 GB2  
81 GB1  
82 GB0  
COAST  
COAST  
CKEXT  
FILT  
DG_B7  
DG_B6  
DG_B5  
DG_B4  
DG_B3  
DG_B2  
DG_B1  
DG_B0  
PWRDN\  
SDA  
SDA  
SCL  
A0  
GA[7..0]  
RB[7..0]  
30  
31  
32  
14  
SCL  
85 GA7  
86 GA6  
87 GA5  
88 GA4  
89 GA3  
90 GA2  
91 GA1  
DG_A7  
DG_A6  
DG_A5  
DG_A4  
DG_A3  
DG_A2  
DG_A1  
DG_A0  
DR_B7  
DR_B6  
DR_B5  
DR_B4  
DR_B3  
DR_B2  
A1  
ACSIN  
1
2
3
36  
37  
38  
46  
92 GA0  
NC1  
NC2  
NC3  
NC4  
NC5  
NC6  
NC7  
95 RB7  
96 RB6  
97 RB5  
98 RB4  
99 RB3  
100 RB2  
101 RB1  
102 RB0  
127  
115  
REFIN  
DR_B1  
DR_B0  
RA[7..0]  
105 RA7  
106 RA6  
107 RA5  
108 RA4  
109 RA3  
110 RA2  
111 RA1  
112 RA0  
DATACK  
DATACK  
HSOUT  
PWRDN  
DR_A7  
DR_A6  
DR_A5  
DR_A4  
DR_A3  
DR_A2  
DR_A1  
116  
117  
125  
126  
DR_A0  
REFOUT  
118  
DCSOUT  
C17  
0.1µF  
DCK  
DCK\  
HSOUT  
Figure 29. Schematic, VGA Digitizer, Dual Port Outputs  
3. Layout traces as 75transmission lines.  
Printed Wiring Board Design Guidelines  
Recommended strategy is to mount the FMS9884A over a  
ground plane with carefully routed analog inputs and digital  
outputs. All connections should be treated as transmission  
lines to ensure that reflections due to mismatches are mini-  
mized and ground return currents do not interfere with critical  
signals.  
4. Avoid running analog traces near digital traces. Due to  
the wide input bandwidth (500MHz) digital noise can  
easily leak into analog inputs.  
5. If necessary, limit bandwidth by adding a ferrite bead in  
series with each RGB input as shown in Figure 30. A  
Fair-Rite #2508051217Z0 is recommended. Further  
bandwidth reduction using a shunt 10pF capacitor may  
reduce snow (intensity noise) caused by HF noise riding  
on the RGB input. Mismatches, reflections and noise  
may cause ringing or distortion of the incoming video  
signals.  
Analog Inputs  
Recommendations:  
1. Keep analog trace lengths short to minimize crosstalk.  
2. Terminate analog inputs with 75resistors, placed  
close to the FMS9884A analog inputs, RIN, GIN and  
BIN. By matching transmission line impedances,  
reflections will be minimized.  
6. Locate the PLL filter clear of other signals.  
REV. 1.2.2 12/7/01  
25  
PRODUCT SPECIFICATION  
FMS9884A  
7. Bypass the reference with a 0.1µF capacitor to ground.  
5. If necessary terminate the HSIN input with 330/220.  
6. If necessary, to reduce reflections, EMI or spikes add a  
C1  
47nF  
L1  
BEAD  
50–200resistor at each data output pin.  
RIN, GIN, BIN  
R,G,B INPUT  
7. To minimize noise within the FMS9884A, restrict the  
capacitive load at the digital outputs to < 10pF.  
R1  
75  
C2  
10pF  
Power and Ground  
A schematic of the recommended power distribution is  
shown in Figure 31. Note that:  
Figure 30. RGB Input Filter Options  
1. Analog and digital circuits are layed out over a common  
solid ground plane.  
Digital I/O  
Recommendations:  
2. Each FMS9884A pin is decoupled with a 0.1µF capacitor.  
1. Route digital I/O signals clear of analog inputs.  
3. A group of pins may be de-coupled through a common  
capacitor if no pin is more than 5 mm from the capacitor.  
2. Terminate clock lines to reduce reflections. Treat clock  
lines as transmission lines.  
4. A separate regulated supply is used for the phase-locked  
3. Scale the HSIN input to 3.3V, using a resistor network  
loop power supply, VDDP.  
or a series 1 kresistor.  
5. Capacitors are attached to each PLL pin or pin-pair.  
4. Limit Serial Port inputs SDA and SDL with 150Ω  
resistors connected directly to the pins.  
U3  
RC1117-3.3  
L1  
BEAD  
VPLL  
2
4
3
Pins 33, 34  
OUT  
OUT  
IN  
C2  
ADJ/GND  
0.01µF  
C1  
0.1µF  
1
Pin43  
C3  
0.1µF  
Pin48  
C4  
0.01µF  
U2  
RC1117-3.3  
2
4
3
Pin 50  
OUT  
PowerInput  
IN  
+ C6  
10µF  
C5  
0.1µF  
OUT  
ADJ/GND  
C7  
+
C8  
10µF  
1
0.1µF  
L2  
BEAD  
VADC Pins  
VDD Pins  
C10 C11 C12 C13 C14 C15 C16  
C17  
+ C26  
10µF  
0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF  
U3  
RC1117-3.3  
L3  
BEAD  
2
4
3
OUT  
OUT  
IN  
ADJ/GND  
1
C18 C19 C20 C21 C22 C23 C24  
C9  
0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF 0.1µF  
+
C25  
10µF  
0.1µF  
Figure 31. Recommended Power Distribution  
26  
REV. 1.2.2 12/7/01  
FMS9884A  
PRODUCT SPECIFICATION  
Physical placement of PLL power supply decoupling compo-  
nents is critical. Bearing in mind the following suggestions:  
Firmware  
Best performance can be achieved by correctly setting the  
FMS9884A registers. Here are some recommendations:  
1. All components should be placed in close proximity to  
the FMS9884A pins.  
1. Set the value of PLLN equal to the number of pixels to be  
sampled minus one. With this setting, the number of  
samples per horizontal line equals the number of pixels.  
If PLLN + 1 does not equal the number of pixels, there  
will be irregular intensities on text and an interference  
pattern on a vertical grill pattern.  
2. Routing through vias should be avoided, if possible.  
3. Each VDDP/GND pin pair: 33&34/35, 43/42, 48/47, and  
50/49 should be decoupled with a 100–1000p/10µF pair  
of capacitors (see Figure 31). If board space is limited,  
use as many capacitor pairs as possible.  
4. Use Fair-rite 274 301 9447 bead.  
2. Calibrate Offset and Gain by first setting each input to  
0mV. Then adjust OSR, OSG, and OSB to set each RGB  
data output D7-0 = 0x00. Next with 700mV input, adjust  
GR, GG and GB so that each RGB data output D7-0  
(same value), typically 240 decimal.  
=
3. Clamp registers, CD and CW, should be programmed to  
maximize the period of the clamp during the backporch,  
while not encroaching into the sync or active video  
periods.  
4. PHASE must be trimmed to minimize onscreen snow  
(intensity noise) when a vertical grill pattern is displayed.  
5. FVCO must be set to encompass the incoming  
frequency range.  
6. IPUMP must be set to minimize intensity noise.  
7. To ensure correct power-on defaults, program all regis-  
ters including Test Register 0x0F, which must be set to  
0x00 for normal operation. Note that unlike registers  
0x00 through 0x0D, register 0x0F does not acknowledge.  
The ACK bit remains H instead of being pulled L.  
REV. 1.2.2 12/7/01  
27  
PRODUCT SPECIFICATION  
FMS9884A  
Mechanical Dimensions  
128-Lead MQFP (KA) Package  
Notes:  
Millimeters  
Symbol  
Notes  
1. All dimensions and tolerances conform to ANSI Y14.5M-1994.  
Min.  
Typ.  
Max  
2. Dimensions D1 and E1 do not include mold protrusion.  
Allowable mold protrusion is 0.254mm per side.  
A
3.04  
0.33  
3.40  
A1  
A2  
D
0.25  
2.57  
3. "N" is the number of terminals.  
2.87  
2.71  
3, 5  
4. Dimension "b" does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm in excess of the "b"  
dimension at the maximum material condition.  
22.60 BSC  
20.00 BSC  
18.00 BSC  
17.20 BSC  
14.00 BSC  
12.00 BSC  
0.70  
D1  
D2  
E
E1  
E2  
L
0.65  
0.13  
0.95  
0.28  
4
N
128  
0.50 BSC  
e
b
ccc  
0.12  
E
E1  
2
E2  
.40 Min.  
e
0° Min.  
0.13 R Min.  
Datum Plane  
.13/.30 R  
D2  
D1/2  
07°  
D
L
1.60 Ref.  
Lead Detail  
A2  
See Lead Detail  
Base Plane  
A
-C-  
B
Seating Plane  
A1  
LEAD COPLANARITY  
ccc  
C
28  
REV. 1.2.2 12/7/01  
PRODUCT SPECIFICATION  
FMS9884A  
Ordering Information  
Product Number  
FMS9884AKAC100  
FMS9884AKAC140  
FMS9884AKAC175  
Temperature Range  
0°C to 70°C  
Screening  
Package  
Package Marking  
Commercial  
128 Lead MQFP  
9884AKAC100  
9884AKAC140  
9884AKAC175  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO  
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME  
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in a significant injury of the user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
12/7/01 0.0m 006  
Stock#DS30009884  
2001 Fairchild Semiconductor Corporation  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY