FOD2711ATV [FAIRCHILD]

Optically Isolated Error Amplifier; 光隔离误差放大器
FOD2711ATV
型号: FOD2711ATV
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Optically Isolated Error Amplifier
光隔离误差放大器

放大器
文件: 总15页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 2008  
FOD2711  
Optically Isolated Error Amplifier  
Features  
Description  
Optocoupler, precision reference and error amplifier in  
The FOD2711 Optically Isolated Amplifier consists of the  
popular RC431A precision programmable shunt refer-  
ence and an optocoupler. The optocoupler is a gallium  
arsenide (GaAs) light emitting diode optically coupled to  
a silicon phototransistor. The reference voltage toler-  
ance is 1ꢀ. The current transfer ratio (CTR) ranges from  
100ꢀ to 200ꢀ.  
single package  
1.240V 1ꢀ reference  
CTR 100ꢀ to 200ꢀ  
5,000V RMS isolation  
UL approval E90700, Volume 2  
CSA approval 1296837  
It is primarily intended for use as the error amplifier/  
reference voltage/optocoupler function in isolated AC to  
DC power supplies and dc/dc converters.  
VDE approval 40002463  
BSI approval 8702, 8703  
Applications  
Power supplies regulation  
DC to DC converters  
When using the FOD2711, power supply designers can  
reduce the component count and save space in tightly  
packaged designs. The tight tolerance reference elimi-  
nates the need for adjustments in many applications.  
The device comes in a 8-pin dip white package.  
Functional Bock Diagram  
Package Outlines  
NC  
LED  
1
8
8
1
C
E
FB  
2
3
4
7
6
5
COMP  
GND  
8
8
NC  
1
1
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
Pin Definitions  
Pin Number  
Pin Name  
Pin Description  
1
2
3
4
5
6
7
8
NC  
C
Not connected  
Phototransistor Collector  
Phototransistor Emitter  
Not connected  
E
NC  
GND  
COMP  
FB  
Ground  
Error Amplifier Compensation. This pin is the output of the error amplifier.*  
Voltage Feedback. This pin is the inverting input to the error amplifier  
Anode LED. This pin is the input to the light emitting diode.  
LED  
*The compensation network must be attached between pins 6 and 7.  
Typical Application  
FAN4803  
PWM  
Control  
V1  
VO  
FOD2711  
2
3
8
6
7
R1  
R2  
5
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
2
Absolute Maximum Ratings (T = 25°C unless otherwise specified)  
A
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Value  
Units  
T
Storage Temperature  
-40 to +125  
°C  
°C  
STG  
T
Operating Temperature  
Lead Solder Temperature  
Input Voltage  
-40 to +85  
OPR  
T
260 for 10 sec.  
°C  
SOL  
V
13.2  
20  
V
LED  
LED  
I
Input DC Current  
mA  
V
V
V
Collector-Emitter Voltage  
Emitter-Collector Voltage  
Collector Current  
30  
CEO  
7
V
ECO  
I
50  
mA  
mW  
mW  
mW  
C
(1)  
PD1  
PD2  
PD3  
Input Power Dissipation  
145  
85  
(2)  
Transistor Power Dissipation  
(3)  
Total Power Dissipation  
145  
Notes:  
1. Derate linearly from 25°C at a rate of 2.42mW/°C  
2. Derate linearly from 25°C at a rate of 1.42mW/°C.  
3. Derate linearly from 25°C at a rate of 2.42mW/°C.  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
3
Electrical Characteristics (T = 25°C unless otherwise specified)  
A
Input Characteristics  
Symbol  
Parameter  
Test Conditions  
Min. Typ.* Max. Unit  
V
LED Forward Voltage  
Reference Voltage  
-40°C to +85°C  
25°C  
I
= 10mA, V  
= V (Fig. 1)  
1.5  
V
F
LED  
COMP  
FB  
V
V
= V , I  
= 10mA (Fig.1)  
REF  
COMP  
FB LED  
1.221  
1.259  
V
1.228 1.240 1.252  
V
Deviation of V  
Temperature  
Over  
T = -40 to +85°C  
4
12  
mV  
REF (DEV)  
REF  
(4)  
A
V  
/
Ratio of Vref Variation  
to the Output of the Error  
Amplifier  
I
= 10 mA, V  
= V to 12V  
REF  
-1.5  
-2.7 mV/V  
REF  
LED  
COMP  
V  
(Fig. 2)  
COMP  
I
Feedback Input Current  
I
= 10mA, R1 = 10k(Fig. 3)  
0.15  
0.15  
0.5  
0.3  
µA  
µA  
REF  
LED  
I
Deviation of I  
Over  
T = -40°C to +85°C  
A
REF (DEV)  
REF  
(4)  
Temperature  
I
Minimum Drive Current  
V
V
= V (Fig. 1)  
55  
80  
µA  
µA  
LED (MIN)  
COMP  
FB  
I
Off-State Error Amplifier  
Current  
= 6V, V = 0 (Fig. 4)  
0.001  
0.1  
(OFF)  
LED  
FB  
| Z  
|
Error Amplifier Output  
Impedance  
V
= V , I = 0.1mA to 15mA,  
FB LED  
0.25  
OUT  
COMP  
(5)  
f<1 kHZ)  
Output Characteristics  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
I
Collector Dark Current  
V
= 10V (Fig. 5)  
50  
nA  
V
CEO  
CE  
BV  
BV  
Emitter-Collector Voltage Breakdown  
Collector-Emitter Voltage Breakdown  
I = 100µA  
7
ECO  
CEO  
E
I = 1.0mA  
70  
V
C
Transfer Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
CTR  
Current Transfer Ratio  
I
= 10mA, V  
= V ,  
FB  
100  
200  
%
LED  
COMP  
V
= 5V (Fig. 6)  
CE  
V
Collector-Emitter Saturation  
Voltage  
I
= 10mA, V  
= V  
0.4  
V
CE (SAT)  
LED  
COMP  
FB,  
I = 2.5mA (Fig. 6)  
C
Notes:  
4. The deviation parameters V  
and I  
are defined as the differences between the maximum and  
REF(DEV)  
REF(DEV)  
minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the  
reference input voltage, V , is defined as:  
REF  
{VREF(DEV)/VREF(TA = 25°C)} × 106  
VREF (ppm/°C) = ----------------------------------------------------------------------------------------------------  
TA  
where T is the rated operating free-air temperature range of the device.  
A
5. The dynamic impedance is defined as |Z  
| = V  
/ I  
. When the device is operating with two external  
OUT  
COMP  
LED  
resistors (see Figure 2), the total dynamic impedance of the circuit is given by:  
V R1  
ZOUT, TOT = ------- ZOUT × 1 + -------  
I  
R2  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
4
Electrical Characteristics (Continued) (T = 25°C unless otherwise specified)  
A
Isolation Characteristics  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
I
Input-Output Insulation  
Leakage Current  
RH = 45%, T = 25°C, t = 5s,  
1.0  
µA  
I-O  
A
(6)  
V
= 3000 VDC  
I-O  
(6)  
V
Withstand Insulation  
Voltage  
RH 50%, T = 25°C, t = 1 min.  
5000  
Vrms  
ISO  
A
(6)  
12  
R
Resistance (Input to Output)  
V
= 500 VDC  
10  
I-O  
I-O  
Switching Characteristics  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
BW  
Bandwidth  
(Fig. 7)  
= 0mA, Vcm = 10 V  
10  
kHZ  
CMH  
Common Mode Transient  
Immunity at Output HIGH  
I
,
PP  
1.0  
kV/µs  
LED  
(7)  
R = 2.2k(Fig. 8)  
L
CML  
Common Mode Transient  
Immunity at Output LOW  
I
= 1mA, Vcm = 10 V  
1.0  
kV/µs  
LED  
PP,  
(7)  
R = 2.2k(Fig. 8)  
L
Notes:  
6. Device is considered as a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted  
together.  
7. Common mode transient immunity at output high is the maximum tolerable (positive) dVcm/dt on the leading edge  
of the common mode impulse signal, Vcm, to assure that the output will remain high. Common mode transient  
immunity at output low is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common pulse  
signal,Vcm, to assure that the output will remain low.  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
5
Test Circuits  
I(LED)  
I(LED)  
8
2
3
8
2
3
VF  
6
7
R1  
6
7
V
V
VCOMP  
VREF  
R2  
VREF  
5
5
Figure 1. VREF, VF, ILED (min.) Test Circuit  
Figure 2. VREF / VCOMP Test Circuit  
I(LED)  
I(OFF)  
8
2
3
8
2
IREF  
6
6
3
V(LED)  
7
7
V
V
R1  
5
5
Figure 3. IREF Test Circuit  
Figure 4. I(OFF) Test Circuit  
I(LED)  
ICEO  
IC  
8
8
2
2
3
VCE  
VCE  
6
7
6
3
7
VCOMP  
VREF  
V
5
5
Figure 5. ICEO Test Circuit  
Figure 6. CTR, VCE(sat) Test Circuit  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
6
Test Circuits (Continued)  
VCC = +5V DC  
IF = 10mA  
47Ω  
1
2
3
4
8
7
6
5
RL  
1µf  
VOUT  
VIN  
0.47V  
0.1 VPP  
Figure 7. Frequency Response Test Circuit  
VCC = +5V DC  
IF = 0mA (A)  
IF = 10mA (B)  
R1  
2.2kΩ  
1
2
3
4
8
7
6
5
VOUT  
A B  
VCM  
_
+
10VP-P  
Figure 8. CMH and CML Test Circuit  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
7
Typical Performance Curves  
Fig. 9a LED Current vs. Cathode Voltage  
Fig. 9b LED Current vs. Cathode Voltage  
15  
10  
5
150  
100  
50  
TA = 25°C  
VCOMP = VFB  
TA = 25°C  
VCOMP = VFB  
0
0
-5  
-50  
-100  
-150  
-10  
-15  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
-1  
0
1
2
V
– CATHODE VOLTAGE (V)  
COMP  
V
COMP  
– CATHODE VOLTAGE (V)  
Fig. 10 Reference Voltage vs. Ambient Temperature  
Fig. 11 Reference Current vs. Ambient Temperature  
280  
ILED = 10mA  
1.244  
ILED = 10mA  
R1 = 10 kΩ  
260  
240  
220  
200  
180  
160  
140  
120  
1.242  
1.240  
1.238  
1.236  
1.234  
1.232  
1.230  
-40  
-20  
0
20  
– AMBIENT TEMPERATURE (°C)  
A
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
T
T
– AMBIENT TEMPERATURE (°C)  
A
Fig. 13 Forward Current vs. Forward Voltage  
Fig. 12 Off-State Current vs. Ambient Temperature  
20  
15  
10  
V
CC = 13.2V  
1000  
100  
10  
25°C  
70°C  
0°C  
1
5
0.1  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
-40  
-20  
0
20  
40  
60  
80  
100  
T
A
– AMBIENT TEMPERATURE (°C)  
V
– FORWARD VOLTAGE (V)  
F
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
8
Typical Performance Curves (Continued)  
Fig. 15 Collector Current vs. Ambient Temperature  
Fig. 14 Dark Current vs. Ambient Temperature  
10000  
30  
25  
20  
15  
10  
5
VCE = 5V  
VCE = 10V  
1000  
I
LED = 20mA  
100  
10  
1
ILED = 10mA  
I
LED = 5mA  
ILED = 1mA  
60  
0.1  
-40  
0
-20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
70  
80  
90  
100  
T
A
– AMBIENT TEMPERATURE (°C)  
T
A
– AMBIENT TEMPERATURE (°C)  
Fig. 17 Saturation Voltage vs. Ambient Temperature  
Fig. 16 Current Transfer Ratio vs. LED Current  
0.26  
VCE = 5V  
140  
120  
100  
80  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0°C  
25°C  
70°C  
60  
40  
-40  
-20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
T
A
– AMBIENT TEMPERATURE (°C)  
I
– FORWARD CURRENT (mA)  
LED  
Fig. 19 Rate of Change Vref to Vcomp vs. Temperature  
Fig. 18 Collector Current vs. Collector Voltage  
35  
30  
25  
20  
15  
10  
5
TA = 25°C  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
ILED = 20mA  
ILED = 10mA  
ILED = 5mA  
ILED = 1mA  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
V
– COLLECTOR-EMITTER VOLTAGE (V)  
CE  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
9
Typical Performance Curves (Continued)  
Fig. 20 Voltage Gain vs. Frequency  
V
= 10V  
CC  
= 10mA  
I
F
0
R
= 100Ω  
L
-5  
-10  
R
L
= 1kΩ  
R
=500Ω  
L
-15  
0.1  
1
10  
100  
1000  
FREQUENCY (kHZ)  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
10  
The FOD2711  
The FOD2711 is an optically isolated error amplifier. It  
incorporates three of the most common elements neces-  
sary to make an isolated power supply, a reference volt-  
age, an error amplifier, and an optocoupler. It is  
functionally equivalent to the popular RC431A shunt volt-  
age regulator plus the CNY17F-3 optocoupler.  
Compensation  
The compensation pin of the FOD2711 provides the  
opportunity for the designer to design the frequency  
response of the converter. A compensation network may  
be placed between the COMP pin and the FB pin. In  
typical low-bandwidth systems, a 0.1µF capacitor may  
be used. For converters with more stringent require-  
ments, a network should be designed based on mea-  
surements of the system’s loop. An excellent reference  
for this process may be found in “Practical Design of  
Power Supplies” by Ron Lenk, IEEE Press, 1998.  
Powering the Secondary Side  
The LED pin in the FOD2711 powers the secondary  
side, and in particular provides the current to run the  
LED. The actual structure of the FOD2711 dictates the  
minimum voltage that can be applied to the LED pin: The  
error amplifier output has a minimum of the reference  
voltage, and the LED is in series with that. Minimum volt-  
age applied to the LED pin is thus 1.24V + 1.5V = 2.74V.  
This voltage can be generated either directly from the  
output of the converter, or else from a slaved secondary  
winding. The secondary winding will not affect regula-  
tion, as the input to the FB pin may still be taken from the  
output winding.  
Secondary Ground  
The GND pin should be connected to the secondary  
ground of the converter.  
No Connect Pins  
The NC pins have no internal connection. They should  
not have any connection to the secondary side, as this  
may compromise the isolation structure.  
The LED pin needs to be fed through a current limiting  
resistor. The value of the resistor sets the amount of cur-  
rent through the LED, and thus must be carefully  
selected in conjunction with the selection of the primary  
side resistor.  
Photo-Transistor  
The Photo-transistor is the output of the FOD2711. In a  
normal configuration the collector will be attached to a  
pull-up resistor and the emitter grounded. There is no  
base connection necessary.  
Feedback  
The value of the pull-up resistor, and the current limiting  
resistor feeding the LED, must be carefully selected to  
account for voltage range accepted by the PWM IC, and  
for the variation in current transfer ratio (CTR) of the  
opto-isolator itself.  
Output voltage of a converter is determined by selecting  
a resistor divider from the regulated output to the FB pin.  
The FOD2711 attempts to regulate its FB pin to the  
reference voltage, 1.24V. The ratio of the two resistors  
should thus be:  
Example: The voltage feeding the LED pins is +12V, the  
voltage feeding the collector pull-up is +10V, and the  
PWM IC is the Fairchild KA1H0680, which has a 5V ref-  
erence. If we select a 10Kresistor for the LED, the  
maximum current the LED can see is:  
RTOP  
------------------------- = -------------- 1  
RBOTTOM VREF  
VOUT  
The absolute value of the top resistor is set by the input  
offset current of 0.8µA. To achieve 1ꢀ accuracy, the  
resistance of R  
(12V–2.74V) / 10k= 926µA.  
should be:  
TOP  
The CTR of the opto-isolator is a minimum of 100ꢀ, and  
so the minimum collector current of the photo-transistor  
when the diode is full on is also 926µA. The collector  
resistor must thus be such that:  
V
OUT 1.24  
------------------------------- > 80 µA  
RTOP  
10V 5V  
----------------------------------- < 926 µA or RCOLLECTOR > 5.4K;  
RCOLLECTOR  
select 10kto allow some margin.  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
11  
Package Dimensions  
Through Hole  
0.4" Lead Spacing  
PIN 1  
ID.  
PIN 1  
ID.  
1
0.270 (6.86)  
0.250 (6.35)  
0.270 (6.86)  
0.250 (6.35)  
0.390 (9.91)  
0.370 (9.40)  
0.070 (1.78)  
0.045 (1.14)  
0.390 (9.91)  
0.370 (9.40)  
0.020 (0.51) MIN  
0.200 (5.08)  
0.140 (3.55)  
0.070 (1.78)  
0.045 (1.14)  
0.154 (3.90)  
0.120 (3.05)  
0.004 (0.10) MIN  
0.200 (5.08)  
0.140 (3.55)  
15° MAX  
0.022 (0.56)  
0.016 (0.41)  
0.016 (0.40)  
0.008 (0.20)  
0.154 (3.90)  
0.120 (3.05)  
0.300 (7.62)  
TYP  
0.100 (2.54) TYP  
0.022 (0.56)  
0.016 (0.41)  
0° to 15°  
0.016 (0.40)  
0.008 (0.20)  
0.400 (10.16)  
TYP  
0.100 (2.54) TYP  
Surface Mount  
8-Pin DIP – Land Pattern  
0.390 (9.91)  
0.370 (9.40)  
0.070 (1.78)  
PIN 1  
ID.  
0.060 (1.52)  
0.270 (6.86)  
0.250 (6.35)  
0.100 (2.54)  
0.295 (7.49)  
0.415 (10.54)  
0.030 (0.76)  
0.300 (7.62)  
TYP  
0.070 (1.78)  
0.045 (1.14)  
0.020 (0.51)  
MIN  
0.016 (0.41)  
0.008 (0.20)  
0.045 (1.14)  
0.022 (0.56)  
0.016 (0.41)  
0.315 (8.00)  
MIN  
0.100 (2.54)  
TYP  
0.405 (10.30)  
MAX.  
Lead Coplanarity : 0.004 (0.10) MAX  
Note:  
All dimensions are in inches (millimeters)  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
12  
Ordering Information  
Option  
Example Part Number  
FOD2711A  
Description  
No Option  
Standard Through Hole  
S
SD  
T
FOD2711AS  
Surface Mount Lead Bend  
Surface Mount; Tape and Reel  
0.4" Lead Spacing  
FOD2711ASD  
FOD2711AT  
V
FOD2711AV  
VDE0884  
TV  
SV  
SDV  
FOD2711ATV  
FOD2711ASV  
FOD2711ASDV  
VDE0884; 0.4” Lead Spacing  
VDE0884; Surface Mount  
VDE0884; Surface Mount; Tape and Reel  
Marking Information  
1
2
2711  
6
V XX YY B  
5
3
4
Definitions  
Fairchild logo  
1
Device number  
2
3
VDE mark (Note: Only appears on parts ordered with VDE  
option – See order entry table)  
Two digit year code, e.g., ‘03’  
4
5
6
Two digit work week ranging from ‘01’ to ‘53’  
Assembly package code  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
13  
Carrier Tape Specifications  
D0  
P0  
P2  
t
E
K0  
F
W
W1  
P
User Direction of Feed  
d
D1  
Symbol  
Description  
Dimension in mm  
16.0 0.3  
0.30 0.05  
4.0 0.1  
W
t
Tape Width  
Tape Thickness  
P
Sprocket Hole Pitch  
Sprocket Hole Diameter  
Sprocket Hole Location  
Pocket Location  
0
D
1.55 0.05  
1.75 0.10  
7.5 0.1  
0
E
F
P
4.0 0.1  
2
P
Pocket Pitch  
12.0 0.1  
10.30 0.20  
10.30 0.20  
4.90 0.20  
1.6 0.1  
A
Pocket Dimensions  
0
0
0
B
K
W
Cover Tape Width  
1
d
Cover Tape Thickness  
0.1 max  
Max. Component Rotation or Tilt  
Min. Bending Radius  
10°  
R
30  
Reflow Profile  
245C, 10–30 s  
300  
250  
200  
150  
100  
50  
260C peak  
Time above 183C, <160 sec  
Ramp up = 2–10C/sec  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time (Minute)  
• Peak reflow temperature: 260C (package surface temperature)  
• Time of temperature higher than 183C for 160 seconds or less  
• One time soldering reflow is recommended  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
14  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
PDP SPM™  
The Power Franchise®  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
FPS™  
Power-SPM™  
PowerTrench®  
Programmable Active Droop™  
QFET®  
F-PFS™  
FRFET®  
Global Power ResourceSM  
Green FPS™  
Green FPS™e-Series™  
GTO™  
TinyBoost™  
TinyBuck™  
TinyLogic®  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
µSerDes™  
QS™  
Current Transfer Logic™  
EcoSPARK®  
Quiet Series™  
RapidConfigure™  
Saving our world, 1mW at a time™  
SmartMax™  
EfficentMax™  
EZSWITCH™ *  
IntelliMAX™  
ISOPLANAR™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
SMART START™  
SPM®  
®
STEALTH™  
SuperFET™  
SuperSOT-3  
SuperSOT-6  
SuperSOT-8  
SupreMOS™  
MicroPak™  
Fairchild®  
MillerDrive™  
MotionMax™  
Motion-SPM™  
OPTOLOGIC®  
UHC®  
Ultra FRFET™  
UniFET™  
VCX™  
Fairchild Semiconductor®  
FACT Quiet Series™  
FACT®  
FAST®  
OPTOPLANAR®  
FastvCore™  
®
VisualMax™  
SyncFET™  
FlashWriter® *  
®
* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR  
CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE  
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,  
WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its  
safety or effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,  
under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts.  
Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications,  
and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of  
counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are  
listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have  
full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information.  
Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide  
any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our  
customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications may change in  
any manner without notice.  
Advance Information  
Preliminary  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild  
Semiconductor reserves the right to make changes at any time without notice to improve design.  
First Production  
Full Production  
Not In Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes  
at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The  
datasheet is for reference information only.  
Rev. I35  
©2003 Fairchild Semiconductor Corporation  
FOD2711 Rev. 1.0.1  
www.fairchildsemi.com  
15  

相关型号:

FOD2711AV

Optically Isolated Error Amplifier
FAIRCHILD

FOD2711AV

8 引脚 DIP 误差放大器光耦合器
ONSEMI

FOD2711S

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, SURFACE MOUNT, DIP-8
ROCHESTER

FOD2711SDV

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, SURFACE MOUNT, DIP-8
ROCHESTER

FOD2711SR2

Transistor Output Optocoupler, 1-Element, 5000V Isolation, SURFACE MOUNT, DIP-8
FAIRCHILD

FOD2711TV

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, DIP-8
ROCHESTER

FOD2711V

Transistor Output Optocoupler, 1-Element, 5000V Isolation, DIP-8
FAIRCHILD

FOD2711_08

Optically Isolated Error Amplifier
FAIRCHILD

FOD2712

OPTICALLY ISOLATED ERROR AMPLIFIER
FAIRCHILD

FOD2712.R1

Transistor Output Optocoupler, 1-Element, 2500V Isolation, SO-8
FAIRCHILD

FOD2712A

Optically Isolated Error Amplifier
FAIRCHILD

FOD2712A

8引脚SOIC误差放大器光耦合器
ONSEMI