FSL126MRT [FAIRCHILD]

Green-Mode Fairchild Power Switch (FPS™); 绿色模式飞兆功率开关( FPSA ?? ¢ )
FSL126MRT
型号: FSL126MRT
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Green-Mode Fairchild Power Switch (FPS™)
绿色模式飞兆功率开关( FPSA ?? ¢ )

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总13页 (文件大小:873K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 2012  
FSL126MRT  
Green-Mode Fairchild Power Switch (FPS™)  
Features  
Description  
The FSL126MRT is an integrated Pulse Width  
Modulation (PWM) controller and SenseFET specifically  
designed for offline Switch-Mode Power Supplies  
(SMPS) with minimal external components. The PWM  
controller includes an integrated fixed-frequency  
oscillator, Under-Voltage Lockout (UVLO), Leading-  
Edge Blanking (LEB), optimized gate driver, internal  
soft-start, temperature-compensated precise current  
sources for loop compensation, and self-protection  
circuitry. Compared with a discrete MOSFET and PWM  
controller solution, the FSL126MRT can reduce total  
cost, component count, size, and weight; while  
simultaneously increasing efficiency, productivity, and  
system reliability. This device provides a basic platform  
suited for cost-effective design of a flyback converter.  
. Internal Avalanched Rugged 650V SenseFET  
. Advanced Soft Burst-Mode Operation for Low  
Standby Power and Low Audible Noise  
. Random Frequency Fluctuation for Low EMI  
. Pulse-by-Pulse Current Limit  
. Various Protection Functions: Overload Protection  
(OLP), Over-Voltage Protection (OVP), Abnormal  
Over-Current Protection (AOCP), Internal Thermal  
Shutdown (TSD) with Hysteresis and Under-Voltage  
Lockout (UVLO) with Hysteresis  
. Low Operating Current(0.4mA) in Burst Mode  
. Internal Startup Circuit  
. Built-in Soft-Start: 15ms  
. Auto-Restart Mode  
Applications  
. Power Supply for STB Home Appliances, and DVD  
Combination  
Ordering Information  
Output Power Table(2)  
Operating  
Junction  
Temperature  
Part  
Number  
CurrentRDS(ON) 230VAC ± 15%(3)  
85~265VAC  
Package  
Replaces Device  
Limit (Max.)  
Open  
Open  
Adapter(4)  
Adapter(4)  
Frame(5)  
Frame(5)  
TO-220F  
6-Lead(1)  
W-Forming  
-40°C ~  
+125°C  
FSL126MRT  
1.2A  
30W  
40W  
17W  
25W KA5M0265RYDTU  
6.2Ω  
Notes:  
1. Pb-free package per JEDEC J-STD-020B.  
2. The junction temperature can limit the maximum output power.  
3. 230VAC or 100/115VAC with voltage doubler.  
4. Typical continuous power in a non-ventilated enclosed adapter measured at 50°C ambient temperature.  
5. Maximum practical continuous power in an open-frame design at 50°C ambient temperature.  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
Application Circuit  
VO  
AC  
IN  
VSTR  
Drain  
GND  
VCC  
FB  
Figure 1.  
Typical Application Circuit  
Internal Block Diagram  
VSTR  
VCC  
Drain  
6
3
1
Vburst  
0.40V / 0.55V  
ICH  
Soft Burst  
VREF  
VCC Good  
7.5V / 12V  
Random  
OSC  
VCC  
VREF  
Soft-Start  
2.0µA  
IDELAY  
90µA  
IFB  
S
R
Q
Q
PWM  
Gate  
Driver  
FB  
4
5
3R  
R
LEB (350ns)  
NC  
2
GND  
VAOCP  
VSD  
7.0V  
TSD  
S
R
Q
VCC  
VCC Good  
Q
VOVP  
24.5V  
Figure 2.  
Internal Block Diagram  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
2
Pin Configuration  
Figure 3.  
Pin Configuration (Top View)  
Pin Definitions  
Pin #  
Name  
Drain  
GND  
Description  
1
2
SenseFET Drain. High-voltage power SenseFET drain connection.  
Ground. This pin is the control ground and the SenseFET source.  
Power Supply. This pin is the positive supply input, which provides the internal operating  
current for both startup and steady-state operation.  
3
VCC  
Feedback. This pin is internally connected to the inverting input of the PWM comparator.  
The collector of an opto-coupler is typically tied to this pin. For stable operation, a capacitor  
should be placed between this pin and GND. If the voltage of this pin reaches 7V, the overload  
protection triggers, which shuts down the FPS.  
4
5
6
FB  
NC  
No Connection  
Startup. This pin is connected directly, or through a resistor, to the high-voltage DC link.  
At startup, the internal high-voltage current source supplies internal bias and charges the  
external capacitor connected to the VCC pin. Once VCC reaches 12V, the internal current  
source (ICH) is disabled.  
VSTR  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VSTR  
VDS  
Parameter  
Min.  
Max.  
650  
650  
26  
Unit  
V
VSTR Pin Voltage  
Drain Pin Voltage  
VCC Pin Voltage  
V
VCC  
VFB  
V
Feedback Pin Voltage  
Drain Current Pulsed(6)  
-0.3  
10.0  
8
V
IDM  
A
IDS  
Continuous Switching Drain Current  
Single Pulsed Avalanche Energy(7)  
Total Power Dissipation (TC=25°C)(8)  
Maximum Junction Temperature  
Operating Junction Temperature(9)  
Storage Temperature  
2
A
EAS  
73  
mJ  
W
°C  
°C  
°C  
PD  
50  
150  
+125  
+150  
TJ  
-40  
-55  
TSTG  
Notes:  
6. Repetitive peak switching current when the inductive load is assumed: Limited by maximum duty (DMAX=0.74)  
and junction temperature (see Figure 4).  
7. L=45mH, starting TJ=25°C.  
8. Infinite cooling condition (refer to the SEMI G30-88).  
9. Although this parameter guarantees IC operation, it does not guarantee all electrical characteristics.  
Figure 4.  
Repetitive Peak Switching Current  
ESD Capability  
Symbol  
Parameter  
Value  
Unit  
Human Body Model, JESD22-A114  
Charged Device Model, JESD22-C101  
5
2
ESD  
KV  
Thermal Impedance  
TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Value  
63.5  
2.9  
Unit  
°C/W  
°C/W  
θJA  
θJC  
Junction-to-Ambient Thermal Impedance(10)  
Junction-to-Case Thermal Impedance(11)  
Notes:  
10. Free standing without heat sink under natural convection condition, per JEDEC 51-2 and 1-10.  
11. Infinite cooling condition per Mil Std. 883C method 1012.1.  
© 2012 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSL126MRT • Rev. 1.0.0  
4
Electrical Characteristics  
TJ = 25°C unless otherwise specified.  
Symbol  
Parameter  
Condition  
Min. Typ. Max.  
Unit  
SenseFET Section  
BVDSS  
IDSS  
Drain-Source Breakdown Voltage  
Zero-Gate-Voltage Drain Current  
Drain-Source On-State Resistance  
Input Capacitance(12)  
Output Capacitance(12)  
Reverse Transfer Capacitance(12)  
Rise Time  
650  
V
V
CC=0V, ID=250μA  
250  
VDS=520V, TA=125°C  
μA  
RDS(ON)  
CISS  
COSS  
CRSS  
tr  
VGS=10V, ID=1A  
4.9  
210  
33.3  
4.1  
6.2  
VDS=25V, VGS=0V, f=1MHz  
VDS=25V, VGS=0V, f=1MHz  
VDS=25V, VGS=0V, f=1MHz  
VDS=325V, ID=2A, RG=25Ω  
VDS=325V, ID=2A, RG=25Ω  
VDS=325V, ID=2A, RG=25Ω  
VDS=325V, ID=2A, RG=25Ω  
pF  
pF  
pF  
ns  
ns  
ns  
ns  
16.4  
23  
tf  
Fall Time  
td(on)  
td(off)  
Turn-On Delay  
23  
Turn-Off Delay  
17.2  
Control Section  
fS  
ΔfS  
Switching Frequency(12)  
Switching Frequency Variation(12)  
VCC=14V, VFB=4V  
-25°C < TJ < 125°C  
VCC=14V, VFB=4V  
VCC=14V, VFB=0V  
VFB=0  
61  
61  
67  
±5  
67  
73  
±10  
73  
kHz  
%
DMAX  
DMIN  
IFB  
Maximum Duty Ratio  
%
Minimum Duty Ratio  
0
%
Feedback Source Current  
65  
11  
90  
12  
7.5  
15  
115  
13  
μA  
V
VSTART  
VSTOP  
tS/S  
VFB=0V, VCC Sweep  
After Turn-on, VFB=0V  
VCC Sweep  
UVLO Threshold Voltage  
Internal Soft-Start Time  
7.0  
8.0  
V
ms  
Burst-Mode Section  
VBURH  
0.46  
0.33  
0.55  
0.40  
150  
0.66  
0.48  
V
V
VBURL  
Burst-Mode Voltage  
VCC=14V, VFB Sweep  
Hys  
mV  
Protection Section  
ILIM  
VSD  
Peak Drain Current Limit  
1.05  
6.45  
1.2  
1.20  
7.00  
2.0  
1.34  
7.55  
2.8  
A
V
di/dt=300mA/μs  
Shutdown Feedback Voltage  
Shutdown Delay Current  
Leading-Edge Blanking Time(12,14)  
VCC=14V, VFB Sweep  
VCC=14V, VFB=4V  
IDELAY  
tLEB  
μA  
ns  
V
350  
24.5  
140  
60  
VOVP  
TSD  
Over-Voltage Protection  
VCC Sweep  
23.0  
130  
26.0  
150  
Shutdown Temperature  
Hysteresis  
°C  
°C  
Thermal Shutdown Temperature(12)  
Hys  
Continued on the following page…  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
5
Electrical Characteristics (Continued)  
TJ = 25°C unless otherwise specified.  
Symbol  
Parameter  
Condition  
Min.  
Typ. Max.  
Unit  
Total Device Section  
Operating Supply Current,  
(Control Part in Burst Mode)  
IOP  
IOPS  
V
CC=14V, VFB=0V  
0.3  
0.4  
1.00  
120  
0.5  
mA  
mA  
μA  
Operating Switching Current,  
(Control Part and SenseFET Part)  
VCC=14V, VFB=2V  
1.35  
VCC=11V (Before VCC  
Reaches VSTART  
ISTART  
Start Current  
85  
155  
1.3  
)
ICH  
Startup Charging Current  
VCC=VFB=0V, VSTR=40V  
VCC=VFB=0V, VSTR Sweep  
0.7  
1.0  
26  
mA  
V
VSTR  
Minimum VSTR Supply Voltage  
Notes:  
12. Although these parameters are guaranteed, they are not 100% tested in production.  
13. Average value.  
14. tLEB includes gate turn-on time.  
Comparison of KA5M0265R and FSL126MRT  
Function  
KA5M0265RYDTU  
FSL126MRT  
Built-in  
Advantages of FSL126MRT  
Random Frequency  
Fluctuation  
N/A  
7mA  
N/A  
Low EMI  
Operating Current  
0.4mA  
Very low stand-by power  
High-Voltage  
Startup Circuit  
Built-in  
OLP  
OVP  
OLP  
OVP  
TSD  
Protections  
Enhanced protections and high reliability  
AOCP  
TSD with Hysteresis  
The difference of input power between the  
low and high input voltage is quite small.  
Power Balance  
Long tCLD  
Very Short tCLD  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
6
Typical Performance Characteristics  
Characteristic graphs are normalized at TA=25°C.  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 125'C  
0.60  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 12  
Temperature [ °C]  
Temperature [ °C]  
Figure 5.  
Operating Supply Current (IOP) vs. TA  
Figure 6.  
Operating Switching Current (IOPS) vs. TA  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 12  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 12  
Temperature [ °C]  
Temperature [ °C]  
Figure 7.  
Startup Charging Current (ICH) vs. TA  
Figure 8.  
Peak Drain Current Limit (ILIM) vs. TA  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 125'C  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 12  
Temperature [ °C]  
Temperature [ °C]  
Figure 9.  
Feedback Source Current (IFB) vs. TA  
Figure 10. Shutdown Delay Current (IDELAY) vs. TA  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
7
Typical Performance Characteristics  
Characteristic graphs are normalized at TA=25°C.  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.60  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 125  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 125  
Temperature [ °C]  
Temperature [ °C]  
Figure 11. UVLO Threshold Voltage (VSTART) vs. TA  
Figure 12. UVLO Threshold Voltage (VSTOP) vs. TA  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.60  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 125  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 12  
Temperature [ °C]  
Temperature [ °C]  
Figure 13. Shutdown Feedback Voltage (VSD) vs. TA  
Figure 14. Over-Voltage Protection (VOVP) vs. TA  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.60  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 125  
-40'C -20'C 0'C 25'C 50'C 75'C 90'C 110'C 120'C 125  
Temperature [ °C]  
Temperature [ °C]  
Figure 15. Switching Frequency (fS) vs. TA  
Figure 16. Maximum Duty Ratio (DMAX) vs. TA  
© 2012 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSL126MRT • Rev. 1.0.0  
8
Functional Description  
1. Startup: At startup, an internal high-voltage current  
source supplies the internal bias and charges the  
external capacitor (CVCC) connected to the VCC pin, as  
illustrated in Figure 17. When VCC reaches 12V, the  
FSL126MRT begins switching and the internal high-  
voltage current source is disabled. Normal switching  
operation continues and the power is supplied from the  
auxiliary transformer winding unless VCC goes below the  
stop voltage of 7.5V.  
3. Feedback Control: This device employs Current-  
Mode control, as shown in Figure 18. An opto-coupler  
(such as the FOD817) and shunt regulator (such as the  
KA431) are typically used to implement the feedback  
network. Comparing the feedback voltage with the  
voltage across the RSENSE resistor makes it possible to  
control the switching duty cycle. When the reference pin  
voltage of the shunt regulator exceeds the internal  
reference voltage of 2.5V, the opto-coupler LED current  
increases, pulling down the feedback voltage and  
reducing drain current. This typically occurs when the  
input voltage is increased or the output load is decreased.  
3.1 Pulse-by-Pulse Current Limit: Because Current-  
Mode control is employed, the peak current through  
the SenseFET is limited by the inverting input of PWM  
comparator (VFB*), as shown in Figure 18. Assuming  
that the 90μA current source flows only through the  
internal resistor (3R + R =27k), the cathode voltage  
of diode D2 is about 2.4V. Since D1 is blocked when  
the feedback voltage (VFB) exceeds 2.4V, the  
maximum voltage of the cathode of D2 is clamped at  
this voltage. Therefore, the peak value of the current  
through the SenseFET is limited.  
3.2 Leading-Edge Blanking (LEB): At the instant the  
internal SenseFET is turned on, a high-current spike  
usually occurs through the SenseFET, caused by  
primary-side capacitance and secondary-side rectifier  
reverse recovery. Excessive voltage across the  
Figure 17. Startup Block  
2. Soft-Start: The internal soft-start circuit increases  
PWM comparator inverting input voltage, together with  
the SenseFET current, slowly after startup. The typical  
soft-start time is 15ms. The pulse width to the power  
switching device is progressively increased to establish  
the correct working conditions for the transformers,  
inductors, and capacitors. The voltage on the output  
capacitors is progressively increased to smoothly  
establish the required output voltage. This helps prevent  
transformer saturation and reduces stress on the  
secondary diode during startup.  
RSENSE resistor leads to incorrect feedback operation  
in the Current-Mode PWM control. To counter this  
effect, the leading-edge blanking (LEB) circuit inhibits  
the PWM comparator for tLEB (350ns) after the  
SenseFET is turned on.  
Figure 18. Pulse Width Modulation Circuit  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
9
increasing until it reaches 7.0V, when the switching  
operation is terminated, as shown in Figure 20. The  
delay for shutdown is the time required to charge CFB  
from 2.4V to 7.0V with 2.0µA. This protection is  
implemented in Auto-Restart Mode.  
4. Protection Circuits: The FSL126MRT has several  
self-protective functions, such as Overload Protection  
(OLP), Abnormal Over-Current Protection (AOCP),  
Over-Voltage Protection (OVP), and Thermal Shutdown  
(TSD). All the protections are implemented as auto-  
restart. Once the fault condition is detected, switching is  
terminated and the SenseFET remains off. This causes  
VCC to fall. When VCC falls to the Under-Voltage Lockout  
(UVLO) stop voltage of 7.5V, the protection is reset and  
the startup circuit charges the VCC capacitor. When VCC  
reaches the start voltage of 12.0V, the FSL126MRT  
resumes normal operation. If the fault condition is not  
removed, the SenseFET remains off and VCC drops to  
stop voltage again. In this manner, the auto-restart can  
alternately enable and disable the switching of the  
power SenseFET until the fault condition is eliminated.  
Because these protection circuits are fully integrated  
into the IC without external components, reliability is  
improved without increasing cost.  
Fault  
occurs  
Fault  
removed  
Power  
on  
VDS  
Figure 20. Overload Protection  
4.2 Abnormal Over-Current Protection (AOCP):  
When the secondary rectifier diodes or the  
transformer pins are shorted, a steep current with  
extremely high di/dt can flow through the SenseFET  
during the minimum turn-on time. Even though the  
FSL126MRT has overload protection, it is not enough  
to protect in that abnormal case; due to the severe  
current stress imposed on the SenseFET until OLP is  
triggered. The internal AOCP circuit is shown in  
Figure 21. When the gate turn-on signal is applied to  
the power SenseFET, the AOCP block is enabled and  
monitors the current through the sensing resistor. The  
voltage across the resistor is compared with a preset  
AOCP level. If the sensing resistor voltage is greater  
than the AOCP level, the set signal is applied to the  
S-R latch, resulting in the shutdown of the SMPS.  
VCC  
12.0V  
7.5V  
t
Normal  
operation  
Fault  
situation  
Normal  
operation  
Figure 19. Auto-Restart Protection Waveforms  
4.1 Overload Protection (OLP): Overload is defined  
as the load current exceeding its normal level due to  
an unexpected abnormal event. In this situation, the  
protection circuit should trigger to protect the SMPS.  
However, even when the SMPS is in normal  
operation, the overload protection circuit can be  
triggered during the load transition. To avoid this  
undesired operation, the overload protection circuit is  
designed to trigger only after a specified time to  
determine whether it is a transient situation or a true  
overload situation. Because of the pulse-by-pulse  
current-limit capability, the maximum peak current  
through the SenseFET is limited and, therefore, the  
maximum input power is restricted with a given input  
voltage. If the output consumes more than this  
maximum power, the output voltage (VOUT) decreases  
below the set voltage. This reduces the current  
through the opto-coupler LED, which also reduces the  
opto-coupler transistor current, increasing the  
feedback voltage (VFB). If VFB exceeds 2.4V, D1 is  
blocked and the 2.0µA current source starts to charge  
CFB slowly up. In this condition, VFB continues  
Figure 21. Abnormal Over-Current Protection  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
10  
4.4 Over-Voltage Protection (OVP): If the  
secondary-side feedback circuit malfunctions or a  
solder defect causes an opening in the feedback path,  
the current through the opto-coupler transistor  
becomes almost zero. Then VFB climbs up in a similar  
manner to the overload situation, forcing the preset  
maximum current to be supplied to the SMPS until the  
overload protection is triggered. Because more energy  
than required is provided to the output, the output  
voltage may exceed the rated voltage before the  
overload protection is triggered, resulting in the  
breakdown of the devices in the secondary side. To  
prevent this situation, an OVP circuit is employed. In  
general, the VCC is proportional to the output voltage  
and the FS136MRT uses VCC instead of directly  
monitoring the output voltage. If VCC exceeds 24.5V,  
an OVP circuit is triggered, resulting in the termination  
of the switching operation. To avoid undesired  
activation of OVP during normal operation, VCC should  
be designed to be below 24.5V.  
6. Random Frequency Fluctuation (RFF): Fluctuating  
switching frequency of an SMPS can reduce EMI by  
spreading the energy over a wide frequency range. The  
amount of EMI reduction is directly related to the  
switching frequency variation, which is limited internally.  
The switching frequency is determined randomly by  
external feedback voltage and an internal free-running  
oscillator at every switching instant. This random  
frequency fluctuation scatters the EMI noise around  
typical switching frequency (67kHz) effectively and can  
reduce the cost of the input filter included to meet the  
EMI requirements (e.g. EN55022).  
4.5 Thermal Shutdown (TSD): The SenseFET and  
the control IC on a die in one package makes it easier  
for the control IC to detect the over temperature of the  
SenseFET. If the temperature exceeds 140°C, the  
thermal shutdown is triggered and stops operation.  
The FSL126MRT operates in Auto-Restart Mode until  
the temperature decreases to around 80°C, when  
normal operation resumes.  
Figure 23. Random Frequency Fluctuation  
5. Soft Burst-Mode Operation: To minimize power  
dissipation in Standby Mode, the FSL126MRT enters  
Burst-Mode operation. As the load decreases, the  
feedback voltage decreases. The device automatically  
enters Burst Mode when the feedback voltage drops  
below VBURL (400mV), as shown in Figure 22. At this  
point, switching stops and the output voltages start to  
drop at a rate dependent on standby current load. This  
causes the feedback voltage to rise. Once it passes  
VBURH (550mV), switching resumes. The feedback  
voltage then falls and the process repeats. Burst Mode  
alternately enables and disables switching of the  
SenseFET, reducing switching loss in Standby Mode.  
Figure 22. Burst-Mode Operation  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
11  
Physical Dimensions  
10.16  
9.96  
2.74  
2.34  
(0.70)  
(7.00)  
3.28  
Ø
3.40  
3.20  
3.08  
(5.40)  
6.90  
6.50  
16.07  
15.67  
20.00  
19.00  
(13.05)  
24.00  
23.00  
(0.48)  
R0.55  
R0.55  
3.06  
2.46  
8.13  
7.13  
1.40  
1.20  
0.80  
0.70  
(7.15)  
(1.13)  
0.70  
0.50  
2,4,6  
1,3,5  
1
6
0.60  
0.45  
2.19  
1.75  
1.27  
3.81  
3.48  
2.88  
NOTES: UNLESS OTHERWISE SPECIFIED  
A) THIS PACKAGE DOES NOT COMPLY  
5°  
5°  
TO ANY CURRENT PACKAGING STANDARD.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH, AND TIE BAR EXTRUSIONS.  
D) LEADFORM OPTION A  
E) DFAWING FILENAME: TO220A06REV4  
Figure 24. TO-220F-6L (W-Forming)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the  
warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
12  
© 2012 Fairchild Semiconductor Corporation  
FSL126MRT • Rev. 1.0.0  
www.fairchildsemi.com  
13  

相关型号:

FSL126MRTWDTU

Switching Controller, Current-mode, 73kHz Switching Freq-Max, PZIP6
FAIRCHILD

FSL126MRTWDTU

650V 集成电源开关,带异常 OCP,用于 25W 离线反激转换器
ONSEMI

FSL127H

Green Mode Fairchild Power Switch
FAIRCHILD

FSL127HNY

Green Mode Fairchild Power Switch
FAIRCHILD

FSL128MRTWDTU

具有异常 OCP 功能的 800 V 集成电源开关,用于 25 W 离线反激式转换器
ONSEMI

FSL13

Surface Mount Schottky Rectifier
GOOD-ARK

FSL130D

8A, 100V, 0.230 Ohm, Rad Hard, SEGR Resistant, N-Channel Power MOSFETs
INTERSIL

FSL130D1

8A, 100V, 0.230 Ohm, Rad Hard, SEGR Resistant, N-Channel Power MOSFETs
INTERSIL

FSL130D3

8A, 100V, 0.230 Ohm, Rad Hard, SEGR Resistant, N-Channel Power MOSFETs
INTERSIL

FSL130D4

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 8A I(D) | TO-205AF
ETC

FSL130R

8A, 100V, 0.230 Ohm, Rad Hard, SEGR Resistant, N-Channel Power MOSFETs
INTERSIL

FSL130R1

8A, 100V, 0.230 Ohm, Rad Hard, SEGR Resistant, N-Channel Power MOSFETs
INTERSIL