HUF76633P3_12 [FAIRCHILD]

38A, 100V, 0.036 Ohm, N-Channel, Logic Level UltraFET® Power MOSFET; 38A , 100V , 0.036 Ohm的N通道,逻辑电平UltraFET®功率MOSFET
HUF76633P3_12
型号: HUF76633P3_12
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

38A, 100V, 0.036 Ohm, N-Channel, Logic Level UltraFET® Power MOSFET
38A , 100V , 0.036 Ohm的N通道,逻辑电平UltraFET®功率MOSFET

文件: 总10页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF76633P3_F085  
Data Sheet  
April 2012  
38A, 100V, 0.036 Ohm, N-Channel, Logic  
Level UltraFET® Power MOSFET  
Packaging  
Features  
• Ultra Low On-Resistance  
JEDEC TO-220AB  
- r  
- r  
= 0.035Ω, VGS = 10V  
= 0.036Ω, VGS = 5V  
DS(ON)  
SOURCE  
DRAIN  
GATE  
DS(ON)  
• Simulation Models  
- Temperature Compensated PSPICE® and SABER™  
Electrical Models  
- Spice and SABER Thermal Impedance Models  
- www.Fairchildsemi.com  
DRAIN  
(FLANGE)  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
Symbol  
• Switching Time vs R  
Curves  
GS  
D
Qualified to AEC Q101  
RoHS Compliant  
G
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
S
HUF76633P3_F085  
TO-220AB  
76633P  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
Ratings  
100  
Units  
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . V  
V
V
V
DSS  
Drain to Gate Voltage (R  
GS  
= 20k) (Note 1) . . . . . . . . . . . . .V  
100  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±16  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
C
= 5V) . . . . . . . . . . . . . . . . . . . . . . I  
= 10V) (Figure 2) . . . . . . . . . . . . . I  
38  
39  
27  
A
A
A
A
GS  
GS  
D
D
o
Continuous (T = 25 C, V  
C
o
Continuous (T = 100 C, V  
= 5V) . . . . . . . . . . . . . . . . . . . . . I  
C
GS  
GS  
D
o
Continuous (T = 100 C, V  
= 4.5V) (Figure 2) . . . . . . . . . . . I  
27  
C
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Figure 4  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS  
Figures 6, 17, 18  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
145  
0.97  
W
W/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
NOTES:  
1. T = 25 C to 150 C.  
o
o
J
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html  
For severe environments, see our Automotive HUFA series.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2012 Fairchild Semiconductor Corporation  
HUF76633P3_F085 Rev. C1  
1
www.fairchildsemi.com  
HUF76633P3_F085  
o
Electrical Specifications  
PARAMETER  
OFF STATE SPECIFICATIONS  
T = 25 C, Unless Otherwise Specified  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Drain to Source Breakdown Voltage  
BV  
I
I
= 250µA, V  
= 250µA, V  
= 0V (Figure 12)  
o
100  
-
-
-
-
-
-
-
V
DSS  
D
D
GS  
GS  
GS  
GS  
= 0V , T = -40 C (Figure 12)  
C
90  
-
V
Zero Gate Voltage Drain Current  
I
V
V
V
= 95V, V  
= 90V, V  
= ±16V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
-
GSS  
V
V
= V , I = 250µA (Figure 11)  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
GS  
GS  
GS  
r
I
I
I
= 39A, V  
= 27A, V  
= 27A, V  
= 10V (Figures 9, 10)  
= 5V (Figure 9)  
0.029  
0.030  
0.031  
0.035  
0.036  
0.037  
DS(ON)  
D
D
D
-
= 4.5V (Figure 9)  
-
THERMAL SPECIFICATIONS  
o
Thermal Resistance Junction to Case  
R
R
TO-220 and TO-263  
-
-
-
-
1.03  
62  
C/W  
θJC  
o
Thermal Resistance Junction to  
Ambient  
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
= 4.5V)  
GS  
Turn-On Time  
t
V
V
= 50V, I = 27A  
-
-
-
-
-
-
-
12  
110  
43  
58  
-
185  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
D
= 4.5V, R  
= 4.7Ω  
GS  
Turn-On Delay Time  
Rise Time  
t
-
d(ON)  
(Figures 15, 21, 22)  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
150  
OFF  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
t
GS  
V
V
R
= 50V, I = 39A  
D
= 10V,  
= 5.1Ω  
-
-
-
-
-
-
-
95  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
t
7.5  
55  
63  
83  
-
-
d(ON)  
GS  
t
-
r
(Figures 16, 21, 22)  
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
220  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
= 50V,  
-
-
-
-
-
56  
30  
2
67  
37  
2.4  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 27A,  
I
I
D
Gate Charge at 5V  
Q
g(5)  
= 1.0mA  
g(REF)  
Threshold Gate Charge  
Q
g(TH)  
(Figures 14, 19, 20)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
6
gs  
gd  
Q
15  
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
1820  
415  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
115  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.0  
UNITS  
Source to Drain Diode Voltage  
V
I
I
I
I
= 27A  
= 13A  
-
-
-
-
-
-
-
-
V
V
SD  
SD  
SD  
SD  
SD  
Reverse Recovery Time  
t
= 27A, dI /dt = 100A/µs  
SD  
113  
425  
ns  
nC  
rr  
Reverse Recovered Charge  
Q
= 27A, dI /dt = 100A/µs  
RR  
SD  
HUF76633P3_F085 Rev. C1  
2
www.fairchildsemi.com  
HUF76633P3_F085  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
40  
30  
20  
10  
0
V
= 10V  
GS  
V
= 4.5V  
GS  
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
PEAK T = P  
x Z  
x R + T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
10  
-3  
-2  
10  
-1  
0
1
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
500  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
30  
V
= 5V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
-5  
10  
-4  
-3  
10  
-2  
-1  
10  
0
1
10  
10  
t, PULSE WIDTH (s)  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
HUF76633P3_F085 Rev. C1  
3
www.fairchildsemi.com  
HUF76633P3_F085  
Typical Performance Curves (Continued)  
200  
100  
500  
100  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V  
)
DD  
AV  
If R  
AS  
DSS  
0
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS DSS  
- V ) +1]  
DD  
AV  
100µs  
o
STARTING T = 25 C  
J
10  
OPERATION IN THIS  
10  
1
AREA MAY BE  
LIMITED BY r  
1ms  
DS(ON)  
o
STARTING T = 150 C  
J
SINGLE PULSE  
= MAX RATED  
10ms  
o
T
= 25 C  
T
C
J
1
1
10  
100  
300  
0.001  
0.01  
t
0.1  
1
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
, TIME IN AVALANCHE (ms)  
DS  
AV  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
80  
80  
PULSE DURATION = 80  
DUTY CYCLE = 0.5% MAX  
= 15V  
µ
s
V
= 10V  
= 5V  
GS  
V
GS  
V
DD  
V
= 3.5V  
GS  
V
= 4V  
GS  
60  
40  
20  
0
60  
40  
20  
0
V
= 3V  
GS  
o
T
= 175 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
J
o
T
= -55 C  
o
J
T
= 25 C  
C
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
1
2
3
4
5
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
50  
3.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 39A  
D
I
= 39A  
GS  
D
o
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
T
= 25 C  
C
45  
40  
35  
30  
25  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 27A  
D
I
= 15A  
D
-80  
-40  
0
40  
80  
120  
160  
200  
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
HUF76633P3_F085 Rev. C1  
4
www.fairchildsemi.com  
HUF76633P3_F085  
Typical Performance Curves (Continued)  
1.2  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS  
I
= 250µA  
GS  
D
D
1.0  
0.8  
0.6  
0.4  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
10  
5000  
V
= 50V  
C
=
C
+ C  
GS GD  
DD  
ISS  
8
6
4
2
0
C
C
+ C  
OSS  
DS GD  
1000  
100  
10  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
= 39A  
= 27A  
= 15A  
D
D
D
V
= 0V, f = 1MHz  
1
GS  
0
10  
20  
30  
40  
50  
60  
0.1  
10  
100  
Q , GATE CHARGE (nC)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
g
DS  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
400  
500  
V
= 4.5V, V = 50V, I = 27A  
DD D  
V
= 10V, V  
= 50V, I = 39A  
DD D  
GS  
GS  
400  
300  
200  
100  
0
t
300  
200  
100  
0
d(OFF)  
t
r
t
f
t
d(OFF)  
t
f
t
r
t
t
d(ON)  
d(ON)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE  
HUF76633P3_F085 Rev. C1  
5
www.fairchildsemi.com  
HUF76633P3 _F085  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
AS  
G
V
DD  
-
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 10V  
GS  
V
Q
GS  
g(5)  
+
-
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT  
FIGURE 22. SWITCHING TIME WAVEFORM  
HUF76633P3_F085 Rev. C1  
6
www.fairchildsemi.com  
HUF76633P3_F085  
PSPICE Electrical Model  
.SUBCKT HUF76633 2 1 3 ;  
rev 10 September1999  
CA 12 8 3.50e-9  
CB 15 14 3.50e-9  
CIN 6 8 1.70e-9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 120.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
IT 8 17 1  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LDRAIN 2 5 1.00e-9  
LGATE 1 9 5.17e-9  
LSOURCE 3 7 2.13e-9  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 2.04e-2  
RGATE 9 20 2.15  
RLDRAIN 2 5 10  
RLGATE 1 9 51.7  
RLSOURCE 3 7 21.3  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 4.85e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RLSOURCE  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*79),3.5))}  
.MODEL DBODYMOD D (IS = 1.96e-12 RS = 3.87e-3 TRS1 = 9.93e-4 TRS2 = 4.97e-6 CJO = 1.53e-9 TT = 7.41e-8 M = 0.50)  
.MODEL DBREAKMOD D (RS = 3.12e- 1TRS1 = 1.07e- 3TRS2 = 0)  
.MODEL DPLCAPMOD D (CJO = 1.97e- 9IS = 1e-3 0M = 0.87)  
.MODEL MMEDMOD NMOS (VTO = 1.73 KP = 2.80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.15)  
.MODEL MSTROMOD NMOS (VTO = 2.04 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.50 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 21.5 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 9.74e- 4TC2 = -3.71e-7)  
.MODEL RDRAINMOD RES (TC1 = 9.71e-3 TC2 = 2.90e-5)  
.MODEL RSLCMOD RES (TC1 = 2.17e-3 TC2 = 1.27e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -2.08e-3 TC2 = -6.82e-6)  
.MODEL RVTEMPMOD RES (TC1 = -1.52e- 3TC2 = -1.21e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.00 VOFF= -1.50)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.50 VOFF= -6.00)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.50 VOFF= 0.0)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.0 VOFF= -0.50)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEEPower Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
HUF76633P3_F085 Rev. C1  
7
www.fairchildsemi.com  
HUF76633P3_F085  
SABER Electrical Model  
REV 10 September 1999  
template huf76633 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 1.96e-12, cjo = 1.53e-9, tt = 7.41e-8, m = 0.50)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 1.97e-9, is = 1e-30, m = 0.87 )  
m..model mmedmod = (type=_n, vto = 1.73, kp = 2.8, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.04, kp = 80, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.50, kp = 0.1, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.00, voff = -1.50)  
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.50, voff = -6.00)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 0.0)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = -0.50)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
c.ca n12 n8 = 3.50e-9  
c.cb n15 n14 = 3.50e-9  
c.cin n6 n8 = 1.70e-9  
RSLC2  
ISCL  
50  
-
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
71  
RDRAIN  
6
8
ESG  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
i.it n8 n17 = 1  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 5.17e-9  
l.lsource n3 n7 = 2.13e-9  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
res.rbreak n17 n18 = 1, tc1 = 9.74e-4, tc2 = -3.71e-7  
res.rdbody n71 n5 = 3.87e-3, tc1 = 9.93e-4, tc2 = 4.97e-6  
res.rdbreak n72 n5 = 3.12e-1, tc1 = 1.07e-3, tc2 = 0  
res.rdrain n50 n16 = 20.40e-3, tc1 = 9.71e-3, tc2 = 2.90e-5  
res.rgate n9 n20 = 2.15  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 51.7  
res.rlsource n3 n7 = 21.3  
res.rslc1 n5 n51 = 1e-6, tc1 = 2.17e-3, tc2 = 1.27e-6  
res.rslc2 n5 n50 = 1e3  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rsource n8 n7 = 4.85e-3, tc1 = 1.00e-3, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -1.52e-3, tc2 = 1.21e-7  
res.rvthres n22 n8 = 1, tc1 = -2.08e-3, tc2 = -6.82e-6  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 120.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/79))** 3.5))  
}
}
HUF76633P3_F085 Rev. C1  
8
www.fairchildsemi.com  
HUF76633P3_F085  
SPICE Thermal Model  
JUNCTION  
th  
REV 9 September1999  
HUF76633T  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM1 th 6 2.90e-3  
CTHERM2 6 5 1.25e-2  
CTHERM3 5 4 1.00e-2  
CTHERM4 4 3 6.50e-3  
CTHERM5 3 2 2.75e-2  
CTHERM6 2 tl 12.55  
6
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 th 6 7.04e-3  
RTHERM2 6 5 1.75e-2  
RTHERM3 5 4 4.94e-2  
RTHERM4 4 3 2.77e-1  
RTHERM5 3 2 4.18e-1  
RTHERM6 2 tl 5.54e-2  
5
SABER Thermal Model  
SABER thermal model HUF76633T  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 2.90e-3  
ctherm.ctherm2 6 5 = 1.25e-2  
ctherm.ctherm3 5 4 = 1.00e-2  
ctherm.ctherm4 4 3 = 6.50e-3  
ctherm.ctherm5 3 2 = 2.75e-2  
ctherm.ctherm6 2 tl = 12.55  
rtherm.rtherm1 th 6 = 7.04e-3  
rtherm.rtherm2 6 5 = 1.75e-2  
rtherm.rtherm3 5 4 = 4.94e-2  
rtherm.rtherm4 4 3 = 2.77e-1  
rtherm.rtherm5 3 2 = 4.18e-1  
rtherm.rtherm6 2 tl = 5.54e-2  
}
tl  
CASE  
HUF76633P3_F085 Rev. C1  
9
www.fairchildsemi.com  
HUF76633P3_F085  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
®
®
2Cool™  
F-PFS™  
FRFET  
Global Power Resource  
Green Bridge™  
PowerTrench  
PowerXS™  
The Power Franchise  
®
®
AccuPower™  
AX-CAP™*  
SM  
Programmable Active Droop™  
®
®
BitSiC  
QFET  
TinyBoost™  
TinyBuck™  
TinyCalc™  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
Green FPS™  
Green FPS™ e-Series™  
Gmax™  
GTO™  
IntelliMAX™  
ISOPLANAR™  
QS™  
Quiet Series™  
RapidConfigure™  
®
TinyLogic  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
Current Transfer Logic™  
Saving our world, 1mW/W/kW at a time™  
®
DEUXPEED  
Marking Small Speakers Sound Louder SignalWise™  
Dual Cool™  
EcoSPARK  
EfficentMax™  
ESBC™  
and Better™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
SmartMax™  
®
TranSiC  
®
SMART START™  
Solutions for Your Success™  
TriFault Detect™  
TRUECURRENT *  
®
®
SPM  
μSerDes™  
MicroPak™  
STEALTH™  
®
®
MicroPak2™  
MillerDrive™  
MotionMax™  
Motion-SPM™  
mWSaver™  
OptoHiT™  
SuperFET  
®
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
Fairchild  
®
UHC  
®
Fairchild Semiconductor  
FACT Quiet Series™  
Ultra FRFET™  
UniFET™  
VCX™  
VisualMax™  
VoltagePlus™  
XS™  
®
®
SupreMOS  
FACT  
®
SyncFET™  
Sync-Lock™  
®*  
FAST  
®
OPTOLOGIC  
OPTOPLANAR  
FastvCore™  
FETBench™  
FlashWriter  
FPS™  
®
®
*
®
tm  
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY  
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY  
THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used here in:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,  
www.Fairchildsemi.com, under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their  
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed  
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the  
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild  
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild  
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of  
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and  
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is  
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications  
may change in any manner without notice.  
Advance Information  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later  
date. Fairchild Semiconductor reserves the right to make changes at any time without  
notice to improve design.  
Preliminary  
First Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to  
make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
Datasheet contains specifications on a product that is discontinued by Fairchild  
Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I61  
HUF76633P3_F085 Rev. C1  
10  
www.fairchildsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY