HUFA75307T3ST_NL [FAIRCHILD]

Power Field-Effect Transistor, 2.6A I(D), 55V, 0.09ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE PACKAGE-4;
HUFA75307T3ST_NL
型号: HUFA75307T3ST_NL
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Power Field-Effect Transistor, 2.6A I(D), 55V, 0.09ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE PACKAGE-4

晶体 晶体管 功率场效应晶体管 开关 光电二极管
文件: 总9页 (文件大小:175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUFA75307T3ST  
Data Sheet  
December 2001  
2.6A, 55V, 0.090 Ohm, N-Channel UltraFET  
Power MOSFET  
Features  
• 2.6A, 55V  
• Ultra Low On-Resistance, r  
This N-Channel power MOSFET is  
manufactured using the innovative  
= 0.090Ω  
DS(ON)  
• Diode Exhibits Both High Speed and Soft Recovery  
UltraFET® process. This advanced  
®
process technology achieves the  
Temperature Compensating PSPICE Model  
lowest possible on-resistance per silicon area, resulting in  
outstanding performance. This device is capable of  
withstanding high energy in the avalanche mode and the  
diode exhibits very low reverse recovery time and stored  
charge. It was designed for use in applications where power  
efficiency is important, such as switching regulators,  
switching converters, motor drivers, relay drivers, low-  
voltage bus switches, and power management in portable  
and battery-operated products.  
• Thermal Impedance SPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Symbol  
Formerly developmental type TA75307.  
D
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
G
HUFA75307T3ST  
SOT-223  
5307  
S
NOTE: HUFA75307T3ST is available only in tape and reel.  
Packaging  
SOT-223  
DRAIN  
(FLANGE)  
GATE  
DRAIN  
SOURCE  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy  
of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
HUFA75307T3ST  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
A
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
55  
55  
±20V  
V
V
V
DSS  
DGR  
GS  
Drain to Gate Voltage (R  
= 20k) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Drain Current  
Continuous (Figure 2) (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
2.6  
Figure 5  
Figures 6, 14, 15  
1.1  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9.09  
-55 to 150  
mW/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
Maximum Temperature for Soldering  
C
J
STG  
o
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
300  
260  
C
L
o
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
C
pkg  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= 250µA, V = 0V (Figure 11)  
MIN  
TYP  
MAX  
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
BV  
I
55  
2
-
-
-
4
DSS  
D
GS  
= V , I = 250µA (Figure 10)  
V
V
V
V
V
-
-
V
GS(TH)  
GS  
DS  
DS  
GS  
DS D  
I
= 50V, V  
= 45V, V  
= ±20V  
= 0V  
1
µA  
µA  
nA  
DSS  
GS  
o
= 0V, T = 150 C  
-
-
250  
100  
0.090  
55  
-
GS  
A
Gate to Source Leakage Current  
Drain to Source On Resistance  
Turn-On Time  
I
-
-
GSS  
r
I
= 2.6A, V  
= 10V) (Figure 9)  
2.6A,  
D
-
0.070  
-
DS(ON)  
D
GS  
t
V
R
R
= 30V, I  
-
ns  
ON  
DD  
= 11.5, V = 10V,  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
5
ns  
d(ON)  
= 25Ω  
GS  
t
-
30  
35  
25  
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
-
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
90  
17  
10  
0.8  
ns  
OFF  
Total Gate Charge  
Gate Charge at 10V  
Threshold Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
DD  
= 30V,  
2.6A,  
-
14  
8.3  
0.6  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
I
D
Q
-
g(10)  
g(TH)  
R
= 11.5Ω  
L
Q
-
I
= 1.0mA  
g(REF)  
(Figure 13)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
Input Capacitance  
Qgs  
Qgd  
-
-
-
-
-
-
-
-
1.00  
4.00  
250  
115  
30  
-
-
nC  
nC  
pF  
pF  
pF  
-
-
C
V
= 25V, V = 0V,  
GS  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
C
-
OSS  
RSS  
Reverse Transfer Capacitance  
-
2
o
Thermal Resistance Junction to Ambient  
R
Pad Area = 0.171 in (see note 2)  
110  
128  
147  
C/W  
θJA  
2
o
Pad Area = 0.068 in  
-
C/W  
2
o
Pad Area = 0.026 in  
-
C/W  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
40  
UNITS  
V
V
I
I
I
= 2.6A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 2.6A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 2.6A, dI /dt = 100A/µs  
SD  
50  
nC  
RR  
NOTE:  
o
2
2. 110 C/W measured using FR-4 board with 0.171in footprint for 1000s.  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
HUFA75307T3ST  
Typical Performance Curves  
1.2  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
o
R
= 110 C/W  
JA  
θ
0.8  
0.6  
0.4  
0.2  
0
25  
50  
75  
100  
125  
150  
0
50  
100  
150  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
10  
DUTY CYCLE - DESCENDING ORDER  
o
0.5  
R
= 110 C/W  
JA  
θ
0.2  
0.1  
0.05  
1
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R  
+ T  
JA A  
J
DM  
JA  
θ
θ
0.001  
-5  
10  
-4  
-3  
-2  
10  
-1  
10  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
100  
10  
30  
o
= 25 C FOR TEMPERATURES  
T
= MAX RATED  
T
J
A
o
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
T
= 25 C  
A
o
R
= 110 C/W  
JA  
θ
150 - T  
I = I  
A
25  
100µs  
10  
125  
o
1ms  
R
= 110 C/W  
JA  
θ
1
10ms  
0.1  
0.01  
OPERATION IN THIS  
AREA MAY BE  
LIMITED BY r  
V
(
) = 55V  
DS(ON)  
DSS MAX  
1
10  
-3  
-2  
10  
-1  
0
1
2
3
200  
10  
10  
10  
10  
10  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
V
DS  
t, PULSE WIDTH (s)  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
HUFA75307T3ST  
Typical Performance Curves (Continued)  
20  
25  
20  
If R = 0  
V
= 20V  
= 10V  
= 7V  
t
AV  
= (L)(I )/(1.3*RATED BV  
- V  
)
DD  
GS  
AS  
DSS  
If R 0  
V
GS  
t
AV  
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DD  
AS DSS  
V
10  
GS  
V
= 6V  
= 5V  
15  
GS  
o
STARTING T = 25 C  
J
10  
5
V
o
GS  
STARTING T = 150 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
A
1
0.01  
0
0
1
2
3
4
5
0.1  
1
10  
t
, TIME IN AVALANCHE (ms)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
AV  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
FIGURE 7. SATURATION CHARACTERISTICS  
25  
2.5  
2.0  
1.5  
1.0  
0.5  
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
-55 C  
DUTY CYCLE = 0.5% MAX  
= 15V  
V
V
= 10V, I = 2.6A  
DD  
GS  
D
20  
15  
10  
5
o
25 C  
o
150 C  
0
0
1.5  
3.0  
4.5  
6.0  
7.5  
-80  
-40  
0
40  
80  
120  
160  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
V
= V , I = 250µA  
GS  
DS  
D
I
= 250µA  
D
1.1  
1.0  
0.9  
0.8  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
HUFA75307T3ST  
Typical Performance Curves (Continued)  
500  
10  
V
= 0V, f = 1MHz  
WAVEFORMS IN  
DESCENDING ORDER:  
V
= 30V  
GS  
ISS  
DD  
C
C
C
= C  
+ C  
GS GD  
= C  
RSS  
OSS  
GD  
DS  
I
I
I
= 2.6A  
= 1.5A  
= 0.5A  
D
D
D
8
6
4
2
0
400  
300  
200  
100  
0
= C  
+ C  
GD  
C
C
C
ISS  
OSS  
RSS  
0
2
4
Q , GATE CHARGE (nC)  
6
8
0
10  
20  
30  
40  
50  
60  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
g
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
g(TOT)  
R
DD  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
g(REF)  
Q
g(TH)  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORM  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
HUFA75307T3ST  
Test Circuits and Waveforms (Continued)  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T  
thermal resistance of the heat dissipating path determines  
, and the  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse applications  
can be evaluated using the Fairchild device Spice thermal  
model or manually utilizing the normalized maximum  
transient thermal impedance curve.  
J(MAX)  
the maximum allowable device power dissipation, P  
,
D(MAX)  
in an application. Therefore the application’s ambient  
o
o
temperature, T ( C), and thermal resistance R  
( C/W)  
A
θJA  
is never exceeded.  
must be reviewed to ensure that T  
J(MAX)  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
200  
R
= 75.9 -19.3 ln(AREA)  
θJA  
(T  
T )  
J(MAX)  
R
A
(EQ. 1)  
P
= --------------------------------------------  
D(MAX)  
θJA  
o
2
147 C/W - 0.026in  
150  
100  
o
2
In using surface mount devices such as the SOT-223  
128 C/W - 0.068in  
o
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
power dissipation ratings. Precise determination of the  
2
110 C/W - 0.171in  
P
is complex and influenced by many factors:  
D(MAX)  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
50  
0.01  
0.1  
AREA, TOP COPPER AREA (in )  
1.0  
2
2. The number of copper layers and the thickness of the  
board.  
FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD  
AREA  
3. The use of external heat sinks.  
4. The use of thermal vias.  
Displayed on the curve are the three R values listed in  
the Electrical Specifications table. The three points were  
θJA  
5. Air flow and board orientation.  
chosen to depict the compromise between the copper board  
area, the thermal resistance and ultimately the power  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
dissipation, P  
. Thermal resistances corresponding to  
D(MAX)  
other component side copper areas can be obtained from  
Figure 20 or by calculation using Equation 2. The area, in  
square inches is the top copper area including the gate and  
source pads.  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 20  
defines the R  
for the device as a function of the top  
θJA  
R
= 75.9 19.3 × ln(Area)  
(EQ. 2)  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
θJA  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
HUFA75307T3ST  
PSPICE Electrical Model  
.SUBCKT HUFA75307T3ST 2 1 3 ;  
rev 7/25/97  
CA 12 8 3.5e-10  
CB 15 14 3.7e-10  
CIN 6 8 2.26e-10  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
RLDRAIN  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
EBREAK 11 7 17 18 57.4  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
+
-
17  
DBODY  
RDRAIN  
6
ESG  
8
EBREAK 18  
-
EVTHRES  
+
16  
21  
+
-
EVTEMP 20 6 18 22 1  
19  
MWEAK  
LGATE  
EVTEMP  
+
8
RGATE  
GATE  
1
6
-
18  
22  
MMED  
IT 8 17 1  
9
20  
MSTRO  
8
RLGATE  
LDRAIN 2 5 1e-9  
LGATE 1 9 1.4e-9  
LSOURCE 3 7 3.1e-10  
LSOURCE  
CIN  
SOURCE  
3
7
K1 LGATE LSOURCE 0.131  
RSOURCE  
RLSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 7.0e-3  
RGATE 9 20 1.9  
RLDRAIN 2 5 10  
RLGATE 1 9 14  
RLSOURCE 3 7 3  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 5.6e-2  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*50),3))}  
.MODEL DBODYMOD D (IS = 2.6e-13 RS = 2.34e-2 IKF = 5.5 N = 0.995 TRS1 = 2.8e-3 TRS2 = 1.1e-5 CJO = 3.7e-10 TT = 3.5e-8 M = 0.46  
+ XTI = 5.5)  
.MODEL DBREAKMOD D (RS = 0. 5IKF = 0.1 N = 1 TRS1 = 3e- 3TRS2 = -5e-5)  
.MODEL DPLCAPMOD D (CJO = 5.6e-1 0IS = 1e-3 0N = 10 M = 0.92)  
.MODEL MMEDMOD NMOS (VTO = 3.25 KP = 1.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.9)  
.MODEL MSTROMOD NMOS (VTO = 3.68 KP = 13.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.83 KP = 0.03 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 19 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.08e- 3TC2 = 5e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.7e-2 TC2 = 1e-4)  
.MODEL RSLCMOD RES (TC1 = 1e-9 TC2 = 1e-4)  
.MODEL RSOURCEMOD RES (TC1 = 3.3e-3 TC2 = 1e-9)  
.MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -4e-6)  
.MODEL RVTEMPMOD RES (TC1 = -2.9e- 3TC2 = 2.2e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.1 VOFF= -4)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4 VOFF= -7.1)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.01 VOFF= 1.9)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.9 VOFF= 0.01)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
HUFA75307T3ST  
SPICE Thermal Model  
JUNCTION  
7
REV 15 Nov 97  
HUFA75307T3ST  
RTHERM1  
CTHERM1  
CTHERM1 7 6 7.5e-5  
CTHERM2 6 5 3.5e-4  
CTHERM3 5 4 1.2e-3  
CTHERM4 4 3 1.5e-2  
CTHERM5 3 2 6.9e-2  
CTHERM6 2 1 4.5e-1  
6
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 7 6 7.5e-2  
RTHERM2 6 5 2.0e-1  
RTHERM3 5 4 1.2  
RTHERM4 4 3 3.3  
RTHERM5 3 2 28  
RTHERM6 2 1 90  
5
4
3
2
1
CASE  
©2001 Fairchild Semiconductor Corporation  
HUFA75307T3ST Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY