HUFA76423S3S [FAIRCHILD]

33A, 60V, 0.035 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs; 33A , 60V , 0.035 Ohm的N通道,逻辑电平UltraFET功率MOSFET
HUFA76423S3S
型号: HUFA76423S3S
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

33A, 60V, 0.035 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
33A , 60V , 0.035 Ohm的N通道,逻辑电平UltraFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关
文件: 总10页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUFA76423P3, HUFA76423S3S  
Data Sheet  
December 2001  
33A, 60V, 0.035 Ohm, N-Channel, Logic  
Level UltraFET® Power MOSFETs  
Packaging  
JEDEC TO-220AB  
JEDEC TO-263AB  
Features  
• Ultra Low On-Resistance  
SOURCE  
DRAIN  
(FLANGE)  
DRAIN  
- r  
- r  
= 0.030Ω, VGS = 10V  
= 0.035Ω, VGS = 5V  
DS(ON)  
DS(ON)  
GATE  
GATE  
• Simulation Models  
SOURCE  
- Temperature Compensated PSPICE® and SABER™  
Electrical Models  
DRAIN  
(FLANGE)  
- Spice and SABER Thermal Impedance Models  
- www.fairchildsemi.com  
HUFA76423P3  
HUFA76423S3S  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
Symbol  
• Switching Time vs R  
Curves  
GS  
D
S
Ordering Information  
PART NUMBER  
HUFA76423P3  
PACKAGE  
BRAND  
76423P  
76423S  
G
TO-220AB  
TO-263AB  
HUFA76423S3S  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the variant in tape and reel, e.g., HUFA76423S3ST.  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
HUFA76423P3, HUFA76423S3S  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
60  
60  
V
V
V
DSS  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±16  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
= 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
33  
35  
23  
A
A
A
A
C
GS  
GS  
D
D
o
Continuous (T = 25 C, V  
C
o
Continuous (T = 100 C, V  
= 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
GS  
GS  
D
o
Continuous (T = 100 C, V  
22  
C
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Figure 4  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figures 6, 17, 18  
85  
0.567  
W
W/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
NOTES:  
1. T = 25 C to 150 C.  
o
o
J
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy  
of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
BV  
I
I
= 250µA, V  
= 250µA, V  
= 0V (Figure 12)  
o
60  
55  
-
-
-
-
-
-
-
-
V
DSS  
D
D
GS  
GS  
GS  
GS  
= 0V , T = -40 C (Figure 12)  
C
V
Zero Gate Voltage Drain Current  
I
V
V
V
= 55V, V  
= 50V, V  
= ±16V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
-
GSS  
V
V
= V , I = 250µA (Figure 11)  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
GS  
GS  
GS  
r
I
I
I
= 35A, V  
= 23A, V  
= 22A, V  
= 10V (Figures 9, 10)  
= 5V (Figure 9)  
0.025  
0.029  
0.032  
0.030  
0.035  
0.038  
DS(ON)  
D
D
D
-
= 4.5V (Figure 9)  
-
THERMAL SPECIFICATIONS  
o
Thermal Resistance Junction to Case  
R
R
TO-220 and TO-263  
-
-
-
-
1.76  
62  
C/W  
θJC  
o
Thermal Resistance Junction to  
Ambient  
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 4.5V)  
GS  
t
V
V
= 30V, I = 22A  
-
-
-
-
-
-
-
12  
147  
32  
50  
-
245  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
D
= 4.5V, R  
= 10Ω  
GS  
Turn-On Delay Time  
Rise Time  
t
-
d(ON)  
(Figures 15, 21, 22)  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
125  
OFF  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
t
GS  
V
V
R
= 30V, I = 35A  
D
= 10V,  
= 10Ω  
-
-
-
-
-
-
-
140  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
t
7
-
d(ON)  
GS  
t
85  
47  
76  
-
-
r
(Figures 16, 21, 22)  
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
185  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
= 30V,  
-
-
-
-
-
28  
15  
1.2  
3.5  
7
34  
18  
1.5  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 23A,  
I
I
D
Gate Charge at 5V  
Q
g(5)  
= 1.0mA  
g(REF)  
Threshold Gate Charge  
Q
g(TH)  
(Figures 14, 19, 20)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
1060  
315  
65  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
C
OSS  
Reverse Transfer Capacitance  
RSS  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.0  
UNITS  
Source to Drain Diode Voltage  
V
I
I
I
I
= 23A  
-
-
-
-
-
-
-
-
V
V
SD  
SD  
SD  
SD  
SD  
= 11.5A  
Reverse Recovery Time  
t
= 23A, dI /dt = 100A/µs  
SD  
80  
ns  
nC  
rr  
Reverse Recovered Charge  
Q
= 23A, dI /dt = 100A/µs  
SD  
205  
RR  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
40  
30  
20  
10  
0
V
= 10V  
GS  
V
= 4.5V  
GS  
0
25  
50  
75  
100  
150  
175  
25  
50  
75  
100  
125  
150  
175  
125  
o
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
PEAK T = P  
x Z  
x R + T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
-3  
10  
-2  
-1  
10  
0
1
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
500  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
V
= 5V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
20  
-5  
10  
-4  
10  
-3  
-2  
-1  
10  
0
1
10  
10  
t, PULSE WIDTH (s)  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
Typical Performance Curves (Continued)  
300  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V )  
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV - V ) +1]  
DSS DD  
300  
100  
AS  
DSS  
100  
t
AV  
AS  
100µs  
o
STARTING T = 25 C  
J
10  
OPERATION IN THIS  
AREA MAY BE  
10  
o
STARTING T = 150 C  
J
LIMITED BY r  
1ms  
DS(ON)  
SINGLE PULSE  
T
= MAX RATED  
= 25 C  
J
10ms  
o
1
0.01  
T
C
0.1  
1
10  
100  
1
t
, TIME IN AVALANCHE (ms)  
AV  
1
10  
100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
60  
60  
PULSE DURATION = 80µs  
V
V
= 10V  
= 5V  
GS  
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
V
= 15V  
o
DD  
T
= 25 C  
C
45  
30  
15  
0
45  
30  
15  
0
V
= 4V  
GS  
V
= 3.5V  
= 3V  
GS  
o
T
= 175 C  
J
o
V
GS  
T
= 25 C  
J
o
T
= -55 C  
J
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
1
2
3
4
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 35A  
D
PULSE DURATION = 80µs  
I
= 35A  
GS  
D
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
C
40  
30  
20  
I
= 25A  
D
I
= 15A  
D
-80  
-40  
0
40  
80  
120  
160  
200  
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
Typical Performance Curves (Continued)  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS  
I
= 250µA  
GS  
D
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
10  
V
= 30V  
DD  
3000  
C
= C  
+ C  
GS GD  
8
6
4
2
0
ISS  
1000  
C
C
+ C  
GD  
OSS  
DS  
WAVEFORMS IN  
DESCENDING ORDER:  
100  
20  
I
I
I
= 35A  
= 25A  
= 15A  
D
D
C
= C  
RSS  
GD  
10  
D
V
= 0V, f = 1MHz  
GS  
0
5
10  
15  
20  
25  
30  
Q , GATE CHARGE (nC)  
0.1  
1
60  
g
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
250  
200  
t
d(OFF)  
t
V
= 10V, V  
DD  
= 30V, I = 35A  
D
V
= 4.5V, V  
= 30V, I = 22A  
DD D  
r
GS  
GS  
t
200  
150  
100  
50  
f
150  
100  
50  
t
r
t
f
t
d(OFF)  
t
d(ON)  
t
d(ON)  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
AS  
G
V
DD  
-
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 10V  
GS  
V
Q
GS  
g(5)  
+
-
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT  
FIGURE 22. SWITCHING TIME WAVEFORM  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
PSPICE Electrical Model  
.SUBCKT HUFA76423 2 1 3 ;  
rev 7 September 1999  
CA 12 8 1.46e-9  
CB 15 14 1.46e-9  
CIN 6 8 1.0e-9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 66.0  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
IT 8 17 1  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LDRAIN 2 5 1e-9  
LGATE 1 9 5.5e-9  
LSOURCE 3 7 4.4e-9  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 7.0e-3  
RGATE 9 20 3.6  
RLDRAIN 2 5 10  
RLGATE 1 9 55  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 44  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 1.45e-2  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*100),3.5))}  
.MODEL DBODYMOD D (IS = 6.3e-13 RS = 6.8e-3 TRS1 = 1e-3 TRS2 = 1e-6 XTI = 4.3 CJO = 1.28e-9 TT = 5.1e-8 M = 0.5)  
.MODEL DBREAKMOD D (RS = 2.9e- 1TRS1 = 1e- 4TRS2 = 0)  
.MODEL DPLCAPMOD D (CJO = 9.5e-1 0IS = 1e-3 0N = 10 M = 0.82)  
.MODEL MMEDMOD NMOS (VTO = 2.10 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)  
.MODEL MSTROMOD NMOS (VTO = 2.45 KP = 60.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.79 KP = 0.13 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 36 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.2e- 3TC2 = -5e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.3e-2 TC2 = 3.1e-5)  
.MODEL RSLCMOD RES (TC1 = 5.5e-3 TC2 = 7e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)  
.MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -5.8e-6)  
.MODEL RVTEMPMOD RES (TC1 = -1.7e- 3TC2 = 8e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.8 VOFF= -2.8)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.8 VOFF= -4.8)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.6 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -0.6)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
SABER Electrical Model  
REV 7 September 1999  
template HUFA76423 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 6.3e-13, xti = 4.3, cjo = 1.28e-9, tt = 5.1e-8, m = 0.50)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 9.5e-10, is = 1e-30, n = 10, m = 0.82 )  
m..model mmedmod = (type=_n, vto = 2.10, kp = 6, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.45, kp = 60.5, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.79, kp = 0.13, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.8, voff = -2.8)  
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.8, voff = -4.8)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
10  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.6, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.6)  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
c.ca n12 n8 = 1.46e-9  
c.cb n15 n14 = 1.46e-9  
c.cin n6 n8 = 1.0e-9  
RSLC2  
ISCL  
50  
-
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
71  
RDRAIN  
6
8
ESG  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
i.it n8 n17 = 1  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
l.ldrain n2 n5 = 1.0e-9  
l.lgate n1 n9 = 5.5e-9  
l.lsource n3 n7 = 4.4e-9  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
res.rbreak n17 n18 = 1, tc1 = 1.2e-3, tc2 = -5.0e-7  
res.rdbody n71 n5 = 6.8e-3, tc1 = 1e-3, tc2 = 1e-6  
res.rdbreak n72 n5 = 2.9e-1, tc1 = 1e-4, tc2 = 0  
res.rdrain n50 n16 = 7.0e-3, tc1 = 1.3e-2, tc2 = 3.1e-5  
res.rgate n9 n20 = 3.6  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 55  
res.rlsource n3 n7 = 44  
res.rslc1 n5 n51 = 1e-6, tc1 = 5.5e-3, tc2 = 7.0e-6  
res.rslc2 n5 n50 = 1e3  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rsource n8 n7 = 1.45e-2, tc1 = 1e-3, tc2 = 1e-6  
res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 8.0e-7  
res.rvthres n22 n8 = 1, tc1 = -1.8e-3, tc2 = -5.8e-6  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 66.0  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/100))** 3.5))  
}
}
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
HUFA76423P3, HUFA76423S3S  
SPICE Thermal Model  
JUNCTION  
th  
REV 1 September 1999  
HUFA76423T  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM1 th 6 1.40e-3  
CTHERM2 6 5 8.30e-3  
CTHERM3 5 4 7.00e-3  
CTHERM4 4 3 3.20e-3  
CTHERM5 3 2 1.50e-2  
CTHERM6 2 tl 1.10  
6
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 th 6 1.20e-2  
RTHERM2 6 5 2.99e-2  
RTHERM3 5 4 8.43e-2  
RTHERM4 4 3 4.73e-1  
RTHERM5 3 2 7.14e-1  
RTHERM6 2 tl 9.47e-2  
5
SABER Thermal Model  
SABER thermal model HUFA76423T  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 1.40e-3  
ctherm.ctherm2 6 5 = 8.30e-3  
ctherm.ctherm3 5 4 = 7.00e-3  
ctherm.ctherm4 4 3 = 3.20e-3  
ctherm.ctherm5 3 2 = 1.50e-2  
ctherm.ctherm6 2 tl = 1.10  
rtherm.rtherm1 th 6 = 1.20e-2  
rtherm.rtherm2 6 5 = 2.99e-2  
rtherm.rtherm3 5 4 = 8.43e-2  
rtherm.rtherm4 4 3 = 4.73e-1  
rtherm.rtherm5 3 2 = 7.14e-1  
rtherm.rtherm6 2 tl = 9.47e-2  
}
tl  
CASE  
©2001 Fairchild Semiconductor Corporation  
HUFA76423P3, HUFA76423S3S Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY