ISL9N303AS3ST [FAIRCHILD]

N-Channel Logic Level UltraFET Trench MOSFETs 30V, 75A, 3.2mз; N沟道逻辑电平UltraFET沟槽MOSFET的30V , 75A , 3.2mз
ISL9N303AS3ST
型号: ISL9N303AS3ST
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel Logic Level UltraFET Trench MOSFETs 30V, 75A, 3.2mз
N沟道逻辑电平UltraFET沟槽MOSFET的30V , 75A , 3.2mз

晶体 晶体管 功率场效应晶体管 开关
文件: 总11页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
September 2002  
PWM Optimized  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3  
N-Channel Logic Level UltraFET® Trench MOSFETs  
30V, 75A, 3.2mΩ  
General Description  
Features  
This device employs a new advanced trench MOSFET  
technology and features low gate charge while maintaining  
low on-resistance.  
Fast switching  
r
r
= 0.0026(Typ), V = 10V  
GS  
DS(ON)  
DS(ON)  
= 0.004(Typ), V = 4.5V  
Optimized for switching applications, this device improves  
the overall efficiency of DC/DC converters and allows  
operation to higher switching frequencies.  
GS  
Q (Typ) = 61nC, V = 5V  
g
GS  
Q
(Typ) = 17nC  
gd  
Applications  
DC/DC converters  
C
(Typ) = 7000pF  
ISS  
SOURCE  
DRAIN  
DRAIN  
(FLANGE)  
D
S
DRAIN  
(FLANGE)  
SOURCE  
DRAIN  
GATE  
GATE  
G
GATE  
SOURCE  
DRAIN  
(FLANGE)  
TO-220AB  
TO-262AB  
TO-263AB  
MOSFET Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Ratings  
Units  
V
V
Drain to Source Voltage  
Gate to Source Voltage  
30  
V
V
DSS  
GS  
±20  
Drain Current  
o
75  
75  
A
A
A
Continuous (T = 25 C, V = 10V)  
C
GS  
o
I
Continuous (T = 100 C, V = 4.5V)  
C GS  
D
o
o
Continuous (T = 25 C, V = 10V, R = 43 C/W)  
θJA  
25  
C
GS  
Pulsed  
Figure 4  
Power dissipation  
Derate above  
215  
1.43  
W
W/ C  
P
o
D
o
T , T  
Operating and Storage Temperature  
-55 to 175  
C
J
STG  
Thermal Characteristics  
o
o
o
R
R
R
Thermal Resistance Junction to Case TO-220, TO-262, TO-263  
Thermal Resistance Junction to Ambient TO-220, TO-262, TO-263  
0.7  
62  
43  
C/W  
C/W  
C/W  
θJC  
θJA  
θJA  
2
Thermal Resistance Junction to Ambient TO-263, 1in copper pad area  
Package Marking and Ordering Information  
Device Marking  
N303AS  
Device  
Package  
TO-263AB  
TO-220AB  
TO-262AA  
Reel Size  
330mm  
Tube  
Tape Width  
Quantity  
800 units  
50 units  
50 units  
ISL9N303AS3ST  
ISL9N303AP3  
ISL9N303AS3  
24mm  
N/A  
N303AP  
N303AS  
Tube  
N/A  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
Electrical Characteristics T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250µA, V = 0V  
30  
-
-
-
-
-
-
V
VDSS  
D
GS  
V
V
= 25V  
= 0V  
1
DS  
GS  
I
I
µA  
nA  
DSS  
o
T
= 150  
-
250  
±100  
C
V
= ±20V  
-
GSS  
GS  
On Characteristics  
V
Gate to Source Threshold Voltage  
V
= V , I = 250µA  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
I
I
= 75A, V = 10V  
0.0026 0.0032  
0.004 0.005  
D
D
GS  
r
Drain to Source On Resistance  
DS(ON)  
= 75A, V = 4.5V  
-
GS  
Dynamic Characteristics  
C
C
C
Input Capacitance  
-
-
-
7000  
1350  
570  
115  
61  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
ISS  
V
= 15V, V = 0V,  
GS  
DS  
Output Capacitance  
OSS  
RSS  
f = 1MHz  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Total Gate Charge at 5V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
-
Q
Q
Q
Q
Q
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
172  
92  
9.8  
-
g(TOT)  
g(5)  
g(TH)  
gs  
GS  
V
V
-
-
-
-
GS  
GS  
V
= 15V  
DD  
= 75A  
I
6.5  
D
I = 1.0mA  
g
14  
17  
-
gd  
Switching Characteristics (V = 4.5V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
155  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
22  
80  
35  
25  
-
-
-
d(ON)  
V
V
= 15V, I = 24A  
r
DD  
GS  
D
= 4.5V, R = 2.4Ω  
Turn-Off Delay Time  
Fall Time  
-
G
d(OFF)  
-
f
Turn-Off Time  
90  
OFF  
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
123  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
12  
69  
51  
21  
-
-
d(ON)  
-
V
V
= 15V, I = 24A  
r
DD  
GS  
D
= 10V, R = 2.4Ω  
Turn-Off Delay Time  
Fall Time  
-
-
G
d(OFF)  
f
Turn-Off Time  
107  
OFF  
Unclamped Inductive Switching  
t
Avalanche Time  
I
= 4.1A L = 3.0 mH  
275  
-
-
µs  
AV  
D
Drain-Source Diode Characteristics  
I
I
I
I
= 75A  
= 35A  
-
-
-
-
-
-
-
-
1.25  
1.0  
31  
V
V
SD  
SD  
SD  
SD  
V
Source to Drain Diode Voltage  
SD  
t
Reverse Recovery Time  
= 75A, dI /dt = 100A/µs  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 75A, dI /dt = 100A/µs  
20  
RR  
SD  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
Typical Characteristics  
1.2  
1
80  
60  
40  
20  
0
V
= 10V  
GS  
0.8  
0.6  
0.4  
0.2  
0
V
= 4.5V  
GS  
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
150  
175  
125  
o
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
SINGLE PULSE  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
3000  
1000  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
V
= 10V  
GS  
175 - T  
150  
C
I = I  
25  
V
= 5V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
-5  
-4  
-3  
-2  
-1  
-0  
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
Typical Characteristics  
150  
150  
120  
90  
60  
30  
0
V
= 10V  
PULSE DURATION = 80µs  
GS  
DUTY CYCLE = 0.5% MAX  
V
= 15V  
120  
90  
60  
30  
0
DD  
V
= 4.5V  
GS  
V
= 3.5V  
GS  
o
T
= 175 C  
J
V
= 3V  
GS  
o
o
o
T = 25 C  
C
T
= -55 C  
T
= 25 C  
J
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
0
0.2  
0.4  
0.6  
0.8  
1
1.5  
2
2.5  
3
3.5  
V
, GATE TO SOURCE VOLTAGE (V)  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
Figure 5. Transfer Characteristics  
Figure 6. Saturation Characteristics  
10  
2
PULSE DURATION = 80µs  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
8
6
4
2
1.5  
I
= 75A  
D
I
= 24A  
1
D
V
= 10V, I =75A  
D
GS  
0.5  
-80  
-40  
0
40  
80  
120  
160  
200  
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
Figure 7. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
Figure 8. Normalized Drain to Source On  
Resistance vs Junction Temperature  
1.4  
1.2  
I
= 250µA  
V
= V , I = 250µA  
DS D  
D
GS  
1.2  
1
1.1  
1.0  
0.9  
0.8  
0.6  
0.4  
0.2  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 9. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 10. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
Typical Characteristics  
10000  
10  
8
V
= 15V  
DD  
C
= C + C  
GD  
ISS  
GS  
C
C
+ C  
OSS  
DS GD  
6
C
= C  
GD  
RSS  
4
1000  
300  
WAVEFORMS IN  
DESCENDING ORDER:  
2
I
= 75A  
= 10A  
D
V
= 0V, f = 1MHz  
GS  
I
D
0
0.1  
1
10  
30  
0
50  
100  
150  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 11. Capacitance vs Drain to Source  
Voltage  
Figure 12. Gate Charge Waveforms for Constant  
Gate Currents  
500  
800  
V
= 10V, V = 15V, I = 24A  
DD D  
V
= 4.5V, V = 15V, I = 24A  
GS  
GS  
DD  
D
400  
300  
200  
100  
0
t
r
600  
400  
200  
0
t
d(OFF)  
t
d(OFF)  
t
t
f
f
t
d(ON)  
t
r
t
d(ON)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
GS  
, GATE TO SOURCE RESISTANCE ()  
GS  
Figure 13. Switching Time vs Gate Resistance  
Figure 14. Switching Time vs Gate Resistance  
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
Test Circuits and Waveforms (Continued)  
V
DS  
V
Q
g(TOT)  
DD  
R
L
V
DS  
V
= 10V  
GS  
Q
g(5)  
V
GS  
+
-
V
V
= 5V  
DD  
V
GS  
GS  
V
= 1V  
DUT  
GS  
0
I
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
thermal resistance of the heat dissipating path determines  
80  
60  
40  
20  
JM  
R
= 26.51+ 19.84/(0.262+Area)  
θJA  
the maximum allowable device power dissipation, P , in an  
DM  
application.  
Therefore the application’s ambient  
o
o
temperature, T ( C), and thermal resistance R  
( C/W)  
A
θJA  
must be reviewed to ensure that T  
is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
Z
A
(EQ. 1)  
P
= -----------------------------  
DM  
θJA  
In using surface mount devices such as the TO-263  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
0.1  
1
10  
2
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
is  
AREA, TOP COPPER AREA (in )  
DM  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
defines the R  
for the device as a function of the top  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Displayed on the curve are R  
values listed in the  
θJA  
Electrical Specifications table. The points were chosen to  
depict the compromise between the copper board area, the  
thermal resistance and ultimately the power dissipation,  
P
.
DM  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2. R  
is defined as the natural log of the area  
θJA  
times a coefficient added to a constant. The area, in square  
inches is the top copper area including the gate and source  
pads.  
19.84  
(0.262 + Area)  
R
= 26.51 + ------------------------------------  
(EQ. 2)  
θJA  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
PSPICE Electrical Model  
.SUBCKT ISL9N303AP3 2 1 3 ;  
Ca 12 8 6.3e-9  
rev May 2001  
Cb 15 14 3.8e-9  
Cin 6 8 6.7e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
Ebreak 11 7 17 18 30.6  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
-
18  
22  
It 8 17 1  
MMED  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 5.618e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 1.98e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 56.1  
RLdrain 2 5 15  
RLsource 3 7 19.8  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 0.9e-3  
Rgate 9 20 0.639  
-
-
8
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 1.8e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3))}  
.MODEL DbodyMOD D (IS=8e-11 N=1.06 RS=2.3e-3 TRS1=1.1e-3 TRS2=3e-6  
+ CJO=2.6e-9 M=0.43 TT=3e-10 XTI=0.1)  
.MODEL DbreakMOD D (RS=0.3 TRS1=1.8e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=2.05e-9 IS=1e-30 N=10 M=0.46)  
.MODEL MstroMOD NMOS (VTO=2.16 KP=270 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MmedMOD NMOS (VTO=1.65 KP=20 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=0.639)  
.MODEL MweakMOD NMOS (VTO=1.29 KP=0.1 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=6.39 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.05e-3 TC2=-7e-7)  
.MODEL RdrainMOD RES (TC1=1e-2 TC2=1.8e-5)  
.MODEL RSLCMOD RES (TC1=3.5e-4 TC2=5e-6)  
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-3e-3 TC2=-11e-6)  
.MODEL RvtempMOD RES (TC1=-1.5e-3 TC2=1.4e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-4)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-5)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.9 VOFF=0.2)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.2 VOFF=-0.9)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
SABER Electrical Model  
REV May 20011  
template ISL9N303AP3 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=8e-11,nl=1.06,rs=2.3e-3,trs1=1.1e-3,trs2=3e-6,cjo=2.6e-9,m=0.43,tt=3e-10,xti=0.1)  
dp..model dbreakmod = (rs=0.3,trs1=1.8e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=2.05e-9,isl=10e-30,nl=10,m=0.46)  
m..model mstrongmod = (type=_n,vto=2.16,kp=270,is=1e-30, tox=1)  
m..model mmedmod = (type=_n,vto=1.65,kp=20,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=1.29,kp=0.1,is=1e-30, tox=1,rs=0.1)  
LDRAIN  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5,voff=-4)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-4,voff=-5)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.9,voff=0.2)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.2,voff=-0.9)  
c.ca n12 n8 = 6.3e-9  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
c.cb n15 n14 = 3.8e-9  
ISCL  
c.cin n6 n8 = 6.7e-9  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
spe.ebreak n11 n7 n17 n18 = 30.6  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
MMED  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
i.it n8 n17 = 1  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
l.lgate n1 n9 = 5.618e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 1.98e-9  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 15  
res.rlsource n3 n7 = 19.8  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=-7e-7  
res.rdrain n50 n16 = 0.9e-3, tc1=1e-2,tc2=1.8e-5  
res.rgate n9 n20 = 0.639  
res.rslc1 n5 n51 = 1e-6, tc1=3.5e-4,tc2=5e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 1.8e-3, tc1=1e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-3e-3,tc2=-11e-6  
res.rvtemp n18 n19 = 1, tc1=-1.5e-3,tc2=1.4e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3))  
}
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
SPICE Thermal Model  
JUNCTION  
th  
REV May 2001  
ISL9N303AP3  
CTHERM1 TH 6 3.9e-3  
CTHERM2 6 5 7.1e-3  
CTHERM3 5 4 8.7e-3  
CTHERM4 4 3 9.6e-3  
CTHERM5 3 2 1e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM6 2 TL 2.4e-2  
6
RTHERM1 TH 6 3.9e-5  
RTHERM2 6 5 7.5e-4  
RTHERM3 5 4 4.8e-3  
RTHERM4 4 3 2.7e-2  
RTHERM5 3 2 1.6e-1  
RTHERM6 2 TL 3.7e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model ISL9N303AP3  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =3.9e-3  
ctherm.ctherm2 6 5 =7.1e-3  
ctherm.ctherm3 5 4 =8.7e-3  
ctherm.ctherm4 4 3 =9.6e-3  
ctherm.ctherm5 3 2 =1e-2  
ctherm.ctherm6 2 tl =2.4e-2  
4
3
2
rtherm.rtherm1 th 6 =3.9e-5  
rtherm.rtherm2 6 5 =7.5e-4  
rtherm.rtherm3 5 4 =4.8e-3  
rtherm.rtherm4 4 3 =2.7e-2  
rtherm.rtherm5 3 2 =1.6e-1  
rtherm.rtherm6 2 tl =3.7e-1  
}
tl  
CASE  
©2002 Fairchild Semiconductor Corporation  
ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FACT™  
ImpliedDisconnectPACMAN™  
SPM™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™ FRFET™  
DOME™  
FACT Quiet Series™ ISOPLANAR™  
POP™  
Stealth™  
FAST®  
LittleFET™  
MicroFET™  
MicroPak™  
Power247™  
PowerTrench®  
QFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
FASTr™  
GlobalOptoisolator™ MICROWIRE™  
QS™  
EcoSPARK™  
E2CMOS™  
EnSigna™  
Across the board. Around the world.OCXPro™  
The Power Franchise™  
GTO™  
HiSeC™  
I2C™  
MSX™  
MSXPro™  
OCX™  
QT Optoelectronics™ TinyLogic™  
Quiet Series™  
TruTranslation™  
RapidConfigure™  
RapidConnect™  
UHC™  
UltraFET®  
OPTOLOGIC®  
OPTOPLANAR™  
SILENT SWITCHER® VCX™  
SMART START™  
Programmable Active Droop™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY