RF1K4922396 [FAIRCHILD]

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET; 2.5A , 30V , 0.150欧姆,双P沟道LittleFET⑩功率MOSFET
RF1K4922396
型号: RF1K4922396
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
2.5A , 30V , 0.150欧姆,双P沟道LittleFET⑩功率MOSFET

晶体 晶体管 开关 光电二极管
文件: 总9页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF1K49223  
Data Sheet  
January 2002  
2.5A, 30V, 0.150 Ohm, Dual P-Channel  
LittleFET™ Power MOSFET  
Features  
• 2.5A, 30V  
• r = 0.150Ω  
The RF1K49223 Dual P-Channel power MOSFET is  
manufactured using an advanced MegaFET process. This  
process, which uses feature sizes approaching those of LSI  
integrated circuits, gives optimum utilization of silicon,  
resulting in outstanding performance. It is designed for use  
in applications such as switching regulators, switching  
converters, motor drivers, relay drivers, and low voltage bus  
switches. This device can be operated directly from  
integrated circuits.  
DS(ON)  
®
Temperature Compensating PSPICE Model  
• Thermal Impedance PSPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA49223.  
Symbol  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
RF1K49223  
D1(8)  
D1(7)  
RF1K49223  
MS-012AA  
NOTE: When ordering, use the entire part number. For ordering in  
tape and reel, add the suffix 96 to the part number, i.e. RF1K4922396.  
S1(1)  
G1(2)  
D2(6)  
D2(5)  
S2(3)  
G2(4)  
Packaging  
JEDEC MS-012AA  
BRANDING DASH  
5
1
2
3
4
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
RF1K49223  
o
Absolute Maximum Ratings T = 25 C Unless Otherwise Specified  
A
RF1K49223  
UNITS  
Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
-30  
-30  
±20  
V
V
V
DSS  
Drain to Gate Voltage (R  
= 20kΩ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Drain Current  
Continuous (Pulse Width = 5s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
2.5  
A
D
Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I
Refer to Peak Current Curve  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
Refer to UIS Curve  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
W
W/ C  
D
o
o
0.016  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V, (Figure 12)  
MIN  
TYP  
MAX  
-
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
I
-30  
-
-
DSS  
D
GS  
V
V
= V , I = 250µA, (Figure 11)  
-1  
-
-3  
V
GS(TH)  
GS  
DS D  
o
I
V
V
= -30V,  
= 0V  
T
T
= 25 C  
-
-1  
µA  
µA  
nA  
DSS  
DS  
GS  
A
A
o
= 150 C  
-
-
-50  
±100  
0.150  
0.360  
40  
Gate to Source Leakage Current  
Drain to Source On Resistance  
I
V
= ±20V  
-
-
GSS  
GS  
r
I
= 2.5A,  
V
= -10V  
= -4.5V  
-
-
DS(ON)  
D
GS  
GS  
(Figure 9, 10)  
= -15V, I  
D
V
-
-
Turn-On Time  
t
V
2.5A,  
-
-
ns  
ON  
DD  
R
R
= 6, V = -10V,  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
9
-
ns  
d(ON)  
= 25Ω  
GS  
t
-
19  
60  
34  
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
-
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
140  
35  
ns  
OFF  
Total Gate Charge  
Gate Charge at -10V  
Threshold Gate Charge  
Q
V
V
V
= 0V to -20V  
= 0V to -10V  
= 0V to -2V  
V
= -24V,  
2.5A,  
= 9.6Ω  
-
28  
15  
1.5  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
I
D
Q
-
19  
g(-10)  
R
L
I
= -1.0mA  
Q
-
1.9  
g(REF)  
g(TH)  
(Figure 14)  
= 0V,  
Input Capacitance  
C
V
= -25V, V  
GS  
-
-
-
-
580  
260  
38  
-
-
pF  
pF  
pF  
ISS  
OSS  
RSS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
-
-
Reverse Transfer Capacitance  
C
o
Thermal Resistance Junction to Ambient  
R
Pulse Width = 1s  
62.5  
C/W  
θJA  
Device mounted on FR-4 material  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
-1.25  
49  
UNITS  
V
V
I
I
= -2.5A  
-
-
-
-
SD  
SD  
t
=-2.5A, dI /dt = 100A/µs  
SD  
ns  
rr  
SD  
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
RF1K49223  
Typical Performance Curves  
1.2  
1.0  
0.8  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
0.6  
0.4  
0.2  
0
-0.5  
0
75  
100  
125  
150  
50  
0
25  
50  
75  
100  
125  
150  
25  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
10  
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
0.1  
0.05  
1
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
JA A  
DM  
JA  
θ
θ
SINGLE PULSE  
0.001  
-4  
10  
-5  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
-100  
-50  
-10  
o
T
= MAX RATED  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
V
= -20V  
J
T = 25 C  
A
GS  
o
o
T
= 25 C  
A
150 - T  
I = I  
A
25  
V
= -10V  
GS  
125  
5ms  
10ms  
-1  
-0.1  
-10  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100ms  
1s  
OPERATION IN THIS  
AREA MAY BE  
DC  
V
= -30V  
-10  
LIMITED BY r  
DSS(MAX)  
DS(ON)  
-0.01  
-1  
10  
-5  
-4  
-3  
-2  
-1  
10  
0
1
-0.1  
-1  
10  
10  
10  
10  
10  
-100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
t, PULSE WIDTH (s)  
DS  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
RF1K49223  
Typical Performance Curves (Continued)  
-15  
-20  
If R = 0  
AV  
If R 0  
V
= -20V  
= -10V  
= -8V  
PULSE DURATION = 80µs  
GS  
t
= (L)(I )/(1.3*RATED BV  
- V  
)
DD  
AS  
DSS  
DUTY CYCLE = 0.5% MAX  
-10  
V
GS  
o
T
= 25 C  
t
AV  
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DSS DD  
A
AS  
V
= -7V  
-16  
-12  
-8  
GS  
V
GS  
V
= -6V  
GS  
o
STARTING T = 25 C  
J
V
= -5V  
GS  
o
STARTING T = 150 C  
J
V
= -4.5V  
GS  
-4  
-1  
0.1  
0
1
10  
100  
0
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
500  
400  
300  
200  
100  
0
-20  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= -15V  
DD  
V
= -15V  
o
DD  
150 C  
-16  
-12  
-8  
I
= -5.0A  
= -2.5A  
D
o
-55 C  
I
D
o
25 C  
I
= -1.25A  
D
I
= -0.625A  
D
-4  
0
-6  
-8  
-10  
-2  
-4  
0
-2  
V
-4  
-6  
-8  
-10  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs  
GATE VOLTAGE AND DRAIN CURRENT  
2.0  
1.5  
1.0  
0.5  
0
1.2  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = -250µA  
GS  
DS  
D
V
= -10V, I = -2.5A  
GS  
D
1.0  
0.8  
0.6  
0.4  
-80  
-80  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
RF1K49223  
Typical Performance Curves (Continued)  
750  
1.2  
I
= -250µA  
D
C
ISS  
600  
450  
300  
1.1  
1.0  
0.9  
0.8  
V
= 0V, f = 1MHz  
GS  
ISS  
C
C
C
= C  
+ C  
GS GD  
= C  
RSS  
OSS  
GD  
= C  
C
C
+ C  
DS GD  
OSS  
RSS  
150  
0
0
-5  
V
-10  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
-15  
-20  
-25  
-80  
-40  
0
40  
80  
120  
160  
o
T , JUNCTION TEMPERATURE ( C)  
J
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
-10.0  
-30.0  
V
= BV  
DD  
DSS  
V
= BV  
DSS  
DD  
-22.5  
-15.0  
-7.5  
0
-7.5  
-5.0  
R
= 12Ω  
L
I
= -0.26mA  
G(REF)  
V
= -10V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
V
V
V
V
= BV  
-2.5  
0
DD  
DD  
DD  
DD  
DSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
I
I
G(REF)  
G(REF)  
t, TIME (µs)  
20---------------------  
80---------------------  
I
I
G(ACT)  
G(ACT)  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT  
Test Circuits and Waveforms  
V
DS  
t
AV  
L
0
VARY t TO OBTAIN  
P
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
+
DUT  
0V  
V
DD  
t
P
I
AS  
V
GS  
V
DS  
I
AS  
t
P
0.01Ω  
BV  
DSS  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
RF1K49223  
Test Circuits and Waveforms (Continued)  
t
t
ON  
OFF  
t
t
d(OFF)  
d(ON)  
t
t
f
r
0
10%  
10%  
R
L
V
DS  
V
GS  
-
V
DS  
90%  
90%  
V
DD  
+
V
0
GS  
V
GS  
10%  
50%  
DUT  
R
GS  
50%  
90%  
PULSE WIDTH  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
V
DS  
V
DS  
Q
R
g(TH)  
L
0
V
= -2V  
GS  
V
GS  
-
V
= -10V  
-V  
GS  
GS  
V
DD  
+
Q
g(-10)  
V
= -20V  
DUT  
GS  
V
DD  
Q
g(TOT)  
0
I
g(REF)  
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
Soldering Precautions  
The soldering process creates a considerable thermal stress  
on any semiconductor component. The melting temperature  
of solder is higher than the maximum rated temperature of  
the device. The amount of time the device is heated to a high  
temperature should be minimized to assure device reliability.  
Therefore, the following precautions should always be  
observed in order to minimize the thermal stress to which the  
devices are subjected.  
4. The peak temperature in the soldering process should be  
o
at least 30 C higher than the melting point of the solder  
chosen.  
5. The maximum soldering temperature and time must not  
o
exceed 260 C for 10 seconds on the leads and case of  
the device.  
6. After soldering is complete, the device should be allowed  
to cool naturally for at least three minutes, as forced cool-  
ing will increase the temperature gradient and may result  
in latent failure due to mechanical stress.  
1. Always preheat the device.  
2. The delta temperature between the preheat and solder-  
o
ing should always be less than 100 C. Failure to preheat  
7. During cooling, mechanical stress or shock should be  
avoided.  
the device can result in excessive thermal stress which  
can damage the device.  
3. The maximum temperature gradient should be less than  
o
5 C per second when changing from preheating to sol-  
dering.  
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
RF1K49223  
PSPICE Electrical Model  
SUBCKT RF1K49223 2 1 3 ;rev 4/7/97  
CA 12 8 7.29e-10  
CB 15 14 5.01e-10  
CIN 6 8 5.55e-10  
LDRAIN  
ESG  
5
DRAIN  
2
-
+
8
6
10  
RLDRAIN  
RSLC1  
51  
DBODY 5 7 DBODYMOD  
DBREAK 7 11 DBREAKMOD  
DPLCAP 10 6 DPLCAPMOD  
+
+
RSLC2  
17  
18  
5
51  
EBREAK  
ESLC  
-
-
50  
EBREAK 5 11 17 18 -35.46  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
DPLCAP  
RDRAIN  
DBODY  
ESG 5 10 8 6 1  
EVTHRES 6 21 19 8 1  
EVTEMP 6 20 18 22 1  
EVTHRES  
+
16  
21  
-
19  
8
MWEAK  
DBREAK  
LGATE  
EVTEMP  
11  
RGATE  
GATE  
1
6
-
+
18  
22  
MMED  
9
20  
IT 8 17 1  
MSTRO  
8
RLGATE  
LSOURCE  
LDRAIN 2 5 1e-9  
LGATE 1 9 1.27e-9  
LSOURCE 3 7 4.20e-10  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 19.3e-3  
RGATE 9 20 7.44  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
RLDRAIN 2 5 10  
+
+
RLGATE 1 9 12.7  
RLSOURCE 3 7 4.2  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 65.37e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*48),2.5))}  
.MODEL DBODYMOD D (IS = 3.30e-13 RS = 4.56e-2 TRS1 =6.98e-4 TRS2 =8.08e-7 CJO = 8.21e-10 TT = 3.51e-8 M=0.4)  
.MODEL DBREAKMOD D (RS = 8.18e- 1TRS1 =5.28e- 3TRS2 = -7.18e-5  
.MODEL DPLCAPMOD D (CJO = 2.52e-1 0IS = 1e-3 0N = 10 M=0.6)  
.MODEL MMEDMOD PMOS (VTO= -1.95 KP=0.75 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=7.44)  
.MODEL MSTROMOD PMOS (VTO= -2.44 KP= 7.25 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MWEAKMOD PMOS (VTO= -1.68 KP=0.045 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=74.4 RS=0.1)  
.MODEL RBREAKMOD RES (TC1 = 9.45e- 4TC2 = -1.01e-7)  
.MODEL RDRAINMOD RES (TC1 = 3.69e-3 TC2 = 5.90e-6)  
.MODEL RSLCMOD RES (TC1=3.46e-3 TC2= 1.26e-6)  
.MODEL RSOURCEMOD RES (TC1=3.69e-3 TC2=5.90e-6)  
.MODEL RVTHRESMOD RES (TC=-5.19e-4 TC2= 5.02e-6)  
.MODEL RVTEMPMOD RES (TC1 = -3.54e- 3TC2 = -6.53e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 6.94 VOFF= 3.94)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.94 VOFF= 6.94)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.40 VOFF= -2.60)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.60 VOFF= 0.40)  
.ENDS  
NOTE:For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options;IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
RF1K49223  
PSPICE Thermal Model  
JUNCTION  
7
REV 28 Feb 97  
RF1K49223  
CTHERM1 7 6 1.00e-7  
CTHERM2 6 5 9.00e-4  
CTHERM3 5 4 3.00e-3  
CTHERM4 4 3 4.00e-2  
CTHERM5 3 2 5.20e-3  
CTHERM6 2 1 1.90e-2  
RTHERM1  
CTHERM1  
6
RTHERM1 7 6 7.10e-2  
RTHERM2 6 5 1.90e-1  
RTHERM3 5 4 5.95e-1  
RTHERM4 4 3 4.27  
RTHERM5 3 2 1.2e1  
RTHERM6 2 1 1.04e2  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
4
3
2
1
CASE  
©2002 Fairchild Semiconductor Corporation  
RF1K49223 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

RF1K49224

3.5A/2.5A, 30V, 0.060/0.150 Ohms, Complementary LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922496

TRANSISTOR | MOSFET | PAIR | COMPLEMENTARY | 30V V(BR)DSS | 3.5A I(D) | SO
ETC

RF1S0CA137KFT

Fixed Resistor, Metal Film, 1W, 137000ohm, 350V, 1% +/-Tol, 100ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA16R5F

Fixed Resistor, Metal Film, 1W, 16.5ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA1R10JT

Fixed Resistor, Metal Film, 1W, 1.1ohm, 350V, 5% +/-Tol, 200ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA357RF

Fixed Resistor, Metal Film, 1W, 357ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA680RJ

Fixed Resistor, Metal Film, 1W, 680ohm, 350V, 5% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S15N06SM

15A, 60V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S15N06SM9A

15A, 60V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S15N08L9A

45A, 80V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S17N06LSM

17A, 60V, 0.1ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S17N06LSM9A

17A, 60V, 0.1ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS