RF1S50N06LESM [FAIRCHILD]

Power Field-Effect Transistor, 50A I(D), 60V, 0.022ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB,;
RF1S50N06LESM
型号: RF1S50N06LESM
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Power Field-Effect Transistor, 50A I(D), 60V, 0.022ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB,

开关 晶体管
文件: 总8页 (文件大小:460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RFG50N06LE, RFP50N06LE, RF1S50N06LESM  
Data Sheet  
October 1999  
File Number 4072.3  
50A, 60V, 0.022 Ohm, Logic Level  
N-Channel Power MOSFETs  
Features  
• 50A, 60V  
Title These N-Channel enhancement mode power MOSFETs are  
• r = 0.022Ω  
DS(ON)  
manufactured using the latest manufacturing process  
FG5  
06L  
®
Temperature Compensating PSPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
technology. This process, which uses feature sizes  
approaching those of LSI circuits, gives optimum utilization  
of silicon, resulting in outstanding performance. They were  
P50  
designed for use in applications such as switching  
o
6LE  
regulators, switching converters, motor drivers, and relay  
drivers. These transistors can be operated directly from  
integrated circuits.  
• 175 C Operating Temperature  
• Related Literature  
1S5  
06L  
M)  
b-  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA49164.  
Symbol  
Ordering Information  
D
t
A,  
PART NUMBER  
PACKAGE  
BRAND  
FG50N06L  
RFG50N06LE  
TO-247  
V,  
RFP50N06LE  
TO-220AB  
TO-263AB  
FP50N06L  
F50N06LE  
G
22  
m,  
gic  
vel  
RF1S50N06LESM  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in tape and reel, i.e.  
RF1S50N06LESM9A.  
S
an-  
Packaging  
JEDEC STYLE TO-247  
JEDEC TO-220AB  
wer  
OS-  
Ts)  
SOURCE  
DRAIN  
SOURCE  
DRAIN  
GATE  
GATE  
utho  
DRAIN  
(BOTTOM  
SIDE METAL)  
DRAIN (FLANGE)  
ey-  
rds  
ter-  
rpo-  
on,  
gic  
JEDEC TO-263AB  
vel  
DRAIN  
(FLANGE)  
GATE  
an-  
SOURCE  
wer  
OS-  
©2001 Fairchild Semiconductor Corporation  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Rev. A  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
RFG50N06LE, RFP50N06LE,  
RF1S50N06LESM  
UNITS  
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
60  
60  
10  
V
V
V
A
DSS  
DGR  
GS  
D
DM  
Drain to Gate Voltage (R  
= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
50  
Refer to Peak Current Curve  
Refer to UIS Curve  
142  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.95  
-55 to 175  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
C
J
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
o
o
300  
260  
C
C
L
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V, Figure 13  
MIN  
TYP  
MAX  
-
UNITS  
V
Drain to Source Breakdown Voltage  
Gate Threshold Voltage  
I
60  
1
-
-
-
DSS  
D
GS  
= V , I = 250µA, Figure 12  
V
V
V
V
V
3
V
GS(TH)  
GS  
DS  
DS  
GS  
DS D  
Zero Gate Voltage Drain Current  
I
= 55V, V  
= 50V, V  
= 0V  
-
1
µA  
µA  
µA  
DSS  
GSS  
GS  
GS  
o
= 0V, T = 150 C  
-
-
250  
10  
0.022  
230  
-
C
Gate to Source Leakage Current  
I
=
10V  
-
-
Drain to Source On Resistance (Note 2)  
Turn-On Time  
r
I
= 50A, V  
= 5V, Figure 11  
-
-
DS(ON)  
D
GS  
t
V
R
R
= 30V, I = 50A,  
-
-
ns  
ON  
DD  
D
= 0.6, V  
= 5V,  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
20  
170  
48  
90  
-
ns  
d(ON)  
= 2.5Ω  
GS  
t
-
-
ns  
r
Figures 10, 18, 19  
Turn-Off Delay Time  
Fall Time  
t
-
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
165  
120  
70  
2.7  
ns  
OFF  
Total Gate Charge  
Gate Charge at 5V  
Threshold Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
= 48V,  
-
96  
57  
2.2  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 50A,  
I
D
Q
-
g(5)  
R
= 0.96Ω  
L
Q
-
g(TH)  
(Figures 21, 21)  
= 25V, V = 0V,  
GS  
Input Capacitance  
C
V
-
-
-
-
-
-
2100  
-
-
pF  
pF  
pF  
ISS  
OSS  
RSS  
DS  
f = 1MHz  
Figure 14  
Output Capacitance  
C
C
600  
Reverse Transfer Capacitance  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
230  
-
o
R
-
-
-
1.05  
30  
80  
C/W  
θJC  
θJA  
o
R
TO-247  
C/W  
o
TO-220AB and TO-263AB  
C/W  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Diode Reverse Recovery Time  
NOTES:  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
I
I
= 45A  
-
-
-
-
1.5  
SD  
SD  
SD  
t
= 45A, dI /dt = 100A/µs  
SD  
125  
ns  
rr  
2. Pulse test: pulse width 80µs, duty cycle 2%.  
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).  
©2001 Fairchild Semiconductor Corporation  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Rev. A  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM  
Typical Performance Curves Unless Otherwise Specified  
1.2  
60  
50  
40  
30  
20  
10  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75  
100  
125  
o
150  
175  
25  
50  
75  
100  
125  
o
150  
175  
T
, CASE TEMPERATURE ( C)  
T
, CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
1
0.5  
P
0.2  
DM  
0.1  
0.1  
t
t
1
0.05  
2
0.02  
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
x R  
PEAK T = P  
x Z  
+ T  
JC C  
J
DM  
JC  
θ
θ
SINGLE PULSE  
0.01  
-5  
-4  
-3  
10  
-2  
10  
-1  
10  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
500  
100  
1000  
o
= 25 C  
= MAX RATED  
T
o
= 25 C  
C
T
C
T
J
V
= 10V  
GS  
100µs  
V
= 5V  
GS  
100  
1ms  
10  
1
FOR TEMPERATURES  
THERMAL IMPEDANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
10ms  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
OPERATION IN THIS  
AREA MAY BE  
175 - T  
150  
C
I = I  
LIMITED BY r  
25  
DS(ON)  
10  
-5  
10  
-4  
10  
-3  
10  
-2  
-1  
0
1
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
10  
10  
10  
10  
V
DS  
t, PULSE WIDTH (s)  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
©2001 Fairchild Semiconductor Corporation  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Rev. A  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM  
Typical Performance Curves Unless Otherwise Specified (Continued)  
300  
100  
75  
50  
25  
0
t
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS DSS  
- V ) +1]  
DD  
o
AV  
T
= 25 C  
C
V
= 10V  
= 5V  
GS  
If R 0  
AV  
If R = 0  
= (L)(I )/(1.3*RATED BV  
DSS  
- V )  
DD  
V
AS  
GS  
100  
V
= 4V  
GS  
o
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
STARTING T = 25 C  
J
10  
o
STARTING T = 150 C  
J
V
= 3V  
GS  
V
= 2.5V  
GS  
1
0.01  
0.1  
t
1
10  
100  
0
1.5  
3.0  
4.5  
6.0  
,TIME IN AVALANCHE (ms)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
AV  
DS  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
FIGURE 7. SATURATION CHARACTERISTICS  
100  
80  
60  
o
-55 C  
V
= 15V  
DD  
o
I
= 12.5A  
I
= 50A  
I
= 100A  
D
25 C  
D
D
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
175 C  
75  
50  
25  
40  
20  
0
I
= 25A  
D
V
= 15V  
DD  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
1.5  
3.0  
4.5  
6.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAINTO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
2.5  
600  
500  
400  
300  
200  
100  
V
= 5V, I = 50A  
D
GS  
V
= 30V, I = 50A, R = 0.6Ω  
D L  
DD  
t
r
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
2.0  
1.5  
1.0  
0.5  
t
d(OFF)  
t
f
t
d(ON)  
0
-80  
-40  
0
40  
80  
120  
o
160  
200  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 11. NORMALIZED DRAINTO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
©2001 Fairchild Semiconductor Corporation  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Rev. A  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM  
Typical Performance Curves Unless Otherwise Specified (Continued)  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.1  
1.0  
0.9  
0.8  
V
= V , I = 250µA  
DS  
GS  
D
I
= 250µA  
D
-80  
-40  
0
40  
80  
120  
o
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 12. NORMALIZED GATETHRESHOLDVOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
60  
5.0  
3.75  
2.5  
1.25  
0
2500  
V
= BV  
DSS  
V
= BV  
DD  
DD DSS  
C
ISS  
2000  
1500  
1000  
500  
0
45  
R
=1.2Ω  
L
V
= 0V, f = 1MHz  
GS  
I
= 1.2mA  
G(REF)  
= 5V  
C
C
C
= C  
+ C  
ISS  
GS  
GD  
V
GS  
= C  
GD  
RSS  
OSS  
30  
15  
0
C  
+ C  
GD  
DS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
V
V
V
V
= BV  
DD  
DD  
DD  
DD  
DSS  
C
C
OSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
RSS  
I
I
G(REF)  
G(REF)  
t,TIME (µs)  
0
5
10  
15  
20  
25  
---------------------  
---------------------  
20  
80  
I
I
G(ACT)  
G(ACT)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 15. NORMALIZED SWITCHINGWAVEFORMS FOR  
CONSTANT GATE CURRENT  
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Rev. A  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM  
Test Circuits and Waveforms (Continued)  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
V
DS  
t
t
f
r
V
DS  
90%  
90%  
R
L
V
GS  
+
10%  
10%  
0
V
DD  
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
V
DS  
V
Q
R
DD  
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
L
= 10V FOR  
Q
OR Q  
GS  
DEVICES  
g(10)  
g(5)  
V
GS  
2
+
-
V
DD  
V
= 10V  
GS  
V
GS  
V
= 5V FOR  
GS  
2
L
DEVICES  
DUT  
V
= 2V  
V
= 1V FOR  
L DEVICES  
GS  
GS  
2
I
0
g(REF)  
Q
g(TH)  
I
g(REF)  
0
FIGURE 20. GATE CHARGE TEST CIRCUIT  
FIGURE 21. GATE CHARGE WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Rev. A  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM  
PSPICE Electrical Model  
SUBCKT 50N06LE 2 1 3 ;  
rev 8/11/95  
CA 12 8 3.73e-9  
CB 15 14 3.73e-9  
CIN 6 8 2.08e-9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 66.5  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
IT 8 17 1  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LDRAIN 2 5 4.0e-9  
LGATE 1 9 6.0e-9  
LSOURCE 3 7 3.0e-9  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 3.75e-3  
RGATE 9 20 1.0  
RLDRAIN 2 5 40  
RLGATE 1 9 60  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 30  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 6.15e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),4))}  
.MODEL DBODYMOD D (IS = 1.70e-12 RS = 3.20e-3 TRS1 = 1.75e-3 TRS2 = 1.75e-6 CJO = 2.55e-9 IKF = 13 XTI = 5.2 TT = 7.00e-8 M = 0.47)  
.MODEL DBREAKMOD D (RS = 1.70e-1 IKF = 0.1 TRS1 = 2.00e-3 TRS2 = 8.00e-7)  
.MODEL DPLCAPMOD D (CJO = 2.00e-9 IS = 1e-30 VJ = 1.1 M = 0.83 N = 10)  
.MODEL MMEDMOD NMOS (VTO = 2.00 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.0)  
.MODEL MSTROMOD NMOS (VTO = 2.42 KP = 128 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.60 KP = 0.01 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10.0 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 1.13e-3 TC2 = 0)  
.MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 6.00e-5)  
.MODEL RSLCMOD RES (TC1 = 2.00e-3 TC2 = 1.00e-6)  
.MODEL RSOURCEMOD RES (TC1 = 2.00e-3 TC2 =-1.00e-5)  
.MODEL RVTHRESMOD RES (TC1 = -2.50e-3 TC2 = -8.50e-6)  
.MODEL RVTEMPMOD RES (TC1 = -2.00e-3 TC2 = 5.00e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.3 VOFF= -2.5)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -5.3)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.4 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.4)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2001 Fairchild Semiconductor Corporation  
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
PACMAN™  
POP™  
PowerTrench  
QFET™  
QS™  
QT Optoelectronics™  
Quiet Series™  
SILENT SWITCHER  
SMART START™  
Star* Power™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TinyLogic™  
UHC™  
FAST  
FASTr™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MICROWIRE™  
OPTOLOGIC™  
OPTOPLANAR™  
ACEx™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DenseTrench™  
DOME™  
UltraFET™  
VCX™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT™  
FACT Quiet Series™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H  

相关型号:

RF1S50N06LESM9A

Power Field-Effect Transistor, 50A I(D), 60V, 0.022ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB,
FAIRCHILD

RF1S50N06SM

50A, 60V, 0.022 Ohm, N-Channel Power MOSFETs
FAIRCHILD

RF1S50N06SM

50A, 60V, 0.022 Ohm, N-Channel Power MOSFETs
INTERSIL

RF1S50N06SM9A

50A, 60V, 0.022ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
ROCHESTER

RF1S50N06SM9A

Power Field-Effect Transistor, 50A I(D), 60V, 0.022ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB,
FAIRCHILD

RF1S50N06SM9A

50A, 60V, 0.022ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S530

RF1S530
RENESAS

RF1S530SM

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 14A I(D) | TO-263AB
ETC

RF1S530SM9A

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 14A I(D) | TO-263AB
ETC

RF1S540

28A, 100V, 0.077ohm, N-CHANNEL, Si, POWER, MOSFET, TO-262AA
ROCHESTER

RF1S540

28A, 100V, 0.077ohm, N-CHANNEL, Si, POWER, MOSFET, TO-262AA
RENESAS

RF1S540SM

28A, 100V, 0.077ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS