RFD14N05 [FAIRCHILD]

14A, 50V, 0.100 Ohm, N-Channel Power MOSFETs; 14A , 50V , 0.100 Ohm的N通道功率MOSFET
RFD14N05
型号: RFD14N05
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

14A, 50V, 0.100 Ohm, N-Channel Power MOSFETs
14A , 50V , 0.100 Ohm的N通道功率MOSFET

文件: 总8页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RFD14N05, RFD14N05SM, RFP14N05  
Data Sheet  
January 2002  
14A, 50V, 0.100 Ohm, N-Channel Power  
MOSFETs  
Features  
• 14A, 50V  
These are N-channel power MOSFETs manufactured using  
the MegaFET process. This process, which uses feature  
sizes approaching those of LSI integrated circuits, gives  
optimum utilization of silicon, resulting in outstanding  
performance. They were designed for use in applications  
such as switching regulators, switching converters, motor  
drivers and relay drivers. These transistors can be operated  
directly from integrated circuits.  
• r  
= 0.100Ω  
DS(ON)  
®
• Temperature Compensating PSPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
o
• 175 C Operating Temperature  
• Related Literature  
Formerly developmental type TA09770.  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Ordering Information  
Symbol  
PART NUMBER  
PACKAGE  
BRAND  
D14N05  
D
RFD14N05  
TO-251AA  
RFD14N05SM  
RFP14N05  
TO-252AA  
TO-220AB  
D14N05  
RFP14N05  
G
NOTE: When ordering, use the entire part number. Add the suffix 9A to  
obtain the TO-252AA variant in the tape and reel, i.e., RFD14N05SM9A.  
S
Packaging  
JEDEC TO-251AA  
JEDEC TO-252AA  
DRAIN (FLANGE)  
SOURCE  
DRAIN  
GATE  
GATE  
DRAIN (FLANGE)  
SOURCE  
JEDEC TO-220AB  
SOURCE  
DRAIN  
GATE  
DRAIN (FLANGE)  
©2002 Fairchild Semiconductor Corporation  
RFD14N05, RFD14N05SM, RFP14N05 Rev. B1  
RFD14N05, RFD14N05SM, RFP14N05  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
RFD14N05, RFD14N05SM,  
RFP14N05  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
50  
50  
V
V
V
A
DSS  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
± 20  
14  
GS  
D
Refer to Peak Current Curve  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
Refer to UIS Curve  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
48  
0.32  
W
D
o
o
Derate above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W/ C  
o
Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
T
-55 to 175  
C
J, STG  
o
300  
260  
C
L
o
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
Drain to Source Breakdown Voltage  
Gate Threshold Voltage  
SYMBOL  
BV  
TEST CONDITIONS  
= 0V (Figure 9)  
MIN  
TYP  
MAX  
UNITS  
V
I
= 250µA, V  
D GS  
50  
2
-
-
-
-
4
DSS  
GS(TH)  
V
V
V
V
V
= V , I = 250µA  
DS  
V
GS  
DS  
DS  
GS  
D
Zero Gate Voltage Drain Current  
I
= Rated BV  
DSS  
, V  
= 0V  
-
25  
250  
±100  
0.100  
60  
-
µA  
µA  
nA  
DSS  
GSS  
GS  
o
= 0.8 x Rated BV  
, V  
DSS GS  
= 0V, T = 150 C  
-
-
C
Gate to Source Leakage Current  
I
= ±20V  
-
-
Drain to Source On Resistance (Note 2)  
Turn-On Time  
r
I
= 14A, V  
= 10V, (Figure 11)  
-
-
DS(ON)  
D
GS  
= 25V, ID 14A, V = 10V,  
GS  
t
V
R
-
-
ns  
ON  
DD  
= 25Ω, R = 1.7Ω  
GS  
L
Turn-On Delay Time  
Rise Time  
t
-
14  
26  
45  
17  
-
ns  
d(ON)  
(Figure 13)  
t
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
-
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
100  
40  
25  
1.5  
ns  
OFF  
Total Gate Charge  
Gate Charge at 5V  
Threshold Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
R
I
= 40V, I = 14A,  
-
-
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 2.86Ω  
D
L
Q
-
-
g(10)  
= 0.4mA  
g(REF)  
Q
-
-
g(TH)  
(Figure 13)  
= 25V, V = 0V, f = 1MHz  
GS  
Input Capacitance  
C
ISS  
V
-
-
-
-
-
-
570  
-
-
pF  
pF  
pF  
DS  
(Figure 12)  
Output Capacitance  
C
C
185  
OSS  
RSS  
Reverse Transfer Capacitance  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
50  
-
o
R
-
-
-
3.125  
100  
80  
C/W  
θJC  
θJA  
θJA  
o
R
TO-251 and TO-252  
TO-220  
C/W  
o
R
C/W  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage (Note 2)  
Diode Reverse Recovery Time  
NOTES:  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.5  
UNITS  
V
I
= 14A  
-
-
-
-
V
SD  
SD  
t
I
= 14A, dI /dt = 100A/µs  
SD SD  
125  
ns  
rr  
2. Pulse Test: Pulse Width 300ms, Duty Cycle 2%.  
3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current  
Capability Curve (Figure 5).  
©2002 Fairchild Semiconductor Corporation  
RFD14N05, RFD14N05SM, RFP14N05 Rev. B1  
RFD14N05, RFD14N05SM, RFP14N05  
Typical Performance Curves Unless Otherwise Specified  
1.2  
1.0  
16  
12  
0.8  
0.6  
8
4
0
0.4  
0.2  
0
0
25  
50  
75  
100  
125  
o
175  
150  
25  
50  
75  
T , CASE TEMPERATURE ( C)  
C
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
1
0.5  
0.2  
P
DM  
0.1  
0.1  
0.05  
t
t
1
2
0.02  
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
JA  
θ
x R  
+ T  
JA A  
J
DM  
θ
0.01  
-5  
10  
-4  
10  
-3  
-2  
10  
-1  
0
1
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
100  
T
= MAX RATED  
J
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
o
SINGLE PULSE  
T
C
V
GS  
= 20V  
o
= 25 C  
100  
V
= 10V  
GS  
175 T  
C
I = I  
---------------------  
25  
150  
100µs  
10  
OPERATION IN THIS  
AREA MAY BE  
1ms  
LIMITED BY r  
DS(ON)  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
10ms  
DC  
100ms  
1
10  
10  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
-5  
-4  
-3  
10  
-2  
10  
-1  
10  
0
1
10  
10  
10  
V
DS  
t, PULSE WIDTH (s)  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
©2002 Fairchild Semiconductor Corporation  
RFD14N05, RFD14N05SM, RFP14N05 Rev. B1  
RFD14N05, RFD14N05SM, RFP14N05  
Typical Performance Curves Unless Otherwise Specified (Continued)  
50  
35  
30  
25  
20  
15  
10  
5
o
T
= 25 C  
V
GS  
= 20V  
C
V
V
= 10V  
= 8V  
GS  
GS  
V
= 7V  
GS  
o
STARTING T = 25  
C
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
10  
V
GS  
= 6V  
= 5V  
o
STARTING T = 150 C  
J
If R = 0  
AV  
If R 0  
V
V
t
= (L)(I )/(1.3*RATED BV  
- V )  
DD  
GS  
AS DSS  
= 4.5V  
GS  
t
= (L/R)ln[(I *R)/(1.3*RATED BV -V ) +1]  
DSS DD  
AV  
AS  
1
0.01  
0
2
0
4
6
8
0.1  
1
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
t
, TIME IN AVALANCHE (ms)  
AV  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
FIGURE 7. SATURATION CHARACTERISTICS  
35  
2.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
I
= 250µA  
o
D
-25 C  
30  
V
= 15V  
DD  
o
o
-55  
C
175  
C
1.5  
1.0  
0.5  
0
25  
20  
15  
10  
5
0
-80  
-40  
0
40  
80  
120  
160  
200  
0
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
2.0  
1.5  
1.0  
0.5  
0
2.5  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
DS  
GS  
D
V
GS  
= 10V, ID = 14A  
2.0  
1.5  
1.0  
0.5  
0
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
J
T , JUNCTION TEMPERATURE ( C)  
J
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
©2002 Fairchild Semiconductor Corporation  
RFD14N05, RFD14N05SM, RFP14N05 Rev. B1  
RFD14N05, RFD14N05SM, RFP14N05  
Typical Performance Curves Unless Otherwise Specified (Continued)  
60  
10  
700  
600  
500  
400  
300  
200  
V
DD  
= BV  
V = BV  
DD DSS  
DSS  
C
ISS  
45  
30  
7.5  
5.0  
V
= 0V, f = 1MHz  
GS  
C
C
C
= C  
+ C  
ISS  
GS  
GD  
= C  
C  
RSS  
OSS  
GD  
C
C
0.75 BV  
0.50 BV  
0.25 BV  
OSS  
RSS  
DSS  
DSS  
DSS  
+ C  
DS  
GD  
15  
0
2.5  
0
R
= 3.57Ω  
L
I
= 0.4mA  
G(REF)  
V
= 10V  
GS  
100  
0
I
I
G(REF )  
G(REF )  
20----------------------  
t, TIME (µs)  
80----------------------  
I
I
G(ACT )  
G(ACT )  
0
5
10  
15  
20  
25  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260,  
FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR  
CONSTANT CURRENT GATE DRIVE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
-
GS  
DUT  
t
P
0V  
I
AS  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
V
DS  
t
t
f
r
V
DS  
90%  
90%  
R
L
V
GS  
+
10%  
10%  
0
V
DD  
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 16. SWITCHING TIME TEST CIRCUIT  
FIGURE 17. RESISTIVE SWITCHING WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
RFD14N05, RFD14N05SM, RFP14N05 Rev. B1  
RFD14N05, RFD14N05SM, RFP14N05  
Test Circuits and Waveforms (Continued)  
V
DS  
V
DD  
Q
g(TOT)  
R
L
V
DS  
V
GS  
= 20V  
Q
g(10)  
V
GS  
+
-
V
V = 10V  
GS  
DD  
V
GS  
V
GS  
= 2V  
DUT  
0
I
G(REF)  
Q
g(TH)  
I
G(REF)  
0
FIGURE 18. GATE CHARGE TEST CIRCUIT  
FIGURE 19.GATE CHARGE WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
RFD14N05, RFD14N05SM, RFP14N05 Rev. B1  
RFD14N05, RFD14N05SM, RFP14N05  
PSPICE Electrical Model  
.SUBCKT RFP14N05 2 1 3 ;  
rev 9/12/94  
CA 12 8 8.84e-10  
CB 15 14 9.34e-10  
CIN 6 8 5.2e-10  
DPLCAP  
5
DRAIN  
2
10  
LDRAIN  
DBODY 7 5 DBDMOD  
DBREAK 5 11 DBKMOD  
DPLCAP 10 5 DPLCAPMOD  
RSCL1  
51  
DBREAK  
RSCL2  
+
5
51  
EBREAK 11 7 17 18 62.87  
EDS 14 8 5 8 1  
ESCL  
50  
-
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTO 20 6 18 8 1  
+
DBODY  
6
8
RDRAIN  
11  
ESG  
17  
18  
16  
EBREAK  
+
VTO  
+
-
MOS2  
EVTO  
GATE  
1
21  
IT 8 17 1  
+
-
6
9
20  
18  
8
MOS1  
8
LGATE RGATE  
LDRAIN 2 5 1e-9  
RIN  
CIN  
LGATE 1 9 4.34e-9  
LSOURCE 3 7 3.79e-9  
LSOURCE  
RSOURCE  
7
3
SOURCE  
MOS1 16 6 8 8 MOSMOD M = 0.99  
MOS2 16 21 8 8 MOSMOD M = 0.01  
S1A  
S2A  
12  
15  
RBREAK  
13  
8
14  
13  
RBREAK 17 18 RBKMOD 1  
RDRAIN 50 16 RDSMOD 2.2e-3  
RGATE 9 20 5.64  
RIN 6 8 1e9  
RSCL1 5 51 RSCLMOD 1e-6  
RSCL2 5 50 1e3  
17  
18  
S1B  
CA  
S2B  
13  
RVTO  
19  
CB  
+
IT  
14  
+
5
8
VBAT  
6
8
EGS  
EDS  
+
-
RSOURCE 8 7 RDSMOD 42.3e-3  
RVTO 18 19 RVTOMOD 1  
-
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 8 19 DC 1  
VTO 21 6 0.82  
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/50,6))}  
.MODEL DBDMOD D (IS = 1.5e-13 RS = 10.9e-3 TRS1 = 2.3e-3 TRS2 = -1.75e-5 CJO = 6.84e-10 TT = 4.2e-8)  
.MODEL DBKMOD D (RS = 4.15e-1 TRS1 = 3.73e-3 TRS2 = -3.21e-5)  
.MODEL DPLCAPMOD D (CJO = 26.2e-11 IS = 1e-30 N = 10)  
.MODEL MOSMOD NMOS (VTO = 3.91 KP = 12.68 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL RBKMOD RES (TC1 = 7.73e-4 TC2 = 2.12e-6)  
.MODEL RDSMOD RES (TC1 = 5.0e-3 TC2 = 2.53e-5)  
.MODEL RSCLMOD RES (TC1 = 2.05e-3 TC2 = 1.35e-5)  
.MODEL RVTOMOD RES (TC1 = -4.44e-3 TC2 = -6.45e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.29 VOFF= -3.29)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.29 VOFF= -5.29)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.25 VOFF= 2.75)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.75 VOFF= -2.25)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global  
Temperature Options; written by William J. Hepp and C. Frank Wheatley.  
©2002 Fairchild Semiconductor Corporation  
RFD14N05, RFD14N05SM, RFP14N05 Rev. B1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
PACMAN™  
POP™  
SPM™  
ImpliedDisconnect™  
ISOPLANAR™  
LittleFET™  
FACT™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
Stealth™  
FACT Quiet Series™  
FAST  
Power247™  
PowerTrench  
QFET  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
FASTr™  
FRFET™  
QS™  
GlobalOptoisolator™  
GTO™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
QT Optoelectronics™ TinyLogic  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
TruTranslation™  
MSXPro™  
HiSeC™  
I2C™  
UHC™  
OCX™  
UltraFET  
OCXPro™  
Across the board. Around the world.™  
The Power Franchise™  
SILENT SWITCHER VCX™  
SMARTSTART™  
OPTOLOGIC  
OPTOPLANAR™  
ProgrammableActive Droop™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I3  

相关型号:

RFD14N05L

14A, 50V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs
FAIRCHILD

RFD14N05L

14A, 50V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs
INTERSIL

RFD14N05L

N 沟道逻辑电平功率 MOSFET 50V,14A,100mΩ
ONSEMI

RFD14N05LSM

14A, 50V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs
FAIRCHILD

RFD14N05LSM

14A, 50V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs
INTERSIL

RFD14N05LSM

N 沟道逻辑电平功率 MOSFET 50V,14A,100mΩ
ONSEMI

RFD14N05LSM9A

14A, 50V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs
FAIRCHILD

RFD14N05LSM9A

N 沟道逻辑电平功率 MOSFET 50V,14A,100mΩ
ONSEMI

RFD14N05LSM9A_NL

Power Field-Effect Transistor, 14A I(D), 50V, 0.1ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, TO-252, 3 PIN
FAIRCHILD

RFD14N05LSM_NL

Power Field-Effect Transistor, 14A I(D), 50V, 0.1ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE PACKAGE-3
FAIRCHILD

RFD14N05L_04

14A, 50V, 0.100 Ohm, Logic Level, N-Channel Power MOSFETs
FAIRCHILD

RFD14N05L_NL

14A, 50V, 0.1ohm, N-CHANNEL, Si, POWER, MOSFET, TO-251AA, LEAD FREE PACKAGE-3
ROCHESTER