SG6901 [FAIRCHILD]

CCM PFC/Flyback PWM Combination Controller; CCM PFC / PWM反激组合控制器
SG6901
型号: SG6901
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

CCM PFC/Flyback PWM Combination Controller
CCM PFC / PWM反激组合控制器

功率因数校正 控制器
文件: 总19页 (文件大小:715K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
February 2009  
SG6901A  
CCM PFC/Flyback PWM Combination Controller  
Features  
Description  
The highly integrated SG6901A is designed for power  
supplies with boost PFC and flyback PWM. It requires  
very few external components to achieve versatile  
protections. It is available in a 20-pin SOP package.  
ƒ
ƒ
ƒ
ƒ
Interleaved PFC/PWM Switching  
Low Startup and Operating Current  
Innovative Switching Charge Multiplier Divider  
A proprietary interleave-switching feature synchronizes  
the PFC and PWM stages and reduces switching noise.  
Multi-vector Control for Improved PFC Output  
Transient Response  
For PFC stage, the proprietary multi-vector control  
scheme provides a fast transient response in a low-  
bandwidth PFC loop, in which the overshoot and  
undershoot of the PFC voltage are clamped. If the  
feedback loop is broken, the SG6901A shuts off PFC to  
prevent extra-high voltage on output.  
ƒ
ƒ
Average-Current-Mode Control for PFC  
Programmable Two-Level PFC Output Voltage  
Protections  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
PFC and PWM Feedback Open-Loop Protection  
Cycle-by-Cycle Current Limiting for PFC/PWM  
Slope Compensation for PWM  
For the flyback PWM, the synchronized slope  
compensation ensures the stability of the current loop  
under continuous-conduction-mode operation. Built-in  
line-voltage compensation maintains constant output-  
power limit. Hiccup operation during output overloading  
is also guaranteed.  
H/L Line Over-Power Compensation for PWM  
Brownout Protection  
Over-Temperature Protection (OTP)  
In addition, SG6901A provides protection functions,  
such as brownout and RI pin open/short protection.  
Applications  
ƒ
Switching Power Supplies with Active PFC and  
Standby Power  
ƒ
High-Power Adaptors  
Ordering Information  
Operating  
Temperature Range  
Packing  
Eco  
Status  
Part Number  
Package  
Method  
20-Lead, Small Outline Integrated  
SG6901ASZ  
-30°C to +85°C  
RoHS  
Tape & Reel  
Circuit (SOIC), JEDEC  
MS013, .300 inch, Wide Body  
For Fairchild’s definition of “green” Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
Application Circuit  
Figure 1. Typical Application  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
2
Block Diagram  
Figure 2. Block Diagram  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
3
Marking Information  
T- S=SOP  
P- Z=Lead Free  
Null=regular package  
XXXXXXXX- Wafer Lot  
Y: Year; WW: Week  
V: Assembly Location  
Figure 3. Top Mark  
Pin Configuration  
Figure 4. Pin Configuration  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
4
Pin Definitions  
Pin #  
Name  
Description  
Line voltage detection. The pin is used for PFC multiplier, RANGE control of PFC output  
voltage, and brownout protection. For brownout protection, the controller is disabled after a  
delay time when the VRMS voltage drops below a threshold.  
1
VRMS  
Reference setting. One resistor connected between RI and ground determines the switching  
frequency. The switching frequency is equal to [1560 / RI] KHz, where RI is in KΩ. For example,  
if RI is equal to 24KΩ, the switching frequency is 65KHz.  
2
3
RI  
Over-temperature protection. A constant current is output from this pin. An external NTC  
thermistor must be connected from this pin to ground. The impedance of the NTC thermistor  
decreases whenever the temperature increases. Once the voltage of the OTP pin drops below  
the OTP threshold, the SG6901A is disabled.  
OTP  
PFC current amplifier output. The signal from this pin is compared with an internal sawtooth  
to determine the pulse width for PFC gate drive.  
4
5
IEA  
The inverting input of the PFC current amplifier. Proper external compensation circuits result  
in excellent input power factor via average-current-mode control.  
IPFC  
The non-inverting input of the PFC current amplifier and the output of multiplier. Proper  
external compensation circuits results in excellent input power factor via average-current-mode  
control.  
6
7
IMP  
ISENSE Current limit. A resistor from this pin to GND sets the current limit.  
The control input for voltage-loop feedback of PWM stage. It is internally pulled high  
8
FBPWM  
through a 6.5kΩ resistance. Usually an external opto-coupler from secondary feedback circuit is  
connected to this pin.  
The current-sense input for the flyback PWM. Via a current sense resistor, this pin provides  
the control input for peak-current-mode control and cycle-by-cycle current limiting.  
9
IPWM  
AGND  
10  
Signal ground.  
Soft start. During startup, the SS pin charges an external capacitor with a 50µA (RI=24KΩ)  
constant current source. The voltage on FBPWM is clamped by SS during startup. In the event  
of a protection condition occurring and/or PWM being disabled, the SS pin is quickly  
discharged.  
11  
SS  
The totem-pole output drive for the flyback PWM MOSFET. This pin is internally clamped under  
17V to protect the MOSFET.  
12  
13  
14  
15  
16  
OPWM  
GND  
Power ground.  
The totem-pole output drive for the PFC MOSFET. This pin is internally clamped under 17V  
to protect the MOSFET.  
OPFC  
VDD  
The power supply pin.  
The RANGE pin has high impedance whenever the VRMS voltage is lower than a threshold.  
The PFC output voltage at low line can be reduced to improve efficiency.  
RANGE  
The PFC stage over-voltage input. The comparator disables the PFC output driver if the  
voltage at this input exceeds a threshold. This pin can be connected to FBPFC or it can be  
connected to the PFC boost output through a divider network.  
17  
18  
OVP  
The feedback input for PFC voltage loop. The inverting input of PFC error amplifier. This pin  
is connected to the PFC output through a divider network.  
FBPFC  
The error amplifier output for PFC voltage feedback loop. A compensation network (usually  
a capacitor) is connected between this pin and ground. A large capacitor value results in a  
narrow bandwidth and improves the power factor.  
19  
20  
VEA  
IAC  
This input is used to provide current reference for the multiplier.  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
5
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device  
reliability. The absolute maximum ratings are stress ratings only.  
Symbol  
VDD  
IAC  
Parameter  
Min.  
Max.  
25  
Unit  
V
DC Supply Voltage  
Input AC Current  
OPWM, OPFC, IAC  
Others  
2
mA  
V
VHIGH  
VLOW  
PD  
-0.3  
-0.3  
25.0  
7.0  
V
Power Dissipation at TA< 50  
1.15  
+125  
+150  
+23.64  
+260  
4.5  
W
TJ  
Operating Junction Temperature  
Storage Temperature Range  
-40  
-55  
°C  
°C  
°C/W  
°C  
KV  
V
TSTG  
ӨJC  
Thermal Resistance (Junction-to-Case)  
Lead Temperature (Soldering)  
TL  
Human Body Model, JESD22-A114  
Machine Model, JESD22-A115  
ESD  
Electrostatic Discharge Capability  
250  
Notes:  
1. All voltage values, except differential voltage, are given with respect to GND pin.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Operating Ambient Temperature  
Min.  
Max.  
Unit  
TA  
-30  
+85  
°C  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
6
Electrical Characteristics  
VDD=15V and TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Units  
VDD SECTION  
VDD-OP  
IDD-ST  
Continuously Operating Voltage  
Startup Current  
20  
25  
V
0V < VDD < VDD-ON  
10  
6
µA  
VDD=15V; OPFC,  
OPWM Open; RI=24K  
IDD-OP  
Operating Current  
10  
mA  
VDD-ON  
VDD-OFF  
VDD-OVP  
tD-VDDOVP  
Start Threshold Voltage  
Minimum Operating Voltage  
VDD OVP Threshold  
11  
9
12  
10  
13  
11  
V
V
23.5  
8
24.5  
25.5  
25  
V
Debounce Time of VDD OVP  
µs  
OSCILLATOR SECTION  
fOSC  
RI  
PWM Frequency  
RI=24KΩ  
62  
65  
68  
KHz  
RI Pin Resistance Range  
RI Pin Open Protection  
15.6  
47.0  
KΩ  
If RI>RI-OPEN, SG6901A  
Turns Off  
RI-OPEN  
200  
2
KΩ  
KΩ  
If RI<RI-SHORT  
SG6901A Turns Off  
,
RI-SHORT  
RI Pin Short Protection  
VRMS SECTION (for UVP and RANGE)  
RMS AC Voltage Under-Voltage  
VRMS-UVP-1  
0.75  
0.80  
0.85  
V
V
Protection Threshold (with tUVP delay)  
VRMS-UVP- VRMS-  
VRMS-  
VRMS-UVP-2 Recovery Level on VRMS  
+
+
+
1
UVP-1  
UVP-1  
0.16V  
0.18V  
0.2V  
When UVP Occurs, Interval from PFC  
Off to PWM Off  
tUVP-  
Min+9  
tUVP-  
Min+14  
tD-PWM  
ms  
ms  
V
tUVP  
Under-Voltage Protection Delay Time  
150  
195  
240  
VRMS-H  
High VRMS Threshold for RANGE  
Comparator  
1.90  
1.95  
2.00  
VRMS-L  
Low VRMS Threshold for RANGE  
Comparator  
1.55  
140  
1.60  
170  
1.65  
V
tRANGE  
VOL  
Range-Enable Delay Time  
200  
0.5  
ms  
V
Output Low Voltage of RANGE Pin  
Io=1mA  
IOH  
Output High Leakage Current of  
RANGE Pin  
RANGE=5V  
50  
nA  
Continued on the following page…  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
7
Electrical Characteristics  
VDD=15V and TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Units  
PFC STAGE  
Voltage Error Amplifier  
VREF  
Av  
Reference Voltage  
Open-Loop Gain  
2.95  
3.00  
60  
3.05  
V
dB  
KΩ  
V
Zo  
Output Impedance  
110  
3.25  
OVPPFC  
PFC Over-Voltage Protection (OVP Pin)  
3.20  
60  
3.30  
120  
PFC Feedback Voltage Protection  
Hysteresis  
OVPPFC  
90  
mV  
tOVP-PFC  
VFBPFC-H  
GFBPFC-H  
VFBPFC-L  
GFBPFC-L  
IFBPFC-L  
Debounce Time of PFC OVP  
Clamp-High Feedback Voltage  
Clamp-High Gain  
40  
70  
3.15  
0.5  
120  
µs  
V
3.10  
3.20  
µA/mV  
V
Clamp-Low Feedback Voltage  
Clamp-Low Gain  
2.75  
2.85  
6.5  
2.90  
mA/mV  
mA  
µA  
Maximum Source Current  
Maximum Sink Current  
1.5  
70  
2.0  
IFBPFC-H  
110  
0.40  
70  
UVPFBPFC PFC Feedback Under-Voltage Protection  
tUVP-FBPFC Debounce Time of PFC UVP  
CURRENT ERROR AMPLIFIER  
0.35  
40  
0.45  
120  
V
µs  
VOFFSET  
AI  
Input Offset Voltage ((-) > (+))  
Open-Loop Gain  
8
mV  
dB  
MHz  
dB  
V
60  
1.5  
70  
BW  
Unit Gain Bandwidth  
CMRR  
Common Mode Rejection Ratio  
VCM=0 to +1.5V  
VOUT-HIGH Output High Voltage  
3.2  
VOUT-LOW  
IMR1, IMR2  
Output Low Voltage  
0.2  
70  
V
RI=24KΩ  
(IMR=20+IRI•0.8)  
Reference Current Source  
50  
3
µA  
IL  
Maximum Source Current  
Maximum Sink Current  
mA  
mA  
IH  
0.25  
Continued on the following page…  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
8
Electrical Characteristics  
VDD=15V and TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Units  
PEAK CURRENT LIMIT  
IP  
Constant Current Output  
RI=24KΩ  
90  
100  
110  
µA  
V
Peak Current Limit Threshold  
Voltage Cycle-by-Cycle Limit (VSENSE  
VRMS=1.05V  
VRMS=3V  
0.15  
0.20  
0.25  
VPK  
0.35  
270  
0
0.40  
350  
0.45  
V
< VPK  
)
tPD-PFC  
tLEB-PFC  
Propagation Delay  
200  
450  
ns  
ns  
Leading-Edge Blanking Time  
MULTIPLIER  
IAC  
Input AC Current  
Multiplier Linear Range  
360  
280  
µA  
µA  
IMO–max  
Maximum Multiplier Current Output  
RI=24KΩ  
250  
250  
VRMS=1.05V; IAC=90µA;  
Multiplier Current Output (Low-line,  
High-Power)  
IMO-1  
200  
µA  
VEA=7.5V; RI=24KΩ  
VRMS=3V; IAC=264µA;  
Multiplier Current Output (High-line,  
High-Power)  
IMO–2  
VIMP  
65  
85  
µA  
V
VEA=7.5V; RI=24KΩ  
Voltage of IMP Open  
3.4  
3.9  
4.4  
PFC OUTPUT DRIVER  
VZ  
Output Voltage Maximum (Clamp)  
VDD=20V  
16  
18  
V
V
VOL-PFC  
Output Voltage Low  
VDD=15V; IO=100mA  
1.5  
Interval OPFC Lags Behind OPWM  
at Startup  
tPFC  
VOH-PFC  
tR-PFC  
9.0  
8
11.5  
14.0  
120  
ms  
V
Output Voltage High  
Rising Time  
VDD=13V; IO=100mA  
VDD=15V; CL=5nF;  
O/P=2V to 9V  
40  
70  
60  
ns  
VDD=15V; CL=5nF;  
tF-PFC  
Falling Time  
40  
93  
110  
98  
ns  
%
O/P=9V to 2V  
DCYMAX  
PWM STAGE  
FBPWM  
Maximum Duty Cycle  
FB to Current Comparator  
Attenuation  
Av-PWM  
2.5  
3.1  
3.5  
V/V  
ZFB  
IFB  
Input Impedance  
4
5
7
KΩ  
mA  
V
Maximum Source Current  
0.8  
4.2  
1.2  
4.5  
1.5  
4.8  
FBOPEN-LOOP PWM Open-Loop Protection Voltage  
PWM Open-Loop Protection Delay  
tOPEN-PWM  
Time  
45  
56  
70  
ms  
ms  
tOPEN-PWM- Interval of PWM Open-Loop  
450  
600  
750  
Protection Reset  
Hiccup  
Continued on the following page…  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
9
Electrical Characteristics  
VDD=15V and TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
PWM CURRENT SENSE  
Propagation Delay to  
Output  
tPD-PWM  
VLIMIT-1  
VLIMIT-2  
tLEB-PWM  
VDD=15V, OPWM<=9V  
RANGE=Open  
60  
120  
0.75  
0.70  
450  
ns  
V
Peak Current Limit  
Threshold Voltage1  
0.65  
0.60  
270  
0.70  
0.65  
350  
Peak Current Limit  
Threshold Voltage2  
RANGE=Ground  
V
Leading-Edge Blanking  
Time  
ns  
VS=VSLOPE x (Ton/T)  
VS: Compensation  
Voltage Added to Current  
Sense  
VSLOPE  
Slope Compensation  
0.45  
0.50  
16  
0.55  
V
V
PWM OUTOUT DRIVER  
Output Voltage Maximum  
(Clamp)  
VZ-PWM  
VDD=20V  
18  
VOL-PWM  
VOH-PWM  
Output Voltage Low  
Output Voltage High  
VDD=15V; IO=100mA  
VDD=13V; IO=100mA  
1.5  
V
V
8
VDD=15V; CL=5nF;  
O/P=2V to 9V  
tR-PWM  
tF-PWM  
Rising Time  
Falling Time  
30  
60  
120  
ns  
VDD=15V; CL=5nF;  
O/P=9V to 2V  
30  
73  
50  
78  
110  
83  
ns  
%
DCYMAXPWM Maximum Duty Cycle  
OTP SECTION  
IOTP  
VOTP-ON  
VOTP-OFF  
tOTP  
OTP Pin Output Current  
Recovery Level on OTP  
OTP Threshold Voltage  
OTP Debounce Time  
RI=24KΩ  
90  
1.35  
1.15  
8
100  
1.40  
1.20  
110  
1.45  
1.25  
25  
µA  
V
V
µs  
SOFT START SECTION  
Constant Current Output  
for Soft-Start  
ISS  
RD  
RT=24KΩ  
44  
50  
56  
µA  
Discharge RDSON  
470  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
10  
Typical Performance Characteristics  
Minimum Operating Voltage (VDD-OFF) vs. Temperature  
Startup Current (IDD-ST) vs. Temperature  
25  
11.0  
10.6  
10.2  
9.8  
20  
15  
10  
5
9.4  
0
9.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
T emperature (°C)  
T emperature (°C)  
Figure 5. Startup Current  
Figure 6. VDD Turn-Off Threshold Voltage  
PWM Frequency (f OSC) vs. Temperature  
Operating Current (IDD-OP) vs. Temperature  
68  
67  
66  
64  
63  
62  
10.0  
8.8  
7.6  
6.4  
5.2  
4.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (°C)  
Temperature (°C)  
Figure 7. Operating Current  
Figure 8. PWM Frequency  
VDD Over-Voltage Protection (VDD-OVP) vs. Temperature  
Start Threshold Voltage (VDD-ON) vs. Temperature  
13.0  
12.6  
12.2  
11.8  
11.4  
11.0  
25.5  
25.1  
24.7  
24.3  
23.9  
23.5  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 9. VDD Turn-On Threshold Voltage  
Figure 10. VDD OVP Threshold Voltage  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
11  
Typical Performance Characteristics  
High VRMS Threshold for RANGE Comparator (VRMS-H) vs. Temperature  
Reference Voltage (VREF) vs. Temperature  
3.05  
3.03  
3.01  
2.99  
2.97  
2.95  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 11. High VRMS Threshold for RANGE Comparator  
Figure 12. Reference Voltage  
Rising Time (tR-PFC) vs. Temperature  
)
Low VRMS Threshold for RANGE Comparator (V  
RMS-L  
vs. Temperature  
120  
104  
88  
1.65  
1.63  
1.61  
1.59  
1.57  
1.55  
72  
56  
40  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 13. Low VRMS Threshold for RANGE Comparator  
Figure 14. OPFC Rising Time  
Falling Time (tF-PFC) vs. Temperature (°C)  
PFC Over-Voltage Protection (OVPPFC) vs. Temperature  
110  
96  
82  
68  
54  
40  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 15. PFC OVP Threshold Voltage  
Figure 16. OPFC Falling Time  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
12  
Typical Performance Characteristics  
Maximum Duty Cycle (DCYMAX) vs. Temperature  
Peak Current Limit Threshold Voltage 1 (VLIMIT-1) vs. Temperature  
98  
0.75  
97  
96  
95  
94  
93  
0.73  
0.71  
0.69  
0.67  
0.65  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (°C)  
Temperature (°C)  
Figure 17. PFC Maximum Duty Cycle  
Figure 18. Peak Current Limit Threshold Voltage  
PWM Open-Loop Protection Voltage (FBOPEN-LOOP) vs. Temperature  
Peak Current Limit Threshold Voltage 2 (VLIMIT-2) vs. Temperature  
0.70  
4.80  
4.68  
4.56  
4.44  
4.32  
4.20  
0.68  
0.66  
0.64  
0.62  
0.60  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (°C)  
Temperature (°C)  
Figure 19. PWM Open-Loop Protection Voltage  
Figure 20. Peak Current Limit Threshold Voltage2  
Falling Time (tF-PWM) vs. Temperature  
PWM Maximum Duty Cycle (DCYMAXPWM) vs. Temperature (°C)  
110  
83  
94  
78  
62  
46  
30  
81  
79  
77  
75  
73  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature (°C)  
Temperature (°C)  
Figure 21. OPWM Falling Time  
Figure 22. PWM Maximum Duty Cycle  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
13  
Typical Performance Characteristics  
OTP Threshold Voltage (VOTP-OFF) vs. Temperature  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (°C)  
Figure 23.VDD OTPurn Threshold Voltage  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
14  
Functional Description  
improve the efficiency at low-line input. The RANGE pin  
(open-drain structure) is used for the two-level output  
voltage setting.  
SG6901A is a highly integrated PFC/PWM combination  
controller. Many functions and protections are built in to  
provide a compact design. The following sections  
describe the operation and function.  
Switching Frequency and Current Sources  
The switching frequency can be programmed by the  
resistor RI connected between RI pin and GND. The  
relationship is:  
1560  
RI (k)  
fOSC  
=
(kHz)  
(1)  
Figure 25.Interleaved Switching Pattern  
For example, a 24Kresistor RI results in a 65KHz  
switching frequency. Accordingly, a constant current, IT,  
flows through RI:  
PFC Operation  
The purpose of a boost active power factor corrector  
(PFC) is to shape the input current of a power supply.  
The input current waveform and phase follow that of the  
input voltage. Average-current-mode control is utilized  
for continuous-current-mode operation for the PFC  
booster. With the innovative multi-vector control for  
voltage loop and switching charge multiplier-divider for  
current reference, excellent input power factor is  
achieved with good noise immunity and transient  
response. Figure 26 shows the total control loop for the  
average-current-mode control circuit.  
1.2V  
RI (k)  
IT =  
(mA)  
(2)  
IT is used to generate internal current reference.  
Line Voltage Detection (VRMS)  
Figure 24 shows a resistive divider with low-pass  
filtering for line-voltage detection on the VRMS pin. The  
VRMS voltage is used for the PFC multiplier, brownout  
protection, and range control.  
The current source output from the switching charge  
multiplier-divider can be expressed as:  
For brownout protection, SG6901A is disabled with a  
195ms delay if the voltage VRMS drops below 0.8V.  
IAC ×VEA  
IMO = K ×  
(
µA  
)
(3)  
2
For PFC multiplier and range control, refer to the PFC  
Operation section below for details.  
VRMS  
As shown in Figure 26, the current output from the IMP  
pin is the summation of IMO and IMR1. IMR1 and IMR2  
are identical fixed-current sources used to pull high the  
operating point of the IMP and IPFC pins since the  
voltage across RS goes negative with respect to  
ground. Constant current sources IMR1 and IMR2 are  
typically 60µA.  
Through the differential amplification of the signal  
across RS, better noise immunity is achieved. The  
output of IEA is compared with an internal sawtooth  
and the pulse width for PFC is determined. Through the  
average current-mode control loop, the input current IS  
is proportional to IMO:  
Figure 24.Line Voltage Detection Circuit  
IMO ×R2 = IS ×RS  
(4)  
Interleave Switching  
According to Equation 4, the minimum value of R2 and  
maximum of RS can be determined since IMO should  
not exceed the specified maximum value.  
The SG6901A uses interleaved switching to  
synchronize the PFC and flyback stages, which  
reduces switching noise and spreads the EMI  
emissions. Figure 25 shows off-time, tOFF, inserted  
between the turn-off of the PFC gate drive and the turn-  
on of the PWM.  
There are different concerns in determining the value of  
the sense resistor RS. The value of RS should be small  
enough to reduce power consumption, but large  
enough to maintain the resolution.  
transformer (CT) may be used to improve efficiency of  
high-power converters.  
A
current  
For an universal input (90 ~ 264VAC) power supply  
applying active boost PFC and flyback as a second  
stage, the output voltage of PFC is usually designed  
around 250V at low line and 390V at high line. This can  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
15  
The average total input power can be expressed as:  
To achieve good power factor, the voltage for VRMS and  
VEA should be kept as constant as possible, according  
to Equation 5. Good RC filtering for VRMS and narrow  
bandwidth (lower than the line frequency) for voltage  
loop are suggested for better input current shaping.  
The transconductance error amplifier has output  
impedance ZO and a capacitor CEA (1µF ~ 10µF)  
should be connected to ground. This establishes a  
dominant pole f1 for the voltage loop:  
Pin = V (rms) ×IIN  
IN  
(rms)  
VRMS ×IMO  
IAC × VEA  
VRMS  
×
×
2
VRMS  
Vin  
(6)  
× VEA  
RAC  
VRMS  
2
VRMS  
VEA  
1
=
2 ×  
f1 =  
RAC  
(5)  
2π × ZO × CEA  
From Equation 6, VEA, the output of the voltage error  
amplifier, controls the total input power and the power  
delivered to the load.  
Figure 26.Average-Current-Mode Control Loop  
Multi-Vector Error Amplifier  
PFC Over-Voltage Protection  
Although the PFC stage has a low bandwidth voltage  
loop for better input power factor, the innovative multi-  
vector error amplifier provides a fast transient response  
to clamp the overshoot and undershoot of the PFC  
output voltage.  
Using a voltage divider from the output of PFC to the  
OVP pin, the PFC output voltage can be safely  
protected. Once the voltage on the OVP pin is over  
OVPPFC, the OPFC is disabled. THE OPFC is not  
enabled again until the OVP voltage falls below  
OVPPFC.  
0 shows the block diagram of the multi-vector error  
amplifier. When the variation of the feedback voltage  
exceeds ±5% of the reference voltage, the  
transconductance error amplifier adjusts its output  
impedance to increase the loop response.  
Cycle-by-Cycle Current Limiting  
SG6901A provides cycle-by-cycle current limiting for  
both PFC and PWM stages. Figure 28 shows the peak  
current limit for the PFC stage. The PFC gate drive is  
terminated once the voltage on the ISENSE pin goes  
below VPK  
.
The voltage of VRMS determines the voltage of VPK. The  
relationship between VPK and VRMS is shown in Figure 28.  
The amplitude of the constant current, Ip, is determined  
by the internal current reference according to:  
1.2V  
IP = 2×  
(8)  
RI  
Figure 27.Multi-Vector Error Amplifier  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
16  
Limited Power Control  
Every time the output of the power supply is shorted or  
overloaded, the FBPWM voltage increases. If the  
FBPWM voltage is higher than a designed threshold,  
FBOPEN-LOOP (4.5V) for longer than tOPEN-PWM  
(56ms), the OPWM is turned off.  
As long as the voltage on the VDD pin is larger than  
VDD-OFF (minimum operating voltage), the OPWM is not  
enabled. This protection is reset every tOPEN-PWM-Hiccup  
interval.  
A low-frequency hiccup mode protection  
Figure 28.VRMS Controlled Current Limiting  
prevents the power supply from being overheated  
under overload conditions.  
The peak current of the ISENSE is given by  
(VRMS<1.05V):  
Over-Temperature Protection  
(IP ×RP )-0.2V  
ISENSE_peak =  
(8)  
The OTP pin provides for over-temperature protection.  
A constant current is output from this pin. If RI is equal  
to 24K, the magnitude of the constant current is  
100µA. An external NTC thermistor must be connected  
from this pin to ground, as shown as Figure 30. When  
the OTP voltage drops below VOTP-OFF (1.2V), SG6901A  
is disabled and does not recover until OTP voltage  
exceeds VOTP-ON (1.4V).  
RS  
Flyback PWM and Slope Compensation  
As shown in Figure 29, peak-current-mode control is  
utilized for flyback PWM. The SG6901A inserts a  
synchronized 0.5V ramp at the beginning of each  
switching cycle. This built-in slope compensation  
ensures stable operation for continuous current-mode  
operation.  
When the IPWM voltage, across the sense resistor,  
reaches the threshold voltage (0.9V), the OPWM is  
turned off after a small propagation delay tPD-PWM  
.
To improve stability or prevent sub-harmonic  
oscillation, synchronized positive-going ramp is  
inserted at every switching cycle.  
a
Figure 30.OTP Function  
Soft Start  
During startup of PWM stage, the SS pin charges an  
external capacitor with a constant current source. The  
voltage on FBPWM is clamped by the SS voltage  
during startup. In the event of a protected condition  
and/or PWM is disabled, the SS pin quickly discharges.  
Gate Driver  
SG6901A output stage is a fast totem-pole gate driver.  
The output driver is clamped by an internal 18V Zener  
diode to protect the external power MOSFET.  
Figure 29.Peak Current Control Loop  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
17  
Physical Dimensions  
13.00  
12.60  
A
11.43  
20  
11  
B
9.50  
10.65 7.60  
10.00 7.40  
2.25  
1
PIN ONE  
INDICATOR  
10  
0.65  
0.51  
0.35  
1.27  
1.27  
M
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
2.65 MAX  
0.33  
0.20  
C
0.10  
C
0.30  
0.10  
SEATING PLANE  
0.75  
0.25  
X 45°  
NOTES: UNLESS OTHERWISE SPECIFIED  
(R0.10)  
(R0.10)  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-013, VARIATION AC, ISSUE E  
GAGE PLANE  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
0.25  
8°  
0°  
D) CONFORMS TO ASME Y14.5M-1994  
1.27  
0.40  
SEATING PLANE  
E) LANDPATTERN STANDARD: SOIC127P1030X265-20L  
F) DRAWING FILENAME: MKT-M20BREV3  
(1.40)  
DETAIL A  
SCALE: 2:1  
Figure 31. 20-Pin Small Outline Integrated Circuit (SOIC)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify  
or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically  
the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
18  
© 2008 Fairchild Semiconductor Corporation  
SG6901A • Rev. 1.0.2  
www.fairchildsemi.com  
19  

相关型号:

SG6901A

PFC / Flyback PWM Controller
FAIRCHILD

SG6901ASZ

PFC / Flyback PWM Controller
FAIRCHILD

SG6902

Green-Mode PFC / Flyback-PWM Controller
FAIRCHILD

SG6902RZ

Switching Regulator/Controller, Current-mode, 68kHz Switching Freq-Max, PDSO20,
FAIRCHILD

SG6902SZ

Green-Mode PFC / Flyback-PWM Controller
FAIRCHILD

SG6905

Green mode PFC/Flyback-PWM Controller
FAIRCHILD

SG6905SZ

Green mode PFC/Flyback-PWM Controller
FAIRCHILD

SG6932

Green-Mode PFC / Forward PWM Controller
FAIRCHILD

SG6932DZ

Green-Mode PFC / Forward PWM Controller
FAIRCHILD

SG6932SZ

Green-Mode PFC / Forward PWM Controller
FAIRCHILD

SG6932SZ

POWER FACTOR CONTROLLER, 68kHz SWITCHING FREQ-MAX, PDSO16, LEAD FREE, PLASTIC, SOP-16
ROCHESTER

SG6932_08

PFC / Forward PWM Controller
FAIRCHILD