SPT7861 [FAIRCHILD]

10-BIT, 40 MSPS, 160 mW A/D CONVERTER; 10位, 40 MSPS , 160 mW的A / D转换器
SPT7861
型号: SPT7861
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
10位, 40 MSPS , 160 mW的A / D转换器

转换器
文件: 总11页 (文件大小:89K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPT7861  
10-BIT, 40 MSPS, 160 mW A/D CONVERTER  
TECHNICAL DATA  
JUNE 25, 2001  
FEATURES  
APPLICATIONS  
• Monolithic 40 MSPS converter  
• 160 mW power dissipation  
• On-chip track-and-hold  
• Single +5 V power supply  
• TTL/CMOS outputs  
• All high-speed applications where low power  
dissipation is required  
• Video imaging  
• Medical imaging  
• Radar receivers  
• 5 pF input capacitance  
• Low cost  
• IR imaging  
• Digital communications  
Tri-state output buffers  
• High ESD protection: 3,500 V minimum  
• Selectable +3 V or +5 V logic I/O  
GENERAL DESCRIPTION  
SPT7861 is pin-compatible with an entire family of 10-bit,  
CMOS converters (SPT7835/40/50/55/60/61), which sim-  
plifies upgrades. The SPT7861 has incorporated propri-  
etary circuit design and CMOS processing technologies to  
achieve its advanced performance. Inputs and outputs are  
TTL/CMOS-compatible to interface with TTL/CMOS logic  
systems. Output data format is straight binary.  
The SPT7861 is a 10-bit monolithic, low-cost, ultralow-  
power analog-to-digital converter capable of minimum  
word rates of 40 MSPS.This is a pin-compatible improved  
version of the SPT7860. The on-chip track-and-hold func-  
tion assures excellent dynamic performance without the  
need for external components. The input drive require-  
ments are minimized due to the SPT7861’s low input  
capacitance of only 5 pF.  
The SPT7861 is available in 28-lead SOIC and 32-lead  
small (7 mm square) TQFP packages over the commer-  
cial temperature range.  
Power dissipation is extremely low at only 160 mW typical  
at 40 MSPS with a power supply of +5.0 V.The digital out-  
puts are +3 V or +5 V, and are user selectable. The  
BLOCK DIAGRAM  
ADC Section 1  
D10 Overrange  
Auto-  
1:16  
Mux  
11-Bit  
SAR  
11  
Zero  
AIN  
T/H  
CMP  
D9 (MSB)  
D8  
11  
DAC  
P1  
D7  
P2  
.
11  
11  
ADC Section 2  
.
CLK In  
Enable  
.
.
.
.
.
.
.
D6  
.
.
Timing  
and  
Control  
11-Bit  
16:1  
.
P15  
ADC Section 15  
Mux/  
D5  
Error  
Correction  
P16  
ADC Section 16  
11  
D4  
Auto-  
Zero  
CMP  
11-Bit  
SAR  
T/H  
Data  
Valid  
D3  
11  
D2  
DAC  
D1  
Ref  
In  
D0 (LSB)  
Reference Ladder  
VREF  
ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)1 25 °C  
Supply Voltages  
Output  
AVDD...................................................................... +6 V  
DVDD ..................................................................... +6 V  
Digital Outputs ................................................... 10 mA  
Temperature  
Input Voltages  
Operating Temperature ................................ 0 to 70 °C  
Junction Temperature ........................................ 175 °C  
Lead Temperature, (soldering 10 seconds) ....... 300 °C  
Storage Temperature............................ 65 to +150 °C  
Analog Input .............................. 0.5 V to AVDD +0.5 V  
VREF .............................................................. 0 to AVDD  
CLK Input ............................................................... VDD  
AVDD DVDD .................................................. ±100 mV  
AGND DGND .............................................. ±100 mV  
Note: 1. Operation at any Absolute Maximum Rating is not implied.See  
Electrical Specifications for proper nominal applied conditions  
in typical applications.  
ELECTRICAL SPECIFICATIONS  
TA=TMIN to TMAX, AVDD=DVDD=OVDD=+5.0V, VIN=0 to 4V, ƒS=40 MSPS, VRHS=4.0 V, VRLS=0.0V, unless otherwise specified.  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT7861  
TYP  
PARAMETERS  
Resolution  
MIN  
MAX  
UNITS  
10  
Bits  
DC Accuracy  
Integral Linearity Error (ILE)  
Differential Linearity Error (DLE)  
No Missing Codes  
VI  
VI  
VI  
±1.0  
±0.5  
Guaranteed  
LSB  
LSB  
Analog Input  
Input Voltage Range  
Input Resistance  
Input Capacitance  
Input Bandwidth  
Offset  
VI  
IV  
V
V
V
VRLS  
50  
VRHS  
V
k  
pF  
MHz  
LSB  
LSB  
5.0  
(Small Signal)  
250  
±2.0  
±2.0  
Gain Error  
V
Reference Input  
Resistance  
Bandwidth  
Voltage Range  
VRLS  
VI  
V
200  
100  
400  
150  
600  
MHz  
IV  
IV  
V
V
V
0
3.0  
1.0  
2.0  
AVDD  
5.0  
V
V
V
mV  
VRHS  
VRHS VRLS  
4.0  
90  
75  
(VRHF VRHS  
)
(VRLS VRLF  
)
mV  
Reference Settling Time  
VRHS  
VRLS  
V
V
15  
20  
Clock Cycles  
Clock Cycles  
Conversion Characteristics  
Maximum Conversion Rate  
Minimum Conversion Rate  
Pipeline Delay (Latency)  
Aperture Delay Time  
VI  
IV  
IV  
V
40  
2
MHz  
MHz  
Clock Cycles  
ns  
12  
4.0  
15  
Aperture Jitter Time  
V
ps (p-p)  
Dynamic Performance  
Effective Number of Bits (ENOB)  
ƒIN = 3.58 MHz  
VI  
VI  
9.2  
8.8  
Bits  
Bits  
ƒIN = 10.3 MHz  
Signal-to-Noise Ratio (SNR)  
(without Harmonics)  
ƒIN = 3.58 MHz  
VI  
VI  
56  
55  
58  
57  
dB  
dB  
ƒIN = 10.3 MHz  
SPT7861  
2
6/25/01  
ELECTRICAL SPECIFICATIONS  
TA=TMIN to TMAX, AVDD=DVDD=OVDD=+5.0V, VIN=0 to 4V, ƒS=40 MSPS, VRHS=4.0 V, VRLS=0.0V, unless otherwise specified.  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT7861  
TYP  
PARAMETERS  
MIN  
MAX  
UNITS  
Dynamic Performance  
Total Harmonic Distortion (THD)  
ƒIN = 3.58 MHz  
9 Distortion bins from  
1024 pt FFT  
VI  
VI  
61  
56  
63  
58  
dB  
dB  
ƒIN = 10.3 MHz  
Signal-to-Noise and Distortion  
(SINAD)  
ƒIN = 3.58 MHz  
VI  
VI  
V
54  
53  
57  
55  
64  
dB  
dB  
dB  
ƒ
IN = 10.3 MHz  
Spurious Free Dynamic Range  
ƒIN = 1 MHz  
Differential Phase  
Differential Gain  
V
V
±0.3  
±0.3  
Degree  
%
Inputs  
Logic 1 Voltage  
Logic 0 Voltage  
Maximum Input Current Low  
Maximum Input Current High  
Input Capacitance  
VI  
VI  
VI  
VI  
VI  
2.0  
V
V
µA  
µA  
pF  
0.8  
+10  
+10  
10  
10  
+5  
Digital Outputs  
Logic 1 Voltage  
Logic 0 Voltage  
tRISE  
IOH = 0.5 mA  
IOL = 1.6 mA  
15 pF load  
VI  
VI  
V
V
V
3.5  
V
V
ns  
ns  
ns  
ns  
0.4  
10  
10  
10  
22  
tFALL  
15 pF load  
Output Enable to Data Output Delay 20 pF load, TA = +25 °C  
50 pF load over temp.  
V
Power Supply Requirements  
Voltages  
OVDD  
DVDD  
AVDD  
AIDD  
IV  
IV  
IV  
VI  
VI  
VI  
3.0  
4.75  
4.75  
5.0  
5.25  
5.25  
22  
23  
225  
V
V
V
mA  
mA  
mW  
5.0  
5.0  
14  
18  
160  
Currents  
DIDD  
Power Dissipation  
TEST LEVEL CODES  
LEVEL TEST PROCEDURE  
All electrical characteristics are subject to the  
following conditions:  
I
100% production tested at the specified temperature.  
II  
100% production tested at TA = +25 °C, and sample tested at the  
specified temperatures.  
All parameters having min/max specifications  
are guaranteed. The Test Level column indi-  
cates the specific device testing actually per-  
formed during production and Quality Assur-  
ance inspection. Any blank section in the data  
column indicates that the specification is not  
tested at the specified condition.  
III  
IV  
QA sample tested only at the specified temperatures.  
Parameter is guaranteed (but not tested) by design and characteri-  
zation data.  
V
Parameter is a typical value for information purposes only.  
VI  
100% production tested at TA = +25 °C. Parameter is guaranteed  
over specified temperature range.  
SPT7861  
3
6/25/01  
SPECIFICATION DEFINITIONS  
APERTURE DELAY  
INTEGRAL LINEARITY ERROR (ILE)  
Aperture delay represents the point in time, relative to the Linearity error refers to the deviation of each individual  
rising edge of the CLOCK input, that the analog input is code (normalized) from a straight line drawn from FS  
sampled.  
through +FS. The deviation is measured from the edge of  
each particular code to the true straight line.  
APERTURE JITTER  
OUTPUT DELAY  
The variations in aperture delay for successive samples.  
Time between the clocks triggering edge and output data  
valid.  
DIFFERENTIAL GAIN (DG)  
A signal consisting of a sine wave superimposed on vari-  
ous DC levels is applied to the input. Differential gain is the  
OVERVOLTAGE RECOVERY TIME  
maximum variation in the sampled sine wave amplitudes The time required for the ADC to recover to full accuracy  
at these DC levels.  
after an analog input signal 125% of full scale is reduced  
to 50% of the full-scale value.  
DIFFERENTIAL PHASE (DP)  
SIGNAL-TO-NOISE RATIO (SNR)  
A signal consisting of a sine wave superimposed on vari-  
ous DC levels is applied to the input. Differential phase is The ratio of the fundamental sinusoid power to the total  
the maximum variation in the sampled sine wave phases noise power. Harmonics are excluded.  
at these DC levels.  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
EFFECTIVE NUMBER OF BITS (ENOB)  
The ratio of the fundamental sinusoid power to the total  
SINAD = 6.02N + 1.76, where N is equal to the effective noise and distortion power.  
number of bits.  
SINAD 1.76  
TOTAL HARMONIC DISTORTION (THD)  
N =  
6.02  
The ratio of the total power of the first 9 harmonics to the  
power of the measured sinusoidal signal.  
INPUT BANDWIDTH  
Small signal (50 mV) bandwidth (3 dB) of analog input  
stage.  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
The ratio of the fundamental sinusoidal amplitude to the  
single largest harmonic or spurious signal.  
DIFFERENTIAL LINEARITY ERROR (DLE)  
Error in the width of each code from its theoretical value.  
(Theoretical = VFS/2N)  
SPT7861  
4
6/25/01  
Figure 1A – Timing Diagram 1  
1
11  
13  
9
3
17  
ANALOG IN  
CLOCK IN  
7
5
15  
SAMPLING  
CLOCK  
(Internal)  
INVALID  
VALID  
DATA OUTPUT  
DATA VALID  
1
2
3
4
5
Figure 1B Timing Diagram 2  
tCLK  
tC  
tCH  
tCL  
CLOCK IN  
DATA  
OUTPUT  
Data 3  
Data 0  
Data 1  
Data 2  
tOD  
tS  
tCH  
tCL  
DATA VALID  
tS  
Table I Timing Parameters  
DESCRIPTION  
PARAMETERS  
MIN  
TYP  
MAX UNITS  
Conversion Time  
tC  
tCLK  
25  
ns  
Clock Period  
tCLK  
tCH  
tCL  
tOD  
tS  
ns  
Clock High Duty Cycle  
Clock Low Duty Cycle  
40  
50  
50  
17  
10  
60  
60  
%
%
40  
Clock to Output Delay (15 pF Load)  
Clock to DAV  
ns  
ns  
SPT7861  
5
6/25/01  
Figure 2 Typical Interface Circuit  
DAV  
D10  
D9  
Ref In  
(+4 V)  
V
V
V
V
RHF  
RHS  
RLS  
RLF  
D8  
D7  
D6  
D5  
DV  
3.3/5  
DD  
Interfacing  
Logics  
SPT7861  
V
V
IN  
IN  
DGND  
D4  
V
CAL  
D3  
D2  
D1  
D0  
CLK IN  
CLK  
EN  
DD  
AV  
AGND DGND* DV  
DD  
3.3/5  
Enable/Tri-State  
(Enable = Active Low)  
+A5  
L1  
AGND  
+A5  
DGND  
3.3/5  
+
10 µF  
*To reduce the possibility of latch-up, avoid  
connecting the DGND pins of the ADC to the  
digital ground of the system.  
+
10 µF  
+5 V  
+5 V  
Analog  
RTN  
+5 V  
Digital  
RTN  
+5 V  
Digital  
Analog  
NOTES: 1) L1 is to be located as closely to the device as possible.  
2) All capacitors are 0.1 µF surface-mount unless otherwise specified.  
3) L1 is a 10 µH inductor or a ferrite bead.  
TYPICAL INTERFACE CIRCUIT  
OPERATING DESCRIPTION  
Very few external components are required to achieve the The general architecture for the CMOS ADC is shown in  
stated device performance. Figure 2 shows the typical in- the block diagram. The design contains 16 identical suc-  
terface requirements when using the SPT7861 in normal cessive approximation ADC sections, all operating in par-  
circuit operation. The following sections provide descrip- allel, a 16-phase clock generator, an 11-bit 16:1 digital  
tions of the major functions and outline critical perfor- output multiplexer, correction logic, and a voltage refer-  
mance criteria to consider for achieving the optimal device ence generator that provides common reference levels for  
performance.  
each ADC section.  
The high sample rate is achieved by using multiple SAR  
ADC sections in parallel, each of which samples the input  
signal in sequence. Each ADC uses 16 clock cycles to  
complete a conversion. The clock cycles are allocated as  
shown in table II.  
POWER SUPPLIES AND GROUNDING  
Fairchild suggests that both the digital and the analog sup-  
ply voltages on the SPT7861 be derived from a single ana-  
log supply as shown in figure 2. A separate digital supply  
should be used for all interface circuitry. Fairchild suggests  
using this power supply configuration to prevent a possible  
latch-up condition on powerup.  
SPT7861  
6
6/25/01  
Table II Clock Cycles  
Figure 3 Ladder Force/Sense Circuit  
Clock  
1
2
3
4
Operation  
AGND  
Reference zero sampling  
Auto-zero comparison  
Auto-calibrate comparison  
Input sample  
+
–
VRHF  
5-15  
16  
11-bit SAR conversion  
Data transfer  
VRHS  
The 16-phase clock, which is derived from the input clock,  
synchronizes these events.The timing signals for adjacent  
ADC sections are shifted by one clock cycle so that the  
analog input is sampled on every cycle of the input clock  
by exactly one ADC section. After 16 clock periods, the  
timing cycle repeats. The latency from analog input  
sample to the corresponding digital output is 12 clock  
cycles.  
VRLS  
–
+
VRLF  
VIN  
Since only 16 comparators are used, a huge power  
savings is realized.  
All capacitors are 0.01 µF  
The auto-zero operation is done using a closed loop  
system that uses multiple samples of the comparators  
response to a reference zero.  
Figure 4 Reference Ladder  
The auto-calibrate operation, which calibrates the gain  
of the MSB reference and the LSB reference, is also  
done with a closed loop system. Multiple samples of the  
gain error are integrated to produce a calibration volt-  
age for each ADC section.  
+4.0 V  
External  
Reference  
90 mV  
R/2  
R
VRHS  
(+3.91 V)  
Capacitive displacement currents, which can induce  
sampling error, are minimized since only one compara-  
tor samples the input during a clock cycle.  
R
The total input capacitance is very low since sections of  
the converter that are not sampling the signal are iso-  
lated from the input by transmission gates.  
R
R
R=30 W (typ)  
All capacitors are 0.01 µF  
VOLTAGE REFERENCE  
R
R
The SPT7861 requires the use of a single external voltage  
reference for driving the high side of the reference ladder.  
It must be within the range of 3 V to 5 V. The lower side of  
the ladder is typically tied to AGND (0.0 V), but can be run  
up to 2.0 V with a second reference.The analog input volt-  
age range will track the total voltage difference measured  
VRLS  
(0.075 V)  
75 mV  
R/2  
VRLF  
(AGND)  
0.0 V  
between the ladder sense lines, VRHS and VRLS  
.
Force and sense taps are provided to ensure accurate  
and stable setting of the upper and lower ladder sense line  
voltages across part-to-part and temperature variations.  
By using the configuration shown in figure 3, offset and  
gain errors of less than ±2 LSB can be obtained.  
(chip cap preferred) to minimize high-frequency noise in-  
jection. If this simplified configuration is used, the following  
considerations should be taken into account.  
The reference ladder circuit shown in figure 4 is a simpli-  
fied representation of the actual reference ladder with  
force and sense taps shown. Due to the actual internal  
structure of the ladder, the voltage drop from VRHF to VRHS  
In cases where wider variations in offset and gain can be  
tolerated, VREF can be tied directly toVRHF, and AGND can  
be tied directly to VRLF as shown in figure 4. Decouple  
force and sense lines to AGND with a .01 µF capacitor  
is not equivalent to the voltage drop from VRLF to VRLS  
.
SPT7861  
7
6/25/01  
Typically, the top side voltage drop for VRHF to VRHS will Upon powerup, the SPT7861 begins its calibration algo-  
equal:  
rithm. In order to achieve the calibration accuracy re-  
quired, the offset and gain adjustment step size is a frac-  
tion of a 10-bit LSB. Since the calibration algorithm is an  
VRHF VRHS = 2.25 % of (VRHF VRLF) (typical),  
and the bottom side voltage drop for VRLS to VRLF will oversampling process, a minimum of 10,000 clock cycles  
equal:  
are required. This results in a minimum calibration time  
upon powerup of 250 µsec (for a 40 MHz clock). Once  
calibrated, the SPT7861 remains calibrated over time and  
VRLS VRLF = 1.9 % of (VRHF VRLF) (typical).  
Figure 4 shows an example of expected voltage drops for temperature.  
a specific case. VREF of 4.0 V is applied to VRHF, and VRLF  
Since the calibration cycles are initiated on the rising edge  
of the clock, the clock must be continuously applied for the  
SPT7861 to remain in calibration.  
is tied to AGND. A 90 mV drop is seen at VRHS (= 3.91 V),  
and a 75 mV increase is seen at VRLS (= 0.075 V).  
ANALOG INPUT  
INPUT PROTECTION  
VIN is the analog input. The input voltage range is from  
VRLS to VRHS (typically 4.0 V) and will scale proportionally  
with respect to the voltage reference. (See voltage refer-  
ence section.)  
All I/O pads are protected with an on-chip protection  
circuit shown in figure 6.This circuit provides ESD robust-  
ness to 3.5 kV and prevents latch-up under severe dis-  
charge conditions without degrading analog transition  
The drive requirements for the analog inputs are very times.  
minimal when compared to most other converters due to  
Figure 6 On-Chip Protection Circuit  
the SPT7861s extremely low input capacitance of only  
5 pF and very high input resistance of 50 k.  
VDD  
Analog  
The analog input should be protected through a series  
resistor and diode clamping circuit as shown in figure 5.  
120 W  
120 W  
Figure 5 Recommended Input Protection Circuit  
+V  
Buffer  
–V  
AV  
DD  
Pad  
D1  
D2  
ADC  
47 W  
POWER SUPPLY SEQUENCING CONSIDERATIONS  
All logic inputs should be held low until power to the device  
has settled to the specific tolerances. Avoid power decou-  
pling networks with large time constants that could delay  
VDD power to the device.  
D1 = D2 = Hewlett-Packard HP5712 or equivalent  
CALIBRATION  
CLOCK INPUT  
The SPT7861 uses an auto-calibration scheme to ensure  
10-bit accuracy over time and temperature. Gain and off-  
set errors are continually adjusted to 10-bit accuracy  
during device operation.This process is completely trans-  
parent to the user.  
The SPT7861 is driven from a single-ended TTL-input  
clock. Because the pipelined architecture operates on the  
rising edge of the clock input, the device can operate over  
a wide range of input clock duty cycles without degrading  
the dynamic performance.  
SPT7861  
8
6/25/01  
DIGITAL OUTPUTS  
OVERRANGE OUTPUT  
The digital outputs (D0D10) are driven by a separate The OVERRANGE OUTPUT (D10) is an indication that  
supply (OVDD) ranging from +3 V to +5 V. This feature the analog input signal has exceeded the positive full-  
makes it possible to drive the SPT7861s TTL/CMOS- scale input voltage by 1 LSB. When this condition occurs,  
compatible outputs with the users logic system supply. D10 will switch to logic 1. All other data outputs (D0 to D9)  
The format of the output data (D0D9) is straight binary. will remain at logic 1 as long as D10 remains at logic 1.  
(See table III.) The outputs are latched on the rising edge This feature makes it possible to include the SPT7861 in  
of CLK. These outputs can be switched into a tri-state higher resolution systems.  
mode by bringing EN high.  
EVALUATION BOARD  
Table III Output Data Information  
The EB7861 evaluation board is available to aid designers  
ANALOG INPUT  
OVERRANGE  
D10  
OUTPUT CODE  
in demonstrating the full performance of the SPT7861.  
This board includes a reference circuit, clock driver circuit,  
output data latches, and an on-board reconstruction of the  
digital data. An application note describing the operation  
of this board, as well as information on the testing of the  
SPT7861, is also available. Contact the factory for price  
and availability.  
D9D0  
+F.S. + 1/2 LSB  
+F.S. 1/2 LSB  
+1/2 F.S.  
+1/2 LSB  
0.0 V  
1
0
0
0
0
1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1Ø  
ØØ ØØØØ ØØØØ  
0 0 0 0 0 0 0 0 0 Ø  
0 0 0 0 0 0 0 0 0 0  
(Ø indicates the flickering bit between logic 0 and 1.)  
SPT7861  
9
6/25/01  
PACKAGE OUTLINES  
28-Lead SOIC  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
0.699  
0.005  
0.050 typ  
0.018 typ  
0.0077  
0.090  
0.031  
0.396  
0.286  
MAX  
0.709  
0.011  
MIN  
17.75  
0.13  
1.27 typ  
0.46 typ  
0.20  
2.29  
0.79  
MAX  
18.01  
0.28  
28  
A
B
I
H
C
D
E
F
G
H
I
0.0083  
0.096  
0.039  
0.416  
0.292  
0.21  
2.44  
0.99  
10.57  
7.42  
1
10.06  
7.26  
A
F
B
C
D
H
G
E
32-Lead TQFP  
G
H
A
INCHES  
MILLIMETERS  
B
SYMBOL  
MIN  
MAX  
0.362  
0.280  
0.362  
0.280  
MIN  
MAX  
9.20  
7.10  
9.20  
7.10  
A
B
C
D
E
F
G
H
I
0.346  
0.272  
0.346  
0.272  
8.80  
6.90  
8.80  
6.90  
0.031 typ  
0.80 BSC  
0.012  
0.053  
0.002  
0.037  
0.016  
0.057  
0.006  
0.041  
0.007  
7°  
0.30  
1.35  
0.05  
0.95  
0.40  
1.45  
0.15  
1.05  
0.17  
7°  
C
D
J
K
L
I
0°  
0.020  
0°  
0.50  
J
0.030  
0.75  
E
F
K
L
SPT7861  
10  
6/25/01  
PIN ASSIGNMENTS  
PIN FUNCTIONS  
Name  
AGND  
VRHF  
VRHS  
VRLS  
VRLF  
VCAL  
VIN  
Function  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
9
D10  
D9  
AGND  
Analog Ground  
VRHF  
Reference High Force  
Reference High Sense  
Reference Low Sense  
Reference Low Force  
Calibration Reference  
Analog Input  
VRHS  
D8  
N/C  
VRLS  
VRLF  
D7  
D6  
D5  
VIN  
AGND  
VCAL  
OVDD  
OGND  
SOIC  
AVDD  
DVDD  
DGND  
CLK  
Analog VDD  
Digital VDD  
20 D4  
19 D3  
18 D2  
17 D1  
Digital Ground  
AVDD 10  
DVDD 11  
Input Clock ƒCLK = FS (TTL)  
Output Enable  
EN  
DGND  
CLK  
12  
13  
14  
D09  
D10  
Tri-State Data Output, (D0=LSB)  
Tri-State Output Overrange  
Data Valid Output  
Digital Output Supply  
Digital Output Ground  
No Connect  
D0  
EN  
16  
15  
DAV  
DAV  
OVDD  
OGND  
N/C  
VRLF  
VIN  
1
2
3
4
5
6
7
8
24 D7  
23 D6  
22 D5  
AGND  
AGND  
VCAL  
OVDD  
21  
TQFP  
20 OGND  
19 D4  
18 D3  
17 D2  
AVDD  
AVDD  
DVDD  
ORDERING INFORMATION  
PART NUMBER  
SPT7861SCS  
SPT7861SCT  
TEMPERATURE RANGE  
0 to +70 °C  
PACKAGE TYPE  
28L SOIC  
32L TQFP  
0 to +70 °C  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO  
IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR  
USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR  
THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body, or (b) support or sustain life,  
and whose failure to perform, when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
www.fairchildsemi.com  
© Copyright 2002 Fairchild Semiconductor Corporation  
SPT7861  
11  
6/25/01  

相关型号:

SPT7861SCS

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
FAIRCHILD

SPT7861SCS

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
CADEKA

SPT7861SCSX

暂无描述
FAIRCHILD

SPT7861SCT

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
FAIRCHILD

SPT7861SCT

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
CADEKA

SPT7861SCTX

A/D Converter, 10-Bit, 1 Func, CMOS, PQFP32
FAIRCHILD

SPT7862

10-BIT, 40 MSPS, DUAL-CHANNEL A/D CONVERTER
CADEKA

SPT7862SIT

10-BIT, 40 MSPS, DUAL-CHANNEL A/D CONVERTER
CADEKA

SPT7863

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
FAIRCHILD

SPT7863

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
CADEKA

SPT7863SCS

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
FAIRCHILD

SPT7863SCS

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
CADEKA