SPT7862 [CADEKA]

10-BIT, 40 MSPS, DUAL-CHANNEL A/D CONVERTER; 10位, 40 MSPS ,双通道A / D转换器
SPT7862
型号: SPT7862
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

10-BIT, 40 MSPS, DUAL-CHANNEL A/D CONVERTER
10位, 40 MSPS ,双通道A / D转换器

转换器
文件: 总10页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPT7862  
10-BIT, 40 MSPS, DUAL-CHANNEL A/D CONVERTER  
FEATURES  
APPLICATIONS  
• Dual-channel, 10-Bit, 40 MSPS analog-to-digital  
converter  
• Low power dissipation: 320 mW (typical)  
• Internal track-and-hold  
• Video set-top boxes  
• Cellular base stations  
• QPSK/QAM RF demodulation  
• S-video digitizers  
• Single +5 volt supply  
• Composite video digitizers  
• Portable and handheld instrumentation  
• Medical ultrasound  
• Tri-state, TTL/CMOS-compatible outputs  
• Selectable +3 or +5 V logic I/O  
• High ESD protection of 3,500 volts minimum  
• Cable modems  
• Video frame grabbers  
GENERAL DESCRIPTION  
The SPT7862 contains two separate 10-bit CMOS analog-  
to-digital converters that have sampling rates of up to 40  
MSPS. Each device has its own separate clock and refer-  
ence inputs so that they can be used independently in  
multichannel applications or can be driven from the same  
inputs for demanding quadrature demodulation and S-video  
applications. On-chip track-and-hold and advanced propri-  
etary circuit design in a CMOS process technology provide  
very good dynamic performance.  
The SPT7862 operates from a single +5 V supply. Digital  
data outputs are user selectable at +3 or +5 V. Output data  
format is straight binary.  
The SPT7862 is available in a 64-lead TQFP package  
(10 x 10 mm) over the industrial temperature range of  
–40 °C to +85 °C.  
BLOCK DIAGRAM  
AV  
AGND  
DV  
DGND  
DD  
DD  
OV  
(+3.3/5.0 V)  
DDA  
Output  
Buffers  
V
ADC  
INA  
DA9–0  
OGND  
V
INRA  
A
V
RHFA  
V
RHSA  
DAV  
Reference  
Ladder  
A
V
RLFA  
EN  
V
RLSA  
Timing  
Generation  
CLK A  
OV  
(+3.3/5.0 V)  
DDB  
Output  
Buffers  
V
INB  
ADC  
DB9–0  
V
INRB  
V
RHFB  
OGND  
B
V
RHSB  
Reference  
Ladder  
DAV  
B
V
RLFB  
V
RLSB  
Timing  
Generation  
CLK B  
ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)1 25 °C  
Supply Voltages  
AVDD .........................................................................+6 V  
DVDD .........................................................................+6 V  
Output  
Digital Outputs .......................................................10 mA  
Temperature  
Input Voltages  
Operating Temperature ............................. –40 to +85 °C  
Junction Temperature ......................................... +175 °C  
Lead Temperature, (soldering 10 seconds) ........ +300 °C  
Storage Temperature............................... –65 to +150 °C  
Analog Input................................. –0.5 V to AVDD +0.5 V  
VREF ................................................................. 0 to AVDD  
CLK Input ................................................................... VDD  
AVDD – DVDD......................................................±100 mV  
AGND – DGND ..................................................±100 mV  
Note: 1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal  
applied conditions in typical applications.  
ELECTRICAL SPECIFICATIONS  
TA=TMIN to TMAX, AVDD=DVDD=OVDD=+5.0 V, VIN=0 to 4 V, ƒS=40 MSPS, VRHS=4.0 V, VRLS=0.0 V, unless otherwise specified.  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT7862  
TYP  
PARAMETERS  
MIN  
MAX  
UNITS  
Resolution  
10  
Bits  
DC Accuracy  
Integral Nonlinearity  
Differential Nonlinearity  
V
V
±1.0  
±0.5  
LSB  
LSB  
Analog Input  
Input Voltage Range  
Input Resistance  
Input Capacitance  
Input Bandwidth  
Offset  
IV  
V
V
V
V
V
VRLS  
VRHS  
V
kΩ  
pF  
MHz  
LSB  
LSB  
29  
5.0  
250  
±2.0  
±2.0  
(Small Signal)  
Gain Error  
Reference Input  
Resistance  
Voltage Range  
VRLS  
V
500  
IV  
IV  
V
V
V
0
3.0  
1.0  
4.0  
90  
75  
2.0  
AVDD  
5.0  
V
V
V
mV  
mV  
VRHS  
VRHS – VRLS  
(VRHF – VRHS  
)
(VRLS – VRLF  
)
Conversion Characteristics  
Maximum Conversion Rate  
Minimum Conversion Rate  
Pipeline Delay (Latency)  
Aperture Delay Time  
VI  
IV  
IV  
V
40  
2
MHz  
MHz  
12 Clock Cycles  
4.0  
7
ns  
ps(rms)  
Aperture Jitter Time  
V
Dynamic Performance  
Effective Number of Bits  
ƒIN = 3.58 MHz  
V
VI  
9.1  
8.3  
Bits  
Bits  
ƒIN = 10.0 MHz  
7.8  
Signal-to-Noise Ratio  
(without Harmonics)  
ƒIN = 3.58 MHz  
V
I
IV  
57.9  
54.2  
dB  
dB  
dB  
ƒ
IN = 10.0 MHz  
TA = +25 °C  
TA = TMIN to TMAX  
52  
47  
ƒIN = 10.0 MHz  
SPT7862  
2
2/23/00  
ELECTRICAL SPECIFICATIONS  
TA=TMIN to TMAX, AVDD=DVDD=OVDD=+5.0 V, VIN=0 to 4 V, ƒS=40 MSPS, VRHS=4.0 V, VRLS=0.0 V, unless otherwise specified.  
TEST  
CONDITIONS  
TEST  
LEVEL  
SPT7862  
TYP  
PARAMETERS  
MIN  
MAX  
UNITS  
Dynamic Performance  
Harmonic Distortion  
9 Distortion bins from  
1024 pt FFT  
ƒ
IN = 3.58 MHz  
V
I
IV  
–63  
–55.7  
dB  
dB  
dB  
ƒIN = 10.0 MHz  
ƒIN = 10.0 MHz  
TA = +25 °C  
TA = TMIN to TMAX  
–52  
–52  
Signal-to-Noise and Distortion  
(SINAD)  
ƒIN = 3.58 MHz  
V
I
IV  
56.7  
51.8  
dB  
dB  
dB  
ƒ
IN = 10.0 MHz  
TA = +25 °C  
TA = TMIN to TMAX  
49  
46  
ƒIN = 10.0 MHz  
Spurious Free Dynamic Range  
ƒIN = 10.0 MHz  
Differential Phase  
Differential Gain  
V
V
V
56.8  
58.3  
±0.3  
±0.3  
60  
dB  
Degree  
%
Channel-to-Channel Crosstalk  
ƒIN = 3.58 MHz  
V
V
74  
67  
dB  
dB  
ƒIN = 10.0 MHz  
Inputs  
Logic 1 Voltage  
Logic 0 Voltage  
Maximum Input Current Low  
Maximum Input Current High  
Input Capacitance  
VI  
VI  
VI  
VI  
V
2.1  
V
V
µA  
µA  
pF  
0.8  
+10  
+10  
–10  
–10  
+5  
Digital Outputs  
Logic 1 Voltage  
Logic 0 Voltage  
tRISE  
IOH = 0.5 mA  
VI  
VI  
V
OVDD –0.5  
V
V
ns  
ns  
I
OL = 1.6 mA  
0.44  
15 pF load  
15 pF load  
10  
10  
tFALL  
V
Output Enable to Data  
Output Delay  
20 pF load, TA = +25 °C  
50 pF load over temp.  
V
V
10  
22  
ns  
ns  
Power Supply Requirements  
Voltages OVDD  
DVDD  
IV  
IV  
IV  
VI  
VI  
VI  
V
3.0  
5.0  
V
V
V
mA  
mA  
mW  
dB  
5.0  
5.0  
52  
12  
320  
70  
AVDD  
Currents AIDD + DIDD  
OIDD  
Power Dissipation  
Power Supply Refection Ratio  
62  
14  
380  
TEST LEVEL CODES  
TEST PROCEDURE  
TEST LEVEL  
All electrical characteristics are subject to the follow-  
ing conditions:  
100% production tested at the specified temperature.  
I
100% production tested at TA=25 °C, and sample tested at  
II  
All parameters having min/max specifications are  
guaranteed. The Test Level column indicates the  
specific device testing actually performed during  
production and Quality Assurance inspection. Any  
blank section in the data column indicates that the  
specification is not tested at the specified condition.  
the specified temperatures.  
QA sample tested only at the specified temperatures.  
III  
Parameter is guaranteed (but not tested) by design and  
characterization data.  
IV  
Parameter is a typical value for information purposes only.  
V
100% production tested at TA = 25 °C. Parameter is guaran-  
VI  
teed over specified temperature range.  
SPT7862  
3
2/23/00  
Figure 1a – Timing Diagram 1  
1
11  
10  
12  
2
13  
9
3
8
17  
14  
ANALOG IN  
CLOCK IN  
4
7
15  
16  
5
6
SAMPLING  
CLOCK  
(Internal)  
INVALID  
VALID  
DATA OUTPUT  
1
2
3
4
5
DATA VALID  
Figure 1b – Timing Diagram 2  
t
CLK  
t
C
t
t
CL  
CH  
CLOCK IN  
DATA  
Data Ø  
Data 2  
Data 3  
Data 1  
OUTPUT  
t
OD  
t
S
t
t
CL  
DATA VALID  
CH  
t
S
Table I – Timing Parameters  
DESCRIPTION  
PARAMETERS MIN TYP MAX UNITS  
Conversion Time  
Clock Period  
tC  
tCLK  
tCH  
tCL  
tCLK  
25  
ns  
ns  
%
%
Clock High Duty Cycle  
Clock Low Duty Cycle  
40  
50  
50  
60  
60  
40  
Clock to Output Delay  
(30 pF Load)  
tOD  
17  
10  
20  
16  
ns  
ns  
Clock to DAV (30 pF load) tS  
SPT7862  
4
2/23/00  
TYPICAL PERFORMANCE CHARACTERISTICS  
THD, SNR, SINAD vs Sample Rate  
THD, SNR, SINAD vs Input Frequency  
ƒIN = 10 MHz  
70  
65  
60  
55  
70  
65  
60  
55  
THD  
SNR  
THD  
SNR  
SINAD  
SINAD  
50  
45  
50  
45  
40  
40  
0
5
10  
15  
20  
0
1
5
20  
40  
10  
30  
50  
Input Frequency (MHz)  
Sample Rate (MSPS)  
THD, SNR, SINAD vs Temperature  
Power Dissipation vs Sample Rate  
ƒ
IN  
= 10 MHz  
ƒIN = 10 MHz  
70  
65  
60  
600  
500  
400  
300  
THD  
55  
50  
45  
SNR  
200  
100  
SINAD  
40  
0
–55  
–40  
–25  
0
25  
70  
85  
125  
0
1
5
20  
40  
10  
30  
50  
60  
Temperature (°C)  
Sample Rate (MSPS)  
Spectral Response  
Frequency (MHz)  
SPT7862  
5
2/23/00  
Figure 2 – Typical Interface Circuit  
+D5V  
Ref In (+4V)  
VRHFA  
VRHSA  
VRLSA  
VRLFA  
VINA  
+3V/5V  
10  
OVDDA  
VINA  
DA9–0  
OGNDA  
DAVA  
Interface  
Logic  
VINRA  
ClockINA  
CLKA  
VCAL  
SPT7862  
Ref In (+4V)  
+3V/5V  
10  
VRHFB  
VRHSB  
VRLSB  
VRLFB  
VINB  
OVDDB  
DB9–0  
OGNDB  
DAVB  
VINB  
Interface  
Logic  
VINRB  
CLKB  
ClockINB  
EN  
AVDD AGND  
DVDD  
Enable/Tri-State  
(Enable = Active Low)  
DGND*  
+A5  
+D5V  
FB  
+D5  
+A5  
*To reduce the possibility of latch-up, avoid connecting  
the DGND pins of the ADC to the digital ground of the system.  
+
+
10 µF  
10 µF  
NOTES: 1. FB is a 10 µH inductor or ferrite bead. It is  
to be located as close to the device as possible.  
2. All capacitors are 0.1 µF surface-mount, unless  
otherwise specified.  
+5V  
+5V  
Digital  
+5V  
+5V  
Analog  
Digital  
Return  
Analog  
Return  
The high sample rate is achieved by using multiple SAR  
ADC sections in parallel, each of which samples the input  
signal in sequence. Each SAR ADC uses 16 clock cycles to  
complete a conversion. The clock cycles are allocated as  
follows:  
TYPICAL INTERFACE CIRCUIT  
Very few external components are required to achieve the  
stated device performance. Figure 2 shows the typical inter-  
face requirements when using the SPT7862 in normal  
circuit operation. The following sections provide descrip-  
tions of the major functions and outline critical performance  
criteria to consider for achieving the optimal device  
performance.  
Table II – Clock Cycles  
Clock  
Operation  
1
Reference zero sampling  
Auto-zero comparison  
Auto-calibrate comparison  
Input sample  
POWER SUPPLIES AND GROUNDING  
2
3
CADEKA suggests that both the digital and the analog sup-  
ply voltages on the SPT7862 be derived from a single ana-  
log supply as shown in figure 2. A separate digital supply  
should be used for all interface circuitry. CADEKA suggests  
using this power supply configuration to prevent a possible  
latch-up condition on power up.  
4
5–15  
16  
11-bit SAR conversion  
Data transfer  
The 16-phase clock, which is derived from the input clock,  
synchronizes these events. The timing signals for adjacent  
SAR ADC sections are shifted by one clock cycle so that the  
analog input is sampled on every cycle of the input clock by  
exactly one SAR ADC section. After 16 clock periods, the  
timing cycle repeats. The latency from analog input sample  
to the corresponding digital output is 12 clock cycles.  
OPERATING DESCRIPTION  
The general architecture for the dual CMOS ADC is shown  
in the block diagram. Each ADC design contains 16 identi-  
cal successive approximation (SAR) ADC sections (all oper-  
ating in parallel), a 16-phase clock generator, an 11-bit 16:1  
digital output multiplexer, correction logic, and a voltage ref-  
erence generator which provides common reference levels  
for each ADC section.  
SPT7862  
6
2/23/00  
• Since only 16 comparators are used, a huge power sav-  
ings is realized.  
Figure 3 – Ladder Force/Sense Circuit for Each ADC  
1
AGND  
• The auto-zero operation is done using a closed loop sys-  
tem that uses multiple samples of the comparator’s  
response to a reference zero.  
+
-
2
3
V
V
RHF  
RHS  
• The auto-calibrate operation, which calibrates the gain  
of the MSB reference and the LSB reference, is also  
done with a closed loop system. Multiple samples of  
the gain error are integrated to produce a calibration volt-  
age for each SAR ADC section.  
4
5
N/C  
V
RLS  
-
+
6
7
V
RLF  
• Capacitive displacement currents, which can induce sam-  
pling error, are minimized since only one comparator  
samples the input during a clock cycle.  
V
IN  
All capacitors are 0.01 µF  
• The total input capacitance is very low, since sections of  
the converter which are not sampling the signal are iso-  
lated from the input by transmission gates.  
Figure 4 – Simplified Reference Ladder Drive Circuit  
Without Force/Sense Circuit  
VOLTAGE REFERENCE  
+4.0 V  
External  
Reference  
The SPT7862 requires the use of a single external voltage  
reference for driving the high side of each reference ladder.  
Each ladder is totally independent and may operate at dif-  
ferent voltage levels. The high side of the reference ladder  
must operate within a range of 3 V to 5 V. The lower side of  
each ladder is typically tied to AGND (0.0 V), but can be run  
up to 2.0 V with a second reference. The analog input volt-  
age range will track the total voltage difference measured  
90 mV  
R/2  
V
RHS  
(+3.91 V)  
R
R
R
R=30 (typ)  
All capacitors are 0.01 µF  
R
between the ladder sense lines, VRHS and VRLS  
.
R
R
Force and sense taps are provided to ensure accurate and  
stable setting of the upper and lower ladder sense line volt-  
ages across part-to-part and temperature variations. By  
using the configuration shown in figure 3, offset and gain  
errors of less than ±2 LSB can be obtained.  
V
RLS  
(0.075 V)  
75 mV  
R/2  
V
(AGND)  
RLF  
0.0 V  
In cases in which wider variations in offset and gain can be  
tolerated, the external reference can be tied directly to VRHF  
and AGND can be tied directly to VRLF as shown in figure 4.  
Decouple force and sense lines to AGND with a .01 µF ca-  
pacitor (chip cap preferred) to minimize high-frequency  
noise injection. If this simplified configuration is used, the  
following considerations should be taken into account:  
Typically, the top side voltage drop for VRHF to VRHS will  
equal:  
VRHF – VRHS = 2.25 % of (VRHF – VRLF) (typical),  
and the bottom side voltage drop for VRLS to VRLF will equal:  
VRLS – VRLF = 1.9 % of (VRHF – VRLF) (typical).  
The reference ladder circuit shown in figure 4 is a simplified  
representation of the actual reference ladder with force and  
sense taps shown. Due to the actual internal structure of the  
ladder, the voltage drop from VRHF to VRHS is not equivalent  
Figure 4 shows an example of expected voltage drops for a  
specific case. VREF of 4.0 V is applied to VRHF and VRLF is  
tied to AGND. A 90 mV drop is seen at VRHS (= 3.91 V) and  
a 75 mV increase is seen at VRLS (= 0.075 V).  
to the voltage drop from VRLF to VRLS  
.
SPT7862  
7
2/23/00  
Figure 6 – On-Chip Protection Circuit  
ANALOG INPUT  
VDD  
VINA and VINB are the analog inputs and VINRA and VINRB are  
the respective input returns. Each input return is typically  
tied to its respective low side reference ladder sense line.  
(See Figure 2.) The input voltage range is from VRLS to VRHS  
(typically 4.0 V) and will scale proportionally with respect to  
the voltage reference. (See the Voltage Reference section.)  
Analog  
120  
120 Ω  
Pad  
The drive requirements for the analog inputs are very mini-  
mal, when compared to most other converters, due to the  
SPT7862’s extremely low input capacitance of only 5 pF  
and a high input resistance in excess of 29 k.  
Each analog input should be protected through a series  
resistor and diode clamping circuit as shown in figure 5.  
Figure 5 – Recommended Input Protection Circuit  
CLOCK INPUT  
+V  
AVDD  
Each ADC is driven independently from a single-ended  
TTL-input clock. Because the pipelined architecture oper-  
ates on the rising edge of the clock input, each ADC can  
operate over a wide range of input clock duty cycles without  
degrading the dynamic performance.  
D1  
D2  
Buffer  
ADC  
47  
DIGITAL OUTPUTS  
The digital outputs (DA9–0 and DB9–0) are driven by sepa-  
rate supplies (OVDDA and OVDDB) ranging from +3 V to  
+5 V. This feature makes it possible to drive the SPT7862’s  
TTL/CMOS-compatible outputs with the user’s logic system  
supply. Each digital output supply may be driven indepen-  
dently. The format of the output data (D0–D9) is straight  
binary. (See Table III.) The outputs are latched on the rising  
edge of CLK. The EN pin controls tri-stating of both data  
output ports. These outputs can be switched into a tri-state  
mode by bringing EN high.  
–V  
D1 = D2 = Hewlett Packard HP5712 or equivalent  
CALIBRATION  
The SPT7862 uses a user-transparent, auto-calibration  
scheme to ensure 10-bit accuracy over time and tempera-  
ture. Gain and offset errors are continually adjusted to 10-bit  
accuracy during device operation.  
Table III – Output Data Information  
Upon power up, the SPT7862 begins its calibration algo-  
rithm. In order to achieve the calibration accuracy required,  
the offset and gain adjustment step size is a fraction of a 10-  
bit LSB. Since the calibration algorithm is an oversampling  
process, a minimum of 10,000 clock cycles are required.  
This results in a minimum calibration time upon power up of  
250 µsec (for a 40 MHz clock). Once calibrated, the  
SPT7862 remains calibrated over time and temperature.  
ANALOG INPUT  
OVERRANGE  
OUTPUT CODE  
D9–D0  
11 1111 1111  
11 1111 111Ø  
ØØ ØØØØ ØØØØ  
00 0000 000Ø  
00 0000 0000  
D10  
+F.S. + 1/2 LSB  
+F.S. –1/2 LSB  
+1/2 F.S.  
1
0
0
0
0
+1/2 LSB  
0.0 V  
(Ø indicates the flickering bit between logic 0 and 1)  
Since the calibration cycles are initiated on the rising edge  
of the clock, the clock must be continuously applied for the  
SPT7862 to remain in calibration.  
EVALUATION BOARD  
The EB7862 evaluation board is available to aid designers  
in demonstrating the full performance of the SPT7862.  
This board includes a reference circuit, clock driver circuit,  
output data latches and an on-board reconstruction of the  
digital data. An application note describing the operation of  
this board as well as information on the testing of the  
SPT7862 is also available. Contact the factory for price and  
availability.  
INPUT PROTECTION  
All I/O pads are protected with an on-chip protection circuit  
shown in figure 6. This circuit provides ESD robustness and  
prevents latch-up under severe discharge conditions with-  
out degrading analog transition times.  
SPT7862  
8
2/23/00  
PACKAGE OUTLINE  
64-Lead TQFP  
G
INCHES  
MILLIMETERS  
A
B
SYMBOL  
MIN  
MAX  
0.480  
0.398  
0.023  
0.010  
MIN  
MAX  
12.20  
10.10  
0.58  
64  
49  
A
B
C
D
E
F
0.465  
0.390  
0.017  
0.006  
11.80  
9.90  
48  
1
0.42  
Index  
0.15  
0.26  
0.295 typ  
0.433 typ  
0.055  
7.5 typ  
11 typ  
1.40  
0.000  
0.067  
0.005  
E F  
G
1.70  
H
I
0.005  
0.125  
0-10°  
0.30  
0.132  
0-10°  
J
K
0.012  
0.028  
0.008  
0.70  
0.20  
16  
33  
0.000  
0.00  
17  
32  
C
D
H
K
J
I
SPT7862  
9
2/23/00  
PIN ASSIGNMENTS  
PIN FUNCTIONS  
Pin Name Description  
VINA  
Analog Input (A)  
VINB  
Analog Input (B)  
VINRA  
Analog Input Return (A)  
Analog Input Return (B)  
VREF High Force Input A/B  
VREF High Sense Input A/B  
VREF Low Force Input A/B  
VREF Low Sense Input A/B  
Analog VDD  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VINRB  
DB1  
DB2  
48  
47  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
AGND  
1
2
3
VRHFA/B  
VRHSA/B  
VRLFA/B  
VRLSA/B  
AVDD  
DB3  
DB4  
DB5  
46  
45  
44  
43  
4
5
6
7
DB6  
SPT7862  
42  
41  
40  
DB7  
DB8  
8
9
TOP VIEW  
64L TQFP  
DB9  
AGND  
39  
10  
DVDD  
Digital VDD  
AGND  
38  
37  
36  
35  
34  
11  
12  
AGND  
OVDD A/B Digital Output Power Supply +3.3 V to +5.0 V  
V
RHFA  
AV  
AV  
DD  
V
RHFB  
13  
DD  
AGND  
DGND  
Analog Ground  
Digital Ground  
V
RHSA  
14  
15  
16  
N/C  
V
RHSB  
AGND  
AGND  
V
33  
INRA  
OGND A/B Digital Output Ground  
17 18 19 20 21 22 23 24 25 26 27 28 29 30  
31 32  
CLK A/B  
EN  
Input Clock A/B (separate)  
Enable Outputs (Active Low)  
Data Outputs A (10 bits)  
Data Outputs B (10 bits)  
Data Available A/B  
D0–9A  
D0–9B  
DAV A/B  
VCAL  
Decoupling Pin  
ORDERING INFORMATION  
PART NUMBER  
TEMPERATURE RANGE  
PACKAGE TYPE  
SPT7862SIT  
–40 to +85 °C  
64-Lead TQFP  
SPT7862  
10  
2/23/00  

相关型号:

SPT7862SIT

10-BIT, 40 MSPS, DUAL-CHANNEL A/D CONVERTER
CADEKA

SPT7863

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
FAIRCHILD

SPT7863

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
CADEKA

SPT7863SCS

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
FAIRCHILD

SPT7863SCS

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
CADEKA

SPT7863SCSX

暂无描述
FAIRCHILD

SPT7863SCT

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
FAIRCHILD

SPT7863SCT

10-BIT, 40 MSPS, 160 mW A/D CONVERTER
CADEKA

SPT7863SCTX

A/D Converter, 10-Bit, 1 Func, CMOS, PQFP32,
FAIRCHILD

SPT7864

10-BIT, 40 MSPS A/D CONVERTER
CADEKA

SPT7864SCR

10-BIT, 40 MSPS A/D CONVERTER
CADEKA

SPT7866

10-BIT, 60 MSPS A/D CONVERTER
CADEKA