FT2045 [FANGTEK]

3W Class-D Audio Power Amplifier with Automatic Level Control;
FT2045
型号: FT2045
厂家: Fangtek Ltd.    Fangtek Ltd.
描述:

3W Class-D Audio Power Amplifier with Automatic Level Control

文件: 总22页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ft2045  
3W Class-D Audio Power Amplifier  
with Automatic Level Control  
GENERAL DESCRIPTION  
FEATURES  
The ft2045 is a high efficiency, filterless Class-D  
audio power amplifier with automatic level control  
(ALC). It operates from 2.7V to 5.5V supply.  
When powered with 5V supply voltage, the ft2045  
is capable of delivering 3W into a 4Ω load or 1.7W  
into an 8Ω load, with 10% THD+D. Other than a  
simple one-wire pulse control to set the operating  
mode and the ALC function, the ft2045 is pin and  
functionality compatible with traditional Class-D  
audio amplifiers. Note that, unlike traditional  
Class-D audio amplifiers, no external bypass  
capacitor for the common-mode bias of audio  
inputs is required for ft2045, thus minimizing the  
number of the external components (3 capacitors  
only) needed for high-quality audio applications.  
Filterless Class-D operation  
Automatic level control to eliminate output  
clipping  
No bypass capacitor required for the  
common-mode bias of audio inputs  
High efficiency up to 90%  
Output power at 5V supply (ALC Off, ft2045M)  
3.0W (4Ω load, 10% THD+N)  
1.7W (8Ω load, 10% THD+N)  
2.4W (4Ω load, 1% THD+N)  
1.4W (8Ω load, 1% THD+N)  
Low THD+N: 0.04%  
(VDD=3.6V, f=1kHz, RL=8Ω, PO=0.5W)  
Low quiescent current: 2.4mA @ VDD=3.6V  
Low shutdown current < 0.1µA  
The ft2045 features ALC on the output signals,  
which detects the output clipping caused by the  
over-level input signal and automatically adjusts  
the voltage gain of the amplifier to eliminate the  
clipping while maintaining a maximally-allowed  
dynamic range of the audio output signals. The  
ALC also eliminates the output clipping due to low  
battery supply voltage.  
High PSRR: 70dB @ 217Hz  
One-wire pulse control to configure operating  
mode & gain  
Two fixed gain settings: 18/24dB  
Maximum ALC attenuation: 10dB  
Short-circuit & thermal protection  
Fast startup time: 5ms  
As a Class-D power amplifier, the ft2045 features  
high efficiency (up to 90%) and high PSRR (70dB  
at 217Hz), which make the device ideal for use in  
portable electronic devices. It also features  
minimized click-and-pop noise during turn-on and  
turn-off transitions.  
Available in COL1.5x1.5-9L, MSOP-8L, and  
DFN2x2-8L packages  
APPLICATIONS  
Cellular handsets  
Portable navigation devices  
Multimedia internet devices  
APPLICATION CIRCUIT  
VDD  
Cs  
1uF  
VDD  
Cin 33nF  
INP  
VOP  
Input  
Class-D  
Modulator  
Output  
Buffer  
Cin 33nF  
Buffer  
INN  
EN  
VON  
Mode  
Control  
Pulse Input  
1
2
3
4
Shutdown  
Control  
BIAS  
AGND/PGND  
Figure 1: Typical Application Circuit Diagram  
Sep, 2012  
www.fangtek.com  
1
ft2045  
PIN CONFIGURATION AND DESCRIPTION  
EN  
VOP  
VDD  
PGND  
VON  
EN  
VOP  
GND  
VDD  
VON  
1
2
3
4
8
7
6
5
VOP  
GND  
VDD  
VON  
3
2
1
EN  
1
2
3
4
8
7
6
5
NC  
INP  
INN  
NC  
INP  
INN  
NC  
INP  
A
AGND  
INN  
C
B
ft2045A  
ft2045N  
ft2045M  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
PIN DESIGNATION  
ft2045A ft2045M ft2045N  
SYMBOL  
DESCRIPTION  
EN  
NC  
C2  
B2  
A1  
C1  
A3  
A2  
B1  
1
2
3
4
5
6
1
2
3
4
5
6
Enable (active high) & one-wire pulse control.  
No internal connection.  
INP  
Positive audio input terminal.  
Negative audio input terminal.  
Negative BTL audio output terminal.  
Power supply.  
INN  
VON  
VDD  
AGND  
Analog ground.  
Power ground for the output stage. For ft2045M/N, it is internally  
shorted to AGND. For ft2045A, it must be externally shorted to  
AGND on the system board.  
7
8
7
8
PGND  
VOP  
B3  
C3  
Positive BTL audio output terminal.  
PACKAGE DISSIPATION RATINGS  
PACKAGE  
COL1.5x1.5-9L  
MSOP-8L  
PACKAGE DRAWING  
Θ JA  
190  
145  
90  
UNIT  
°C/W  
°C/W  
°C/W  
DFN2x2-8L  
ORDERING INFORMATION  
PART NUMBER  
ft2045A  
TEMPERATURE RANGE  
PACKAGE  
COL1.5x1.5-9L  
MSOP-8L  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
ft2045M  
ft2045N  
DFN2x2-8L  
Sep, 2012  
www.fangtek.com  
2
ft2045  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
Supply Voltage  
-0.3V to 6.0V  
-45°C to 150°C  
-0.3V to VDD+0.3V  
Internally Limited  
4000V  
Storage Temperature  
Input Voltage  
Power Dissipation  
ESD Susceptibility (HBM)  
Junction Temperature  
Soldering Information  
Vapor Phase (60 sec.)  
Infrared (15 sec.)  
150°C  
215°C  
220°C  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
V
Supply Voltage (VDD)  
Operating Free-air Temperature, TA  
Speaker Impedance (RLOAD)  
-40  
3.2  
85  
°C  
Ω
Sep, 2012  
www.fangtek.com  
3
ft2045  
ELECTRICAL CHARACTERISTICS  
V
DD=3.6V, CIN=33nF, A  
V
=18dB, f=1kHz, T =25°C, unless otherwise specified.  
A
SYMBOL  
VDD  
PARAMETER  
Supply Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.7  
5.5  
V
V
VUVLU  
Power-up Threshold Voltage  
Power-off Threshold Voltage  
VDD from Low to High  
2.1  
VUVLD  
VDD from High to Low  
VDD=5V, RL=8Ω  
1.9  
2.7  
2.4  
0.1  
1.4  
1.7  
2.4  
3.0  
V
mA  
mA  
µA  
W
1.5  
1.2  
5.0  
4.0  
Power Supply Quiescent Current  
Inputs AC-Grounded  
IDD  
ISD  
VDD=3.6V, RL=8Ω  
Shutdown Current  
EN Low  
THD+N=1%, Mode 2 & 4  
THD+N=10%, Mode 2 & 4  
THD+N=1%, Mode 2 & 4  
THD+N=10%, Mode 2 & 4  
Maximum Output Power (ft2045M)  
RL=, VDD=5V, ALC Off  
W
PO, MAX  
W
Maximum Output Power (ft2045M)  
RL=4Ω, VDD=5V, ALC Off  
W
Constant Output Power  
RL=, VDD=3.6V, ALC On  
Constant Output Power  
RL=4Ω, VDD=3.6V, ALC On  
Constant Output Power  
RL=, VDD=5V, ALC On  
Constant Output Power  
RL=4Ω, VDD=5V, ALC On  
Mode 1, Vin=0.6VRMS  
Mode 3, Vin=0.3VRMS  
Mode 1, Vin=0.6VRMS  
Mode 3, Vin=0.3VRMS  
Mode 1, Vin=0.6VRMS  
Mode 3, Vin=0.3VRMS  
Mode 1, Vin=0.6VRMS  
Mode 3, Vin=0.3VRMS  
0.68  
1.2  
W
W
W
W
PO, ALC  
1.3  
2.3  
Mode 1 & 2  
18  
24  
dB  
dB  
%
Closed-loop Voltage Gain  
Av  
Mode 3 & 4  
Po=0.50W, RL=8Ω  
Po=0.65W, RL=4Ω  
0.04  
0.04  
30  
THD+N  
Total Harmonic Distortion + Noise  
%
ZIN  
Input Impedance @ INP, INN  
Pulldown Resistance @ EN  
KΩ  
ZEN  
500  
KΩ  
f=20Hz ~ 20kHz, Av=18dB  
Inputs AC-Grounded  
VN  
Output Voltage Noise  
85  
µVRMS  
Inputs AC-Grounded, No Load  
±10  
90  
mV  
%
VOS  
η
Output Offset Voltage  
Efficiency  
VDD=5V, Po=1W, RL=8Ω+33µH  
AMAX  
SNR  
PSRR  
CMRR  
fPWM  
ILIMIT  
Maximum ALC Attenuation  
Signal-to-Noise Ratio  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
Modulation Frequency  
Over-Current Protection  
EN High Input Voltage  
EN Low Input Voltage  
Startup Time  
10  
dB  
dB  
dB  
dB  
kHz  
A
85  
f=217Hz  
70  
65  
400  
1.4  
VDD=3.6V  
VIH  
1.2  
V
VIL  
0.4  
V
TSTUP  
TAT  
5
ms  
ms  
s
ALC Attack Time  
RL=8Ω+33µH  
RL=8Ω+33µH  
40  
2.0  
TRL  
ALC Release Time  
TLO  
Time of EN Low  
0.5  
0.5  
10  
µs  
µs  
µs  
µs  
C  
C  
4
THI  
Time of EN High  
TRST  
TSHDN  
TOTP  
Time for Mode Reset, Active Low  
Time for Shutdown, Active Low  
Over-Temperature Threshold  
Over-Temperature Hysteresis  
100  
800  
200  
160  
20  
THYS  
Sep, 2012  
www.fangtek.com  
ft2045  
TYPICAL PERFORMANCE CHARACTERISTICS  
CIN=33nF, AV=18dB, f=1kHz, ft2045M, TA=25°C, unless otherwise specified.  
List of Performance Characteristics  
DESCRIPTION  
CONDITIONS  
FIGURE #  
R
L
=8Ω+33µH, Mode 1 & Mode 2 (THD+N=10%)  
=4Ω+33µH, Mode 1 & Mode 2 (THD+N=10%)  
2
Output Power vs. Supply Voltage  
RL  
3
VDD=5V, R  
VDD=5V, R  
L
=8Ω+33µH, Mode 1 & Mode 2  
=4Ω+33µH, Mode 1 & Mode 2  
4
L
5
VDD=3.6V, R  
VDD=3.6V, R  
L
=8Ω+33µH, Mode 1 & Mode 2  
=4Ω+33µH, Mode 1 & Mode 2  
6
L
7
Output Power vs. Input Voltage  
VDD=5V, R  
VDD=5V, R  
L
=8Ω+33µH, Mode 3 & Mode 4  
=4Ω+33µH, Mode 3 & Mode 4  
8
L
9
VDD=3.6V, R  
VDD=3.6V, R  
L
=8Ω+33µH, Mode 3 & Mode 4  
=4Ω+33µH, Mode 3 & Mode 4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
L
VDD=5V, R  
VDD=5V, R  
L
=8Ω+33µH, Mode 2  
=4Ω+33µH, Mode 2  
L
Efficiency vs. Output Power  
THD+N vs. Output Power  
THD+N vs. Input Voltage  
THD+N vs. Input Frequency  
PSRR vs. Input Frequency  
VDD=3.6V, R  
VDD=3.6V, R  
L
=8Ω+33µH, Mode 2  
=4Ω+33µH, Mode 2  
L
VDD=5V, R  
VDD=5V, R  
L
=8Ω+33µH, Mode 2  
=4Ω+33µH, Mode 2  
L
VDD=3.6V, R  
VDD=3.6V, R  
L
=8Ω+33µH, Mode 2  
=4Ω+33µH, Mode 2  
L
VDD=5V, R  
VDD=5V, R  
L
=8Ω+33µH, Mode 1  
=4Ω+33µH, Mode 1  
L
VDD=3.6V, R  
VDD=3.6V, R  
L
=8Ω+33µH, Mode 1  
=4Ω+33µH, Mode 1  
L
VDD=5V, Vin=0.35VRMS, R  
L
=8Ω+33µH, Mode 1  
=4Ω+33µH, Mode 1  
VDD=5V, Vin=0.30VRMS, R  
L
VDD=3.6V, Vin=0.25VRMS, R  
L
=8Ω+33µH, Mode 1  
=4Ω+33µH, Mode 1  
VDD=3.6V, Vin=0.20VRMS, R  
L
VDD=5V, R  
VDD=5V, R  
L
L
=8Ω+33µH, Input AC-Grounded, Mode 1  
=4Ω+33µH, Input AC-Grounded, Mode 1  
VDD=3.6V, R  
VDD=3.6V, R  
L
=8Ω+33µH, Input AC-Grounded, Mode 1  
=4Ω+33µH, Input AC-Grounded, Mode 1  
L
Quiescent Current vs. Supply Voltage  
ALC Attack & Release Time  
Input AC-Grounded, No Load, Mode 1  
VDD=3.6V, Vin=0.3VRMS ~ 0.95VRMS, R  
Mode 1  
L
=8Ω+33µH  
=8Ω+33µH  
33  
34  
VDD=3.6V, Vin=0.3VRMS ~ 0.95VRMS, R  
Mode 1  
L
ALC Attack Time  
VOP, VON Waveforms  
VDD=3.6V, Vin=0.1VRMS , R  
L
=8Ω+33µH, Mode 1  
35  
36  
37  
(VOP-VON) Startup Waveform  
(VOP-VON) Shutdown Waveform  
VDD=3.6V, Vin=0.1VRMS, R  
L
=8Ω+33µH, Mode 1  
=8Ω+33µH, Mode 1  
VDD=3.6V, Vin=0.1VRMS, R  
L
Sep, 2012  
www.fangtek.com  
5
ft2045  
TYPICAL PERFORMANCE CHARACTERISTICS (Contd)  
Output Power vs. Supply Voltage  
Output Power vs. Supply Voltage  
2500  
2000  
1500  
1000  
500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
RL=4Ω+33uH, Mode1  
RL=8Ω+33uH, Mode 1  
RL=4Ω+33uH, THD+N=10%, Mode 2  
RL=8Ω+33uH, THD+N=10%, Mode 2  
0
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 2: Output Power vs. Supply Voltage  
Figure 3: Output Power vs. Supply Voltage  
Output Power vs. Input Voltage  
Output Power vs. Input Voltage  
10000  
10000  
1000  
1000  
100  
100  
VDD=5.0V, RL=8Ω+33uH, Mode 1  
VDD=5.0V, RL=8Ω+33uH, Mode 2  
10  
10  
VDD=5.0V, RL=4Ω+33uH, Mode 1  
VDD=5.0V, RL=4Ω+33uH, Mode 2  
1
1
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Input Voltage (mVrms)  
Input Voltage (mVrms)  
Figure 4: Output Power vs. Input Voltage  
Figure 5: Output Power vs. Input Voltage  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 1.7W.  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 3.0W.  
Output Power vs. Input Voltage  
Output Power vs. Input Voltage  
10000  
10000  
1000  
1000  
100  
100  
VDD=3.6V, RL=4Ω+33uH, Mode 1  
VDD=3.6V, RL=4Ω+33uH, Mode 2  
VDD=3.6V, RL=8Ω+33uH, Mode 1  
VDD=3.6V, RL=8Ω+33uH, Mode 2  
10  
10  
1
1
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Input Voltage (mVrms)  
Input Voltage (mVrms)  
Figure 6: Output Power vs. Input Voltage  
Figure 7: Output Power vs. Input Voltage  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 0.9W.  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 1.5W.  
Sep, 2012  
www.fangtek.com  
6
ft2045  
TYPICAL PERFORMANCE CHARACTERISTICS (Contd)  
Output Power vs. Input Voltage  
Output Power vs. Input Voltage  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
VDD=5.0V, RL=8Ω+33uH, Mode 3  
VDD=5.0V, RL=8Ω+33uH, Mode 4  
VDD=5.0V, RL=4Ω+33uH, Mode 3  
VDD=5.0V, RL=4Ω+33uH, Mode 4  
1
1
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Input Voltage (mVrms)  
Input Voltage (mVrms)  
Figure 8: Output Power vs. Input Voltage  
Figure 9: Output Power vs. Input Voltage  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 1.7W.  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 3.0W.  
Output Power vs. Input Voltage  
Output Power vs. Input Voltage  
10000  
10000  
1000  
100  
1000  
100  
VDD=3.6V, RL=4Ω+33uH, Mode 3  
VDD=3.6V, RL=4Ω+33uH, Mode 4  
10  
1
10  
1
VDD=3.6V, RL=8Ω+33uH, Mode 3  
VDD=3.6V, RL=8Ω+33uH, Mode 4  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Input Voltage (mVrms)  
Input Voltage (mVrms)  
Figure 10: Output Power vs. Input Voltage  
Figure 11: Output Power vs. Input Voltage  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 0.9W.  
Note: The dashed line on the plot indicates the output THD+N  
exceeds 10% when the output power is higher than 1.5W.  
Efficiencyvs.OutputPower  
Efficiencyvs.OutputPower  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
20  
VDD=5.0V,RL=4Ω+33uH, Mode 2  
VDD=5.0V,RL=8Ω+33uH, Mode 2  
10  
0
10  
0
0
500  
1000  
1500  
2000  
2500  
3000  
0
200  
400  
600  
800 1000 1200 1400 1600 1800 2000  
Output Power (mW)  
Output Power (mW)  
Figure 12: Efficiency vs. Output Power  
Figure 13: Efficiency vs. Output Power  
Sep, 2012  
www.fangtek.com  
7
ft2045  
TYPICAL PERFORMANCE CHARACTERISTICS (Contd)  
Efficiency vs. Output Power  
Efficiency vs. Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD=3.6V,RL=4Ω+33uH, Mode 2  
VDD=3.6V,RL=8Ω+33uH, Mode 2  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
0
100 200 300  
400 500  
600 700 800 900 1000  
Output Power (mW)  
Output Power (mW)  
Figure 14: Efficiency vs. Output Power  
Figure 15: Efficiency vs. Output Power  
THD+N vs. Output Power  
THD+N vs. Output Power  
100  
100  
VDD=5.0V, RL=8Ω+33uH,  
f=1KHz, Mode 2  
VDD=5.0V, RL=4Ω+33uH,  
f=1KHz, Mode 2  
10  
10  
1
1
0.1  
0.1  
0.01  
0.01  
10  
100  
1000  
Output Power (mW)  
10000  
10  
100  
1000  
10000  
Output Power (mW)  
Figure 16: THD+N vs. Output Power  
Figure 17: THD+N vs. Output Power  
THD+N vs. Output Power  
THD+N vs. Output Power  
100  
10  
100  
10  
VDD=3.6V, RL=4Ω+33uH,  
f=1KHz, Mode 2  
VDD=3.6V, RL=8Ω+33uH,  
f=1KHz, Mode 2  
1
1
0.1  
0.01  
0.1  
0.01  
10  
100  
1000  
Output Power (mW)  
10000  
10  
100  
1000  
Output Power (mW)  
10000  
Figure 18: THD+N vs. Output Power  
Figure 19: THD+N vs. Output Power  
Sep, 2012  
www.fangtek.com  
8
ft2045  
TYPICAL PERFORMANCE CHARACTERISTICS (Contd)  
THD+N vs. Input Voltage  
THD+N vs. Input Voltage  
100  
10  
100  
10  
VDD=5.0V, RL=4Ω+33uH,  
f=1KHz, Mode 1  
VDD=5.0V, RL=8Ω+33uH,  
f=1KHz, Mode 1  
1
1
0.1  
0.01  
0.1  
0.01  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Input Voltage (mVrms)  
Input Voltage (mVrms)  
Figure 20: THD+N vs. Input Voltage  
Figure 21: THD+N vs. Input Voltage  
THD+N vs. Input Voltage  
THD+N vs. Input Voltage  
100  
10  
100  
10  
VDD=3.6V, RL=8Ω+33uH,  
f=1KHz, Mode 1  
VDD=3.6V, RL=4Ω+33uH,  
f=1KHz, Mode 1  
1
1
0.1  
0.01  
0.1  
0.01  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Input Voltage (mVrms)  
Input Voltage (mVrms)  
Figure 22: THD+N vs. Input Voltage  
Figure 23: THD+N vs. Input Voltage  
THD+N vs. Frequency  
THD+N vs. Frequency  
100  
100  
VDD=5.0V, RL=8Ω+33uH,  
Vin=350mVrms, Mode 1  
VDD=5.0V, RL=4Ω+33uH,  
Vin=300mVrms, Mode 1  
10  
1
10  
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Figure 24: THD+N vs. Frequency  
Figure 25: THD+N vs. Frequency  
Sep, 2012  
www.fangtek.com  
9
ft2045  
TYPICAL PERFORMANCE CHARACTERISTICS (Contd)  
THD+N vs. Frequency  
THD+N vs. Frequency  
100  
10  
100  
10  
VDD=3.6V, RL=8Ω+33uH,  
Vin=250mVrms, Mode 1  
VDD=3.6V, RL=4Ω+33uH,  
Vin=200mVrms, Mode 1  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Figure 26: THD+N vs. Frequency  
Figure 27: THD+N vs. Frequency  
PSRR vs. Frequency  
PSRR vs. Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
VDD=5.0V, RL=8Ω+33uH, Cin=1uF,  
Input AC-ground, Mode 1  
VDD=5.0V, RL=4Ω+33uH, Cin=1uF,  
Input AC-ground, Mode 1  
-90  
10  
-90  
10  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Figure 28: PSRR vs. Frequency  
Figure 29: PSRR vs. Frequency  
PSRR vs. Frequency  
PSRRvs.Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
VDD=3.6V, RL=8Ω+33uH, Cin=1uF,  
Input AC-ground, Mode 1  
VDD=3.6V, RL=4Ω+33uH, Cin=1uF,  
Input AC-ground, Mode 1  
-90  
10  
-90  
10  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency(Hz)  
Frequency (Hz)  
Figure 30: PSRR vs. Frequency  
Figure 31: PSRR vs. Frequency  
Sep, 2012  
www.fangtek.com  
10  
ft2045  
TYPICAL PERFORMANCE CHARACTERISTICS (Contd)  
Quiescent Current vs. Supply Voltage  
X: 0.5s/div  
Y: 0.2V/div  
VDD=3.6V, RL=8Ω+33µH  
5
Vin=0.3VRMS ~ 0.95VRMS, 1kHz  
4
3
2
X: 0.5s/div  
Y: 1V/div  
No Load, Input AC-ground, Mode 1  
1
VOP-VON (33kHz Lowpass Filer)  
Release Time (2s)  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Figure 32: Quiescent Current vs. Supply Voltage  
Figure 33: ALC Operation (Mode 1)  
VDD=3.6V, RL=8Ω+33µH  
VOP, 0.5V/div  
VON, 0.5V/div  
Vin=0.3VRMS ~ 0.95VRMS, 1kHz  
Vin=0.1VRMS, 1kHz  
X: 0.5ms/div  
Attack Time (40ms)  
VOP-VON (33kHz Lowpass Filer)  
X: 5ms/div  
VOP-VON, 0.5V/div  
(33kHz Lowpass Filer)  
Y: 1V/div  
Figure 34: ALC Attack Time (Mode 1)  
Figure 35: VOP & VON Waveforms  
VDD=3.6V, RL=8Ω+33µH  
VDD=3.6V, RL=8Ω+33µH  
CTRL, 2V/div  
CTRL, 2V/div  
Vin=0.1VRMS, 1kHz  
Vin=0.1VRMS, 1kHz  
VOP-VON, 0.5V/div  
VOP-VON, 0.5V/div  
(33kHz Lowpass Filer)  
(33kHz Lowpass Filer)  
X: 2ms/div  
X: 2ms/div  
Figure 36: Startup Waveforms  
Figure 37: Shutdown Waveforms  
Sep, 2012  
www.fangtek.com  
11  
ft2045  
APPLICATION INFORMATION  
The ft2045 is a high efficiency, filterless Class-D audio power amplifier with automatic level control (ALC).  
It operates from 2.7V to 5.5V supply. When powered with 5V supply voltage, the ft2045 is capable of  
delivering 3W into a 4Ω load or 1.7W into an 8Ω load, with 10% THD+D. Other than a simple one-wire  
pulse control to set the operating mode and the ALC function, the ft2045 is pin and functionality compatible  
with traditional Class-D audio power amplifiers.  
The ft2045 features ALC on the output signals, which detects the output clipping caused by the over-level  
input signal and automatically adjusts the voltage gain of the amplifier to eliminate the clipping while  
maintaining a maximally-allowed dynamic range of the audio output signals. The ALC also eliminates the  
output clipping due to low battery supply voltage.  
As a Class-D power amplifier, the ft2045 features high efficiency, up to 90%, and high PSRR, 70dB at  
217Hz, which make the device ideal for use in battery-powered portable devices. It also features  
minimized click-and-pop noise during turn-on and turn-off transitions. Thanks to its proprietary design, the  
external bypass capacitor typically required for the common-mode bias of audio inputs to maintain high  
PSRR is eliminated in ft2045, thus further reducing the number of the external components needed for use  
in high-quality audio applications.  
As specifically designed for portable applications, the ft2045 incorporates shutdown mode to minimize the  
power consumption by holding the EN pin to ground for more than 800µs. It also includes comprehensive  
protection features against various operating faults such as over-current, over-temperature, or  
under-voltage lockout for a safe and reliable operation.  
AUTOMATIC-LEVEL CONTROL (ALC)  
The automatic-level control is to maintain the output signal level for a maximum output swing without  
distortion when an excessive input that may cause output clipping is applied. With the ALC function, the  
ft2045 lowers the gain of the amplifier to an appropriate value such that the clipping at the outputs is  
eliminated. It also eliminates the clipping of the output signal due to the decrease of the power-supply  
voltage.  
Output Signal when Supply Voltage is Sufficiently Large  
Output Signal in ALC Off Mode  
Output Signal in ALC On Mode  
Attack Time  
Release Time  
Figure 38: Automatic Level Control Diagram  
Sep, 2012  
www.fangtek.com  
12  
ft2045  
The attack time is defined as the time interval required for the gain to fall to its steady-state gain less 3dB  
approximately, presumed that a sufficiently large input signal is applied. The release time is the time  
interval required for the amplifier to exit out of the present mode of operation. See Table 1.  
Mode  
Attack time (ms)  
Release time (s)  
Mode 1 & 3 (ALC Enabled)  
40  
2.0  
Table 1: Attack Time & Release Time  
OPERATING MODE CONTROL AND GAIN SETTING  
To support for a wide range of applications, the ft2045 incorporates one-wire pulse control to configure the  
operating mode and the voltage gain. By applying a string of pulses to the EN pin, users can enable  
(Constant Output Power) or disable (Maximum Output Power) the ALC function and also set the voltage  
gain. The operating mode is advanced and updated on each low-to-high transition of the pulses applied  
onto the EN pin. The detailed timing diagram of the one-wire pulse control to select the operating mode is  
shown in Figure 39.  
TLO  
SHDN  
>0.5us  
H
T
RST  
T
THI  
<
<
TLO 10us  
0.5us  
EN  
L
MODE1  
MODE2  
MODE3  
MODE4  
MODE1  
MODE1  
SHUTDOWN  
Figure 39: One-Wire Pulse Control for Operating Mode Selection  
Four operating modes are configured by the application of a string of pulses onto the EN pin. After the  
application of the power supply, the first low-to-high transition at the EN pin will set the device into Mode 1,  
where the voltage gain is set at 18dB with the ALC function enabled. On the next low-to-high transition, the  
device advances into Mode 2, where the ALC function is disabled while the voltage gain remains at 18dB.  
On the third low-to-high transition, the device advances into Mode 3, where the voltage gain is set at 24dB  
with the ALC function enabled. Finally, on the forth low-to-high transition, the device advances into Mode 4,  
where the ALC function is disabled while the voltage gain remains at 24dB. The operating modes will be  
cycled and repeated in the same manner as described above for consecutive pulses applied.  
Note that each individual pulse must be longer than a minimum of 0.5µs to be recognized. Any pulses  
shorter than 0.5µs may be ignored. The state of the mode operation can be reset back to Mode 1 by  
holding the EN pin low more than 100µs but less than 200µs, regardless of the state it is currently  
operating. Whenever the EN pin held low for more than 800µs, the device enters into shutdown mode,  
where all the internal circuitry is de-biased. Once the device is forced into shutdown mode, one or multiple  
pulses are required for the ft2045 to return to the desired mode of operation.  
Mode  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
# of Pulses  
Voltage Gain  
18dB (8X)  
ALC Function  
Enable  
1
2
3
4
18dB (8X)  
Disable  
24dB (16X)  
24dB (16X)  
Enable  
Disable  
Table 2: Mode of Operation  
Sep, 2012  
www.fangtek.com  
13  
ft2045  
CLICK-AND-POP SUPPRESSION  
The ft2045 audio power amplifier features comprehensive click-and-pop suppression. During startup, the  
click-and-pop suppression circuitry reduces any audible transients internal to the device. When entering  
into shutdown, the differential audio outputs ramp down to ground quickly and simultaneously.  
PSRR ENHANCEMENT  
Contrary to a conventional Class-D amplifier, the ft2045 employs a proprietary circuitry to remove the  
requirement for a common-mode bias pin in conjunction with an external bypass capacitor while  
maintaining high PSRR, thus further reducing the number of external components required.  
PROTECTION FEATURES  
The ft2045 incorporates various protection functions against possible operating faults for a safe operation.  
It includes Under-voltage Lockout (UVLO), Over-Current Protection (OCP), and Over-Temperature  
Shutdown (OTSD).  
Under-Voltage Lockout (UVLO)  
The ft2045 incorporates a circuitry to detect a low supply voltage for a safe and reliable operation.  
When the supply voltage is first applied, the ft2045 will remain inactive until the supply voltage  
exceeds 2.2V (VUVLU). When the supply voltage is removed and drops below 2.0V (VUVLD), the  
ft2045 enters into shutdown mode immediately.  
Over-Current Protection (OCP)  
Once an over-current or a short-circuit condition at the differential outputs, either to the power supply  
or to ground or to each other, is detected, the ft2045 enters into the over-current protection mode,  
where the amplifier output stage is disabled. Note that the over-current detection is a latched  
operation. Thus, once the OCP is detected, the ft2045 must undergo a normal power-up sequence;  
i.e., pull the EN pin low, followed by a sequence of pulses to return the device to the desired operating  
mode.  
Over-Temperature Shutdown (OTSD)  
When the die temperature exceeds a preset threshold (160C), the device enters into the  
over-temperature shutdown mode, where two differential outputs are pulled to ground through an  
internal resistor (2KΩ) individually. The device will resume normal operation once the die temperature  
returns to a lower temperature, which is about 20C lower than the threshold.  
Sep, 2012  
www.fangtek.com  
14  
ft2045  
CLASS-D AUDIO AMPLIFIER  
The ft2045 filterless Class-D amplifier offers much higher efficiency than Class-AB amplifiers. The high  
efficiency of a Class-D amplifier is due to the switching operation of the output stage. Any power loss  
associated with the Class-D output stage is mostly due to the I2R loss of the MOSFET on-resistance and  
quiescent current overhead.  
Fully Differential Amplifier  
The ft2045 is a fully differential amplifier with differential inputs and outputs. The fully differential amplifier  
consists of a differential amplifier and a common-mode amplifier. The differential amplifier ensures that the  
amplifier outputs a differential voltage on the output that is equal to the differential input times the voltage  
gain. The common-mode feedback ensures that the common-mode voltage at the output is biased around  
VDD/2 regardless of the common-mode voltage at the input. The fully differential ft2045 can still be used  
with a single-ended input; however, the ft2045 should be used with differential inputs in a noisy  
environment, like a wireless handset, to ensure maximum noise rejection.  
Low-EMI Filterless Output Stage  
Traditional Class-D amplifiers require the use of external LC filters, or shielding, to meet EN55022B  
electromagnetic-interference (EMI) regulation standards. The ft2045 uses edge-rate-controlled circuitry to  
reduce EMI emissions, while maintaining up to 90% efficiency. Above 10MHz, the wideband spectrum  
looks like noise for EMI purposes.  
Filterless Design  
Traditional Class-D amplifiers require an output filter to recover the audio signal from the amplifier’s output.  
The filter adds cost, increases the solution size of the amplifier, and can decrease efficiency and THD+N  
performance. The traditional PWM scheme uses large differential output swings (with its peak-to-peak  
equal to two times of the supply voltage) and causes large ripple currents. Any parasitic resistance in the  
filter components results in a loss of power and lowers the efficiency.  
The ft2045 does not require an output filter. The device relies on the inherent inductance of the speaker  
coil and the natural filtering of both the speaker and the human ear to recover the audio component of the  
square-wave output. Eliminate the output filter results in a smaller, less costly, and more efficient solution.  
Because the frequency of the ft2045 output is well beyond the bandwidth of most speakers, voice coil  
movement due to the square-wave frequency is very small. Although this movement is small, a speaker  
not designed to handle the additional power can be damaged. For optimum results, use a speaker with a  
series inductance > 10µH. Typical 8Ω speakers exhibit a series inductance in range of the 20µH to 100µH.  
How to Reduce EMI  
The ft2045 does not require an LC output filter for short connections from the amplifier to the speaker.  
However, additional EMI suppressions can be made by use of a ferrite bead in conjunction with a  
capacitor, as shown in Figure 40. Choose a ferrite bead with low DC resistance (DCR) and high  
impedance (100Ω ~ 330Ω) at high frequencies (>100MHz). The current flowing through the ferrite bead  
must be also taken into consideration. The effectiveness of ferrites can be greatly aggravated at much  
lower than the rated current values. Choose a ferrite bead with a rated current value no less than 2A. The  
capacitor value varies based on the ferrite bead chosen and the actual speaker lead length. Choose a  
capacitor less than 1nF based on EMI performance.  
Sep, 2012  
www.fangtek.com  
15  
ft2045  
Ferrite  
Chip Bead  
VOP  
VON  
FB1 220Ω/2A  
C1  
1nF  
Ferrite  
Chip Bead  
FB2 220Ω/2A  
C2  
1nF  
Figure 40: Ferrite Bead Filter to Reduce EMI  
Decoupling Capacitor (CS)  
The ft2045 is a high-performance Class-D audio amplifier that requires adequate power supply  
decoupling. Adequate power supply decoupling to ensures that the efficiency is high and total harmonic  
distortion (THD) is low.  
Place a low equivalent-series-resistance (ESR) ceramic capacitor (X7R or X5R), typically 1µF, within  
2mm of the VDD pin. This choice of capacitor and placement helps with higher frequency transients,  
spikes, or digital hash on the line. Additionally, placing this decoupling capacitor close to the ft2045 is  
important, as any parasitic resistance or inductance between the device and the capacitor causes  
efficiency loss. In addition to the 1µF ceramic capacitor, place a 4.7µF to 22µF capacitor on the VDD  
supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board  
supply, thus helping to prevent any droop in the supply voltage.  
Input Capacitors (Cin)  
Input audio DC decoupling capacitors are recommended. The input audio DC decoupling capacitors will  
remove the DC bias from an incoming analog signal. The input capacitors (Cin) and internal input resistors  
(Rin) form a highpass filter with the corner frequency, fc, determined by Equation 1.  
Any mismatch in capacitance between the two inputs will cause a mismatch in the corner frequencies.  
Severe mismatch may also cause turn-on pop noise, PSRR, CMRR. Choose capacitors with a tolerance  
of ±5% or better.  
fc = 1 / (2 x π x Rin x Cin)  
(1)  
For best audio quality, use capacitors whose dielectrics have low-voltage coefficients, such as tantalum or  
aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, could result in  
increased distortion at low frequencies.  
Sep, 2012  
www.fangtek.com  
16  
ft2045  
TYPICAL APPLICATION CIRCUITS  
VDD  
C3  
Cs  
+
47UF  
1uF  
Differential Inputs  
C1 33nF  
A1  
INP  
INN  
INP  
INN  
EN  
C3  
A3  
VON  
C1  
C2  
B2  
LS1  
C2 33nF  
ft2045A  
SPEAKER  
EN  
VOP  
NC  
Figure 41: Differential Audio Inputs with One-Wire Pulse Control  
VDD  
C3  
Cs  
+
47UF  
1uF  
Single-Ended Input  
C1 33nF  
A1  
C1  
C2  
B2  
INPUT  
INP  
INN  
EN  
C3  
A3  
VON  
LS1  
C2 33nF  
ft2045A  
SPEAKER  
VOP  
NC  
EN  
Figure 42: Single-Ended Audio Input with One-Wire Pulse Control  
Sep, 2012  
www.fangtek.com  
17  
ft2045  
TYPICAL APPLICATION CIRCUITS (Cont’d)  
VDD  
C3  
Cs  
+
47UF  
1uF  
Single-Ended Input  
C1 33nF  
C2 33nF  
A1  
C1  
C2  
B2  
INPUT  
INP  
INN  
EN  
C3  
A3  
VON  
LS1  
ft2045A  
SPEAKER  
VOP  
NC  
EN  
Rctrl 47K  
C4  
0.1uF  
Figure 43: Single-Ended Audio Input with EN High/Low Control  
for 2-Mode Operation (Mode1 & Shutdown)  
VDD  
C3  
Cs  
+
EN  
47UF  
1uF  
L+R Inputs  
1
2
3
4
8
7
6
5
EN  
VOP  
GND  
VDD  
VON  
R1 2K  
R2 2K  
R3 1K  
C1  
C2  
C3  
33nF  
33nF  
66nF  
LS1  
L-IN  
NC  
INP  
INN  
ft2045M  
R-IN  
SPEAKER  
R3=R1*R2/(R1+R2)  
C3=C1+C2  
Figure 44: Dual Channel Audio Inputs with One-Wire Pulse Control (ft2045M)  
Sep, 2012  
www.fangtek.com  
18  
ft2045  
PACKAGE PHYSICAL DIMENSION  
COL1.5X1.5-9L PACKAGE OUTLINE DIMENSIONS  
e:0.50  
D:1.50± 0.05  
E1.50± 0.05  
PIN1 DOT BY  
MARKING  
d::0.275± 0.025  
Top View  
Bottom View  
A10.00-0.05  
A:0.55± 0.05  
A30.152  
Side View  
All dimensions are in millimeters  
Dimensions in Millimeters  
Symbol  
Min.  
0.50  
0.00  
Max.  
0.60  
0.05  
A
A1  
A3  
D
0.152REF.  
1.45  
1.45  
1.55  
1.55  
E
0.50TYP  
e
d
0.25  
0.30  
Sep, 2012  
www.fangtek.com  
19  
ft2045  
PACKAGE PHYSICAL DIMENSION (Cont’d)  
MSOP-8 PACKAGE OUTLINE DIMENSIONS  
D:3.00± 0.10  
E1:3.00± 0.10  
E:4.90± 0.20  
B
B
e:0.65± 0.10  
A3:0.35± 0.10  
A2:0.85± 0.10  
All dimensions are in millimeters  
Dimensions in Millimeters  
Symbol  
A:0.00-1.10  
Min.  
Max.  
1.10  
0.15  
0.95  
0.39  
0.37  
0.33  
0.20  
0.16  
3.10  
5.10  
3.10  
0.75  
0.80  
A
A1  
A2  
A3  
b
0
A1:0.00-0.15  
0.75  
0.25  
0.28  
0.27  
0.15  
0.14  
2.90  
4.70  
2.90  
0.55  
0.40  
WITH PLATING  
BASE METAL  
b1  
c
c1  
D
E
E1  
e
c10.15± 0.01  
c:0.175± 0.025  
θ1:12° ± 3°  
b10.30± 0.03  
b:0.325± 0.045  
L
R1  
0.95REF.  
0.25BSC.  
L1  
L2  
R
R1  
θ
θ1  
R
0.07  
0.07  
0°  
8°  
15°  
L20.25  
L0.60± 0.20  
L10.95  
θ:0° -8°  
9°  
θ1:12° ± 3°  
Sep, 2012  
www.fangtek.com  
20  
ft2045  
PACKAGE PHYSICAL DIMENSION (Cont’d)  
DFN2X2-8L PACKAGE OUTLINE DIMENSIONS  
e0.500  
D:2.000± 0.100  
L:0.350± 0.100  
E10.600± 0.100  
E:2.000± 0.100  
D11.200± 0.100  
b:0.24± 0.06  
Top View  
Bottom View  
A1:0.000-0.050  
A:0.800± 0.100  
A3:0.203  
Side View  
All dimensions are in millimeters  
Dimensions in Millimeters  
Dimensions in Inches  
Symbol  
Min.  
0.700/0.800  
0.000  
Max.  
0.800/0.900  
0.050  
Min.  
0.028/0.031  
0.000  
Max.  
0.031/0.035  
0.002  
A
A1  
A3  
D
0.203REF  
0.008REF  
1.900  
1.900  
1.100  
0.500  
2.100  
2.100  
1.300  
0.700  
0.075  
0.075  
0.043  
0.020  
0.083  
0.083  
0.051  
0.028  
E
D1  
E1  
k
0.200MIN.  
0.008MIN.  
b
e
L
0.180  
0.250  
0.300  
0.450  
0.007  
0.010  
0.012  
0.018  
0.500TYP  
0.020TYP.  
Sep, 2012  
www.fangtek.com  
21  
ft2045  
IMPORTANT NOTICE  
1. Disclaimer: The information in document is intended to help you evaluate this product. Fangtek, LTD.  
makes no warranty, either expressed or implied, as to the product information herein listed, and reserves  
the right to change or discontinue work on this product without notice.  
2. Life support policy: Fangtek’s products are not authorized for use as critical components in life support  
devices or systems without the express written approval of the president and general counsel of Fangtek  
Inc. As used herein  
Life support devices or systems are devices or systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be reasonably expected to result in a significant  
injury to the user.  
A critical component is any component of a life support device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support device or system, or to affect its safety or  
effectiveness.  
3. Fangtek assumes no liability for incidental, consequential or special damages or injury that may result  
from misapplications or improper use or operation of its products  
4. Fangtek makes no warranty or representation that its products are subject to intellectual property  
license from Fangtek or any third party, and Fangtek makes no warranty or representation of  
non-infringement with respect to its products. Fangtek specifically excludes any liability to the customer or  
any third party arising from or related to the products’ infringement of any third party’s intellectual property  
rights, including patents, copyright, trademark or trade secret rights of any third party.  
5. The information in this document is merely to indicate the characteristics and performance of Fangtek  
products. Fangtek assumes no responsibility for any intellectual property claims or other problems that  
may result from applications based on the document presented herein. Fangtek makes no warranty with  
respect to its products, express or implied, including, but not limited to the warranties of merchantability,  
fitness for a particular use and title.  
6. Trademarks: The company and product names in this document may be the trademarks or registered  
trademarks of their respective manufacturers. Fangtek is trademark of Fangtek, LTD.  
CONTACT INFORMATION  
Fangtek Electronics (Shanghai) Co., Ltd  
Room 503&504, Lane 198, Zhangheng Road  
Zhangjiang Hi-tech Park, Pudong District  
Shanghai, P. R. China, 201204  
Tel: +86-21-61631978  
Fax: +86-21-61631981  
Website: www.fangtek.com.cn  
Sep, 2012  
www.fangtek.com  
22  

相关型号:

ft2045A

3W Class-D Audio Power Amplifier with Automatic Level Control
FANGTEK

ft2045M

3W Class-D Audio Power Amplifier with Automatic Level Control
FANGTEK

ft2045N

3W Class-D Audio Power Amplifier with Automatic Level Control
FANGTEK

FT2128

3.4W Class-D Audio Power Amplifier with Dual Modes of Automatic Level Control
FANGTEK

ft2128M

3.4W Class-D Audio Power Amplifier with Dual Modes of Automatic Level Control
FANGTEK

ft2128P

3.4W Class-D Audio Power Amplifier with Dual Modes of Automatic Level Control
FANGTEK

FT21B0R5J100CT

High density mounting due to mounting space saving
WALSIN

FT21B0R5J160CT

High density mounting due to mounting space saving
WALSIN

FT21B0R5J250CT

High density mounting due to mounting space saving
WALSIN

FT21B0R5J500CT

High density mounting due to mounting space saving
WALSIN

FT21B0R5K100CT

High density mounting due to mounting space saving
WALSIN

FT21B0R5K160CT

High density mounting due to mounting space saving
WALSIN