FM8PE53MD [FEELING]

OTP-Based 8-Bit Microcontroller;
FM8PE53MD
型号: FM8PE53MD
厂家: Feeling Technology    Feeling Technology
描述:

OTP-Based 8-Bit Microcontroller

微控制器
文件: 总52页 (文件大小:2389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EELING  
FM8PE53M  
ECHNOLOGY  
OTP-Based 8-Bit Microconer  
Devices Included in this Data Sheet:  
FM8PE53M: OTP device  
FEATURES  
1K Word on chip OTP  
49x8 bits on chip general purpose registers (SRAM)  
8-bit wide data path  
5-level deep hardware stack  
Only 42 single word instructions  
All instructions are single cycle except for program branches which are two-cycle  
All OTP area GOTO instruction  
All OTP area subroutine CALL instruction  
Direct, indirect addressing modes for data accessing  
8-bit real time clock/counter (Timer0) with 8-bit programmable pre-scaler  
Internal Power-on Reset (POR)  
Built-in Low Voltage Detector (LVD) for Brown-out Reset (BOR)  
Power-up Reset Timer (PWRT) and Oscillator Start-up Timer(OST)  
On chip Watchdog Timer (WDT) with internal oscillator for reliable operation and soft-ware watch-dog  
enable/disable control  
Two I/O ports IOA and IOB with independent direction control  
Soft-ware I/O pull-high/pull-down or open-drain control  
One internal interrupt source: Timer0 overflow; Two external interrupt source: INT pin, Port B input change  
Wake-up from SLEEP by INT pin or Port B input change  
Power saving SLEEP mode  
Built-in 8MHZ, 4MHZ, 1MHZ, and 455KHZ internal RC oscillator  
Programmable Code Protection  
Selectable oscillator options:  
- ERC: External Resistor/Capacitor Oscillator  
- HF: High Frequency Crystal/Resonator Oscillator  
- XT: Crystal/Resonator Oscillator  
- LF: Low Frequency Crystal Oscillator  
- IRC: Internal Resistor/Capacitor Oscillator  
- ERIC: External Resistor/Internal Capacitor Oscillator  
Operating voltage range: 2.0V to 5.5V  
This datasheet contains on. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a rethis product. No rights under any patent accompany the sales of the product.  
Web site: http://www.feeling-teom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 1 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
GENERAL DESCRIPTION  
The FM8PE53M is a low-cost, high speed, high noise immunity, OTP-based 8-bit CMOS microcontrollers. It  
employs a RISC architecture with only 42 instructions. All instructions are single cycle except for program branches  
which take two cycles. The easy to use and easy to remember instruction set reduces development time  
significantly.  
The FM8PE53M consists of Power-on Reset (POR), Brown-out Reset (BOR), Power-up Reset Timer (PWRT),  
Oscillator Start-up Timer(OST), Watchdog Timer, OTP, SRAM, tristate I/O port, I/O pull-high/open-drain/pull-down  
control, Power saving SLEEP mode, real time programmable clock/counter, Interrupt, Wake-up from SLEEP mode,  
and Code Protection for OTP products. There are three oscillator configurations to choose from, including the  
external clock input, external resistor RC oscillator and internal RC oscillator.  
The FM8PE53M address 1K of program memory.  
The FM8PE53M can directly or indirectly address its register files and data memory. All special function registers  
including the program counter are mapped in the data memory.  
BLOCK DIAGRAM  
DATA BUS  
Oscillator  
Circuit  
5-level  
STACK  
Control  
Interrupt  
Watchdog  
Timer  
Program  
Counter  
FSR  
SRAM  
PORTA  
PORTB  
Instruction  
Decoder  
ALU  
OTP-ROM  
Interrupt  
Control  
8-bit Timer0  
Accumulator  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 2 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
PIN CONNECTION  
PDIP, SOP  
IOA0  
IOB7  
1
2
3
4
5
6
7
14 IOA1  
13 IOA2  
12 IOA3  
11 VSS  
IOB6  
FM8PE53M  
VDD  
IOB5/OSCI  
IOB4/OSCO  
IOB3/RSTB  
10 IOB0/INT  
9
8
IOB1  
IOB2/T0CKI  
PIN DESCRIPTIONS  
Name  
I/O  
I/O  
Description  
IOA0 ~ IOA3 as bi-direction I/O pin.  
Software controlled pull-down.  
IOA0 ~ IOA3  
Bi-direction I/O pin with system wake-up function.  
IOB0/INT  
IOB1  
I/O Software controlled pull-high/open-drain/pull-down.  
External interrupt input.  
Bi-direction I/O pin with system wake-up function.  
I/O  
Software controlled pull-high/open-drain/pull-down.  
Bi-direction I/O pin with system wake-up function.  
I/O Software controlled pull-high/open-drain/pull-down.  
External clock input to Timer0.  
IOB2/T0CKI  
Input pin or open-drain output pin with system wake-up function.  
System clear (RESET) input. Active low RESET to the device. Weak pull-high always  
on if configured as RSTB.  
Voltage on this pin must not exceed VDD, See IOB3 diagram for detail description.  
Bi-direction I/O pin with system wake-up function (RCOUT optional in IRC/ERIC,  
ERC mode).  
IOB3/RSTB  
IOB4/OSCO  
I/O  
I/O Software controlled pull-high/open-drain.  
Oscillator crystal output (HF, XT, LF mode).  
Outputs with the instruction cycle rate (RCOUT optional in IRC/ERIC, ERC mode).  
Bi-direction I/O pin with system wake-up function (IRC mode).  
Software controlled pull-high/open-drain.  
Oscillator crystal input (HF, XT, LF mode).  
IOB5/OSCI  
I/O  
External clock source input (ERIC, ERC mode).  
Bi-direction I/O pin with system wake-up function.  
Software controlled pull-high/open-drain.  
IOB6 ~ IOB7  
I/O  
VDD  
VSS  
-
-
Positive supply.  
Ground.  
Legend: I=input, O=output, I/O=input/output  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 3 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
1.0 MEMORY ORGANIZATION  
FM8PE53M memory is organized into program memory and data memory.  
1.1 Program Memory Organization  
The FM8PE53M has a 10-bit Program Counter capable of addressing a 1K program memory space.  
The RESET vector for the FM8PE53M is at 0x3FF.  
The H/W interrupt vector is at 0x008. And the S/W interrupt vector is at 0x002.  
FM8PE53M supports all OTP area CALL/GOTO instructions without page.  
Figure 1.1: Program Memory Map and STACK  
0x3FF  
Reset Vector  
Stack 0~5  
:
:
Program Counter  
0x008 H/W Interrupt Vector  
0x002 S/W Interrupt Vector  
0x000  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 4 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
1.2 Data Memory Organization  
Data memory is composed of Special Function Registers and General Purpose Registers.  
The General-Purpose Registers are accessed either directly or indirectly through the FSR register.  
The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of  
the device.  
Table 1.1: Registers File Map for FM8PE53M  
Address  
0x00  
Description  
INDF  
0x01  
TMR0  
0x02  
PCL  
N/A  
OPTION  
0x03  
STATUS  
0x04  
FSR  
0x05  
0x06  
PORTA  
PORTB  
0x05  
0x06  
IOSTA  
IOSTB  
0x07  
General Purpose Register  
0x08  
PCON  
0x09  
WUCON  
0x0A  
PCHBUF  
0x0B  
PDCON  
0x0C  
0x0D  
ODCON  
PHCON  
0x0E  
INTEN  
0x0F  
INTFLAG  
0x10 ~ 0x3F  
General Purpose Registers  
Table 1.2: The Registers Controlled by OPTION or IOST Instructions  
Address  
N/A (w)  
0x05 (w)  
0x06 (w)  
Name  
OPTION  
IOSTA  
IOSTB  
B7  
*
B6  
B5  
B4  
B3  
B2  
B1  
B0  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Port A I/O Control Register  
Port B I/O Control Register  
Table 1.3: Operational Registers Map  
Address  
Name  
INDF  
TMR0  
PCL  
STATUS  
FSR  
PORTA  
PORTB  
SRAM  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
C
0x00 (r/w)  
0x01 (r/w)  
0x02 (r/w)  
0x03 (r/w)  
0x04 (r/w)  
0x05 (r/w)  
0x06 (r/w)  
0x07 (r/w)  
0x08 (r/w)  
0x09 (r/w)  
0x0A (r/w)  
0x0B (r/w)  
0x0C (r/w)  
0x0D (r/w)  
0x0E (r/w)  
Uses contents of FSR to address data memory (not a physical register)  
8-bit real-time clock/counter  
Low order 8 bits of PC  
̅̅̅̅  
TO  
̅̅̅̅  
PD  
RST  
*
Z
DC  
*
Indirect data memory address pointer  
IOA3  
IOB3  
IOA2  
IOB2  
IOA1  
IOB1  
IOA0  
IOB0  
IOB7  
IOB6  
IOB5  
IOB4  
General Purpose Register  
PCON  
WDTE  
WUB7  
-
EIS  
WUB6  
-
/PDB2  
ODB6  
/PHB6  
*
LVDTE  
WUB5  
-
/PDB1  
ODB5  
/PHB5  
*
*
WUB4  
-
/PDB0  
ODB4  
/PHB4  
*
*
WUB3  
-
*
WUB2  
-
/PDA2  
ODB2  
/PHB2  
INTIE  
INTIF  
*
WUB1  
*
WUB0  
WUCON  
PCHBUF  
PDCON  
ODCON  
PHCON  
INTEN  
2 MSBs Buffer of PC  
/PDA3  
/PDA1  
ODB1  
/PHB1  
PBIE  
PBIF  
/PDA0  
ODB0  
/PHB0  
T0IE  
T0IF  
ODB7  
/PHB7  
GIE  
*
-
0x0F (r/w) INTFLAG  
-
-
-
-
Legend: - = unimplemented, read as ‘0’, * = unimplemented, read as ‘1’.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 5 of 52, FM8PE53M  
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1 Operational Registers  
2.1.1  
INDF (Indirect Addressing Register)  
Read/Write-POR  
R/W-x  
B7  
R/W-x  
B6  
R/W-x  
B5  
R/W-x  
B4  
R/W-x  
B3  
R/W-x  
B2  
R/W-x  
B1  
R/W-x  
B0  
Address  
0x00  
Name  
INDF  
Uses contents of FSR to address data memory (not a physical register)  
Legend: x = unknown, more bits’ default state, please refer to Table 2.2.  
The INDF Register is not a physical register. Any instruction accessing the INDF register can actually access the  
register pointed by FSR Register. Reading the INDF register itself indirectly (FSR=”0x00”) will read 0x00. Writing to  
the INDF register indirectly results in a no-operation (although status bits may be affected).  
The bits 5-0 of FSR register are used to select up to 64 registers (address: 0x00 ~ 0x3F).  
Example 2.1: INDIRECT ADDRESSING  
Register file 0x38 contains the value 0x10  
Register file 0x39 contains the value 0x0A  
Load the value 0x38 into the FSR Register  
A read of the INDF Register will return the value of 0x10  
Increment the value of the FSR Register by one (@FSR=0x39)  
A read of the INDF register now will return the value of 0x0A.  
Figure 2.1: Direct/Indirect Addressing  
Direct Addressing  
From opcode  
Indirect Addressing  
From FSR register 0  
5
0
5
0x00  
location select  
addressing INDF register  
location select  
0x3F  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 6 of 52, FM8PE53M  
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.1.2  
TMR0 (Time Clock/Counter register)  
Read/Write-POR  
R/W-x  
B7  
R/W-x  
B6  
R/W-x  
B5  
R/W-x  
B4  
R/W-x  
B3  
R/W-x  
B2  
R/W-x  
B1  
R/W-x  
B0  
Address  
0x01  
Name  
TMR0  
8-bit real-time clock/counter  
Note: more bits’ default state, please refer to Table 2.2.  
The Timer0 is a 8-bit timer/counter. The clock source of Timer0 can come from the instruction cycle clock or by an  
external clock source (T0CKI pin) defined by T0CS bit (OPTION<5>). If T0CKI pin is selected, the Timer0 is  
increased by T0CKI signal rising/falling edge (selected by T0SE bit (OPTION<4>)).  
The pre-scaler is assigned to Timer0 by clearing the PSA bit (OPTION<3>). In this case, the pre-scaler will be  
cleared when TMR0 register is written with a value.  
2.1.3  
PCL (Low Bytes of Program Counter) & Stack  
Read/Write-POR  
R/W-1  
B7  
R/W-1  
B6  
R/W-1  
B5  
R/W-1  
B4  
R/W-1  
B3  
R/W-1  
B2  
R/W-1  
B1  
R/W-1  
B0  
Address  
0x02  
Name  
PCL  
Low order 8 bits of PC  
Note: more bits’ default state, please refer to Table 2.2.  
FM8PE53M device has a 10-bit wide Program Counter (PC) and five-level deep 10-bit hardware push/pop stack.  
The low byte of PC is called the PCL register. This register is readable and writable. The high byte of PC is called  
the PCH register. This register contains the PC<9:8> bits and is not directly readable or writable. All updates to the  
PCH register go through the PCHBUF register. As a program instruction is executed, the Program Counter will  
contain the address of the next program instruction to be executed. The PC value is increased by one, every  
instruction cycle, unless an instruction changes the PC.  
For a GOTO instruction, the PC<9:0> is provided by the GOTO instruction word. The PCL register is mapped to  
PC<7:0>, and the PCHBUF register is not updated.  
For a CALL instruction, the PC<9:0> is provided by the CALL instruction word. The next PC will be loaded (PUSHed)  
onto the top of STACK. The PCL register is mapped to PC<7:0>, and the PCHBUF register is not updated.  
For a RETIA, RETFIE, or RETURN instruction, the PC are updated (POPed) from the top of STACK. The PCL  
register is mapped to PC<7:0>, and the PCHBUF register is not updated.  
For any instruction where the PCL is the destination, the PC<7:0> is provided by the instruction word or ALU result.  
However, the PC<9:8> will come from the PCHBUF<1:0> bits (PCHBUF PCH).  
PCHBUF register is never updated with the contents of PCH.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 7 of 52, FM8PE53M  
 
 
EELING  
FM8PE53M  
ECHNOLOGY  
Figure 2.2: Loading of PC in Different Situations  
Situation 1: GOTO Instruction  
PCH  
PCL  
9
8
-
7
-
0
PC  
Opcode <9:0>  
-
-
-
-
PCHBUF  
Situation 2: CALL Instruction  
STACK<9:0>  
Opcode <9:0>  
PCH  
PCL  
9
8
7
-
0
PC  
-
-
-
-
-
PCHBUF  
Situation 3: RETIA, RETFIE, or RETURN Instruction  
PCH PCL  
STACK<9:0>  
9
8
7
0
PC  
-
-
-
-
-
-
PCHBUF  
Situation 4: Instruction with PCL as destination  
PCH PCL  
8
9
7
0
PC  
ALU result <7:0>  
Or Opcode <7:0>  
PCHBUF<1:0>  
-
-
-
-
-
-
PCHBUF  
Note: PCHBUF is used only for instruction with PCL as destination for FM8PE53M.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 8 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
2.1.4  
STATUS (Status Register)  
Read/Write-POR  
R/W-0  
B7  
R/W-0  
B6  
R/W-0  
B5  
R-#  
B4  
̅̅̅̅  
TO  
R-#  
B3  
̅̅̅̅  
PD  
R/W-x  
B2  
R/W-x  
B1  
R/W-x  
B0  
Address  
0x03  
Name  
STATUS  
RST  
Z
DC  
C
Legend: x = unknown, # refer Table 2.3 for detail description, more bits’ default state, please refer to Table 2.2.  
This register contains the arithmetic status of the ALU, the RESET status.  
If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these  
̅̅̅̅  
̅̅̅̅  
three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits  
are not writable. Therefore, the result of an instruction with the STATUS Register as destination may be different  
than intended. For example, CLRR STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS  
Register as 000u u1uu (where u = unchanged).  
C:Carry/borrow bit.  
ADDAR, ADDIA, ADCAR  
= 0, No Carry occurred.  
= 1, Carry occurred.  
SUBAR, SUBIA, SBCAR  
= 0, Borrow occurred.  
= 1, No borrow occurred.  
Note:A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRR, RLR)  
instructions, this bit is loaded with either the high or low order bit of the source register.  
DC:Half carry/half borrow bit  
ADDAR, ADDIA, ADCAR  
= 0, No Carry from the 4th low order bit of the result occurred.  
= 1, Carry from the 4th low order bit of the result occurred.  
SUBAR, SUBIA, SBCAR  
= 0, Borrow from the 4th low order bit of the result occurred.  
= 1, No Borrow from the 4th low order bit of the result occurred.  
Z:Zero bit.  
= 0, The result of a logic operation is not zero.  
= 1, The result of a logic operation is zero.  
̅̅̅̅  
PD:Power down flag bit.  
= 0, by the SLEEP instruction.  
= 1, after power-up or by the CLRWDT instruction.  
̅̅̅̅  
TO:Time overflow flag bit.  
= 0, a watch-dog time overflow occurred.  
= 1, after power-up or by the CLRWDT or SLEEP instruction.  
Bit6:Bit5:General purpose read/write bit.  
RST:Bit for wake-up type.  
= 0, Wake-up from other reset types.  
= 1, Wake-up from SLEEP on Port B input change.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 9 of 52, FM8PE53M  
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.1.5  
FSR (Indirect Data Memory Address Pointer)  
Read/Write-POR  
*
B7  
*
*
B6  
*
R/W-x  
B5  
R/W-x  
B4  
R/W-x  
B3  
R/W-x  
B2  
R/W-x  
B1  
R/W-x  
B0  
Address  
0x04  
Name  
FSR  
Indirect data memory address pointer  
Legend: * = unimplemented, read as ‘1’, more bits’ default state, please refer to Table 2.2.  
Bit5:Bit0:Select registers address in the indirect addressing mode. See 2.1.1 for detail description.  
2.1.6  
PORTA, PORTB (Port Data Registers)  
Read/Write-POR  
R/W-x  
B7  
R/W-x  
B6  
R/W-x  
B5  
R/W-x  
B4  
R/W-x  
B3  
R/W-x  
B2  
R/W-x  
B1  
R/W-x  
B0  
Address  
0x05  
Name  
PORTA  
IOA3  
IOA2  
IOA1  
IOA0  
Read/Write-POR  
R/W-x  
B7  
R/W-x  
B6  
R/W-x  
B5  
R/W-x  
B4  
R/W-x  
B3  
R/W-x  
B2  
R/W-x  
B1  
R/W-x  
B0  
Address  
0x06  
Name  
PORTB  
IOB7  
IOB6  
IOB5  
IOB4  
IOB3  
IOB2  
IOB1  
IOB0  
Note: more bits’ default state, please refer to Table 2.2.  
Reading the port (PORTA, PORTB register) reads the status of the pins independent of the pin’s input/output modes.  
Writing to these ports will write to the port data latch.  
PORTA is a 4-bit port data Register. Only the low order 4 bits are used (PORTA<3:0>). Bits 7-4 are general purpose  
read/write bits.  
IOA3:IOA0:PORTA I/O pin.  
= 0, Port pin is low level.  
= 1, Port pin is high level.  
IOB7:IOB0:PORTB I/O pin.  
= 0, Port pin is low level.  
= 1, Port pin is high level.  
Note: IOB3 is open-drain output only if IOSTB3 = 0. See 2.1.17 for detail description.  
2.1.7  
PCON (Power Control Register)  
Read/Write-POR  
R/W-1  
B7  
R/W-0  
B6  
R/W-1  
B5  
*
B4  
*
*
B3  
*
*
B2  
*
*
B1  
*
*
B0  
*
Address  
0x08  
Name  
PCON  
WDTE  
EIS  
LVDTE  
Legend: * = unimplemented, read as ‘1’, more bits’ default state, please refer to Table 2.2.  
LVDTE:LVDT (low voltage detector) enable bit.  
= 0, Disable LVDT.  
= 1, Enable LVDT.  
EIS:Define the function of IOB0/INT pin.  
= 0,IOB0 (bi-directional I/O pin) is selected. The path of INT is masked.  
= 1,INT (external interrupt pin) is selected. In this case, the I/O control bit of IOB0 must be set to “1”. The path  
of Port B input change of IOB0 pin is masked by hardware, the status of INT pin can also be read by way  
of reading PORTB.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 10 of 52, FM8PE53M  
 
 
 
 
EELING  
ECHNOLOGY  
FM8PE53M  
WDTE:WDT (watch-dog timer) enable bit.  
= 0, Disable WDT.  
= 1, Enable WDT.  
2.1.8  
WUCON (Port B Input Change Interrupt/Wake-up Control Register)  
Read/Write-POR  
R/W-0  
B7  
R/W-0  
B6  
R/W-0  
B5  
R/W-0  
B4  
R/W-0  
B3  
R/W-0  
B2  
R/W-0  
B1  
R/W-0  
B0  
Address  
0x09  
Name  
WUCON  
WUB7  
WUB6  
WUB5  
WUB4  
WUB3  
WUB2  
WUB1  
WUB0  
Note: more bits’ default state, please refer to Table 2.2.  
WUB0:= 0, Disable the input change interrupt/wake-up function of IOB0 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB0 pin.  
WUB1:= 0, Disable the input change interrupt/wake-up function of IOB1 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB1 pin.  
WUB2:= 0, Disable the input change interrupt/wake-up function of IOB2 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB2 pin.  
WUB3:= 0, Disable the input change interrupt/wake-up function of IOB3 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB3 pin.  
WUB4:= 0, Disable the input change interrupt/wake-up function of IOB4 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB4 pin.  
WUB5:= 0, Disable the input change interrupt/wake-up function of IOB5 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB5 pin.  
WUB6:= 0, Disable the input change interrupt/wake-up function of IOB6 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB6 pin.  
WUB7:= 0, Disable the input change interrupt/wake-up function of IOB7 pin.  
= 1, Enable the input change interrupt/wake-up function of IOB7 pin.  
2.1.9  
PCHBUF (High Byte Buffer of Program Counter)  
Read/Write-POR  
-
B7  
-
-
B6  
-
-
B5  
-
-
B4  
-
-
B3  
-
-
B2  
-
R/W-1  
B1  
R/W-1  
B0  
Address  
0x0A  
Name  
PCHBUF  
2 MSBs Buffer of PC  
Legend: - = unimplemented, read as ‘0’, more bits’ default state, please refer to Table 2.2.  
Bit1:Bit0:See 2.1.3 for detail description.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 11 of 52, FM8PE53M  
 
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.1.10 PDCON (Pull-down Control Register)  
Read/Write-POR  
R/W-1  
B7  
R/W-1  
B6  
R/W-1  
B5  
R/W-1  
B4  
R/W-1  
B3  
R/W-1  
B2  
R/W-1  
B1  
R/W-1  
B0  
Address  
0x0B  
Name  
PDCON  
/PDB2  
/PDB1  
/PDB0  
/PDA3  
/PDA2  
/PDA1  
/PDA0  
Note: more bits’ default state, please refer to Table 2.2.  
/PDA0:= 0, Enable the internal pull-down of IOA0 pin.  
= 1, Disable the internal pull-down of IOA0 pin.  
/PDA1:= 0, Enable the internal pull-down of IOA1 pin.  
= 1, Disable the internal pull-down of IOA1 pin.  
/PDA2:= 0, Enable the internal pull-down of IOA2 pin.  
= 1, Disable the internal pull-down of IOA2 pin.  
/PDA3:= 0, Enable the internal pull-down of IOA3 pin.  
= 1, Disable the internal pull-down of IOA3 pin.  
/PDB0:= 0, Enable the internal pull-down of IOB0 pin.  
= 1, Disable the internal pull-down of IOB0 pin.  
/PDB1:= 0, Enable the internal pull-down of IOB1 pin.  
= 1, Disable the internal pull-down of IOB1 pin.  
/PDB2:= 0, Enable the internal pull-down of IOB2 pin.  
= 1, Disable the internal pull-down of IOB2 pin.  
Bit7:General purpose read/write bit.  
2.1.11 ODCON (Open-drain Control Register)  
Read/Write-POR  
R/W-0  
B7  
R/W-0  
B6  
R/W-0  
B5  
R/W-0  
B4  
R/W-0  
B3  
R/W-0  
B2  
R/W-0  
B1  
R/W-0  
B0  
Address  
0x0C  
Name  
ODCON  
ODB7  
ODB6  
ODB5  
ODB4  
ODB2  
ODB1  
ODB0  
Note: more bits’ default state, please refer to Table 2.2.  
ODB0:= 0, Disable the internal open-drain of IOB0 pin.  
= 1, Enable the internal open-drain of IOB0 pin.  
ODB1:= 0, Disable the internal open-drain of IOB1 pin.  
= 1, Enable the internal open-drain of IOB1 pin.  
ODB2:= 0, Disable the internal open-drain of IOB2 pin.  
= 1, Enable the internal open-drain of IOB2 pin.  
Bit3:General purpose read/write bit.  
ODB4:= 0, Disable the internal open-drain of IOB4 pin.  
= 1, Enable the internal open-drain of IOB4 pin.  
ODB5:= 0, Disable the internal open-drain of IOB5 pin.  
= 1, Enable the internal open-drain of IOB5 pin.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 12 of 52, FM8PE53M  
 
 
EELING  
ECHNOLOGY  
FM8PE53M  
ODB6:= 0, Disable the internal open-drain of IOB6 pin.  
= 1, Enable the internal open-drain of IOB6 pin.  
ODB7:= 0, Disable the internal open-drain of IOB7 pin.  
= 1, Enable the internal open-drain of IOB7 pin.  
2.1.12 PHCON (Pull-high Control Register)  
Read/Write-POR  
R/W-1  
B7  
R/W-1  
B6  
R/W-1  
B5  
R/W-1  
B4  
R/W-1  
B3  
R/W-1  
B2  
R/W-1  
B1  
R/W-1  
B0  
Address  
0x0D  
Name  
PHCON  
/PHB7  
/PHB6  
/PHB5  
/PHB4  
/PHB2  
/PHB1  
/PHB0  
Note: more bits’ default state, please refer to Table 2.2.  
/PHB0:= 0, Enable the internal pull-high of IOB0 pin.  
= 1, Disable the internal pull-high of IOB0 pin.  
/PHB1:= 0, Enable the internal pull-high of IOB1 pin.  
= 1, Disable the internal pull-high of IOB1 pin.  
/PHB2:= 0, Enable the internal pull-high of IOB2 pin.  
= 1, Disable the internal pull-high of IOB2 pin.  
Bit3:General purpose read/write bit.  
/PHB4:= 0, Enable the internal pull-high of IOB4 pin.  
= 1, Disable the internal pull-high of IOB4 pin.  
/PHB5:= 0, Enable the internal pull-high of IOB5 pin.  
= 1, Disable the internal pull-high of IOB5 pin.  
/PHB6:= 0, Enable the internal pull-high of IOB6 pin.  
= 1, Disable the internal pull-high of IOB6 pin.  
/PHB7:= 0, Enable the internal pull-high of IOB7 pin.  
= 1, Disable the internal pull-high of IOB7 pin.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 13 of 52, FM8PE53M  
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.1.13 INTEN (Interrupt Mask Register)  
Read/Write-POR  
R/W-0  
B7  
*
B6  
*
*
B5  
*
*
B4  
*
*
B3  
*
R/W-0  
B2  
R/W-0  
B1  
R/W-0  
B0  
Address  
0x0E  
Name  
INTEN  
GIE  
INTIE  
PBIE  
T0IE  
Legend: * = unimplemented, read as ‘1’, more bits’ default state, please refer to Table 2.2.  
T0IE:Timer0 overflow interrupt enable bit.  
= 0, Disable the Timer0 overflow interrupt.  
= 1, Enable the Timer0 overflow interrupt.  
PBIE:Port B input change interrupt enable bit.  
= 0, Disable the Port B input change interrupt.  
= 1, Enable the Port B input change interrupt.  
INTIE:External INT pin interrupt enable bit.  
= 0, Disable the External INT pin interrupt.  
= 1, Enable the External INT pin interrupt.  
GIE:Global interrupt enable bit.  
= 0, Disable all interrupts. For wake-up from SLEEP mode through an interrupt event, the device will continue  
execution at the instruction after the SLEEP instruction.  
= 1, Enable all un-masked interrupts. For wake-up from SLEEP mode through an interrupt event, the device  
will branch to the interrupt address (0x008).  
Note:When an interrupt event occurs with the GIE bit and its corresponding interrupt enable bit are all set, the  
GIE bit will be cleared by hardware to disable any further interrupts. The RETFIE instruction will exit the  
interrupt routine and set the GIE bit to re-enable interrupt.  
2.1.14 INTFLAG (Interrupt Status Register)  
Read/Write-POR  
-
B7  
-
-
B6  
-
-
B5  
-
-
B4  
-
-
B3  
-
R/W-0  
B2  
R/W-0  
B1  
R/W-0  
B0  
Address  
0x0F  
Name  
INTFLAG  
INTIF  
PBIF  
T0IF  
Legend: - = unimplemented, read as ‘0’, more bits’ default state, please refer to Table 2.2.  
T0IF:Timer0 overflow interrupt flag. Set when Timer0 overflows, reset by software.  
PBIF:Port B input change interrupt flag. Set when Port B input changes, reset by software.  
INTIF:External INT pin interrupt flag. Set by rising/falling (selected by INTEDG bit (OPTION<6>)) edge on INT pin,  
reset by software.  
2.1.15 ACC (Accumulator)  
Read/Write-POR  
R/W-x  
B7  
R/W-x  
B6  
R/W-x  
B5  
R/W-x  
B4  
R/W-x  
B3  
R/W-x  
B2  
R/W-x  
B1  
R/W-x  
B0  
Address  
N/A  
Name  
ACC  
Accumulator  
Legend: x = unknown, more bits’ default state, please refer to Table 2.2.  
Accumulator is an internal data transfer, or instruction operand holding. It cannot be addressed.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 14 of 52, FM8PE53M  
 
 
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.1.16 OPTION Register  
Read/Write-POR  
W-1  
B7  
*
W-0  
B6  
W-1  
B5  
W-1  
B4  
W-1  
B3  
W-1  
B2  
W-1  
B1  
W-1  
B0  
Address  
N/A  
Name  
OPTION  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Accessed by OPTION instruction.  
Legend: * = unimplemented, more bits’ default state, please refer to Table 2.2.  
By executing the OPTION instruction, the contents of the ACC Register will be transferred to the OPTION Register.  
The OPTION Register is a 7-bit wide, write-only register which contains various control bits to configure the  
Timer0/WDT pre-scaler, Timer0, and the external INT interrupt.  
The OPTION Register are “write-only” and are set all “1”s except INTEDG bit.  
PS2:PS0:Pre-scaler rate selects bits.  
PS2:PS0  
Timer0 Rate  
1:2  
WDT Rate  
1:1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:2  
1:8  
1:4  
1:16  
1:8  
1:32  
1:16  
1:32  
1:64  
1:128  
1:64  
1:128  
1:256  
PSA:Pre-scaler assign bit.  
= 0, TMR0 (Timer0).  
= 1, WDT (watch-dog timer).  
T0SE:TMR0 source edge select bit.  
= 0, Rising edge on T0CKI pin.  
= 1, Falling edge on T0CKI pin.  
T0CS:TMR0 clock source select bit.  
= 0, internal instruction clock cycle.  
= 1, External T0CKI pin. Pin IOB2/T0CKI is forced to be an input even if IOST IOB2 = “0”.  
INTEDG:Interrupt edge select bit.  
= 0, interrupt on falling edge of INT pin.  
= 1, interrupt on rising edge of INT pin.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 15 of 52, FM8PE53M  
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.1.17 IOSTA, IOSTB (Port I/O Control Registers)  
Read/Write-POR  
-
B7  
-
-
B6  
-
-
B5  
-
-
B4  
-
W-1  
B3  
W-1  
B2  
W-1  
B1  
W-1  
B0  
Address  
0x05  
Name  
IOSTA  
IOSTA3 IOSTA2 IOSTA1 IOSTA0  
Read/Write-POR  
W-1  
B7  
W-1  
B6  
W-1  
B5  
W-1  
B4  
W-1  
B3  
W-1  
B2  
W-1  
B1  
W-1  
B0  
Address  
0x06  
Name  
IOSTB  
IOSTB7 IOSTB6 IOSTB5 IOSTB4 IOSTB3 IOSTB2 IOSTB1 IOSTB0  
Accessed by IOST instruction.  
Note: more bits’ default state, please refer to Table 2.2.  
The Port I/O Control Registers are loaded with the contents of the ACC Register by executing the IOST R  
(0x05~0x06) instruction.  
The IOST Registers are “write-only” and are set (output drivers disabled) upon RESET.  
IOSTA3:IOSTA0:PORTA I/O control bit.  
= 0, PORTA pin configured as an output.  
= 1, PORTA pin configured as an input (tri-stated).  
IOSTB7:IOSTB0:PORTB I/O control bit.  
= 0, PORTB pin configured as an output.  
= 1, PORTB pin configured as an input (tri-stated).  
Note:1.IOB3 is open-drain output only if IOSTB3 = 0.  
2.The IOB3 open-drain function will be fixed to “Disable” by H/W if the configuration  
bit IOB3OD= Disable, even if bit IOSTB3 = 0.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 16 of 52, FM8PE53M  
 
 
EELING  
FM8PE53M  
ECHNOLOGY  
2.2 I/O Ports  
Port A and port B are bi-directional tristate I/O ports. Port A is a 4-pin I/O port. Port B is an 8-pin I/O port. Please  
note that IOB3 is an input or open-drain output pin.  
All I/O pins have data direction control registers (IOSTA, IOSTB) which can configure these pins as output or input.  
The exceptions are IOB2 which may be controlled by the T0CS bit (OPTION<5>).  
IOB<5:4> and IOB<2:0> have its corresponding pull-high control bits (PHCON register) to enable the weak internal  
pull-high. The weak pull-high is automatically turned off when the pin is configured as an output pin.  
IOA<3:0> and IOB<2:0> have its corresponding pull-down control bits (PDCON register) to enable the weak internal  
pull-down. The weak pull-down is automatically turned off when the pin is configured as an output pin.  
IOB<7:4> and IOB<2:0> have its corresponding open-drain control bits (ODCON register) to enable the open-drain  
output when these pins are configured to be an output pin.  
IOB<7:0> also provides the input change interrupt/wake-up function. Each pin has its corresponding input change  
interrupt/wake-up enable bits (WUCON) to select the input change interrupt/wake-up source.  
The IOB0 is also an external interrupt input signal by setting the EIS bit (PCON<6>). In this case, IOB0 input change  
interrupt/wake-up function will be disabled by hardware even if it is enabled by software.  
The CONFIGURATION words can set several I/Os to alternate functions. When acting as alternate functions the  
pins will read as “0” during port read.  
Figure 2.3: Block Diagram of I/O Pins  
IOA3 ~ IOA0:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
RD PORT  
EN  
Q
Pull-down is not shown in the figure  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 17 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
IOB0/INT:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
EN  
Q
D
RD PORT  
Set PBIF  
Q
Q
Latch  
WUB0  
EIS  
EN  
INT  
INTEDG  
EIS  
Pull-high/pull-down and open-drain are not shown in the figure  
IOB3:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
RD PORT  
EN  
Q
D
RSTBIN  
Q
Q
Set PBIF  
WUB3  
Latch  
EN  
Voltage on this pin must not exceed VDD  
.
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 18 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
IOB7 ~ IOB4, IOB2 ~ IOB1:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
RD PORT  
EN  
Q
D
Q
Q
Set PBIF  
WUBn  
Latch  
EN  
Pull-high/pull-down and open-drain are not shown in the figure  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 19 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
2.3 Timer0/WDT & Pre-scler  
2.3.1  
Timer0  
The Timer0 is an 8-bit timer/counter. The clock source of Timer0 can come from the internal clock or by an external  
clock source (T0CKI pin).  
2.3.1.1 Using Timer0 with an Internal Clock: Timer mode  
Timer mode is selected by clearing the T0CS bit (OPTION<5>). In timer mode, the timer0 register (TMR0) will  
increment every instruction cycle (without pre-scaler). If TMR0 register is written, the increment is inhibited for the  
following two cycles.  
2.3.1.2 Using Timer0 with an External Clock: Counter mode  
Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on  
every rising or falling edge of pin T0CKl. The incrementing edge is determined by the source edge select bit T0SE  
(OPTION<4>).  
The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the  
actual incrementing of Timer0 after synchronization.  
When no pre-scaler is used, the external clock input is the same as the pre-scaler output. The synchronization of  
T0CKI with the internal phase clocks is accomplished by sampling the pre-scaler output on the T2 and T4 cycles of  
the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2 TOSC and low for at least 2  
TOSC  
.
When a pre-scaler is used, the external clock input is divided by the asynchronous pre-scaler. For the external  
clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary  
for T0CKI to have a period of at least 4 TOSC divided by the pre-scaler value.  
2.3.2  
Watchdog Timer (WDT)  
The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components.  
So the WDT will still run even if the clock on the OSCI and OSCO pins is turned off, such as in SLEEP mode.  
̅̅̅̅  
During normal operation or in SLEEP mode, a WDT time-out will cause the device reset and the TO bit (STATUS<4>)  
will be cleared.  
The WDT can be disabled by clearing the control bit WDTE (PCON<7>) to “0”.  
The WDT has a nominal time-out period of 18ms, 4.5ms, 288ms or 72ms selected by SUT bit of configuration word  
(without pre-scaler). If a longer time-out period is desired, a pre-scaler with a division ratio of up to 1:128 can be  
assigned to the WDT controlled by the OPTION register. Thus, the longest time-out period is approximately 36.8  
seconds.  
The CLRWDT instruction clears the WDT and the pre-scaler, if assigned to the WDT, and prevents it from timing  
out and generating a device reset.  
The SLEEP instruction resets the WDT and the pre-scaler, if assigned to the WDT. This gives the maximum SLEEP  
time before a WDT Wake-up Reset.  
2.3.3  
Pre-scaler  
An 8-bit counter (down counter) is available as a pre-scaler for the Timer0, or as a post-scaler for the Watchdog  
Timer (WDT). Note that the pre-scaler may be used by either the Timer0 module or the WDT, but not both. Thus,  
a pre-scaler assignment for the Timer0 means that there is no pre-scaler for the WDT, and vice-versa.  
The PSA bit (OPTION<3>) determines pre-scaler assignment. The PS<2:0> bits (OPTION<2:0>) determine pre-  
scaler ratio.  
When the pre-scaler is assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the  
pre-scaler. When it is assigned to WDT, a CLRWDT instruction will clear the pre-scaler along with the WDT.  
The pre-scaler is neither readable nor writable. On a RESET, the pre-scaler contains all ‘1’s.  
To avoid an unintended device reset, CLRWDT or CLRR TMR0 instructions must be executed when changing the  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 20 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
pre-scaler assignment from Timer0 to the WDT, and vice-versa.  
Figure 2.4: Block Diagram of the Timer0/WDT Pre-scaler  
Instruction Cycle  
(Fosc/2, Fosc/4)  
8
0
1
Data Bus  
Sync  
TMR0  
T0SE  
2 Cycles  
Register  
Set T0IF flag  
on overflow  
1
0
T0CKI (IOB2)  
T0CS  
PSA  
0
1
8-Bit  
WDT Time-out  
Prescaler  
1
0
Watchdog  
Timer  
PSA  
PSA  
PS2:PS0  
2.4 Interrupts  
The FM8PE53M has up to three sources of interrupt:  
1. External interrupt INT pin.  
2. TMR0 overflow interrupt.  
3. Port B input change interrupt (pins IOB7:IOB0).  
INTFLAG is the interrupt flag register that recodes the interrupt requests in the relative flags.  
A global interrupt enable bit, GIE (INTEN<7>), enables (if set) all un-masked interrupts or disables (if cleared) all  
interrupts. Individual interrupts can be enabled/disabled through their corresponding enable bits in INTEN register  
regardless of the status of the GIE bit.  
When an interrupt event occurs with the GIE bit and its corresponding interrupt enable bit are all set, the GIE bit will  
be cleared by hardware to disable any further interrupts, and the next instruction will be fetched from address 0x008.  
The interrupt flag bits must be cleared by software before re-enabling GIE bit to avoid recursive interrupts.  
The RETFIE instruction exits the interrupt routine and set the GIE bit to re-enable interrupt.  
The flag bit (except PBIF bit) in INTFLAG register is set by interrupt event regardless of the status of its mask bit.  
Reading the INTFLAG register will be the logic AND of INTFLAG and INTEN.  
When an interrupt is generated by the INT instruction, the next instruction will be fetched from address 0x002.  
2.4.1  
External INT Interrupt  
External interrupt on INT pin is rising or falling edge triggered selected by INTEDG (OPTION<6>).  
When a valid edge appears on the INT pin the flag bit INTIF (INTFLAG<2>) is set. This interrupt can be disabled  
by clearing INTIE bit (INTEN<2>).  
The INT pin interrupt can wake-up the system from SLEEP condition, if bit INTIE was set before going to SLEEP. If  
GIE bit was set, the program will execute interrupt service routine after wake-up; or if GIE bit was cleared, the  
program will execute next PC after wake-up.  
2.4.2  
Timer0 Interrupt  
An overflow (0xFF 0x00) in the TMR0 register will set the flag bit T0IF (INTFLAG<0>). This interrupt can be  
disabled by clearing T0IE bit (INTEN<0>).  
2.4.3  
Port B Input Change Interrupt  
An input change on IOB<7:0> set flag bit PBIF (INTFLAG<1>). This interrupt can be disabled by clearing PBIE bit  
(INTEN<1>).  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 21 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
Before the port B input change interrupt is enabled, reading PORTB (any instruction accessed to PORTB, including  
read/write instructions) is necessary. Any pin which corresponding WUBn bit (WUCON<5:0>) is cleared to “0” or  
configured as output or IOB0 pin configured as INT pin will be excluded from this function.  
The port B input change interrupt also can wake-up the system from SLEEP condition, if bit PBIE was set before  
going to SLEEP. And GIE bit also decides whether or not the processor branches to the interrupt vector following  
wake-up. If GIE bit was set, the program will execute interrupt service routine after wake-up; or if GIE bit was cleared,  
the program will execute next PC after wake-up.  
2.5 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP instruction.  
̅̅̅̅  
̅̅̅̅  
When SLEEP instruction is executed, the PD bit (STATUS<3>) is cleared, the TO bit is set, the watchdog timer will  
be cleared and keeps running, and the oscillator driver is turned off.  
All I/O pins maintain the status they had before the SLEEP instruction was executed.  
2.5.1  
Wake-up from SLEEP Mode  
The device can wake-up from SLEEP mode through one of the following events:  
1. RSTB reset.  
2. WDT time-out reset (if enabled).  
3. Interrupt from IOB0/INT pin, or PORTB change interrupt.  
External RSTB reset and WDT time-out reset will cause a device reset. The PD and TO bits can be used to  
̅̅̅̅  
̅̅̅̅  
̅̅̅̅  
determine the cause of device reset. The PD bit is set on power-up and is cleared when SLEEP instruction is  
̅̅̅̅  
executed. The TO bit is cleared if a WDT time-out occurred.  
For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set. Wake-up  
is regardless of the GIE bit. If GIE bit is cleared, the device will continue execution at the instruction after the SLEEP  
instruction. If the GIE bit is set, the device will branch to the interrupt address (0x008).  
In HF, XT or LF oscillation mode, the system wake-up delay time is 18/4.5/288/72ms (selected by SUT bit of  
configuration word).  
And in IRC or ERIC oscillation mode, the system wake-up delay time is 140us.  
2.6 Reset  
FM8PE53M devices may be RESET in one of the following ways:  
1. Power-on Reset (POR)  
2. Brown-out Reset (BOR)  
3. RSTB Pin Reset  
4. WDT time-out Reset  
Some registers are not affected in any RESET condition. Their status is unknown on Power-on Reset and  
unchanged in any other RESET. Most other registers are reset to a “reset state” on Power-on Reset, RSTB or WDT  
Reset.  
A Power-on RESET pulse is generated on-chip when VDD rise is detected. To use this feature, the user merely ties  
the RSTB pin to VDD  
.
On-chip Low Voltage Detector (LVD) places the device into reset when VDD is below a fixed voltage. This ensures  
that the device does not continue program execution outside the valid operation VDD range. Brown-out RESET is  
typically used in AC line or heavy loads switched applications.  
A RSTB or WDT Wake-up from SLEEP also results in a device RESET, and not a continuation of operation before  
SLEEP.  
̅̅̅̅  
̅̅̅̅  
The TO and PD bits (STATUS<4:3>) are set or cleared depending on the different reset conditions.  
2.6.1  
Power-up Reset Timer (PWRT)  
The Power-up Reset Timer provides a nominal 18/4.5/288/72ms (selected by SUT bit of configuration word) (or  
140us, varies based on oscillator selection and reset condition) delay after Power-on Reset (POR), Brown-out Reset  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 22 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
(BOR), RSTB Reset or WDT time-out Reset. The device is kept in reset state as long as the PWRT is active.  
The PWDT delay will vary from device to device due to VDD, temperature, and process variation.  
Table 2.1: PWRT Period  
Power-on Reset  
Brown-out Reset  
RSTB Reset  
WDT time-out Reset  
Oscillator Mode  
IRC & ERC & ERIC 18/4.5/288/72ms or 140us  
HF & XT & LF 18/4.5/288/72ms  
140us  
18/4.5/288/72ms  
2.6.2  
Oscillator Start-up Timer (OST)  
The OST timer provides a 64-oscillator cycle delay (from OSCI input) after the PWRT delay (18/4.5/288/72ms or  
140us) is over. This delay ensures that the oscillator has started and stabilized. The device is kept in reset state  
as long as the OST is active.  
This counter only starts incrementing after the amplitude of the OSCI signal reaches the oscillator input thresholds.  
2.6.3  
Reset Sequence  
When Power-on Reset (POR), Brown-out Reset (BOR), RSTB Reset or WDT time-out Reset is detected, the reset  
sequence is as follows:  
1. The reset latch is set and the PWRT & OST are cleared.  
2. When the internal POR, BOR, RSTB Reset or WDT time-out Reset pulse is finished, then the PWRT begins  
counting.  
3. After the PWRT time-out, the OST is activated.  
4. And after the OST delay is over, the reset latch will be cleared and thus end the on-chip reset signal.  
In HF, XT or LF oscillation mode, the totally system reset delay time is 18/4.5/288/72ms plus 64 oscillator cycle time.  
And in IRC/ERIC or ERC oscillation mode, the totally system reset delay time is 18/4.5/288/72ms or 140us after  
Power-on Reset (POR), Brown-out Reset (BOR), or 140us after RSTB Reset or WDT time-out Reset.  
Figure 2.5: Simplified Block Diagram of on-chip Reset Circuit  
WDT  
Time-out  
WDT  
Module  
RSTB  
Vdd  
S
R
Q
Q
Reset  
Latch  
Low Voltage  
Detector  
(LVD)  
BOR  
CHIP RESET  
Power-on  
Reset  
POR  
(POR)  
RESET  
RESET  
On-Chip  
RC OSC  
Power-up  
Reset Timer  
(PWRT)  
Oscillator  
Start-up Timer  
(OST)  
OSCI  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 23 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
Table 2.2: Reset Conditions for All Registers  
Power-on Reset  
Brown-out Reset  
RSTB Reset  
WDT Reset  
Register  
Address  
ACC  
N/A  
N/A  
xxxx xxxx  
*011 1111  
---- 1111  
1111 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0001 1xxx  
**xx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
101* ****  
0000 0000  
---- --11  
1111 1111  
0000 0000  
1111 1111  
0*** *000  
---- -000  
xxxx xxxx  
uuuu uuuu  
*011 1111  
---- 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
000# #uuu  
**uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
101* ****  
0000 0000  
---- --11  
1111 1111  
0000 0000  
1111 1111  
0*** *000  
---- -000  
uuuu uuuu  
OPTION  
IOSTA  
0x05  
IOSTB  
0x06  
INDF  
0x00  
TMR0  
0x01  
PCL  
0x02  
STATUS  
0x03  
FSR  
0x04  
PORTA  
0x05  
PORTB  
0x06  
General Purpose Register  
0x07  
PCON  
0x08  
WUCON  
0x09  
PCHBUF  
0x0A  
PDCON  
0x0B  
ODCON  
PHCON  
0x0C  
0x0D  
INTEN  
0x0E  
INTFLAG  
0x0F  
General Purpose Registers  
0x10 ~ 0x3F  
Legend:u = unchanged, x = unknown, - = unimplemented, read as ‘0’; * = unimplemented, read as ‘1’; # = refer to  
the following table for possible values.  
̅̅̅̅ ̅̅̅̅  
Table 2.3: RST / TO / PD Status after Reset or Wake-up  
̅̅̅̅  
̅̅̅̅  
RST  
0
TO  
PD  
RESET was caused by  
Power-on Reset.  
1
1
u
1
0
0
1
1
1
u
0
1
0
0
0
Brown-out reset.  
0
RSTB Reset during normal operation.  
RSTB Reset during SLEEP.  
0
0
WDT Reset during normal operation.  
WDT Wake-up during SLEEP.  
Wake-up on pin change during SLEEP.  
0
1
Legend: u = unchanged  
̅̅̅̅ ̅̅̅̅  
Table 2.4: Events AffectingTO / PDStatus Bits  
̅̅̅̅  
̅̅̅̅  
PD  
Event  
TO  
Power-on.  
1
0
1
1
1
u
0
1
WDT Time-Out.  
SLEEP instruction.  
CLRWDT instruction.  
Legend: u = unchanged.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 24 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
2.7 Hexadecimal Convert to Decimal (HCD)  
Decimal format is another number format for FM8PE53M. When the content of the data memory has been assigned  
as decimal format, it is necessary to convert the results to decimal format after the execution of ALU instructions.  
When the decimal converting, operation is processing, all of the operand data (including the contents of the data  
memory (RAM), accumulator (ACC), immediate data, and look-up table) should be in the decimal format, or the  
results of conversion will be incorrect.  
Instruction DAA can convert the ACC data from hexadecimal to decimal format after any addition operation and  
restored to ACC.  
The conversion operation is illustrated in example 2.2.  
Example 2.2: DAA CONVERSION  
Code  
#include  
<8PE53M.ASH>  
MOVIA  
MOVAR  
MOVIA  
ADDAR  
0x90  
;Set immediate data = decimal format number “90” (ACC 0x90)  
;Load immediate data “90” to data memory address 0x30  
;Set immediate data = decimal format number “10” (ACC 0x10)  
;Contents of the data memory address 0x30 and ACC are binary-added  
;the result loads to the ACC (ACC 0xA0, C 0)  
0x30  
0x10  
0x30,A  
DAA  
;Convert the content of ACC to decimal format, and restored to ACC  
;The result in the ACC is “00” and the carry bit C is “1”. This represents the  
;decimal number “100”  
Instruction DAS can convert the ACC data from hexadecimal to decimal format after any subtraction operation and  
restored to ACC.  
The conversion operation is illustrated in example 2.3.  
Example 2.3: DAS CONVERSION  
Code  
#include  
<8PE53M.ASH>  
MOVIA  
MOVAR  
MOVIA  
SUBAR  
0x10  
;Set immediate data = decimal format number “10” (ACC 0x10)  
;Load immediate data “90” to data memory address 0x30  
;Set immediate data = decimal format number “20” (ACC 0x20)  
;Contents of the data memory address 0x30 and ACC are binary-subtracted  
;the result loads to the ACC (ACC 0xF0, C 0)  
0x30  
0x20  
0x30,A  
DAS  
;Convert the content of ACC to decimal format, and restored to ACC  
;The result in the ACC is “90” and the carry bit C is “0”. This represents the  
;decimal number “ -10”  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 25 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
2.8 Oscillator Configurations  
FM8PE53M can be operated in six different oscillator modes. Users can program FOSC configuration bit to select  
the appropriate modes:  
ERC: External Resistor/Capacitor Oscillator  
HF: High Frequency Crystal/Resonator Oscillator  
XT: Crystal/Resonator Oscillator  
LF: Low Frequency Crystal Oscillator  
IRC: Internal Resistor/Capacitor Oscillator  
ERIC: External Resistor/Internal Capacitor Oscillator  
In LF, XT, or HF modes, a crystal or ceramic resonator in connected to the OSCI and OSCO pins to establish  
oscillation. When in LF, XT, or HF modes, the devices can have an external clock source drive the OSCI pin.  
The ERC device option offers additional cost savings for timing insensitive applications. The RC oscillator frequency  
is a function of the resistor (REXT) and capacitor (CEXT), the operating temperature, and the process parameter.  
The IRC/ERIC device option offers largest cost savings for timing insensitive applications. These devices offer 4  
different internal RC oscillator frequency, 8MHZ, 4MHZ, 1MHZ, and 455KHZ, which is selected by configuration bit  
(FOSC). Or user can change the oscillator frequency with external resistor. The ERIC oscillator frequency is a function  
of the resistor (REXT), the operating temperature, and the process parameter.  
Figure 2.6: HF, XT or LF Oscillator Modes (Crystal Operation or Ceramic Resonator)  
FM8PE53M  
C1  
OSCI  
R1  
OSCO  
VDD  
SLEEP  
X`TAL  
RS  
RF  
0.1uF  
VSS  
C2  
Internal  
Circuit  
Figure 2.7: HF, XT or LF Oscillator Modes (External Clock Input Operation)  
FM8PE53M  
OSCI  
VDD  
Clock from  
External System  
0.1uF  
VSS  
OSCO  
Figure 2.8: ERC Oscillator Mode (External RC Oscillator)  
FM8PE53M  
Rext  
OSCI  
VDD  
Internal  
Circuit  
0.1uF  
Cext  
VSS  
/2, /4  
OSCO  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 26 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
Figure 2.9: ERIC Oscillator Mode (External R, Internal C Oscillator)  
FM8PE53M  
Rext  
OSCI  
VDD  
Internal  
Circuit  
Cext  
(300pF~0.1uF)  
C
0.1uF  
VSS  
/2, /4  
OSCO  
The typical oscillator frequency vs. external resistor is as following table  
When CEXT = 0.01uf (103)  
Frequency  
455KHZ  
1MHZ  
REXT @ 3V  
958.7K  
REXT @ 5V  
1.45M  
691.2K  
933.2K  
322.6K  
167.7K  
4MHZ  
280.2K  
8MHZ  
158.1K  
Note: Values are provided for design reference only.  
Figure 2.10: IRC Oscillator Mode (Internal R, Internal C Oscillator)  
FM8PE53M  
OSCI  
C
VDD  
Internal  
Circuit  
0.1uF  
VSS  
/2, /4  
OSCO  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 27 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
2.9 Configuration Words  
Table 2.5: Configuration Words  
Name  
Description  
Oscillator Selection Bit  
ERC mode (external R & C) (default)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
HF mode  
XT mode  
LF mode  
4MHZ IRC mode (internal R & C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
8MHZ IRC mode (internal R & C)  
FOSC  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
1MHZ IRC mode (internal R & C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
455KHZ IRC mode (internal R & C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
ERIC mode (external R & internal C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
Note: See Table 2.6 for detail description.  
Low Voltage Detector Selection Bit  
Enable, LVDT voltage = 3.6V  
Enable, LVDT voltage = 2.6V  
Enable, LVDT voltage = 2.4V  
Enable, LVDT voltage = 2.2V  
Enable, LVDT voltage = 2.0V  
Enable, LVDT voltage = 2.0V, controlled by SLEEP  
Enable, LVDT voltage = 1.8V  
Disable (default)  
LVDT  
PWRT & WDT Time Period Selection Bit (The value must be a multiple of pre-scaler rate)  
PWRT = WDT pre-scaler rate = 18ms (default)  
PWRT = WDT pre-scaler rate = 4.5ms  
PWRT = WDT pre-scaler rate = 288ms  
SUT  
PWRT = WDT pre-scaler rate = 72ms  
PWRT = 140us, WDT pre-scaler rate = 18ms  
PWRT = 140us, WDT pre-scaler rate = 4.5ms  
PWRT = 140us, WDT pre-scaler rate = 288ms  
PWRT = 140us, WDT pre-scaler rate = 72ms  
IOB4/OSCO Pin Selection Bit for IRC/ERIC Mode  
OSCO pin is selected (default)  
IOB4 pin is selected  
OSCOUT  
RSTBIN  
WDTEN  
PROTECT  
OSCD  
IOB3/RSTB Pin Selection Bit  
IOB3 pin is selected (default)  
RSTB pin is selected  
Watchdog Timer Enable Bit  
WDT enabled (default)  
WDT disabled  
Code Protection Bit  
OTP code protection off (default)  
OTP code protection on  
Instruction Period Selection Bit  
Four oscillator periods (default)  
Two oscillator periods  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 28 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
Name  
Description  
Read Port Control Bit for Output Pins  
From registers (default)  
From pins  
RDPORT  
SCHMITT  
IOB3OD  
I/O Pin Input Buffer Control Bit  
With Schmitt-trigger (default)  
Without Schmitt-trigger  
IOB3 Pin Open-Drain Output Enable Bit  
Enable open-drain function (IOB3 pin is Bi-direction) (default)  
Disable open-drain function (IOB3 pin is Only input)  
Table 2.6: Selection of IOB5/OSCI and IOB4/OSCO Pins  
Mode of oscillation  
IRC  
IOB5/OSCI  
Force to IOB5  
Force to OSCI  
Force to OSCI  
IOB4/OSCO  
IOB4/OSCO selected by OSCOUT bit  
IOB4/OSCO selected by OSCOUT bit  
Force to OSCO  
ERC, ERIC  
HF, XT, LF  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 29 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
3.0 INSTRUCTION SET  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Operation  
Cycles  
BCR  
R, bit Clear bit in R  
R, bit Set bit in R  
0 R<b>  
1
1
1/2(1)  
1/2(1)  
1
-
-
-
-
-
BSR  
1 R<b>  
BTRSC  
BTRSS  
NOP  
R, bit Test bit in R, Skip if Clear  
R, bit Test bit in R, Skip if Set  
No Operation  
Skip if R<b> = 0  
Skip if R<b> = 1  
No operation  
0x00 WDT,  
0x00 WDT pre-scaler  
0x00 WDT,  
̅̅̅̅ ̅̅̅̅  
CLRWDT  
Clear Watchdog Timer  
1
TO, PD  
̅̅̅̅ ̅̅̅̅  
SLEEP  
OPTION  
DAA  
Go into power-down mode  
Load OPTION register  
1
1
1
TO, PD  
0x00 WDT pre-scaler  
ACC OPTION  
-
Adjust ACC’s data format from HEX to DEC  
after any addition operation  
ACC(hex) ACC (Dec)  
C
Adjust ACC’s data format from HEX to DEC  
after any subtraction operation  
DAS  
ACC(hex) ACC (Dec)  
Top of Stack PC  
1
2
2
-
-
-
RETURN  
RETFIE  
Return from subroutine  
Top of Stack PC,  
1 GIE  
Return from interrupt, set GIE bit  
PC + 1 Top of Stack  
0x002 PC  
INT  
S/W interrupt  
2
-
IOST  
R
Load IOST register  
Clear ACC  
ACC IOST register  
0x00 ACC  
0x00 R  
1
1
1
1
1
1
-
CLRA  
CLRR  
MOVAR  
MOVR  
DECR  
Z
Z
-
R
R
Clear R  
Move ACC to R  
ACC R  
R, d Move R  
R dest  
Z
Z
R, d Decrement R  
R - 1 dest  
R - 1 dest,  
Skip if result = 0  
DECRSZ  
INCR  
R, d Decrement R, Skip if 0  
R, d Increment R  
1/2(1)  
1
-
Z
-
R + 1 dest  
R + 1 dest,  
Skip if result = 0  
INCRSZ  
R, d Increment R, Skip if 0  
1/2(1)  
ADDAR  
SUBAR  
ADCAR  
SBCAR  
ANDAR  
IORAR  
XORAR  
COMR  
R, d Add ACC and R  
R + ACC dest  
R - ACC dest  
1
1
1
1
1
1
1
1
C, DC, Z  
R, d Subtract ACC from R  
R, d Add ACC and R with Carry  
R, d Subtract ACC from R with Carry  
R, d AND ACC with R  
C, DC, Z  
R + ACC + C dest  
C, DC, Z  
̅̅̅̅̅̅̅  
R + ACC + C dest  
C, DC, Z  
ACC and R dest  
ACC or R dest  
R xor ACC dest  
Z
Z
Z
Z
R, d Inclusive OR ACC with R  
R, d Exclusive OR ACC with R  
R, d Complement R  
Rdest  
R<7> C,  
RLR  
R, d Rotate left R through Carry  
R<6:0> dest<7:1>,  
C dest<0>  
1
C
C dest<7>,  
RRR  
R, d Rotate right R through Carry  
R, d Swap R  
R<7:1> dest<6:0>,  
R<0> C  
1
1
C
-
R<3:0> dest<7:4>,  
R<7:4> dest<3:0>  
SWAPR  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 30 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
Mnemonic,  
Operands  
Status  
Description  
Operation  
Cycles  
Affected  
MOVIA  
I
I
I
I
I
I
Move Immediate to ACC  
I ACC  
1
1
1
1
1
1
-
ADDIA  
SUBIA  
ANDIA  
IORIA  
Add ACC and Immediate  
Subtract ACC from Immediate  
AND Immediate with ACC  
OR Immediate with ACC  
I + ACC ACC  
I - ACC ACC  
ACC and I ACC  
ACC or I ACC  
ACC xor I ACC  
C, DC, Z  
C, DC, Z  
Z
Z
Z
XORIA  
Exclusive OR Immediate to ACC  
I ACC,  
RETIA  
I
Return, place Immediate in ACC  
2
-
Top of Stack PC  
PC + 1 Top of Stack,  
I PC  
CALL  
I
I
Call subroutine  
2
2
-
-
GOTO  
Unconditional branch  
I PC  
Note: 1. 2 cycles for skip, else 1 cycle.  
2. bit:Bit address within an 8-bit register R  
R:Register address (0x00 to 0x3F)  
I:Immediate data  
ACC:Accumulator  
d:Destination select;  
=0 (store result in ACC)  
=1 (store result in file register R)  
dest:Destination  
PC:Program Counter  
PCH:High Byte register of Program Counter  
WDT:Watchdog Timer Counter  
GIE:Global interrupt enable bit  
̅̅̅̅  
TO:Time-out bit  
̅̅̅̅  
PD:Power-down bit  
C:Carry bit  
DC:Half carry bit  
Z:Zero bit  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 31 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
ADCAR  
Add ACC and R with Carry  
Syntax:  
ADCAR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
Status Affected:  
Description:  
R + ACC + C dest  
C, DC, Z  
Add the contents of the ACC register and register ‘R’ with Carry. If ‘d’ is 0 the result is stored  
in the ACC register. If ‘d’ is ‘1’ the result is stored back in register ‘R’.  
1
Cycles:  
ADDAR  
Syntax:  
Add ACC and R  
ADDAR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
ACC + R dest  
Status Affected:  
Description:  
C, DC, Z  
Add the contents of the ACC register and register ‘R’. If ‘d’ is 0 the result is stored in the ACC  
register. If ‘d’ is ‘1’ the result is stored back in register ‘R’.  
1
Cycles:  
ADDIA  
Add ACC and Immediate  
Syntax:  
ADDIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0x00I0xFF  
ACC + I ACC  
C, DC, Z  
Add the contents of the ACC register with the 8-bit immediate ‘I’. The result is placed in the  
ACC register.  
1
Cycles:  
ANDAR  
Syntax:  
AND ACC and R  
ANDAR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
ACC and R dest  
Status Affected:  
Description:  
Z
The contents of the ACC register are AND’ed with register ‘R’. If ‘d’ is 0 the result is stored in  
the ACC register. If ‘d’ is ‘1’ the result is stored back in register ‘R’.  
1
Cycles:  
ANDIA  
AND Immediate with ACC  
Syntax:  
ANDIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0x00I0xFF  
ACC AND I ACC  
Z
The contents of the ACC register are AND’ed with the 8-bit immediate ‘I’. The result is placed  
in the ACC register.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 32 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
BCR  
Clear Bit in R  
Syntax:  
BCR R, b  
Operands:  
0x00R0x3F  
0x0b0x7  
Operation:  
Status Affected:  
Description:  
Cycles:  
0 R<b>  
None  
Clear bit ‘b’ in register ‘R’.  
1
BSR  
Set Bit in R  
BSR R, b  
0x00R0x3F  
0x0b0x7  
1 R<b>  
None  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
Set bit ‘b’ in register ‘R’.  
1
BTRSC  
Test Bit in R, Skip if Clear  
Syntax:  
BTRSC R, b  
Operands:  
0x00R0x3F  
0x0b0x7  
Operation:  
Skip if R<b> = 0  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘R’ is 0 then the next instruction is skipped.  
If bit ‘b’ is 0 then next instruction fetched during the current instruction execution is discarded,  
and a NOP is executed instead making this a 2-cycle instruction.  
1/2  
Cycles:  
BTRSS  
Test Bit in R, Skip if Set  
Syntax:  
BTRSS R, b  
Operands:  
0x00R0x3F  
0x0b0x7  
Operation:  
Skip if R<b> = 1  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘R’ is ‘1’ then the next instruction is skipped.  
If bit ‘b’ is ‘1’, then the next instruction fetched during the current instruction execution, is  
discarded and a NOP is executed instead, making this a 2-cycle instruction.  
1/2  
Cycles:  
CALL  
Subroutine Call  
Syntax:  
CALL I  
Operands:  
Operation:  
0x000I0x3FF  
PC + 1 Top of Stack,  
I PC<9:0>  
Status Affected:  
Description:  
None  
Subroutine call. First, return address (PC+1) is pushed onto the stack. The 10-bit immediate  
address is loaded into PC bits <9:0>.  
2
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 33 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
CLRA  
Clear ACC  
Syntax:  
CLRA  
Operands:  
Operation:  
None  
0x00 ACC;  
1 Z  
Status Affected:  
Description:  
Cycles:  
Z
The ACC register is cleared. Zero bit (Z) is set.  
1
CLRR  
Clear R  
Syntax:  
CLRR R  
Operands:  
Operation:  
0x00R0x3F  
0x00 R;  
1 Z  
Status Affected:  
Description:  
Cycles:  
Z
The contents of register ‘R’ are cleared and the Z bit is set.  
1
CLRWDT  
Syntax:  
Clear Watchdog Timer  
CLRWDT  
Operands:  
Operation:  
None  
0x00 WDT;  
0x00 WDT pre-scaler (if assigned);  
̅̅̅̅  
1 TO;  
̅̅̅̅  
1 PD  
̅̅̅̅ ̅̅̅̅  
Status Affected:  
Description:  
TO, PD  
The CLRWDT instruction resets the WDT. It also resets the pre-scaler, if the pre-scaler is  
̅̅̅̅  
̅̅̅̅  
assigned to the WDT and not Timer0. Status bits TO and PD are set.  
1
Cycles:  
COMR  
Complement R  
COMR R, d  
0x00R0x3F  
d[0,1]  
Syntax:  
Operands:  
Operation:  
Rdest  
Status Affected:  
Description:  
Z
The contents of register ‘R’ are complemented. If ‘d’ is 0 the result is stored in the ACC  
register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
DAA  
Adjust ACC’s data format from HEX to DEC  
Syntax:  
DAA  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
ACC(hex) ACC(dec)  
C
Convert the ACC data from hexadecimal to decimal format after any addition operation and  
restored to ACC.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 34 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
DAS  
Adjust ACC’s data format from HEX to DEC  
Syntax:  
DAS  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
ACC(hex) ACC(dec)  
None  
Convert the ACC data from hexadecimal to decimal format after any subtraction operation  
and restored to ACC.  
1
Cycles:  
DECR  
Decrement R  
Syntax:  
Operands:  
DECR R, d  
0x00R0x3F  
d[0,1]  
Operation:  
R - 1 dest  
Status Affected:  
Description:  
Z
Decrement of register ‘R’. If ‘d’ is 0 the result is stored in the ACC register. If ‘d’ is 1 the result  
is stored back in register ‘R’.  
1
Cycles:  
DECRSZ  
Syntax:  
Decrement R, Skip if 0  
DECRSZ R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
R - 1 dest; skip if result =0  
Status Affected:  
Description:  
None  
The contents of register ‘R’ are decrement. If ‘d’ is 0 the result is placed in the ACC register.  
If ‘d’ is 1 the result is stored back in register ’R’.  
If the result is 0, the next instruction, which is already fetched, is discarded and a NOP is  
executed instead and making it a 2-cycle instruction.  
1/2  
Cycles:  
GOTO  
Unconditional Branch  
Syntax:  
GOTO I  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
0x000I0x3FF  
I PC<9:0>  
None  
GOTO is an unconditional branch. The 10-bit immediate value is loaded into PC bits <9:0>.  
2
INCR  
Increment R  
Syntax:  
Operands:  
INCR R, d  
0x00R0x3F  
d[0,1]  
Operation:  
R + 1 dest  
Status Affected:  
Description:  
Z
The contents of register ‘R’ are increment. If ‘d’ is 0 the result is placed in the ACC register.  
If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 35 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
INCRSZ  
Increment R, Skip if 0  
Syntax:  
INCRSZ R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
R + 1 dest, skip if result = 0  
Status Affected:  
Description:  
None  
The contents of register ‘R’ are increment. If ‘d’ is 0 the result is placed in the ACC register.  
If ‘d’ is the result is stored back in register ‘R’.  
If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP  
is executed instead and making it a 2-cycle instruction.  
1/2  
Cycles:  
INT  
S/W Interrupt  
Syntax:  
Operands:  
Operation:  
INT  
None  
PC + 1 Top of Stack,  
0x002 PC  
Status Affected:  
Description:  
None  
Interrupt subroutine call. First, return address (PC+1) is pushed onto the stack. The address  
0x002 is loaded into PC bits <9:0>.  
2
Cycles:  
IORAR  
OR ACC with R  
Syntax:  
IORAR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
ACC or R dest  
Status Affected:  
Description:  
Z
Inclusive OR the ACC register with register ‘R’. If ‘d’ is 0 the result is placed in the ACC  
register. If ‘d’ is 1 the result is placed back in register ‘R’.  
1
Cycles:  
IORIA  
OR Immediate with ACC  
Syntax:  
IORIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0x00I0x3F  
ACC or I ACC  
Z
The contents of the ACC register are OR’ed with the 8-bit immediate ‘I’. The result is placed  
in the ACC register.  
1
Cycles:  
IOST  
Load IOST Register  
Syntax:  
IOST R  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
R = 0x06  
ACC IOST register R  
None  
IOST register ‘R’ (R= 0x06) is loaded with the contents of the ACC register.  
1
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 36 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
MOVAR  
Move ACC to R  
Syntax:  
MOVAR R  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
0x00R0x3F  
ACC R  
None  
Move data from the ACC register to register ‘R’.  
1
MOVIA  
Move Immediate to ACC  
MOVIA I  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
0x00I0xFF  
I ACC  
None  
The 8-bit immediate ‘I’ is loaded into the ACC register. The don’t cares will assemble as 0s.  
1
MOVR  
Move R  
Syntax:  
MOVR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
R dest  
Status Affected:  
Description:  
Z
The contents of register ‘R’ is moved to destination ‘d’. If ‘d’ is 0, destination is the ACC  
register. If ‘d’ is 1, the destination is file register ‘R’. ‘d’ is 1 is useful to test a file register since  
status flag Z is affected.  
1
Cycles:  
NOP  
No Operation  
NOP  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
None  
No operation  
None  
No operation.  
1
OPTION  
Load OPTION Register  
Syntax:  
OPTION  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
None  
ACC OPTION  
None  
The content of the ACC register is loaded into the OPTION register.  
1
RETFIE  
Return from Interrupt, Set ‘GIE’ Bit  
Syntax:  
RETFIE  
Operands:  
Operation:  
None  
Top of Stack PC  
1 GIE  
Status Affected:  
Description:  
None  
The program counter is loaded from the top of the stack (the return address). The ‘GIE’ bit is  
set to 1. This is a 2-cycle instruction.  
2
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 37 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
RETIA  
Return with Immediate in ACC  
Syntax:  
RETIA I  
Operands:  
Operation:  
0x00I0xFF  
I ACC;  
Top of Stack PC  
None  
Status Affected:  
Description:  
The ACC register is loaded with the 8-bit immediate ‘I’. The program counter is loaded from  
the top of the stack (the return address). This is a 2-cycle instruction.  
2
Cycles:  
RETURN  
Return from Subroutine  
Syntax:  
RETURN  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
Top of Stack PC  
None  
The program counter is loaded from the top of the stack (the return address). This is a 2-  
cycle instruction.  
2
Cycles:  
RLR  
Rotate Left R through Carry  
Syntax:  
Operands:  
RLR R, d  
0x00R0x3F  
d[0,1]  
Operation:  
R<7> C;  
R<6:0> dest<7:1>;  
C dest<0>  
Status Affected:  
Description:  
C
The contents of register ‘R’ are rotated left one bit to the left through the Carry Flag. If ‘d’ is 0  
the result is placed in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
RRR  
Rotate Right R through Carry  
Syntax:  
Operands:  
RRR R, d  
0x00R0x3F  
d[0,1]  
Operation:  
C dest<7>;  
R<7:1> dest<6:0>;  
R<0> C  
Status Affected:  
Description:  
C
The contents of register ‘R’ are rotated one bit to the right through the Carry Flag. If ‘d’ is 0  
the result is placed in the ACC register. If ‘d’ is 1 the result is placed back in register ‘R’.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 38 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
SLEEP  
Enter SLEEP Mode  
Syntax:  
SLEEP  
Operands:  
Operation:  
None  
0x00 WDT;  
0x00 WDT pre-scaler;  
̅̅̅̅  
1 TO;  
̅̅̅̅  
0 PD  
̅̅̅̅ ̅̅̅̅  
Status Affected:  
Description:  
TO, PD  
̅̅̅̅  
̅̅̅̅  
Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT is cleared.  
The processor is put into SLEEP mode.  
1
Cycles:  
SBCAR  
Syntax:  
Subtract ACC from R with Carry  
SBCAR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
̅̅̅̅̅̅̅  
Operation:  
R + ACC + C dest  
Status Affected:  
Description:  
C, DC, Z  
Add the 2’s complement data of the ACC register from register ‘R’ with Carry. If ‘d’ is 0 the  
result is stored in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
SUBAR  
Syntax:  
Subtract ACC from R  
SUBAR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
R - ACC dest  
Status Affected:  
Description:  
C, DC, Z  
Subtract (2’s complement method) the ACC register from register ‘R’. If ‘d’ is 0 the result is  
stored in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
SUBIA  
Subtract ACC from Immediate  
Syntax:  
SUBIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0x00I0xFF  
I - ACC ACC  
C, DC, Z  
Subtract (2’s complement method) the ACC register from the 8-bit immediate ‘I’. The result  
is placed in the ACC register.  
1
Cycles:  
SWAPR  
Syntax:  
Swap nibbles in R  
SWAPR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
R<3:0> dest<7:4>;  
R<7:4> dest<3:0>  
Status Affected:  
Description:  
None  
The upper and lower nibbles of register ‘R’ are exchanged. If ‘d’ is 0 the result is placed in  
ACC register. If ‘d’ is 1 the result in placed in register ‘R’.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 39 of 52, FM8PE53M  
EELING  
ECHNOLOGY  
FM8PE53M  
XORAR  
Exclusive OR ACC with R  
Syntax:  
XORAR R, d  
Operands:  
0x00R0x3F  
d[0,1]  
Operation:  
Status Affected:  
Description:  
ACC xor R dest  
Z
Exclusive OR the contents of the ACC register with register ’R’. If ‘d’ is 0 the result is stored  
in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
XORIA  
Exclusive OR Immediate with ACC  
Syntax:  
XORIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0x00I0xFF  
ACC xor I ACC  
Z
The contents of the ACC register are XOR’ed with the 8-bit immediate ‘I’. The result is placed  
in the ACC register.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 40 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
4.0 ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Conditions  
-
Min.  
0
Typ.  
-
Max.  
70  
Unit  
°C  
Ambient Operating  
Temperature  
Store Temperature  
DC Supply Voltage  
Input Voltage with respect to  
Ground  
-
-
-65  
0
-
-
150  
6.0  
°C  
V
VDD  
-
-0.3  
-
VDD+0.3  
V
HBM (Human Body Mode)  
MM (Machine Mode)  
Soldering, 10 Sec  
-
-
-
2.0  
200  
-
-
-
KV  
V
ESD Susceptibility  
Lead Temperature  
250  
°C  
4.1 PACKAGE IR Re-flow Soldering Curve  
250 5  
10 1 sec  
150 10  
90 30 sec  
2 ~ 5 / sec  
2 ~ 5 / sec  
Time  
5.0 RECOMMENDED OPERATING CONDITIONS  
Symbol  
VDD  
Parameter  
DC Supply Voltage  
Operating Temperature  
Conditions  
Min.  
2.0  
0
Typ.  
Max.  
5.5  
Unit  
V
-
-
-
-
70  
°C  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 41 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
6.0 ELECTRICAL CHARACTERISTICS  
6.1 AC Characteristics  
Ta=25°C  
Test Conditions  
Conditions  
Symbol  
FHF  
Description  
HF Oscillation range  
XT Oscillation range  
LF oscillation range  
ERC Oscillation range  
ERIC Oscillation range  
Min.  
Typ.  
Max.  
Unit  
MHZ  
MHZ  
KHZ  
MHZ  
MHZ  
KHZ  
MHZ  
MHZ  
MHZ  
VDD  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
4
4
-
20  
20  
20  
20  
32  
32  
10  
18  
8
HF mode  
-
0.455  
0.455  
32  
-
FXT  
XT mode  
-
-
FLF  
LF mode  
32  
-
DC  
DC  
DC  
DC  
-3%  
-3%  
-3%  
-3%  
-3%  
-3%  
-3%  
-3%  
-
-
FERC  
FERIC  
ERC mode  
-
-
ERIC mode  
-
16  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
-
455  
455  
1
455KHZ IRC mode  
1MHZ IRC mode  
4MHZ IRC mode  
8MHZ IRC mode  
1
FIRC  
Internal RC Oscillation range  
4
4
8
8
5.72  
4.36  
23.08  
17.6  
92.9  
70.54  
368.37  
280.78  
WDT=4.5mS,  
Pre-scaler rate=1:1  
WDT=18mS,  
Pre-scaler rate=1:1  
WDT=72mS,  
Pre-scaler rate=1:1  
WDT=288mS,  
-
-
-
-
-
-
TWDT  
WDT period time  
mS  
-
-
-
-
-
-
Pre-scaler rate=1:1  
-
-
Note:1. In the ERIC mode, to maintain the accuracy of the internal RC oscillator frequency, a 300pF ~ 0.1uF  
decoupling capacitor should be connected between OSCI and VSS and located as close to the device as  
possible.  
2. At any time, a 0.1μF decoupling capacitor should be connected between VDD and VSS and device as  
close as possible.  
6.2 DC Characteristics  
Ta=25°C  
Under Operating Conditions, at two clock instruction cycles and WDT & LVDT are disable, I/O output float.  
Test Conditions  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
V
VDD  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
Conditions  
-
1.41  
-
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
Input high voltage, I/O Ports  
With Schmitt-trigger  
2.2  
VIH1  
-
-
-
-
-
-
1.36  
1.98  
1.26  
1.74  
1.2  
Input high voltage, RSTB,  
T0CKI Pins  
With Schmitt-trigger  
Input high voltage, I/O Ports  
Without Schmitt-trigger  
Without Schmitt-trigger  
VIH2  
V
Input high voltage, RSTB,  
T0CKI Pins  
1.69  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 42 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
Test Conditions  
Symbol  
VIL1  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
-
Conditions  
VSS  
0.98  
-
-
Input low voltage with  
Schmitt-trigger, I/O Ports  
Input low voltage, RSTB,  
T0CKI Pins  
With Schmitt-trigger  
VSS  
0.9  
V
VSS  
0.96  
1.21  
1.12  
1.51  
1.12  
1.56  
3.6  
-
With Schmitt-trigger  
VSS  
-
VSS  
-
Input low voltage, I/O Ports  
Without Schmitt-trigger  
Without Schmitt-trigger  
VSS  
-
VIL2  
V
V
VSS  
-
Input low voltage, RSTB,  
T0CKI Pins  
VSS  
-
LVDT=3.6V  
LVDT=2.6V  
LVDT=2.4V  
LVDT=2.2V  
LVDT=2.0V  
LVDT=1.8V  
3.06  
4.14  
-
2.21  
2.6  
2.99  
-
2.04  
2.4  
2.76  
VLVDT  
LVDT voltage  
-
1.87  
2.2  
2.53  
-
1.7  
2.0  
2.3  
-
1.6  
1.8  
2.07  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
-
1.5  
-
1.67  
4.37  
9.46  
23.17  
9.33  
22.79  
22.69  
74.07  
12.58  
42.24  
1.13  
0.42  
1.42  
0.46  
1.53  
0.49  
1.68  
0.52  
1.76  
0.58  
1.92  
0.53  
3.67  
<1  
-
-
IOH  
I/O Ports Drive current  
VOH=0.9VDD  
mA  
mA  
-
I/O Ports Sink current  
(Without IOB3 Pin)  
VOL=0.1VDD  
10  
-
-
IOL  
-
IOB3 Pin Sink current  
I/O Ports Pull-high current  
Pull-low current  
VOL=0.1VDD  
-
-
-
-
IPH  
IPL  
Input pin at VSS  
Input pin at VDD  
uA  
uA  
63  
-
93  
-
30  
-
60  
-
5V LVDT=3.6V  
3V  
-
-
LVDT=2.6V  
5V  
-
-
3V  
-
-
LVDT=2.4V  
5V  
-
-
ILVDT  
LVDT current  
3V  
-
-
uA  
LVDT=2.2V  
5V  
-
-
3V  
-
-
LVDT=2.0V  
5V  
-
-
3V  
-
-
LVDT=1.8V  
5V  
-
-
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
3V  
5V  
-
-
Sleep mode, Pre-scaler  
rate=1:256  
IWDT  
ISB  
WDT current  
uA  
uA  
1
-
7
-
Sleep mode (Power down)  
current  
-
-
<1  
0.6  
1
-
-
IDD1  
IDD2  
IDD3  
IDD4  
Operating current  
Operating current  
Operating current  
Operating current  
IRC 8MHZ, 2T  
IRC 4MHZ, 2T  
IRC 1MHZ, 2T  
IRC 455KHZ, 2T  
mA  
mA  
mA  
mA  
1.15  
0.33  
0.63  
0.12  
0.25  
0.08  
0.19  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 43 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
6.3 ELECTRICAL CHARACTERISTICS Typical charts of FM8PE56M  
6.3.1  
IRC 4MHZ vs. Temperature  
1.00%  
Avg-5V  
Avg-3V  
0.50%  
0.00%  
-10  
0
10  
20  
25  
30  
30  
30  
40  
40  
40  
50  
50  
50  
60  
60  
60  
70  
70  
70  
80  
-0.50%  
-1.00%  
Temperature  
Note: Curves are for design reference only.  
6.3.2  
IRC 8MHZ vs. Temperature  
1.00%  
Avg-5V  
Avg-3V  
0.50%  
0.00%  
-10  
0
10  
20  
25  
80  
-0.50%  
-1.00%  
Temperature  
Note: Curves are for design reference only.  
6.3.3  
IRC 1MHZ vs. Temperature  
1.00%  
Avg-5V  
Avg-3V  
0.50%  
0.00%  
-10  
0
10  
20  
25  
80  
-0.50%  
-1.00%  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 44 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
6.3.4  
IRC 455KHZ vs. Temperature  
2.00%  
Avg-5V  
Avg-3V  
1.00%  
0.00%  
-10  
0
10  
20  
25  
30  
40  
50  
60  
70  
80  
-1.00%  
-2.00%  
Temperature  
Note: Curves are for design reference only.  
6.3.5  
IRC 4 MHZ vs. Supply Voltage (Ta=25°C)  
2.00%  
1.00%  
0.00%  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
6
-1.00%  
-2.00%  
-3.00%  
-4.00%  
4M HV  
4M LV  
Voltage  
Note: Curves are for design reference only.  
6.3.6  
IRC 8 MHZ vs. Supply Voltage (Ta=25°C)  
4.00%  
2.00%  
0.00%  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
8M HV  
6
-2.00%  
-4.00%  
-6.00%  
-8.00%  
-10.00%  
8M LV  
Voltage  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 45 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
6.3.7  
IRC 1 MHZ vs. Supply Voltage (Ta=25°C)  
3.00%  
2.00%  
1.00%  
0.00%  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
Voltage  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
1M HV  
6
-1.00%  
-2.00%  
-3.00%  
1M LV  
Note: Curves are for design reference only.  
6.3.8  
IRC 455 KHZ vs. Supply Voltage (Ta=25°C)  
3.00%  
2.00%  
1.00%  
0.00%  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
Voltage  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
6
-1.00%  
-2.00%  
-3.00%  
455K HV  
455K LV  
Note: Curves are for design reference only.  
6.3.9  
Low Voltage Detect (LVDT=2.0V) vs. Temperature  
2.50  
Avg-2.0V  
2.00  
1.50  
1.00  
0.50  
0.00  
-10  
0
10  
20  
25  
30  
40  
50  
60  
70  
80  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 46 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
6.3.10 Low Voltage Detect (LVDT=3.6V) vs. Temperature  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-3.6V  
-10  
0
10  
20  
25  
30  
40  
40  
40  
50  
50  
50  
60  
60  
60  
70  
70  
70  
80  
Temperature  
Note: Curves are for design reference only.  
6.3.11 Low Voltage Detect (LVDT=1.8V) vs. Temperature  
2.00  
Avg-1.8V  
1.50  
1.00  
0.50  
0.00  
-10  
0
10  
20  
25  
30  
80  
Temperature  
Note: Curves are for design reference only.  
6.3.12 Low Voltage Detect (LVDT=2.2V) vs. Temperature  
2.50  
Avg-2.2V  
2.00  
1.50  
1.00  
0.50  
0.00  
-10  
0
10  
20  
25  
30  
80  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 47 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
6.3.13 Low Voltage Detect (LVDT=2.4V) vs. Temperature  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-2.4V  
-10  
0
10  
20  
25  
30  
40  
50  
60  
70  
80  
Temperature  
Note: Curves are for design reference only.  
6.3.14 Low Voltage Detect (LVDT=2.6V) vs. Temperature  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-2.6V  
-10  
0
10  
20  
25  
30  
40  
50  
60  
70  
80  
Temperature  
Note: Curves are for design reference only.  
6.3.15 WDT 4.5mS, 18mS, 72mS and 288mS Reset time vs. Temperature  
40.00%  
30.00%  
20.00%  
10.00%  
0.00%  
-10  
0
10  
20  
25  
30  
40  
50  
60  
70  
80  
-10.00%  
-20.00%  
-30.00%  
Avg-5V  
Avg-3V  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 48 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
6.3.16 WDT 4.5mS, 18mS, 72mS and 288mS Reset time vs. Supply Voltage (Ta=25°C)  
140.00%  
120.00%  
100.00%  
80.00%  
60.00%  
40.00%  
20.00%  
0.00%  
WDT-Avg  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
Voltage  
4
4.2 4.4 4.6 4.8  
5
5.2 5.4 5.6 5.8  
6
-20.00%  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 49 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
7.0 PACKAGE DIMENSION  
7.1 14-PIN PDIP  
D
SEATING PLANE  
0.018typ.  
0.060typ.  
0.100typ.  
Dimension In Inches  
Symbols  
Min  
Nom  
-
Max  
0.210  
-
A
A1  
A2  
D
-
0.015  
0.125  
0.735  
-
0.130  
0.750  
0.300 BSC.  
0.250  
0.130  
0.355  
7°  
0.135  
0.775  
E
E1  
L
0.245  
0.115  
0.335  
0°  
0.255  
0.150  
0.375  
15°  
eB  
θ°  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 50 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
7.2 14-PIN SOP 150mil  
View "A"  
C
D
View "A"  
GAUGE PLANE  
SEATING PLANE  
b
θo  
L
0.10  
e
Dimension In MM  
Symbols  
Min  
Nom  
Max  
1.75  
0.25  
-
A
A1  
A2  
b
-
-
0.10  
1.25  
0.31  
0.10  
-
-
-
0.51  
0.25  
C
-
D
8.65BSC  
6.00BSC  
3.90BSC  
1.27BSC  
-
E
E1  
e
L
0.40  
0.25  
0o  
1.27  
0.50  
8o  
H
θ
-
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 51 of 52, FM8PE53M  
EELING  
FM8PE53M  
ECHNOLOGY  
8.0 ORDERING INFORMATION  
OTP Type MCU  
FM8PE53MP  
Package Type Pin Count Package Size  
MOQ  
MSL Sample Stock  
PDIP  
SOP  
14  
14  
300mil  
150mil  
3,000EA/Tube  
3
3
Available  
Available  
3,000EA/Tube  
3,000EA/Reel  
FM8PE53MD  
Web site: http://www.feeling-techcom.tw  
Rev 1.00.003 Mar 02, 2017  
Page 52 of 52, FM8PE53M  

相关型号:

FM8PE53MP

OTP-Based 8-Bit Microcontroller
FEELING

FM8PE54

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54AER

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54AR

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54D

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54E

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54ED

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54EP

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54P

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE56

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE56AER

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE56AR

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING