FP6160B [FEELING]

1.5MHz, 600mA Synchronous Step-Down Regulator;
FP6160B
型号: FP6160B
厂家: Feeling Technology    Feeling Technology
描述:

1.5MHz, 600mA Synchronous Step-Down Regulator

文件: 总14页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FP6160B  
1.5MHz, 600mA Synchronous Step-Down Regulator  
General Description  
The FP6160B is a high efficiency current mode synchronous buck PWM DC-DC regulator. The  
internal generated 0.6V precision feedback reference voltage is designed for low output voltage. Low  
RDS (ON) synchronous switch dramatically reduces conduction loss. To extend battery life for portable  
application, 100% duty cycle is supported for low-dropout operation. Shutdown mode also helps saving  
the current consumption. The FP6160B is packaged in SOT23-5L, and TSOT23-5L to reduce PCB  
space.  
Features  
Input Voltage Range: 2.5 to 5.5V  
Precision Feedback Reference Voltage: 0.6V (±2%)  
Output Current: 0.6A (Max.)  
Duty Cycle: 0~100%  
Internal Fixed PWM Frequency: 1.5MHz  
Low Quiescent Current: 100μA  
No Schottky Diode Required  
Built-in Soft Start  
Current Mode Operation  
Over Temperature Protection  
Package: SOT23-5L, TSOT23-5L  
Applications  
Cellular Phones  
Wireless and DSL Modems  
Digital Still Cameras  
Portable Products  
MP3 Players  
Typical Application Circuit  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
1/14  
FP6160B  
Function Block Diagram  
Pin Descriptions  
SOT23-5L / TSOT23-5L  
Name No. I / O  
Description  
RUN  
GND  
1
2
3
4
5
I
P
O
P
I
Enable  
TOP View  
Ground  
1
5
FB / VOUT  
RUN  
SW  
Switch  
VIN  
Power Supply  
Feedback  
FB / VOUT  
2
3
GND  
SW  
VIN  
4
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
2/14  
FP6160B  
Marking Information  
SOT23-5L / TSOT23-5L  
AI986  
Lot Number  
Year  
Part Number Code  
Lot Number: Wafer lot number’s last two digits  
For Example: 132386TB 86  
Year: Production year’s last digit  
art Number Code: Part number identification code for this product. It should be always “AI”  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
3/14  
FP6160B  
Ordering Information  
Part Number  
FP6160BKR-LF-ADJ  
FP6160BiR-LF-ADJ  
Code Operating Temperature Package  
MOQ  
3000EA  
3000EA  
Description  
Tape & Reel  
Tape & Reel  
AI  
AI  
-40°C ~ +85°C  
-40°C ~ +85°C  
SOT23-5L  
TSOT23-5L  
Absolute Maximum Ratings  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
6
Unit  
V
Input Supply Voltage  
VIN  
-0.3  
-0.3  
RUN, VFB, SW Voltage  
VIN  
V
P-Channel Switch Source Current (DC)  
N-Channel Switch Source Current (DC)  
0.78  
0.78  
A
A
Peak SW Switch Sink and Source  
Current (AC)  
1.56  
A
SOT23-5L  
+250  
+250  
+90  
°C / W  
°C / W  
°C / W  
°C / W  
°C  
Thermal Resistance (Junction to  
Ambient)  
θJA  
θJC  
TSOT23-5L  
SOT23-5L  
TSOT23-5L  
Thermal Resistance (Junction to Case)  
+90  
Operating Temperature  
Junction Temperature  
Storage Temperature  
-40  
-65  
+85  
+150  
+150  
250  
°C  
°C  
SOT23-5L  
mW  
Allowable Power Dissipation  
PD  
TSOT23-5L  
250  
mW  
Lead Temperature (soldering, 10 sec)  
+260  
°C  
IR Re-flow Soldering Curve  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
4/14  
FP6160B  
Recommended Operating Conditions  
Parameter  
Symbol  
Conditions  
Min.  
2.5  
Typ.  
Max. Unit  
Supply Voltage  
Operating Temperature  
VIN  
5.5  
V
-40  
+85  
°C  
DC Electrical Characteristics (TA= 25°C , VIN=3.6V, unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min.  
0.588  
0.582  
Typ.  
Max. Unit  
0.6  
0.612  
0.618  
0.4  
V
V
TA=25°C  
Regulated Feedback Voltage  
VFB  
0.6  
-40°C ~+85°C  
Line Regulation with VREF  
Regulated Output Voltage  
VIN=2.5V to 5.5V  
0.04  
1.5  
VFB  
VOUT  
/ V  
V
FP6160B-1.5, IOUT=100mA  
FP6160B-1.8, IOUT=100mA  
VIN=2.5 to 5.5V  
1.455  
1.746  
1.545  
1.854  
0.4  
1.8  
V
Output Voltage LineRegulation  
RDS (ON) of P-Channel FET  
RDS (ON) of N-Channel FET  
SW Leakage  
0.04  
0.4  
% / V  
Ω
VOUT  
RDS (ON) P ISW=100mA  
RDS (ON) N ISW =-100mA  
0.35  
±0.01  
1.2  
Ω
µA  
A
ILSW  
IPK  
VRUN=0V, VIN=5V  
VFB=0.5V  
±1  
1
Peak Inductor Current  
1
Shutdown, VRUN=0V  
Active, VFB=0.5V, VRUN=VIN  
0.1  
µA  
µA  
V
Quiescent Current  
ICC  
100  
1
RUN Threshold  
VRUN  
IRUN  
0.3  
1.2  
1.5  
±1  
RUN Leakage Current  
±0.01  
µA  
Oscillator Frequency  
FOSC  
VFB=0.6V  
1.5  
1.8  
MHz  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
5/14  
FP6160B  
Typical Operating Characteristics  
(TA= 25°C, VIN=3.6V, unless otherwise noted)  
Supply Current vs. VIN  
Supply Current vs. VIN  
100  
24  
23  
22  
21  
20  
19  
18  
VFB=0.5V  
VFB=0.7V  
95  
90  
85  
80  
75  
70  
65  
85℃  
85℃  
-45℃  
25℃  
-45℃  
25℃  
2
3
4
5
6
2
3
4
5
6
VIN (V)  
V
IN (V)  
Line Regulation  
Supply Current vs. VIN  
0.61  
0.605  
0.6  
18  
TA=25℃  
Shutdown  
16  
14  
12  
10  
8
85  
0.595  
0.59  
6
4
25℃  
-45℃  
2
0
0.585  
2
3
4
5
6
2
3
4
5
6
VIN (V)  
VIN (V)  
Reference Voltage vs. Temperature  
Frequency vs. VIN  
1.56  
1.54  
1.52  
1.5  
0.605  
0.604  
0.603  
0.602  
0.601  
0.6  
TA=25  
VIN=3.6V  
0.599  
0.598  
0.597  
0.596  
0.595  
1.48  
1.46  
1.44  
2
3
4
IN (V)  
5
6
-60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
V
Temperature  
)
(℃  
Frequency vs. Temerature  
Switch Leakage vs. Input Volatge  
1.58  
1.56  
1.54  
1.52  
1.5  
1.2  
1
VIN =3.6V  
T =25  
A
0.8  
0.6  
0.4  
0.2  
0
1.48  
1.46  
1.44  
1.42  
1.4  
Synchronous Switch  
Main Switch  
1
2
3
4
5
6
7
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature(  
V
IN (V)  
)
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
6/14  
FP6160B  
Function Description  
Control Loop  
The FP6160B is a high efficiency current mode synchronous buck regulator. Both the main  
(P-channel MOSFET) and synchronous (N-channel MOSFET) switches are built internally. With  
current mode operation, the PWM duty is controlled both by the error amplifier output and the peak  
inductor current. At the beginning of each cycle, the oscillator turn on the P-MOSFET switch to  
source current from VIN to SW output. Then, the chip starts to compare the inductor current with the  
error amplifier output. Once the inductor current is larger than the error amplifier output, the  
P-MOSFET switch is turned off. When the load current increases, the feedback voltage FB will  
slightly drop. This causes the error amplifier to output a higher current level until the prior mentioned  
peak inductor current reach the same level. The output voltage then can be sustained at the same.  
When the top P-MOSFET switch is off, the bottom synchronous N-MOSFET switch is turned on.  
Once the inductor current reverses, both top and bottom MOSFET will be turn off to leave the SW pin  
into high impedance state.  
The FP6160B’s current mode control loop also contains slope compensation to suppress  
sub-harmonic oscillations at high duty cycles. This slope compensation is achieved by adding a  
compensation ramp to the inductor current signal.  
LDO Mode  
The FP6160B’s maximum duty cycle can reach 100%. That means the driver main switch is  
turn on through out whole clock cycle. Once the duty reaches 100%, the feedback path no longer  
controls the output voltage. The output voltage will be the input voltage minus the main switch voltage  
drop.  
Over Current Protection  
FP6160B limits the peak main switch current cycle by cycle. When over current happens, chip  
will turn off the main switch and turn the synchronous switch on until next cycle.  
Short Circuit Protection  
When the FB pin drops below 300mV, the chip will tri-state the output pin SW automatically. After  
300us rest to avoid over heating, chip will re-initiate PWM operation with soft start.  
Thermal Protection  
FP6160B will shutdown automatically when the internal junction temperature reaches 150°C to  
protect both the part and the system.  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
7/14  
FP6160B  
Application Information  
Input Capacitor Selection  
The input capacitor must be connected to the VIN pin and GND pin of the FP6160B to maintain  
steady input voltage and filter out the pulsing input current. The voltage rating of input capacitor must  
be greater than maximum input voltage plus ripple voltage.  
In switch mode, the input current is discontinuous in a buck converter. The source current of the  
high-side MOSFET is a square wave. To prevent large voltage transients, a low ESR input capacitor  
sized for the maximum RMS current must be used. The RMS value of input capacitor current can be  
calculated by:  
VO  
VO  
IRMS IO(MAX)  
1  
VIN  
VIN  
It can be seen that when VO is half of VIN, CIN is under the worst current stress. The worst current  
stress on CIN is IO (MAX) / 2.  
Inductor Selection  
The value of the inductor is selected based on the desired ripple current. Large inductance gives  
low inductor ripple current and small inductance result in high ripple current. However, the larger value  
inductor has a larger physical size, higher series resistance, and / or lower saturation current. In  
experience, the value is to allow the peak-to-peak ripple current in the inductor to be 10%~20%  
maximum load current. The inductance value can be calculated by:  
(V VO ) VO  
(V VO )  
2(10% ~ 20%)IO  
VO  
IN  
IN  
L   
f  IL  
V
f   
V
IN  
IN  
The inductor ripple current can be calculated by:  
VO  
VO  
IL   
1  
f L  
VIN  
Choose an inductor that does not saturate under the worst-case load conditions, which is the  
load current plus half the peak-to-peak inductor ripple current, even at the highest operating  
temperature. The peak inductor current is:  
IL  
2
IL _PEAK IO  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
8/14  
FP6160B  
The inductors in different shape and style are available from manufacturers. Shielded inductors  
are small and radiate less EMI issue. But they cost more than unshielded inductors. The choice  
depends on EMI requirement, price and size.  
Inductor Value (µH)  
Dimensions (mm) Component Supplier  
Model  
2.2  
2.2  
3.3  
4.7  
4.7  
4.7  
4.2×3.7×1.2  
4.4×5.8×1.2  
4.2×3.7×1.2  
4.2×3.7×1.2  
4.4×5.8×1.2  
4.9×4.9×1.0  
FENG-JUI  
Sumida  
TP4212-2R2M  
CMD4D11 2R2  
TP4212-3R3M  
TP4212-4R7M  
CMD4D11 4R7  
CLSD09 4R7  
FENG-JUI  
FENG-JUI  
Sumida  
Sumida  
Output Capacitor Selection  
The output capacitor is required to maintain the DC output voltage. Low ESR capacitors are  
preferred to keep the output voltage ripple low. In a buck converter circuit, output ripple voltage is  
determined by inductor value, switching frequency, output capacitor value and ESR. The output ripple  
is determined by:  
1
VO  IL ESRCOUT  
8f COUT  
Where f = operating frequency, COUT= output capacitance and ΔIL = ripple current in the inductor.  
For a fixed output voltage, the output ripple is highest at maximum input voltage since ΔIL increases  
with input voltage.  
Capacitor Value (µF) Case Size Component Supplier  
Model  
4.7  
10  
10  
22  
0603  
0805  
TDK  
Taiyo Yuden  
TDK  
C1608JB0J475M  
JMK212BJ106MG  
C12012X5ROJ106K  
C2012JB0J226M  
0805  
0805 1206  
TDK  
Using Ceramic Input and Output Capacitors  
Care must be taken when ceramic capacitors are used at the input and the output. When a  
ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a  
load step at the output can induce ringing at the input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can  
potentially cause a voltage spike at VIN, large enough to damage the part. When choosing the input  
and output ceramic capacitors, choose the X5R or X7R dielectric formulations. These dielectrics have  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
9/14  
FP6160B  
the best temperature and voltage characteristics of all the ceramics for a given value and size.  
Output Voltage Programming  
In the adjustable version, the output voltage is set using a resistive voltage divider from the output  
voltage to FB. The output voltage is:  
R
1   
VO 0.6V 1  
R2  
The recommended resistor value is summarized below:  
VOUT (V)  
0.6  
R1 (Ω)  
200k  
200k  
300k  
200k  
270k  
306k  
R2 (Ω)  
Not Used  
200k  
1.2  
1.5  
200k  
1.8  
100k  
2.5  
85k  
3.3  
68k  
PC Board Layout Checklist  
1.  
The power traces, consisting of the GND trace, the SW trace and the VIN trace should be  
kept short, direct and wide.  
2.  
Place CIN near VIN Pin as closely as possible. To maintain input voltage steady and filter out  
the pulsing input current.  
3.  
4.  
The resistive divider R1and R2 must be connected to FB pin directly as closely as possible.  
FB is a sensitive node. Please keep it away from switching node, SW. A good approach is to  
route the feedback trace on another layer and to have a ground plane between the top layer  
and the layer on which the feedback trace is routed. This reduces EMI radiation on to the  
DC-DC converter’s own voltage feedback trace.  
5.  
Keep the GND plates of CIN and COUT as close as possible. Then connect this to the  
ground-plane (if one is used) with several visa. This reduces ground plane noise by  
preventing he switching currents from circulating through the ground plane. It also reduces  
ground bounce at the FP6160B by giving it a low impedance ground connection.  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
10/14  
FP6160B  
GROUND PLANE  
VIA TO VOUT  
C3  
R1  
R2  
VIA TO VIN  
1
5
4
2
3
FP6160B  
VIN  
C1  
C2  
VOUT  
GND  
Suggested Layout  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
11/14  
FP6160B  
Typical Application  
I
LOAD: 60mA~600mA  
ILOAD: 200mA~600mA  
Ch1:VOUT Ch2: ISW  
Ch1: VOUT Ch2: ISW  
EN on waveform (VOUT: 2.5V)  
Efficiency (VOUT: 2.5V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vcc=2.7V  
Vcc=3.6V  
Vcc=4.2V  
0.1  
1
10  
100  
1000  
Ch1: EN Ch2: SW Ch3: VOUT Ch4: ISW  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
12/14  
FP6160B  
Package Outline  
SOT23-5L  
UNIT: mm  
Max.(mm)  
Symbols  
Min. (mm)  
1.050  
A
A1  
A2  
b
1.350  
0.150  
1.200  
0.500  
0.200  
3.000  
3.000  
1.700  
0.050  
1.000  
0.250  
c
0.080  
D
2.700  
E
2.600  
E1  
e
1.500  
0.950 BSC  
1.900 BSC  
e1  
L
0.300  
0.550  
L1  
L2  
θ°  
θ1°  
θ2°  
0.600 REF  
0.250 BSC  
0°  
3°  
6°  
10°  
7°  
10°  
Note:  
1. Package dimensions are in compliance with JEDEC outline: MO-178 AA.  
2. Dimension “D” does not include molding flash, protrusions or gate burrs.  
3. Dimension “E1” does not include inter-lead flash or protrusions.  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
13/14  
FP6160B  
TSOT23-5L  
Unit: mm  
Max. (mm)  
Symbols  
Min. (mm)  
0.750  
A
A1  
A2  
b
0.800  
0.050  
0.775  
0.500  
0.200  
3.000  
3.000  
1.700  
0.000  
0.700  
0.350  
c
0.100  
D
2.800  
E
2.600  
E1  
e
1.500  
0.950 BSC  
1.900 BSC  
e1  
L
0.370  
0.600  
L1  
L2  
R
0.600 REF  
0.250 BSC  
0.100  
0.100  
0°  
R1  
θ°  
θ1  
0.250  
8°  
4°  
12°  
Note:  
1. Dimension “D” does not include molding flash, protrusions or gate burrs.  
2. Dimension “E1” does not include inter-lead flash or protrusions.  
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.  
Website: http://www.feeling-tech.com.tw  
Rev. 0.62  
14/14  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY