FR9886D [FITIPOWER]

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter;
FR9886D
型号: FR9886D
厂家: Fitipower    Fitipower
描述:

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter

文件: 总15页 (文件大小:1073K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
fitipower integrated technology lnc.  
FR9886D  
23V, 2A/2.5A, 340KHz Synchronous Step-Down  
DC/DC Converter  
Description  
Features  
The FR9886D is a synchronous step-down DC/DC  
converter that provides wide 4.5V to 23V input  
High Efficiency Synchronous Buck Converter with  
Low ISD(<1μA)  
voltage range.  
SOP-8(EP)) to support 2A/2.5A continuous output  
current.  
There are two packages (SOP-8 &  
Low Rds(on) Integrated Power MOSFET  
Internal Compensation Function  
Wide Input Voltage Range: 4.5V to 23V  
Adjustable Output Voltage from 0.925V to 20V  
● 2A Output Current (Package: SOP-8)  
● 2.5A Output Current (Package: SOP-8(EP))  
● Fixed 340KHz Switching Frequency  
● Current Mode Operation  
● Adjustable Soft-Start  
● Cycle-by-Cycle Current Limit  
● Input Under Voltage Lockout  
● Over-Temperature Protection with Auto Recovery  
SOP-8 and SOP-8 Exposed Pad Packages  
The  
FR9886D  
fault  
protection  
includes  
cycle-by-cycle current limit, input UVLO, output over  
voltage protection and thermal shutdown. Besides,  
adjustable soft-start function prevents inrush current  
at turn-on. This device uses current mode control  
scheme which provides fast transient response.  
Internal Compensation function reduces external  
compensation components and simplifies the design  
process. In shutdown mode, the supply current is  
less than 1μA.  
The FR9886D is available in SOP-8/SOP-8 (Exposed  
Pad) packages. It is RoHS compliant and 100%  
lead (Pb) free.  
Applications  
STB (Set-Top-Box)  
LCD Display, TV  
Distributed Power System  
Networking, XDSL Modem  
Pin Assignments  
Ordering Information  
FR9886D□□□  
SO Package (SOP-8)  
TR: Tape / Reel  
8
7
6
5
SS  
BST  
VIN  
LX  
1
2
3
4
C: Green  
SHDN  
NC  
Package Type  
SO: SOP-8  
SP: SOP-8 (Exposed Pad)  
FB  
GND  
SP Package (SOP-8 Exposed Pad)  
1
2
3
4
SS  
BST  
VIN  
LX  
8
7
SHDN  
NC  
6
5
FB  
GND  
Figure 1. Pin Assignments of FR9886D  
FR9886D-1.0-JAN-2012  
1
fitipower integrated technology lnc.  
FR9886D  
Typical Application Circuit  
C4  
0.1μF  
R3  
100kΩ  
1
7
L1  
4.7μH  
SHDN  
BST  
LX  
2
6
3
5
VOUT  
1.2V  
VIN  
4.5V to 23V  
VIN  
C1  
C6  
(optional)  
C2  
R1  
FR9886D  
10μF/25V  
CERAMIC x 2  
3kΩ 1%  
22μF/6.3V  
CERAMIC x 2  
FB  
NC  
SS  
8
GND  
4
R2  
10kΩ 1%  
C3  
0.1μF  
Figure 2. CIN /COUT use Ceramic Capacitors Application Circuit  
C4  
0.1μF  
R3  
100kΩ  
7
1
L1  
4.7μH  
SHDN  
BST  
2
6
3
5
VIN  
VOUT  
1.2V  
LX  
VIN  
4.5V to 23V  
R1  
3kΩ 1%  
C6  
C2  
C5  
0.1μF/25V  
CERAMIC x 1  
FR9886D  
C1  
100μF/25V  
EC x 1  
(optional)  
100μF/6.3V  
EC x 1  
NC  
FB  
SS  
8
GND  
4
R2  
10kΩ 1%  
C3  
0.1μF  
Figure 3. CIN /COUT use Electrolytic Capacitors Application Circuit  
VOUT  
R1  
R2  
C6  
L1  
C2  
1.2V  
1.8V  
2.5V  
3.3V  
5V  
3kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10pF~1nF  
4.7μH  
4.7μH  
10μH  
10μH  
10μH  
4.7μH  
4.7μH  
10μH  
10μH  
10μH  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
22μF MLCC x2  
100μF EC x1  
100μF EC x1  
100μF EC x1  
100μF EC x1  
100μF EC x1  
9.53kΩ  
16.9kΩ  
26.1kΩ  
44.2kΩ  
3kΩ  
10pF~1nF  
10pF~1nF  
10pF~1nF  
10pF~1nF  
1.2V  
1.8V  
2.5V  
3.3V  
5V  
--  
--  
--  
--  
--  
9.53kΩ  
16.9kΩ  
26.1kΩ  
44.2kΩ  
Table 1. Recommended Component Values  
FR9886D-1.0-JAN-2012  
2
fitipower integrated technology lnc.  
FR9886D  
Functional Pin Description  
I/O  
Pin Name  
Pin No.  
Pin Function  
Voltage Feedback Input Pin. Connect FB and VOUT with a resistive voltage divider. This IC  
senses feedback voltage via FB and regulates it at 0.925V.  
I
FB  
5
2
7
4
3
8
1
6
I
VIN  
Power Supply Input Pin. Drive this pin by 4.5V to 23V voltage to power on the chip.  
Enable Input Pin. This pin provides a digital control to turn the converter on or off. Connect VIN  
with a 100KΩ resistor for self-startup.  
I
 ꢀꢁꢂ  
I
GND  
Ground Pin. Connect this pin to exposed pad.  
Power Switching Output. It is the output pin of internal high side NMOS which is the switching to  
supply power.  
O
O
O
O
LX  
SS  
Soft-Start Pin. This pin controls the soft-start period. Connect a capacitor from SS to GND to  
set the soft start period.  
High Side Gate Drive Boost Pin. A 10nF or greater capacitor must be connected from this pin to  
LX. It can boost the gate drive to fully turn on the internal high side NMOS.  
BST  
NC  
No connection.  
Block Diagram  
VIN  
ISEN  
Internal  
Regulator  
OTP  
OVP  
VCC  
UVLO  
&
POR  
VCC  
SHDN  
2.7M  
Oscillator  
BST  
High- Side  
MOSFET  
6µA  
S
R
FB  
Driver  
Logic  
PWM  
Control  
Current  
Comp  
LX  
OTP  
OVP  
SS  
UVLO  
Low- Side  
MOSFET  
0.925V  
Current  
Limit  
GND  
Figure 4. Block Diagram of FR9886D  
FR9886D-1.0-JAN-2012  
3
fitipower integrated technology lnc.  
FR9886D  
Absolute Maximum Ratings (Note1)  
Supply Voltage VIN ------------------------------------------------------------------------------------------- -0.3V to +25V  
Enable Voltage VSHꢀN -------------------------------------------------------------------------------------  
-0.3V to +25V  
LX Voltage VLX (50ns) --------------------------------------------------------------------------------------- -1V to VIN+0.3V  
BST Voltage VBST -------------------------------------------------------------------------------------------- VLX-0.3V to VLX+6V  
All Other Pins Voltage -------------------------------------------------------------------------------------- -0.3V to +6V  
Maximum Junction Temperature (TJ) ------------------------------------------------------------------- +150°C  
Storage Temperature (TS) --------------------------------------------------------------------------------- -65°C to +150°C  
Lead Temperature (Soldering, 10sec.) ----------------------------------------------------------------- +260°C  
Power Dissipation @TA=25°C, (PD) (Note2)  
SOP-8 ----------------------------------------------------------------------------------------------- 1.39W  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 2.08W  
● Package Thermal Resistance, (θJA):  
SOP-8 ----------------------------------------------------------------------------------------------- 90°C/W  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 60°C/W  
● Package Thermal Resistance, (θJC):  
SOP-8 ----------------------------------------------------------------------------------------------- 39°C/W  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 15°C/W  
Note 1Stresses beyond this listed under “Absolute Maximum Ratings" may cause permanent damage to the device.  
Note 2PCB heat sink copper area = 10mm2.  
Recommended Operating Conditions  
Supply Voltage VIN ------------------------------------------------------------------------------------------- +4.5V to +23V  
Enable Voltage VSHꢀN -------------------------------------------------------------------------------------  
0V to VIN  
Operation Temperature Range --------------------------------------------------------------------------- -40°C to +85°C  
FR9886D-1.0-JAN-2012  
4
fitipower integrated technology lnc.  
FR9886D  
Electrical Characteristics  
(VIN=12V, TA=25°C, unless otherwise specified.)  
Parameter  
VIN Input Supply Voltage  
VIN Quiescent Current  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
VIN  
IDDQ  
ISD  
4.5  
23  
VSHꢀN=1.8V, VFB=1.0V  
VSHꢀN=0V  
2
mA  
μA  
V
VIN Shutdown Supply Current  
Feedback Voltage  
1
VFB  
VOVP  
4.5VVIN23V  
0.9  
0.925  
1.5  
0.95  
Feedback OVP Threshold Voltage  
V
SOP-8  
130  
120  
110  
High-Side MOSFET RDS(ON) (Note3)  
RDS(ON)  
mΩ  
SOP-8(EP)  
Low-Side MOSFET RDS(ON) (Note3)  
High-Side MOSFET Leakage Current  
RDS(ON)  
ILX(leak)  
mΩ  
μA  
VSHꢀN=0V, VLX=0V  
10  
SOP-8  
SOP-8(EP)  
2.8  
3.1  
4
High-Side MOSFET Current Limit  
(Note3)  
Minimum  
Duty  
ILIMIT(HS)  
A
4.5  
1.5  
400  
340  
110  
90  
Low-Side MOSFET Current Limit  
(Note3)  
ILIMIT(LS)  
From Drain to Source  
A
V/V  
KHz  
KHz  
%
Error Amplifier Voltage Gain (Note3)  
Oscillation frequency  
FOSC  
290  
420  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
FOSC(short) VFB=0V  
DMAX  
TMIN  
VFB=0.8V  
Minimum On Time (Note3)  
Input UVLO Threshold  
100  
4.3  
250  
6
ns  
VUVLO(Vth) VIN Rising  
VUVLO(HYS)  
V
Under Voltage Lockout Threshold  
Hysteresis  
mV  
μA  
ms  
Soft-Start Current  
Soft-Start Period  
ISS  
VSS=0V  
TSS  
CSS=0.1μF  
15  
VSHꢀN  
(L)  
0.4  
V
SHꢀN Input Low Voltage  
VSHꢀN  
2
V
(H)  
SHꢀN Input High Voltage  
SHꢀN Input Current  
I SHꢀN  
VSHꢀN=2V  
0.75  
170  
μA  
°C  
Thermal Shutdown Threshold (Note3)  
Note 3Not production tested.  
TSD  
FR9886D-1.0-JAN-2012  
5
fitipower integrated technology lnc.  
FR9886D  
Typical Performance Curves  
VIN = 12V, VOUT = 3.3V, C1 = 10μF x 2, C2 = 22μF x 2, L1 = 10μH, TA = +25°C, unless otherwise noted.  
100  
100  
95  
90  
95  
90  
85  
80  
85  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
VOUT = 1.2V  
VOUT = 1.2V  
VIN= 5V  
VIN= 12V  
VIN= 5V  
VIN= 12V  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
Load Current (A)  
Load Current (A)  
Figure 5. Efficiency vs. Loading (SOP-8)  
Figure 6. Efficiency vs. Loading (SOP-8 Exposed Pad)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
VIN= 5V  
VIN= 12V  
VIN= 23V  
VIN= 5V  
VIN= 12V  
VIN= 23V  
60  
55  
50  
VOUT = 3.3V  
VOUT = 3.3V  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
Load Current (A)  
Load Current (A)  
Figure 7. Efficiency vs. Loading (SOP-8)  
Figure 8. Efficiency vs. Loading (SOP-8 Exposed Pad)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN= 12V  
VIN= 23V  
VOUT = 5V  
VIN= 12V  
VIN= 23V  
VOUT = 5V  
55  
50  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
Load Current (A)  
Load Current (A)  
Figure 9. Efficiency vs. Loading (SOP-8)  
Figure 10. Efficiency vs. Loading (SOP-8 Exposed Pad)  
FR9886D-1.0-JAN-2012  
6
fitipower integrated technology lnc.  
FR9886D  
Typical Performance Curves (Continued)  
VIN = 12V, VOUT = 3.3V, C1 = 10μF x 2, C2 = 22μF x 2, L1 = 10μH, TA = +25°C, unless otherwise noted.  
0.950  
0.945  
380  
370  
0.940  
0.935  
0.930  
0.925  
0.920  
0.915  
0.910  
0.905  
0.900  
360  
350  
340  
330  
320  
310  
300  
290  
280  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature ( Degrees C )  
Temperature ( Degrees C )  
Figure 11. Feedback Voltage vs. Temperature  
IOUT=0A  
Figure 12. Frequency vs. Temperature  
IOUT=2.5A  
VIN 10mV/div. (AC)  
VIN 200mV/div. (AC)  
VOUT 20mV/div. (AC)  
IL 1A/div.  
VOUT 20mV/div. (AC)  
IL 1A/div.  
VLX 5V/div.  
VLX 5V/div.  
4μs/div.  
Figure 13. DC Ripple Waveform  
4μs/div.  
Figure 14. DC Ripple Waveform  
IOUT=2.5A  
IOUT=0A  
5V/div.  
5V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT 0.5V/div.  
IL 1A/div.  
VOUT 0.5V/div.  
IL 1A/div.  
VLX 5V/div.  
VLX 5V/div.  
4ms/div.  
4ms/div.  
Figure 15. Startup Through SHꢀN Waveform  
FR9886D-1.0-JAN-2012  
Figure 16. Startup Through SHꢀN Waveform  
7
fitipower integrated technology lnc.  
FR9886D  
Typical Performance Curves (Continued)  
VIN = 12V, VOUT = 3.3V, C1 = 10μF x 2, C2 = 22μF x 2, L1 = 10μH, TA = +25°C, unless otherwise noted.  
IOUT=0A IOUT=2.5A  
5V/div.  
5V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT 0.5V/div.  
VOUT 0.5V/div.  
IL 1A/div.  
IL 1A/div.  
VLX 5V/div.  
VLX 5V/div.  
4ms/div.  
200μs/div.  
Figure 17. Shutdown Through SHꢀN Waveform  
Figure 18. Shutdown Through SHꢀN Waveform  
IOUT=100mA to 2.5A step  
VOUT, 200mV/div. (AC)  
IL 1A/div.  
VOUT ,, 1V/div.  
IL 1A/div.  
40μs/div.  
400μs/div.  
Figure 19. Load Transient Waveform  
Figure 20. Short Circuit Test  
FR9886D-1.0-JAN-2012  
8
fitipower integrated technology lnc.  
FR9886D  
Function Description  
The FR9886D is  
a
high efficiency, internal  
Input Under Voltage Lockout  
compensation and constant frequency current mode  
synchronous step-down DC/DC converter. There  
are two packages (SOP-8 & SOP-8(EP)) to support  
2A/2.5A continuous output current. It regulates  
input voltage from 4.5V to 23V and down to output  
voltage as low as 0.925V.  
When the FR9886D is power on, the internal  
circuits will be held inactive until VIN voltage  
exceeds the input UVLO threshold voltage. And  
the regulator will be disabled when VIN is below the  
input UVLO threshold voltage. The hysteretic of  
the UVLO comparator is 250mV (typ).  
Control Loop  
Short Circuit Protection  
Under normal operation, the output voltage is sensed  
by FB pin through a resistive voltage divider and  
amplified through the error amplifier. The voltage of  
error amplifier output is compared to the switch  
current to control the RS latch. At the beginning of  
each clock cycle, the high-side NMOS turns on when  
the oscillator sets the RS latch, and turns off when  
current comparator resets the RS latch. Then the  
low-side NMOS will turn on until the clock period  
ends.  
The FR9886D provides short circuit protection  
function to prevent the device damaged from short  
condition. When the short condition occurs and  
the feedback voltage drops lower than 0.4V, the  
oscillator frequency will be reduced to 110KHz to  
prevent the inductor current increasing beyond the  
current limit. In the meantime, the current limit will  
also be reduced to lower the short current. Once  
the short condition is removed, the frequency and  
current limit will return to normal.  
Enable  
Over Current Protection  
The FR9886D SHꢀN pin provides digital control to  
turn on/off the regulator. When the voltage of  
SHꢀN exceeds the threshold voltage, the regulator  
will start the soft start function. If the SHꢀN pin  
voltage is below the shutdown threshold voltage, the  
regulator will turn into the shutdown mode and the  
shutdown current will be smaller than 1μA. For  
auto start-up operation, connect SHꢀN to VIN  
through a 100KΩ resistor.  
The FR9886D over current protection function is  
implemented using cycle-by-cycle current limit  
architecture. The inductor current is monitored by  
measuring the high-side MOSFET series sense  
resistor voltage. When the load current increases,  
the inductor current will also increase. When the  
peak inductor current reaches the current limit  
threshold, the output voltage will start to drop.  
When the over current condition is removed, the  
output voltage will return to the regulated value.  
Soft Start  
Over Temperature Protection  
The FR9886D employs adjustable soft start function  
to reduce input inrush current during start up.  
When the device turns on, a 6μA current will begin to  
charge the capacitor which is connected from SS pin  
to GND. The equation for the soft start time is  
shown as below:  
The FR9886D incorporates an over temperature  
protection circuit to protect itself from overheating.  
When the junction temperature exceeds the  
thermal shutdown threshold temperature, the  
regulator will be shutdown. And the hysteretic of  
the over temperature protection is 60°C (typ).  
CSS nF ꢁVFꢂ  
TSS ms =  
Internal Compensation Function  
ISS μA  
The stability of the feedback circuit is controlled by  
The VFB voltage is 0.925V and the ISS current is 6μA.  
If a 0.1μF capacitor is connected from SS pin to  
GND, the soft start time will be 15ms.  
internal compensation circuits.  
This internal  
compensation function is optimized for most  
applications, and this function can reduce external  
R, C components.  
Output Over Voltage Protection  
When the FB pin voltage exceeds 1.5V, the output  
over voltage protection function will be triggered and  
turn off the high-side/low-side MOSFET.  
FR9886D-1.0-JAN-2012  
9
fitipower integrated technology lnc.  
FR9886D  
Application Information  
Output Voltage Setting  
A low ESR capacitor is required to keep the noise  
minimum. Ceramic capacitors are better, but  
tantalum or low ESR electrolytic capacitors may  
also suffice. When using tantalum or electrolytic  
capacitors, a 0.1μF ceramic capacitor should be  
placed as close to the IC as possible.  
The output voltage VOUT is set by using a resistive  
divider from the output to FB. The FB pin regulated  
voltage is 0.925V. Thus the output voltage is:  
R1  
VOUT=0.925Vꢁ 1ꢃ  
R2  
Output Capacitor Selection  
Table 2 lists recommended values of R1 and R2 for  
most used output voltage.  
The output capacitor is used to keep the DC output  
voltage and supply the load transient current.  
When operating in constant current mode, the  
output ripple is determined by four components:  
Table 2 Recommended Resistance Values  
VOUT  
5V  
R1  
R2  
ꢀ ꢁ ꢀ ꢁ  
VRIPPLE t =VRIPPLE C t ꢃVRIPPLE ESR t  
ꢀ ꢁ  
44.2kΩ  
26.1kΩ  
16.9kΩ  
9.53kΩ  
3kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
ꢀ ꢁ  
ꢃVRIPPLE(ESL) t ꢃVNOISE  
ꢀ ꢁ  
t
3.3V  
2.5V  
1.8V  
1.2V  
The following figures show the form of the ripple  
contributions.  
VRIPPLE(ESR)(t)  
Place resistors R1 and R2 close to FB pin to prevent  
stray pickup.  
(t)  
Input Capacitor Selection  
+
The use of the input capacitor is filtering the input  
voltage ripple and the MOSFETS switching spike  
VRIPPLE(ESL) (t)  
voltage.  
Because the input current to the  
step-down converter is discontinuous, the input  
capacitor is required to supply the current to the  
converter to keep the DC input voltage.  
The  
(t)  
(t)  
+
capacitor voltage rating should be 1.25 to 1.5 times  
greater than the maximum input voltage. The input  
capacitor ripple current RMS value is calculated as:  
VRIPPLE(C) (t)  
IIN(RMS)=IOUTꢀꢁ 1ꢀ  
VOUT  
ꢀ=  
+
VIN  
VNOISE (t)  
Where D is the duty cycle of the power MOSFET.  
This function reaches the maximum value at D=0.5  
and the equivalent RMS current is equal to IOUT/2.  
The following diagram is the graphical representation  
of above equation.  
=
VRIPPLE(t)  
IOUT=2.5A  
IOUT=2A  
IOUT=1.5A  
(t)  
IOUT=1A  
FR9886D-1.0-JAN-2012  
10  
fitipower integrated technology lnc.  
FR9886D  
Application Information  
VOUT  
V
That will lower ripple current and result in lower  
VRIPPLE(ESR, pp)  
=
ꢆ ꢂ1OUTꢃ ꢆESR  
output ripple voltage.  
The ΔIL is inductor  
FOSCL  
VIN  
peak-to-peak ripple current:  
ESL  
VRIPPLE(ESL, pp)  
=
VIN  
VOUT  
V
ꢄIL=  
ꢆ ꢂ1OUTꢃ  
LꢃESL  
VOUT  
8FOSC2LCOUT  
FOSCL  
VIN  
V
ꢆ ꢂ1OUTꢃ  
VIN  
VRIPPLE(C, pp)  
=
The following diagram is an example to graphically  
represent ΔIL equation.  
Where FOSC is the switching frequency, L is the  
inductance value, VIN is the input voltage, ESR is the  
equivalent series resistance value of the output  
capacitor, ESL is the equivalent series inductance  
value of the output capacitor and the COUT is the  
output capacitor.  
L=4.7μꢀ  
L=6.8μꢀ  
L=10μꢀ  
Low ESR capacitors are preferred to use. Ceramic,  
tantalum or low ESR electrolytic capacitors can be  
used depending on the output ripple requirement.  
When using the ceramic capacitors, the ESL  
component is usually negligible.  
It is important to use the proper method to eliminate  
high frequency noise when measuring the output  
ripple. The figure shows how to locate the probe  
across the capacitor when measuring output ripple.  
Removing the scope probe plastic jacket in order to  
expose the ground at the tip of the probe. It gives a  
very short connection from the probe ground to the  
capacitor and eliminating noise.  
VOUT=3.3V, FOSC=340KHz  
A good compromise value between size and  
efficiency is to set the peak-to-peak inductor ripple  
current ΔIL equal to 30% of the maximum load  
current. But setting the peak-to-peak inductor  
ripple current ΔIL between 20%~50% of the  
maximum load current is also acceptable. Then  
the inductance can be calculated with the following  
equation:  
Probe Ground  
ꢄIL=0.3ꢁIOUT(MAX)  
VINVOUT VOUT  
L=  
VINFOSCꢄIL  
To guarantee sufficient output current, peak  
inductor current must be lower than the FR9886  
VOUT  
GND  
high-side MOSFET current limit.  
inductor current is shown as below:  
The peak  
Ceramic Capacitor  
Inductor Selection  
ꢄIL  
IPEAK=IOUT(MAX)  
2
The output inductor is used for storing energy and  
filtering output ripple current. But the trade-off  
condition often happens between maximum energy  
storage and the physical size of the inductor. The  
first consideration for selecting the output inductor is  
to make sure that the inductance is large enough to  
keep the converter in the continuous current mode.  
FR9886D-1.0-JAN-2012  
11  
fitipower integrated technology lnc.  
FR9886D  
Application Information  
Feedforward Capacitor Selection  
PCB Layout Recommendation  
The device’s performance and stability are  
dramatically affected by PCB layout. It is  
recommended to follow these general guidelines  
shown as below:  
Internal compensation function allows users saving  
time in design and saving cost by reducing the  
number of external components. The use of a  
feedforward capacitor C6 in the feedback network is  
recommended to improve the transient response or  
higher phase margin.  
1. Place the input capacitors and output  
capacitors as close to the device as possible.  
The traces which connect to these capacitors  
should be as short and wide as possible to  
minimize parasitic inductance and resistance.  
VOUT  
R1  
R2  
C6  
FR9886D  
2. Place feedback resistors close to the FB pin.  
FB  
3. Keep the sensitive signal (FB) away from the  
switching signal (LX).  
4. The exposed pad of the package should be  
soldered to an equivalent area of metal on the  
PCB. This area should connect to the GND  
plane and have multiple via connections to the  
back of the PCB as well as connections to  
intermediate PCB layers. The GND plane area  
connecting to the exposed pad should be  
maximized to improve thermal performance.  
For optimizing the feedforward capacitor, knowing  
the cross frequency is the first thing. The cross  
frequency (or the converter bandwidth) can be  
determined by using a network analyzer. When  
getting the cross frequency with no feedforward  
capacitor identified, the value of feedforward  
capacitor C6 can be calculated with the following  
equation:  
5. Multi-layer PCB design is recommended.  
1
1
1
1
C6=  
ꢂ  
2 ꢁFCROSS  
R1 R1 R2  
Where FCROSS is the cross frequency.  
To reduce transient ripple, the feedforward capacitor  
value can be increased to push the cross frequency  
to higher region.  
Although this can improve  
transient response, it also decreases phase margin  
and causes more ringing. In the other hand, if more  
phase margin is desired, the feedforward capacitor  
value can be decreased to push the cross frequency  
to lower region.  
In general, the feedforward  
capacitor range is between 10pF to 1nF.  
External Boost Diode Selection  
For 5V input applications, it is recommended to add  
an external boost diode. This helps improving the  
efficiency. The boost diode can be a low cost one  
such as 1N4148.  
D1  
1N4148  
BST  
VIN  
VIN  
5V  
C4  
FR9886D  
LX  
FR9886D-1.0-JAN-2012  
12  
fitipower integrated technology lnc.  
FR9886D  
Application Information (Continued)  
C6  
R1  
R3  
R2  
8
1
7
6
5
GND  
GND  
C1  
+
C5  
C2  
+
4
2
3
VIN  
VOUT  
LX  
L1  
C4  
Figure 21. FR9886D SOP-8 package CIN/COUT with EC capacitors Recommended PCB Layout Diagram  
C6  
R1  
R3  
R2  
8
1
7
6
5
Exposed  
Pad  
GND  
C1  
+
C5  
C2  
4
2
3
+
VIN  
VOUT  
LX  
L1  
C4  
Figure 22. FR9886D SOP-8(Exposed Pad) package CIN/COUT with EC capacitors Recommended PCB Layout Diagram  
FR9886D-1.0-JAN-2012  
13  
fitipower integrated technology lnc.  
FR9886D  
Outline Information  
SOP-8 Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SYMBOLS  
UNIT  
MIN  
1.35  
0.10  
1.25  
0.31  
4.80  
3.80  
1.20  
5.80  
0.40  
MAX  
1.75  
0.25  
1.50  
0.51  
5.00  
4.00  
1.34  
6.20  
1.27  
A
A1  
A2  
B
D
E
e
H
L
NoteFollowed From JEDEC MO-012-E.  
Carrier dimensions  
FR9886D-1.0-JAN-2012  
14  
fitipower integrated technology lnc.  
FR9886D  
Outline Information (Continued)  
SOP-8 (Exposed Pad) Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SYMBOLS  
UNIT  
MIN  
1.25  
0.00  
1.25  
0.31  
4.80  
3.04  
3.80  
2.15  
1.20  
5.80  
0.40  
MAX  
1.70  
0.15  
1.55  
0.51  
5.00  
3.50  
4.00  
2.41  
1.34  
6.20  
1.27  
A
A1  
A2  
B
D
D1  
E
E1  
e
H
L
NoteFollowed From JEDEC MO-012-E.  
Carrier dimensions  
Life Support Policy  
Fitipower’s products are not authorized for use as critical components in life support devices or other medical systems.  
FR9886D-1.0-JAN-2012  
15  

相关型号:

FR9886DSOCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886DSPCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888C

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888CSECTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888CSPCTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FRA

Circular Commercial Aircraft Military Aircraft
ITT

FRA-010-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-017-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-020-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-025-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-030-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-040-120

Radial Leaded PTC FRA Series
DBLECTRO