HFBR-3541ETZ [FOXCONN]

Fiber Optic Device;
HFBR-3541ETZ
型号: HFBR-3541ETZ
厂家: FOXCONN    FOXCONN
描述:

Fiber Optic Device

文件: 总16页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-0500ETZ Series  
Versatile Link  
The Versatile Fiber Optic Connection  
Data Sheet  
Description  
Features  
 Extended temperature range -40 to +85° C  
 RoHS-compliant  
The Versatile Link series is a complete family of fiber  
optic link components for applications requiring a low  
cost solution. The HFBR-0500ETZ series includes trans-  
mitters, receivers, connectors and cable specified for  
easy design. This series of components is ideal for  
solving problems with voltage isolation/insulation,  
EMI/RFI immunity or data security. The optical link  
design is simplified by the logic compatible receivers  
and complete specifi-cations for each component. The  
key optical and electrical parameters of links configured  
with the HFBR-0500ETZ family are fully guaranteed from  
-40° to 85° C.  
 Low cost fiber optic components  
 Enhanced digital links: dc-5 MBd  
 Link distance up to 43m at 1MBd and 20m at 5MBd  
 Low current link: 6 mA peak supply current  
 Horizontal and vertical mounting  
 Interlocking feature  
 High noise immunity  
 Easy connectoring: simplex, duplex, and latching  
connectors  
A wide variety of package configurations and connectors  
provide the designer with numerous mechanical solutions  
to meet application requirements. The transmitter and  
receiver components have been designed for use in high  
volume/low cost assembly processes such as auto inser-  
tion and wave soldering.  
 Flame retardant  
 Transmitters incorporate a 660 nm red LED for easy  
visibility  
 Compatible with standard TTL circuitry  
Applications  
Industrial Drives/Frequency Inverters  
Transmitters incorporate a 660 nm LED. Receivers  
include a monolithic dc coupled, digital IC receiver  
with open collector Schottky output transistor. An  
internal pullup resistor is available for use in the  
HFBR-25X1ETZ and HFBR-25X2ETZ receivers. A shield has  
been integrated into the receiver IC to provide additional,  
localized noise immunity.  
Renewable Energies (Wind Turbines, Solar PV farms)  
Power electronics  
Reduction of lightning/voltage transient susceptibility  
 Motor controller triggering  
 Data communications and local area networks  
Internal optics have been optimized for use with 1 mm  
diameter plastic optical fiber. Versatile Link specifications  
incorporate all connector interface losses. Therefore,  
optical calculations for common link applications are  
simplified.  
 Electromagnetic Compatibility (EMC) for regulated  
systems: FCC, VDE, CSA, etc.  
 Tempest-secure data processing equipment  
 Isolation in test and measurement instruments  
 Error free signalling for industrial and manufacturing  
equipment  
 Automotive communications and control networks  
 Noise immune communication in audio and video  
equipment  
HFBR-0500ETZ Series Part Number Guide  
HFBR-X5XXETZ  
1 = Transmitter  
2 = Receiver  
ET = extended temperature range  
Z = RoHS compliant  
5 = 600 nm Transmitter and  
Receiver Products  
1 = 5 MBd High Performance Link  
2 = 1 MBd High Performance Link  
6 = 155 MBd Receiver  
2 = Horizontal Package  
3 = Vertical Package  
4 = 30° Tilted Package  
7 = 155 MBd Transmitter  
Available option – Horizontal Package  
HFBR-x521ETZ  
HFBR-x522ETZ  
HFBR-x532ETZ  
HFBR-x542ETZ  
Available option – Vertical Package  
HFBR-x531ETZ  
Available option – 30° Tilted Package  
HFBR-x541ETZ  
Link Selection Guide  
(Links specified from -40° to 85° C, for plastic optical fiber unless specified.)  
Signal Rate  
1 MBd  
Distance (m) 25° C  
Distance (m)  
Transmitter  
Receiver  
67  
38  
43  
20  
HFBR-15x2ETZ  
HFBR-15x1ETZ  
HFBR-25x2ETZ  
HFBR-25x1ETZ  
5 Mbd  
2
Application Literature  
Handling  
Application Note 1035 (Versatile Link)  
Versatile Link components are auto-insertable. When  
wave soldering is performed with Versatile Link compo-  
nents, the optical port plug should be left in to prevent  
contamination of the port. Do not use reflow solder  
processes (i.e., infrared reflow or vapor-phase reflow).  
Nonhalogenated water soluble fluxes (i.e., 0% chloride),  
not rosin based fluxes, are recommended for use with  
Versatile Link components.  
Package and Handling Information  
The compact Versatile Link package is made of a flame  
®
retardant VALOX UL 94 V-0 material (UL file # E121562)  
and uses the same pad layout as a standard, eight pin  
dual-in-line package. Vertical and horizontal mountable  
parts are available. These low profile Versatile Link pack-  
ages are stackable and are enclosed to provide a dust  
resistant seal. Snap action simplex, simplex latching,  
duplex, and duplex latching connectors are offered with  
simplex or duplex cables.  
Versatile Link components are moisture sensitive  
devices and are shipped in a moisture sealed bag. If the  
components are exposed to air for an extended period of  
time, they may require a baking step before the solder-  
ing process. Refer to the special labeling on the shipping  
tube for details.  
Package Orientation  
Performance and pinouts for the vertical and hori-  
zontal packages are identical. To provide additional  
attachment support for the vertical Versatile Link  
housing, the designer has the option of using a self-  
tapping screw through a printed circuit board into a  
mounting hole at the bottom of the package. For most  
applications this is not necessary.  
Recommended Chemicals for Cleaning/Degreasing  
Alcohols: methyl, isopropyl, isobutyl. Aliphatics: hexane,  
heptane. Other: soap solution, naphtha.  
Do not use partially halogenated hydrocarbons such  
as 1,1.1 trichloroethane, ketones such as MEK, acetone,  
chloroform, ethyl acetate, methylene dichloride, phenol,  
methylene chloride, or N-methylpyrolldone. Also, Avago  
does not recommend the use of cleaners that use  
halogenated hydrocarbons because of their potential  
environmental harm.  
Package Housing Color  
Versatile Link components and simplex connectors are  
color coded to eliminate confusion when making connec-  
tions. Receivers are blue and transmitters are gray.  
VALOX is a registered trademark of the General Electric Corporation.  
3
Mechanical Dimensions  
Horizontal Modules  
Vertical Modules  
2.03  
(0.080)  
6.86  
(0.270)  
5.08  
(0.200)  
10.16  
(0.400)  
10.16  
(0.400)  
2.03  
(0.080)  
5.08  
(0.200)  
18.8  
(0.74)  
18.29  
(0.720)  
6.86  
(0.27)  
4.19  
(0.165)  
0.64  
(0.025)  
7.62  
(0.30)  
3.81 (0.150) MAX.  
3.56 (0.140) MIN.  
18.80  
(0.740)  
1.27  
7.62  
0.51  
(0.020)  
(0.050)  
(0.300)  
2.54  
(0.100)  
0.64 (0.025) DIA.  
1.85  
(0.073)  
2.77  
(0.109)  
DIMENSIONS IN MILLIMETERS (INCHES).  
30° Tilted Modules  
A
B
0.7  
(0.03)  
0.4  
(0.02)  
1.3  
(0.05)  
1.1  
(0.05)  
0.5  
(0.02)  
2.54  
(0.100)  
7.62  
(0.300)  
10.1  
(0.40)  
2.2  
(0.09)  
8.7  
(0.34)  
19.3  
(0.76)  
DIMENSIONS IN MILLIMETERS (INCHES).  
4
Versatile Link Printed Board Layout Dimensions  
Horizontal Module  
Vertical Module  
7.62  
(0.300)  
2.54  
(0.100)  
1.01 (0.040) DIA.  
4
5
3
2
1
8
TOP VIEW  
7.62  
(0.300)  
PCB EDGE  
1.85  
(0.073)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
30° Tilted Modules  
7.62  
(0.300)  
2.54  
(0.100)  
0.5  
(0.02)  
1.01  
(0.040)  
DIA.  
Bottom View  
DIMENSIONS IN MILLIMETERS (INCHES).  
5
Interlocked (Stacked) Assemblies (refer to Figure 1)  
packages can be disengaged if necessary. Repeated  
stacking and unstacking causes no damage to individual  
units.  
Horizontal packages may be stacked by placing units  
with pins facing upward. Initially engage the inter-  
locking mechanism by sliding the L bracket body from  
above into the L slot body of the lower package. Use  
a straight edge, such as a ruler, to bring all stacked  
units into uniform alignment. This technique prevents  
potential harm that could occur to fingers and hands of  
assemblers from the package pins. Stacked horizontal  
To stack vertical packages, hold one unit in each hand,  
with the pins facing away and the optical ports on the  
bottom. Slide the L bracket unit into the L slot unit. The  
straight edge used for horizontal package alignment is  
not needed.  
Stacking Horizontal Modules  
Stacking Vertical Modules  
Stacking 30° Tilted Modules  
Figure 1. Interlocked (stacked) horizontal, vertical or 30° tilted packages  
6
5 MBd Link (HFBR-15X1ETZ/25X1ETZ)  
System Performance -40° to 85° C unless otherwise specified.  
Parameter  
Data Rate  
Symbol  
Min.  
dc  
Typ. Max. Units  
Conditions  
Ref.  
Note 3  
Note 3  
High  
Performance  
5 MBd  
5
MBd BER ≤10-9, PRBS:27-1  
Link Distance  
(Standard Cable)  
Link Distance  
(Improved Cable)  
Propagation  
Delay  
d
d
17  
m
m
m
m
ns  
ns  
IFdc = 60 mA  
Fdc = 60 mA, 25° C  
33  
I
20  
IFdc = 60 mA  
38  
IFdc = 60 mA, 25° C  
RL = 560 , CL = 30 pF  
fiber length = 0.5 m  
-21.6 ≤PR ≤-9.5 dBm  
PR = -15 dBm  
tPLH  
tPHL  
90  
50  
140  
140  
Fig. 3, 6  
Notes 1, 2  
Pulse Width  
tD  
40  
ns  
Fig. 3, 5  
Distortion tPLH-tPHL  
RL = 560 , CL = 30 pF  
Notes:  
1. The propagation delay for one metre of cable is typically 5 ns.  
2. Typical propagation delay is measured at P = -15 dBm.  
R
3. Estimated typical link life expectancy at 40° C exceeds 10 years at 60 mA.  
Figure 2. Typical 5 MBd interface circuit  
Figure 3. 5 MBd propagation delay test circuit  
7
Figure 4. Propagation delay test waveforms  
100  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
20  
10  
0
X5X1ETZ -40° C  
X5X1ETZ 25° C  
X5X1ETZ 85° C  
tPLH X5X1ETZ  
tPHL X5X1ETZ  
-27  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-27  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
PR - INPUT OPTICAL POWER - dBm  
PR - INPUT OPTICAL POWER - dBm  
Figure 5. Typical link pulse width distortion vs. optical power  
Figure 6. Typical link propagation delay vs. optical power  
8
HFBR-15X1ETZ Transmitter  
8 GROUND  
5 GROUND  
Pin #  
Function  
Anode  
1
1
2
3
4
5
8
ANODE  
Cathode  
Ground  
Ground  
Ground  
Ground  
2
CATHODE  
3
GROUND  
4
GROUND  
Note: Pins 5 and 8 are for mounting and retaining purposes  
only. Do not electrically connect these pins.  
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
–40  
–40  
Max.  
+85  
+85  
260  
10  
Units  
°C  
Reference  
Storage Temperature  
Operating Temperature  
Lead Soldering Cycle  
TA  
°C  
Temp.  
Time  
°C  
Note 1, 4  
Note 2, 3  
sec  
mA  
Forward Input Current  
Reverse Input Voltage  
IFPK  
IFdc  
VBR  
1000  
80  
5
V
Notes:  
1. 1.6 mm below seating plane.  
2. Recommended operating range between 10 and 750 mA.  
3. 1 s pulse, 20 s period.  
4. Moisture sensitivity level is MSL-3  
All HFBR-15XXETZ LED transmitters are classified as IEC 825-1 Accessible Emission Limit (AEL) Class 1 based upon the current proposed  
draft scheduled to go into effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. Contact your local Avago sales  
representative for more information.  
9
Transmitter Electrical/Optical Characteristics -40° to 85° C unless otherwise specified.  
[5]  
Parameter  
Transmitter Output  
Optical Power  
Symbol  
PT  
Min.  
-16.8  
-14.3  
Typ.  
Max.  
-7.1  
-8.0  
Units  
dBm  
dBm  
%/°C  
Conditions  
IFdc = 60 mA  
Ref.  
Notes 1, 2  
IFdc = 60 mA, 25° C  
Output Optical Power  
Temperature Coefficient  
Peak Emission  
PT/T  
-0.85  
660  
PK  
nm  
Wavelength  
Forward Voltage  
Forward Voltage  
Temperature Coefficient  
Effective Diameter  
Reverse Input Breakdown  
Voltage  
VF  
1.43  
5.0  
1.67  
2.05  
V
IFdc = 60 mA  
VF/T  
-1.37  
mV/°C  
Fig. 7  
D
1
mm  
V
VBR  
11.0  
IFdc = 10 A,  
TA = 25° C  
Diode Capacitance  
Rise Time  
CO  
tr  
86  
20  
20  
pF  
ns  
ns  
VF = 0, f = MHz  
10% to 90%,  
IF = 60 mA  
Note 3  
Fall Time  
tf  
Notes:  
1. Optical power measured at the end of 0.5 m of 1 mm diameter POF (NA = 0.5) with a large area detector.  
2. Optical power, P (dBm) = 10 Log [P(W)/1000 W].  
3. Rise and fall times are measured with a voltage pulse driving the transmitter driver IC (75451). A wide bandwidth optical to electrical waveform  
analyzer, terminated to a 50 input of a wide bandwidth oscilloscope, is used for this response time measurement.  
1.8  
1.75  
1.7  
5
0
1.65  
1.6  
-5  
-10  
-15  
-20  
1.55  
1.5  
-40° C  
25° C  
85° C  
-40° C  
25° C  
85° C  
1.45  
1.4  
1
10  
100  
1
10  
100  
IFdc - TRANSMITTER DRIVE CURRENT (mA)  
IFdc - TRANSMITTER DRIVE CURRENT (mA)  
Figure 7. Typical forward voltage vs. drive current  
Figure 8. Normalized typical output power vs. drive current  
10  
HFBR-25X1ETZ Receiver  
Pin #  
Function  
VO  
1
2
3
4
5
8
GROUND  
5
Ground  
VCC  
1000 Ω  
RL  
4
3
VCC  
RL  
Ground  
Ground  
GROUND  
VO  
2
1
Note: Pins 5 and 8 are for mounting and retaining purposes  
only. Do not electrically connect these pins.  
GROUND  
8
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
–40  
–40  
Max.  
+85  
+85  
260  
10  
Units  
° C  
° C  
° C  
sec  
V
Reference  
Storage Temperature  
Operating Temperature  
Lead Soldering Cycle  
TA  
Temp.  
Time  
Note 1, 3  
Note 2  
Supply Voltage  
VCC  
IOAV  
POD  
VO  
–0.5  
7
Output Collector Current  
25  
mA  
mW  
V
Output Collector Power Dissipation  
Output Voltage  
40  
–0.5  
–5  
18  
Pull-up Voltage  
VP  
VCC  
5
V
Fan Out (TTL)  
N
Notes:  
1. 1.6 mm below seating plane.  
2. It is essential that a bypass capacitor 0.1 F be connected from pin 2 to pin 3 of the receiver. Total lead length between both ends of the capacitor  
and the pins should not exceed 20 mm.  
3. Moisture sensitivity level is MSL-3  
Receiver Electrical/Optical Characteristics -40° to 85° C, 4.75 V ≤V ≤5.25 V unless otherwise specified.  
CC  
Parameter  
Input Optical Power  
Level for Logic “0”  
Symbol  
PR(L)  
Min.  
–21.6  
Typ.  
Max.  
–9.5  
Units  
dBm  
Conditions  
Ref.  
Notes 1,  
2, 4  
VOL = 0.5 V  
OL = 8 mA  
OL = 0.5 V  
OL = 8 mA, 25° C  
I
V
I
–21.6  
–8.7  
–43  
Input Optical Power  
PR(H)  
dBm  
VOL = 5.25 V  
Note 1  
Level for Logic “1”  
IOH ≤250 μA  
High Level Output Current  
Low Level Output Voltage  
IOH  
VOL  
5
0.4  
250  
0.5  
A  
V
VO = 18 V, PR = 0  
IOL = 8 mA,  
PR = PR(L)MIN  
VCC = 5.25 V,  
PR = 0  
Note 3  
Note 3  
High Level Supply  
Current  
Low Level Supply Current  
ICCH  
ICCL  
3.5  
6.2  
6.3  
10  
mA  
mA  
Note 3  
Note 3  
VCC = 5.25 V  
PR = -12.5 dBm  
Effective Diameter  
D
1
mm  
Internal Pull-up Resistor  
RL  
680  
1000  
1700  
Notes:  
1. Optical flux, P (dBm) = 10 Log [P (μW)/1000 μW].  
2. Optical power measured at the end of 1 mm diameter POF (NA = 0.5) with a large area detector.  
3. R is open.  
L
4. Pulsed LED operation at I > 80 mA will cause increased link t  
propagation delay time. This extended t  
time contributes to increased pulse  
F
PLH  
PLH  
width distortion of the receiver output signal.  
11  
1 MBd Link  
(High Performance HFBR-15X2ETZ/25X2ETZ)  
System Performance Under recommended operating conditions unless otherwise specified.  
Parameter  
Data Rate  
Symbol  
Min.  
dc  
Typ. Max. Units  
Conditions  
Ref.  
High  
1
MBd BER ≤10-9, PRBS:27-1  
Performance  
1 MBd  
Link Distance  
(Standard Cable)  
Link Distance  
(Improved Cable)  
Propagation  
Delay  
d
d
37  
m
m
m
m
ns  
ns  
I
Fdc = 60 mA  
Notes 1,  
3, 4  
58  
IFdc = 60 mA, 25° C  
IFdc = 60 mA  
43  
Notes 1,  
3, 4  
67  
IFdc = 60 mA, 25° C  
tPLH  
tPHL  
100 250  
RL = 560 , CL = 30 pF  
I = 0.5 metre  
Fig. 10, 12  
Notes 2, 4  
80  
140  
PR = -24 dBm  
Pulse Width  
tD  
20  
ns  
PR = -24 dBm  
Fig. 10, 11  
Note 4  
Distortion tPLH-tPHL  
RL = 560 , CL = 30 pF  
Notes:  
1. For I > 80 mA, the duty factor must be such as to keep I ≤80 mA. In addition, for I > 80 mA, the following rules for pulse width apply:  
FPK  
Fdc  
FPK  
I
I
≤160 mA: Pulse width ≤1 ms  
> 160 mA: Pulse width ≤1 S, period ≥20 S.  
FPK  
FPK  
2. The propagation delay for one meter of cable is typically 5 ns.  
3. Estimated typical link life expectancy at 40° C exceeds 10 years at 60 mA.  
4. Pulsed LED operation at I  
> 80 mA will cause increased link t  
propagation delay time. This extended t  
time contributes to increased  
FPK  
PLH  
PLH  
pulse width distortion of the receiver output signal.  
Figure 9. Required 1 MBd interface circuit  
The HFBR-25X2ETZ receiver cannot be overdriven when using the required  
interface circuit shown in Figure 9  
12  
Figure 10. 1 MBd propagation delay test circuit  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
X5X2ETZ -40° C  
X5X2ETZ 25° C  
X5X2ETZ 85° C  
tPLH X5X2ETZ  
tPHL X5X2ETZ  
-27  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-27  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
P
R - INPUT OPTICAL POWER - dBm  
PR - INPUT OPTICAL POWER - dBm  
Figure 11. Typical link pulse width distortion vs. optical power  
Figure 12. Typical link propagation delay vs. optical power  
Figure 13. Propagation delay test waveforms  
13  
HFBR-15X2ETZ Transmitters  
Pin #  
Function  
Anode  
1
2
3
4
5
8
8 GROUND  
5 GROUND  
Cathode  
Ground  
Ground  
Ground  
Ground  
1
ANODE  
2
CATHODE  
3
GROUND  
4
GROUND  
Note: Pins 5 and 8 are for mounting and retaining purposes  
only. Do not electrically connect these pins.  
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
–40  
–40  
Max.  
+85  
+85  
260  
10  
Units  
° C  
Reference  
Storage Temperature  
Operating Temperature  
Lead Soldering Cycle  
TA  
° C  
Temp.  
Time  
° C  
Note 1, 4  
Note 2, 3  
sec  
mA  
Forward Input Current  
Reverse Input Voltage  
IFPK  
IFdc  
VBR  
1000  
80  
5
V
Notes:  
1. 1.6 mm below seating plane.  
2. Recommended operating range between 10 and 750 mA.  
3. 1 s pulse, 20 s period.  
4. Moisture sensitivity level is MSL-3  
All HFBR15XXETZ LED transmitters are classified as IEC 825-1 Accessible Emission Limit (AEL) Class 1 based upon the current proposed  
draft scheduled to go into effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. Contact your Avago sales  
representative for more information.  
Transmitter Electrical/Optical Characteristics -40° to 85° C unless otherwise specified.  
For forward voltage and output power vs. drive current graphs.  
Parameter  
Transmitter Output  
Optical Power  
Symbol  
PT  
Min.  
–13.9  
–11.2  
Typ.  
Max.  
–4.0  
–5.1  
Units  
dBm  
Conditions  
IFdc = 60 mA  
Fdc = 60 mA, 25° C  
Ref.  
Note 1  
I
Output Optical Power  
Temperature Coefficient  
Peak Emission Wavelength  
Forward Voltage  
Forward Voltage  
Temperature Coefficient  
Effective Diameter  
Reverse Input Breakdown  
Voltage  
PT/T  
–0.85  
%/° C  
PK  
VF  
VF/T  
660  
1.67  
–1.37  
nm  
V
mV/° C  
1.43  
5.0  
2.05  
IFdc = 60 mA  
Fig. 09  
Note 2  
DT  
VBR  
1
11.0  
mm  
V
IFdc = 10 μA,  
TA = 25° C  
VF = 0, f = 1 MHz  
10% to 90%,  
IF = 60 mA  
Diode Capacitance  
Rise Time  
Fall Time  
CO  
tr  
tf  
86  
20  
20  
pF  
ns  
ns  
Note:  
1. Optical power measured at the end of 0.5 m of 1 mm diameter POF (NA = 0.5) with a large area detector.  
2. Rise and fall times are measured with a voltage pulse driving the transmitter driver IC (75451). A wide bandwidth optical to electrical waveform  
analyzer, terminated to a 50 input of a wide bandwidth oscilloscope, is used for this response time measurement.  
14  
HFBR-25X2ETZ Receivers  
Pin #  
Function  
VO  
1
2
3
4
5
8
GROUND  
5
Ground  
VCC  
1000 Ω  
RL  
4
3
VCC  
RL  
GROUND  
VO  
Ground  
Ground  
2
1
Note: Pins 5 and 8 are for mounting and retaining purposes  
only. Do not electrically connect these pins.  
GROUND  
8
Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
TA  
Min.  
–40  
–40  
Max.  
+85  
+85  
260  
10  
7
25  
40  
18  
Units  
° C  
° C  
° C  
sec  
V
mA  
mW  
V
Reference  
Storage Temperature  
Operating Temperature  
Lead Soldering Cycle  
Temp.  
Time  
Note 1, 3  
Note 2  
Supply Voltage  
Output Collector Current  
Output Collector Power Dissipation  
Output Voltage  
Pull-up Voltage  
VCC  
IOAV  
POD  
VO  
VP  
N
–0.5  
–0.5  
–5  
VCC  
5
V
Fan Out (TTL)  
Notes:  
1. 1.6 mm below seating plane.  
2. It is essential that a bypass capacitor 0.1 F be connected from pin 2 to pin 3 of the receiver. Total lead length between both ends of the capacitor  
and the pins should not exceed 20 mm.  
3. Moisture sensitivity level is MSL-3  
Receiver Electrical/Optical Characteristics -40° to 85° C, 4.75 V ≤V ≤5.25 V unless otherwise specified.  
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Ref.  
Receiver Optical Input  
Power Level Logic 0  
Optical Input Power  
Level Logic 1  
PR(L)  
–24  
-9.5  
dBm  
VOL 0.5 V  
OL = 8 mA  
VOH = 5.25 V  
OH = ≤250 μA  
Notes 1, 2, 3  
I
PR(H)  
-43  
dBm  
Note 4  
I
High Level Output Current  
Low Level Output Voltage  
IOH  
VOL  
5
0.4  
250  
0.5  
A  
V
VO = 18 V, PR = 0  
IOL = 8 mA  
Note 5  
Note 5  
PR = PR(L)MIN  
VCC = 5.25 V,  
PR = 0  
VCC = 5.25 V,  
PR = -12.5 dBm  
High Level Supply Current  
Low Level Supply Current  
ICCH  
ICCL  
3.5  
6.2  
6.3  
10  
mA  
mA  
Note 5  
Note 5  
Effective Diameter  
D
1
mm  
Internal Pull-up Resistor  
RL  
680  
1000  
1700  
Notes:  
1. Optical power measured at the end of 1 mm diameter POF (NA = 0.5) with a large area detector.  
2. Pulsed LED operation at I > 80 mA will cause increased link t  
propagation delay time. This extended t  
time contributes to increased pulse  
F
PLH  
PLH  
width distortion of the receiver output signal.  
3. The LED drive circuit of Figure 11 is required for 1 MBd operation of the HFBR-25X2ETZ.  
4. Optical flux, P (dBm) = 10 Log [P(W)/1000 W].  
5. R is open.  
L
15  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.  
AV02-3283EN - February 23, 2012  

相关型号:

HFBR-3810MSZ

650 nm Fiber Optics Link for DC to 10Mbaud
AVAGO

HFBR-3810Z

650 nm Fiber Optics Link for DC to 10Mbaud
AVAGO

HFBR-4202

Optoelectronic Device
AGILENT

HFBR-4501

Plastic Optical Fiber Cable and Accessories for Versatile Link
AGILENT

HFBR-4501

Plastic Optical Fiber Cable and Accessories for Versatile Link Telecommunications switching systems
AVAGO

HFBR-4501B

Optical Networking Connector, Multi Mode, Simplex
AGILENT

HFBR-4501Z

Plastic Optical Fiber Cable and Accessories for Versatile Link
AVAGO

HFBR-4501Z

Fiber Optic Networking Connector, Multi Mode, Simplex
FOXCONN

HFBR-4503

Plastic Optical Fiber Cable and Accessories for Versatile Link
AGILENT

HFBR-4503

Plastic Optical Fiber Cable and Accessories for Versatile Link Telecommunications switching systems
AVAGO

HFBR-4503B

Optical Networking Connector, Multi Mode, Simplex
AGILENT

HFBR-4503Z

Plastic Optical Fiber Cable and Accessories for Versatile Link
AVAGO