HFBR-57E0PZ-XXX [FOXCONN]

FIBER OPTIC TRANSCEIVER,MODULE;
HFBR-57E0PZ-XXX
型号: HFBR-57E0PZ-XXX
厂家: FOXCONN    FOXCONN
描述:

FIBER OPTIC TRANSCEIVER,MODULE

文件: 总17页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFBR-57E0LZ/ALZ/PZ/APZ  
Multimode Small Form Factor PluggableTransceivers with LC  
connector for ATM, FDDI, Fast Ethernet and SONET OC-3/SDH STM-1  
Datasheet  
Description  
Features  
The HFBR-57E0 Small Form Factor Pluggable LC RoHScompliant  
transceivers provide the system designer with a  
Full compliance with ATM Forum UNI SONET OC-3  
product to implement a range of solutions for  
multimode fiber Fast Ethernet and SONET OC-3  
(SDH STM-1) physical layers for ATM and other  
services.  
multimode fiber physical layer specification  
Full compliance with the optical performance  
requirements of the FDDI PMD Standard  
Full compliance with the optical performance  
requirementsof100Base-FXversionofIEEE802.3u  
Industry standard Small Form Pluggable (SFP) package  
LCduplexconnectoropticalinterface  
Operates with 62.5/125 µm and 50/125 µm multimode  
fiber  
This transceiver operates at a nominal wavelength  
of1300nmwithanLCfiberconnectorinterfacewith  
an external connector shield (HFBR-57E0).  
TransmitterSection  
The transmitter section of the HFBR-57E0 utilizes  
a 1300 nm InGaAsP LED. This LED is packaged in  
the optical subassemblyportionofthe transmitter  
section. It is driven by a custom silicon IC which  
converts differential PECL logic signals, ECL  
referenced (shifted) to a +3.3 V supply, into an  
analog LED drive current.  
Single +3.3 V power supply  
+3.3 V TTL LOS output  
Receiveroutputsaresquelchenabled  
Manufactured in an ISO 9001 certified facility  
Temperaturerange:  
0 °C to +70° C  
-40 °C to +85 °C  
HFBR-57E0LZ/PZ:  
HFBR-57E0ALZ/APZ:  
ReceiverSection  
Bailde-latchoption  
The receiver section of the HFBR-57E0 utilizes an  
InGaAsPINphotodiodecoupledtoacustomsilicon  
transimpedance preamplifier IC. It is packaged in  
the optical subassembly portion of the receiver.  
Applications  
OC-3 SFP transceivers are designed for ATM LAN and  
WAN applications such as:  
ATMswitchesandrouters  
SONET/SDHswitchinfrastructure  
This PIN/preamplifier combination is coupled to a  
custom quantizer IC which provides the final pulse  
shaping for the logic output and the Loss of Signal Multimode fiber ATM backbone links  
(LOS) function. The data output is differential. The  
FastEthernet  
data output is PECL compatible, ECL referenced  
(shifted) to a +3.3 V power supply. This circuit also  
includes a loss of signal (LOS) detection circuit  
which provides an open collector logic high output  
in the absence of a usable input optical signal. The  
LOS output is +3.3 V TTL.  
Loss of Signal  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VEET  
TD-  
The Loss of Signal (LOS) output indicates that the  
optical input signal to the receiver does not meet  
the minimum detectablelevel for FDDI and OC-3  
compliantsignals.WhenLOSishighitindicatesloss  
of signal. When LOS is low it indicates normal  
operation. The LOS thresholds are set to indicate a  
definiteopticalfaulthasoccurred(e.g.,disconnected  
or broken fiber connection to receiver, failed  
transmitter).  
1
2
VEET  
NC**  
TD+  
VEET  
3
Tx Disable  
MOD-DEF(2)  
MOD-DEF(1)  
MOD-DEF(0)  
NC  
4
VCCT  
5
VCCR  
6
VEER  
RD+  
RD-  
7
8
LOS  
ModulePackage  
The transceiver meets the Small Form Pluggable  
(SFP) industry standard package utilizing an  
integralLCduplexopticalinterfaceconnector. The  
hot-pluggable capability of the SFP package allows  
the module to be installed at any time – even with  
the host system operating and on-line. This allows  
for system configuration changes or maintenance  
without system down time. The HFBR-57E0 uses a  
reliable 1300 nm LED source and requires a 3.3 V  
dc power supply for optimal design.  
9
VEER  
VEER  
10  
VEER  
BOTTOM OF BOARD  
TOP OF BOARD  
(AS VIEWED THROUGH TOP OF BOARD)  
** Connect to Internal Ground.  
Figure 2. Connection diagram of module printed circuit board.  
host equipment is operating or not. The module is  
simply inserted, electrical interface first, under  
fingerpressure.Controlledhot-pluggingisensured  
by design and by 3-stage pin sequencing at the  
electrical interface. The module housing makes  
initial contact with the host board EMI shield  
mitigating potential damage due to Electro-Static  
Discharge(ESD).The3-stagepincontactsequencing  
involves (1) Ground, (2) Power, and then (3) Signal  
pins, making contact with the host board surface  
mount connector in that order. This printed circuit  
board card-edge connector is depicted in Figure 2.  
ModuleDiagrams  
Figure1illustratesthemajorfunctionalcomponents  
of the HFBR-57E0. The connection diagram of the  
moduleisshowninFigure2. Figures5and7depict  
the external configuration and dimensions of the  
module.  
Installation  
TheHFBR-57E0canbeinstalledinorremovedfrom  
any MultiSource Agreement (MSA) – compliant  
SmallFormPluggableportregardlessofwhetherthe  
OPTICAL INTERFACE  
RECEIVER  
ELECTRICAL INTERFACE  
RD+ (Receive Data)  
Amplification &  
Quantizattion  
Light from Fiber  
Photodetector  
RD- (Receive Data)  
Loss of Signal  
TRANSMITTER  
TD+ (Transmit Data)  
TD- (Transmit Data)  
Light to Fiber  
LED  
LED DRIVER  
TX Disable  
MOD-DEF2  
MOD-DEF1  
MOD-DEF0  
EEPROM  
Figure 1. Transceiver functional diagram  
2
SerialIdentification(EEPROM)  
ElectrostaticDischarge(ESD)  
TheHFBR-57E0complieswiththeindustrystandard TherearetwoconditionsinwhichimmunitytoESD  
MSA that defines the serial identification protocol. damage is important. Table 1 documents our  
Thisprotocolusesthe2-wireserialCMOSE2PROM immunity to both of these conditions. The first  
protocol of the ATMEL AT24C01A or equivalent. conditionisduringhandlingofthetransceiverprior  
The contents of the HFBR-57E0 serial ID memory toinsertionintothetransceiverport.Toprotectthe  
are defined in Table 3 as specified in the SFP MSA. transceiver, it is important to use normal ESD  
handling precautions.  
FunctionalDataI/O  
The HFBR-57E0 fiberoptic transceiver is designed These precautions include using grounded wrist  
to accept industry standard differential signals. In straps, workbenches, and floor mats in ESD  
order to reduce the number of passive components controlled areas. The ESD sensitivity of the HFBR-  
required on the customer’s board, Avago has 57E0iscompatiblewithtypicalindustryproduction  
included the functionality of the transmitter bias environments. The second condition is static  
resistorsandcouplingcapacitorswithinthefiberoptic discharges to the exterior of the host equipment  
module. The transceiver is compatible with an “ac- chassis after installation. To the extent that the  
coupled”configurationandisinternallyterminated. duplexLCopticalinterfaceisexposedtotheoutside  
Figure 5 depicts the functional diagram of the of the host equipment chassis, it may be subject to  
HFBR-57E0.  
system-levelESDrequirements.TheESDperformance  
oftheHFBR-57E0exceedstypicalindustrystandards.  
RegulatoryCompliance  
See Table 1 for transceiver Regulatory Compliance Immunity  
performance. The overall equipment design will EquipmenthostingtheHFBR-57E0moduleswillbe  
determine the certification level. The transceiver subjectedtoradio-frequencyelectromagneticfields  
performanceisofferedasafigureofmerittoassist insomeenvironments.Thesetransceivershavegood  
the designer.  
immunitytosuchfieldsduetotheirshieldeddesign.  
Table1. RegulatoryCompliance  
Feature  
Test Method  
Performance  
Electrostatic Discharge (ESD)  
to the Electrical Pins  
MIL-STD-883C  
Meets Class 2 (2000 to 3999 Volts).  
Withstand up to 2200 V applied between electrical pins.  
Electrostatic Discharge (ESD)  
to the Duplex LC Receptacle  
Variation of IEC 61000-4-2  
Typically withstand at least 25 kV without damage when  
the LC connector receptacle is contacted by a Human  
Body Model probe.  
Electromagnetic Interference (EMI)  
FCC Class B  
System margins are dependent on customer board and  
chassis design.  
CENELEC CEN55022  
Class B (CISPR 21)  
VCCI Class 1  
Immunity  
Variation of IEC 61000-4-3  
Typically shows a negligible effect from a 10 V/m field  
swept from 80 to 450 MHz applied to the transceiver  
without a chassis enclosure.  
Eye Safety  
AEL Class 1  
EN60825-1 (+A11)  
Compliant per Avago testing under single fault conditions.  
TUV Certification: R 72042022  
Component Recognition  
Underwriters Laboratories and Canadian  
Standard Associations Joint Component  
Recognition for Information Technology  
Equipment Including Electrical Business  
Equipment  
UL File#: E173874  
3
ElectromagneticInterference(EMI)  
OrderingInformation  
Most equipment designs utilizing these high-speed The HFBR-57E0 1300 nm product is available for  
transceiversfromAvagowillberequiredtomeetthe production orders through the Avago Component  
requirementsofFCCintheUnitedStates,CENELEC Field Sales Offices and Authorized Distributors  
EN55022 (CISPR 22) in Europe and VCCI in Japan. worldwide.  
ThemetalhousingandshieldeddesignoftheHFBR- For technical information regarding this product,  
57E0 minimize the EMI challenge facing the host pleasevisittheAvagowebsiteatwww.avagotech.com.  
equipment designer. These transceivers provide  
Use the quick search feature to search for this part  
superior EMI performance. This greatly assists the  
number. You may also contact the Avago Products  
designer in the management of the overall system  
Customer Response Centre.  
EMI performance.  
ApplicationsSupportMaterials  
Eye Safety  
Contact your local Avago Component Field Sales  
These transceivers provide Class 1 eye safety by  
OfficeforinformationonhowtoobtainPCBlayouts  
design. Avago has tested the transceiver design for  
and evaluation boards for the transceivers.  
compliance with the requirements listed in Table 1  
200  
under normal operating conditions and under a  
single fault condition.  
3.0  
180  
1.0  
Flammability  
The HFBR-57E0 transceiver housing is made of  
160  
1.5  
metal and high strength, heat resistant, chemically  
resistant, and UL 94V-0 flame retardant plastic.  
140  
2.0  
tr/f – TRANSMITTER  
2.5  
ShippingContainer  
OUTPUT OPTICAL RISE/  
120  
FALL TIMES – ns  
Thetransceiverispackagedinashippingcontainer  
designed to protect it from mechanical and ESD  
damage during shipment or storage.  
3.0  
100  
1260  
1280  
1300  
1320  
1340  
1360  
λ
C – TRANSMITTER OUTPUT OPTICAL RISE/FALL  
TIMES – ns  
TransceiverOpticalPowerBudgetversusLinkLength  
OpticalPowerBudget(OPB)istheavailableoptical  
power for a fiberoptic link to accommodate fiber  
cable loses plus losses due to in-line connectors,  
splices, optical switches, and to provide margin for  
link aging and unplanned losses due to cable plant  
reconfiguration or repair.  
HFBR-57E0 TRANSMITTER TEST RESULTS  
OF λ , ∆λ AND tr/f ARE CORRELATED AND COMPLY  
C
WITH THE ALLOWED SPECTRAL WIDTH AS A FUNCTION  
OF CENTER WAVELENGTH FOR VARIOUS RISE AND  
FALL TIMES.  
Figure 3. Transmitter Output Optical Spectral Width (FWHM) vs.  
Transmitter Output Optical Center Wavelength and Rise/Fall Times  
6
5
4
3
2
1
0
Avago LED technology has produced 1300 nm LED  
devices with lower aging characteristics than  
normally associated with these technologies in the  
industry. The industry convention is 1.5 db aging  
for 1300 nm LEDs. The 1300 nm Avago LEDs are  
specified to experience less than 1 db of aging over  
normalcommercialequipmentmissionlifeperiods.  
ContactyourAvagosalesrepresentativeforadditional  
details.  
-3  
-2  
-1  
0
1
2
3
EYE SAMPLING TIME POSITION (ns)  
CONDITIONS:  
1. TA = +25 C  
2. VCC= 3.3 V dc  
3. INPUT OPTICAL RISE/FALL TIMES = 1.0/2.1 ns.  
4. INPUT OPTICAL POWER IS NORMALIZED TO  
CENTER OF DATA SYMBOL.  
5. NOTE 13 AND 14 APPLY.  
Figure 4. Relative Input Optical Power vs. Eye Sampling Time Position  
4
1 µH  
1 µH  
3.3 V  
10 µF  
0.1 µF  
0.1 µF  
3.3 V  
VccT  
4.7 K to 10 K  
HFBR-57E0  
Tx Dis  
3.3 V  
82  
82  
0.1 µF  
TD+  
50  
50  
SO+  
LED DRIVER  
& SAFETY  
CIRCUITRY  
TD–  
SO–  
TX GND  
0.1 µF  
130  
VccR  
130 W  
3.3 V  
4.7 K to 10 K  
SerDes  
0.1  
µF  
PROTOCOL  
IC  
10 µF  
130  
130  
0.1 µF  
RD+  
50  
50  
SI+  
SI–  
AMPLIFICATION  
RD–  
&
QUANTIZATION  
0.1 µF  
82  
Rx_LOS  
RX GND  
Rx_LOS  
82  
MOD_DEF2  
MOD_DEF1  
MOD_DEF0  
GPIO(X)  
GPIO(X)  
GP14  
EEPROM  
4.7 K to 4.7 K to  
10 K 10 K  
4.7 K to  
10 K  
3.3 V  
Figure 5. Recommended application configuration  
1 µH  
1 µH  
VCC  
T
0.1 µF  
0.1 µF  
VCCR  
3.3 V  
10 µF  
0.1 µF  
10 µF  
SFP MODULE  
HOST BOARD  
Note: Inductors must have less than 1 ohm series resistance per MSA.  
Figure 6. MSA required power supply filter  
5
Table 2. Pin Description  
Pin  
Name  
Function/Description  
MSA Notes  
1
VEET  
Transmitter Ground  
2
NC  
NC  
1
3
Tx Disable  
MOD-DEF2  
MOD-DEF1  
MOD-DEF0  
NC  
Transmitter Disable- Module disables on high or open  
Module Definition 2 - Two Wire Serial ID Interface  
Module Definition 1 - Two Wire Serial ID Interface  
Module Definition 0 - grounded in module  
NC  
4
2
2
2
5
6
7
8
LOS  
Loss of Signal - high indicates loss of signal  
Receiver Ground  
3
9
VEER  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VEER  
Receiver Ground  
VEER  
Receiver Ground  
RD-  
Inverse Received Data Out  
Received Data Out  
4
4
RD+  
VEER  
Receiver Ground  
V
V
CCR  
Receiver Power -3.3 V 10%  
Transmitter Power -3.3 V 10%  
Transmitter Ground  
5
5
CCT  
VEET  
TD+  
TD-  
Transmitter Data In  
6
6
Inverse Transmitter Data In  
Transmitter Ground  
VEET  
Notes:  
1. Pin2connectedtointernalground.  
2. Mod-Def 0, 1, 2. are the module definition pins. They should be pulled up with a 4.7 K - 10 KW resistor on the host board to a supply less than V T +0.3  
CC  
V or V R +0.3 V.  
CC  
Mod-Def 0 is grounded by the module to indicate that the module is present.  
Mod-Def 1 is clock line of two wire serial interface for optional serial ID.  
Mod-Def 2 is data line of two wire serial interface for optional serial ID.  
3. LOS (Loss of Signal) is an open collector/drain output which should be pulled up externally with a 4.7 - 10 KW resistor on the host board to a supply <  
V
T, R +0.3 V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in  
CC  
use). Low indicates normal operation. In the low state, the output will be pulled to <0.8 V.  
4. RD-/+: These are the differential receiver outputs. They are ac coupled 100 W differential lines which should be terminated with 100 W differential at  
the SERDES. The ac coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between  
400 and 2000 mV differential (200 - 1000 mV single ended) when properly terminated.  
5.  
V R and V T are the receiver and transmitter power supplies. They are defined as 2.97 - 3.63 V at the SFP connector pin. The maximum supply  
CC CC  
current is 230 mA and the associated in-rush current will typically be no more than 30 mA above steady state after 500 nanoseconds.  
6. TD-/+: These are the differential transmitter inputs. They are ac coupled differential lines with 100Wdifferential termination inside the module. The  
ac coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 400 - 2000 mV  
(200 - 1000 mV single ended), though it is recommended that values between 400 and 1200 mV differential (200 - 600 mV single ended) be used for  
best EMI performance. These levels are compatible with CML and LVPECL voltage swings.  
6
Table 3. EEPROM Serial ID Memory Contents  
Add  
Hex  
ASCII  
Add  
Hex  
ASCII  
Add  
Hex  
ASCII  
Add  
Hex  
ASCII  
0
1
2
3
4
5
03  
04  
07  
00  
00  
40  
41  
42  
43  
44  
45  
48  
46  
42  
52  
2D  
35  
H
F
68  
69  
70  
71  
72  
73  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
96  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
97  
B
R
-
98  
99  
100  
101  
01  
5
Note 6  
6
20  
46  
37  
7
74  
Note 1  
102  
Note 5  
Note 6  
7
8
9
00  
00  
00  
47  
48  
49  
45  
30  
E
0
75  
76  
77  
Note 1  
Note 1  
Note 1  
103  
104  
105  
Note 5  
Note 5  
Note 5  
41  
A
Note 4  
10  
11  
12  
13  
00  
50  
51  
52  
53  
50  
Note 4  
P
Z
78  
79  
80  
81  
Note 1  
Note 1  
Note 1  
Note 1  
106  
107  
108  
109  
Note 5  
Note 5  
Note 5  
Note 5  
03  
Note 7  
5A  
Note 4  
02  
Note 8  
20  
Note 4  
00  
20  
Note 4  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
00  
00  
C8  
C8  
00  
00  
41  
47  
49  
4C  
45  
4E  
54  
20  
20  
20  
20  
20  
20  
20  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
20  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Note 1  
Note 1  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
00  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
20  
30  
0
0
0
0
30  
30  
30  
A
G
I
05  
1E  
00  
L
Note 3  
00  
E
N
T
12  
00  
00  
00  
00  
Note 3  
7
Table 3. EEPROM Serial ID Memory Contents (continued)  
Add  
34  
Hex  
20  
ASCII  
Add  
Hex  
ASCII  
Add  
Hex  
ASCII  
Add  
Hex  
ASCII  
35  
20  
36  
00  
37  
00  
38  
30  
39  
D3  
Notes:  
1. Addresses 68 - 83 specify a unique identifier.  
2. Addresses 84 - 91 specify the date code.  
3. Addresses 63 and 95 are check sums. Address 63 is the check sum for bytes 0 - 62 and address 95 is the check sum for bytes 64 - 94.  
4. Part number options LZ, PZ, ALZ, APZ, etc. Example: for "AP" option, hexes in addresses 49, 50, 51, 52 and 52 will be 41, 50, 5A, 20 and 20  
respectively.  
5. Addresses 96-127 are vendor specific data.  
6. Addresses 5 and 6 specify compliance code. Address 5 with Hex 01 for OC-3 and address 6 with Hex 20 for Fast Ethernet.  
7. Address 11 specifies encoding code. Hex 03 for OC-3 and Hex 02 for Fast Ethernet.  
8. Address 12 specifies bit rate. Hex 02 for OC-3 and Hex 01 for Fast Ethernet.  
8
AGILENT HFBR-57E0xxZ  
YYWW  
Country of Origin  
Tcase Reference Point  
13.8 0.1  
[0.541 0.004ꢀ  
13.4 0.1  
[0.528 0.004ꢀ  
DEVICE SHOWN WITH  
DUST CAP AND BAIL  
WIRE DELATCH  
2.60  
[0.10ꢀ  
55.2 0.2  
[2.17 0.01ꢀ  
FRONT EDGE OF SFP  
TRANSCEIVER CAGE  
0.7MAX. UNCOMPRESSED  
[0.028ꢀ  
6.25 0.05  
[0.246 0.002ꢀ  
13.0 0.2  
[0.512 0.008ꢀ  
8.5 0.1  
[0.335 0.004ꢀ  
TX  
RX  
AREA  
FOR  
PROCESS  
PLUG  
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
6.6  
[0.261ꢀ  
13.50  
[0.53ꢀ  
14.8MAX. UNCOMPRESSED  
[0.583ꢀ  
Figure 7. Module Drawing  
9
X
Y
34.5  
10  
3x  
7.2  
7.1  
10x 1.05 0.01  
0.1 L X A  
S
2.5  
0.85 0.05  
16.25  
MIN. PITCH  
1
Y
0.1 S X  
1
2.5  
B
A
PCB  
EDGE  
3.68  
5.68  
20  
PIN 1  
8.58  
8.48  
2x 1.7  
11.08  
14.25  
11.93  
16.25  
REF .  
9.6  
4.8  
11  
10  
SEE DET AIL 1  
9x 0.95  
0.05  
2.0  
11x  
0.1 L X A S  
11x 2.0  
5
26.8  
2
10  
3x  
3
41.3  
42.3  
5
3.2  
20x 0.5  
0.03  
0.9  
0.06 L A S B S  
LEGEND  
20  
PIN 1  
10.53  
10.93  
1. PADS AND VIAS ARE CHASSIS GROUND  
2. THR OUGH HOLES, PLATING OPTIONAL  
11.93  
9.6  
0.8  
TYP .  
11  
10  
3. HATCHED AREA DENOTES COMPONENT  
AND TRACE KEEPOUT (EXCEPT  
CHASSIS GROUND)  
4
4. AREA DENOTES COMPONENT  
KEEPOUT (TRACES ALLOWED)  
2
0.005 TYP .  
0.06 A S B S  
2x 1.55  
0.05  
L
0.1 L A S B S  
DET AIL 1  
DIMENSIONS ARE IN MILLIMETERS  
Figure 8. SFP host board mechanical layout  
10  
1.7 0.9  
[.07 .04ꢀ  
3.5 0.3  
[.14 .01ꢀ  
41.73 0.5  
[1.64 .02ꢀ  
PCB  
AREA  
FOR  
BEZEL  
PROCESS  
PLUG  
15MAX  
.59  
Tcase REFERENCE POINT  
CAGE  
ASSEMBLY  
15.25 0.1  
[.60 0.004ꢀ  
10.4 0.1  
[.41 0.004ꢀ  
12.4REF  
.49  
10REF  
1.15REF  
9.8MAX  
.39  
.39  
TO PCB  
.05  
BELOW PCB  
16.25 0.1MIN PITCH  
[.64 0.004ꢀ  
0.4 0.1  
[.02 0.004ꢀ  
BELOW PCB  
MSA-SPECIFIED BEZEL  
DIMENSIONS ARE IN MILLIMETERS [INCHESꢀ.  
Figure 9. SFP Assembly Drawing  
11  
AbsoluteMaximumRatings  
Stresses in excess of the absolute maximum ratings can cause catastrophic damage to the device. Limits apply to each  
parameter in isolation, all other parameters having values within the recommended operating conditions. It should not be  
assumed that limiting values of more than one parameter can be applied to the product at the same time. Exposure to the  
absolute maximum ratings for extended periods can adversely affect device reliability.  
Parameter  
Symbol  
Minimum  
Typical  
Maximum Units  
Notes  
Storage Temperature  
TS  
-40  
+100  
3.63  
VCC  
°C  
Supply Voltage  
VCC  
VI  
-0.5  
-0.5  
V
Data Input Voltage  
Differential Input Voltage (p-p)  
Output Current  
V
VD  
IO  
2.4  
V
1
50  
mA  
RecommendedOperatingConditions  
Parameter  
Symbol  
Minimum  
Typical  
Maximum Units  
Notes  
Case Operating Temperature  
HFBR-57E0LZ/PZ  
TC  
0
+70  
+85  
3.63  
°C  
°C  
V
HFBR-57E0ALZ/APZ  
TC  
-40  
2.97  
Supply Voltage  
VCC  
3.3  
0.8  
Data Input: Transmitter Differential Input Voltage VI  
(TD+/-)  
0.5  
2.4  
V
W
Data and Loss of Signal Output Load  
RL  
50  
2
TransmitterElectricalCharacteristics  
HFBR-57E0LZ/PZ (T = 0 ºC to +70 ºC, V = 2.97 V to 3.63 V)  
C
CC  
HFBR-57E0ALZ/APZ (T = -40 ºC to +85 ºC, V = 2.97 V to 3.63 V)  
C
CC  
Parameter  
Symbol  
Minimum  
Typical  
Maximum Units  
Notes  
Supply Current  
ICC  
165  
210  
0.80  
3.5  
0.8  
mA  
W
V
3
Power Dissipation  
PDISS  
VIH  
0.55  
5a  
Transmitter Disable (TX Disable) High  
Transmitter Disable (TX Disable) Low  
2.0  
0
VIL  
V
12  
ReceiverElectricalCharacteristics  
HFBR-57E0LZ/PZ (T = 0 ºC to +70 ºC, V = 2.97 V to 3.63 V)  
C
CC  
HFBR-57E0ALZ/APZ (T = -40 ºC to +85 ºC, V = 2.97 V to 3.63 V)  
C
CC  
Parameter  
Symbol  
Minimum  
Typical  
Maximum Units  
Notes  
Supply Current  
ICC  
95  
150  
0.55  
2.0  
mA  
W
V
4
Power Dissipation  
PDISS  
0.35  
5b  
Data Output: Receiver Differential Output Voltage VO  
(RD+/-)  
Data Output Rise Time  
0.4  
6a  
6b  
7
tr  
0.35  
0.35  
2.2  
2.2  
0.8  
ns  
ns  
V
Data Output Fall Time  
tf  
7
Loss of Signal Output Voltage - Low  
Loss of Signal Output Voltage - High  
Power Supply Noise Rejection  
LOSVOL  
LOSVOH  
PSNR  
6a  
6a  
2.0  
V
50  
mV  
TransmitterOpticalCharacteristics  
HFBR-57E0LZ/PZ(T = 0 ºC to +70 ºC, V = 2.97 V to 3.63 V)  
C
CC  
HFBR-57E0ALZ/APZ (T = -40 ºC to +85 ºC, V = 2.97 V to 3.63 V)  
C
CC  
Parameter  
Output Optical Power  
Symbol  
PO  
Minimum  
-19  
Typical  
-15.7  
Maximum Units  
Notes  
8
BOL  
-14  
dBm avg  
62.5/125 µm, NA = 0.275 Fiber EOL  
-20  
Output Optical Power  
BOL  
EOL  
PO  
-22.5  
-14  
dBm avg  
8
50/125 µm, NA = 0.20 Fiber  
Transmitter Disable (High)  
-23.5  
PO(off)  
lC  
-45  
dBm  
nm  
Center Wavelength  
1270  
1308  
1380  
21, Figure 3  
Dl  
Spectral Width - FWHM  
Spectral Width - RMS  
Optical Rise Time  
147  
63  
nm  
9, 21  
Figure 3  
10, 21  
tr  
tf  
0.6  
0.6  
1.2  
3.0  
3.0  
ns  
ns  
Figure 3  
10, 21  
Optical Fall Time  
2.0  
Figure 3  
Systematic Jitter Contributed by the Transmitter  
OC-3  
SJ  
0.25  
0.20  
0.07  
1.2  
0.6  
0.6  
ns p-p  
ns p-p  
ns p-p  
ns p-p  
11a  
11b  
11c  
Duty Cycle Distortion Contributed by the Transmitter  
FE  
DCD  
DDJ  
RJ  
Data Dependen t Jitter Contributed by the  
Transmitter FE  
Random Jitter Contributed by the Transmitter  
OC-3  
FE  
0.10  
0.10  
0.52  
0.69  
12a  
12b  
13  
ReceiverOpticalandElectricalCharacteristics  
HFBR-57E0LZ /PZ(T = 0 ºC to +70 ºC, V = 2.97 V to 3.63 V)  
C
CC  
HFBR-57E0ALZ/APZ (T = -40 ºC to +85 ºC, V = 2.97 V to 3.63 V)  
C
CC  
Parameter  
Symbol  
Minimum  
Typical  
Maximum Units  
Notes  
Input Optical Power minimum at Window Edge  
OC-3  
PIN MIN (W)  
-30  
-31  
dBm avg  
13a, Figure 4  
13b  
FE  
Input Optical Power at Eye Center  
OC-3  
PIN MIN (C)  
-31  
dBm avg  
14a, Figure 4  
14b  
FE  
-31.8  
Input Optical Power Maximum  
OC-3  
PIN MAX  
-14  
dBm avg  
nm  
13a  
13b  
FE  
-14  
1270  
l
Operating Wavelength  
1380  
Systematic Jitter Contributed by the Receiver  
OC-3  
SJ  
0.11  
0.08  
0.02  
1.2  
0.4  
1.0  
ns p-p  
ns p-p  
ns p-p  
ns p-p  
15a  
15b  
15c  
Duty Cycle Distortion Contributed by the Receiver  
FE  
DCD  
DDJ  
RJ  
Data Dependent Jitter Contributed by the Receiver  
FE  
Random Jitter Contributed by the Receiver  
OC-3  
0.14  
0.14  
1.91  
2.14  
16a  
16b  
FE  
Loss of Signal - Deasserted  
OC-3  
PA  
PD + 1.5 dB  
-31  
-33  
dBm avg  
17  
18  
FE  
Loss of Signal - Asserted  
PD  
-45  
1.5  
0
dBm avg  
Loss of Signal - Hysteresis  
PA - PD  
dB  
µs  
µs  
Loss of Signal Deassert Time (on to off)  
Loss of Signal Assert Time (off to on)  
2
5
100  
350  
19  
20  
0
14  
Notes:  
13a. This specification is intended to indicate the performance of the receiver  
sectionofthetransceiverwhenInputOpticalPowersignalcharacteristics  
arepresentperthefollowingdefinitions.TheInputOpticalPowerdynamic  
rangefromtheminimumlevel(withawindowtime-width)tothemaximum  
level is the range over which the receiver is guaranteed to provide output  
1. This is the maximum voltage that can be applied across the Differential  
Transmitter Data Inputs to prevent damage to the input ESD protection  
circuit.  
2. The data outputs are terminated with 50W.  
The Loss of Signal output is terminated with 50 W connected to a pull-up  
-10.  
data with a Bit Error Rate (BER) better than or equal to 1 x 10  
resistor of 4.7 KW tied to V  
.
-
-
-
At the Beginning of Life (BOL)  
CC  
3. Thepowersupplycurrentneededtooperatethetransmitterisprovidedto  
differentialECLcircuitry.Thiscircuitrymaintainsanearlyconstantcurrent  
flow from the power supply. Constant current operation helps to prevent  
unwantedelectricalnoisefrombeinggeneratedandconductedoremitted  
toneighboringcircuitry.  
4. This is the receiver supply current measured in mA.  
5a. The power dissipation of the transmitter is calculated as the sum of the  
products of supply voltage and current.  
5b. The power dissipation of the receiver is calculated as the sum of the  
products of supply voltage and currents, minus the sum of the products  
oftheoutputvoltagesandcurrents.  
6a. DifferentialOutputVoltageisinternallyaccoupled. TheLossofSignallow  
andhighvoltagesaremeasuredwithloadconditionasmentionedinnote  
2.  
6b. Data and Data-bar outputs are squelched at LOS assert level. When the  
receivedlight dropsbelowLOSassertpoint,itwillforcereceiverdataand  
data-bar to go to steady PECL levels High and Low respectively.  
7. The data output rise and fall times are measured between 20% and 80%  
levels.  
Over the specified operating temperature and voltage ranges  
23  
Input is a 155.52 MBd, 2 -1 PRBS data pattern with 72 “1” s and 72  
“0”s inserted per the CCITT (now ITU-T) recommendation G.958  
Appendix I.  
-
-
Receiver data window time-width is 1.23 ns or greater for the clock  
recoverycircuittooperatein.Theactualtestdatawindowtime-widthis  
settosimulatetheeffectofworstcaseopticalinputjitterbasedonthe  
transmitterjittervaluesfromthespecificationtables.Thetestwindow  
time-width is 3.32 ns.  
Transmitteroperatingwitha155.52MBd,77.5MHzsquare-wave,input  
signal to simulate any cross-talk present between the transmitter and  
receiver sections of the transceiver.  
13b. This specification is intended to indicate the performance of the receiver  
sectionofthetransceiverwhenInputOpticalPowersignalcharacteristics  
arepresentperthefollowingdefinitions.TheInputOpticalPowerdynamic  
rangefromtheminimumlevel(withawindowtime-width)tothemaximum  
level is the range over which the receiver is guaranteed to provide output  
data with a Bit Error Rate (BER) better than or equal to 2.5 x 10  
• At the Beginning of Life (BOL)  
-10  
.
8. Theseopticalpowervaluesaremeasuredwiththefollowingconditions:  
The Beginning of Life (BOL) to the End of Life (EOL) optical power  
degradation is typically 1.5 dB per the industry convention for long  
wavelength LEDs. The actual degradation observed in Avago’s 1300 nm  
LED products is < 1 dB, as specified in this data sheet. Over the specified  
operating voltage and temperature ranges. With 25 MBd (12.5 MHz  
square-wave),inputsignal.  
• Over the specified operating temperature and voltage ranges  
• Input symbol pattern is the FDDI test pattern defined in FDDI PMD  
Annex A.5 with 4B/5B NRZI encoded data that contains a duty cycle  
base-linewandereffectof50 kHz. Thissequencecausesanearworst  
caseconditionforinter-symbolinterference.  
• Receiver data window time-width is 2.13 ns or greater and centered at  
mid-symbol.Thisworstcasewindowtime-widthistheminimumallowed  
eye-opening presented to the FDDI PHY PM_Data indication input  
(PHY input) per the example in FDDI PMD Annex E. This minimum  
windowtime-widthof2.13nsisbasedupontheworstcaseFDDIPMD  
ActiveInputInterfaceopticalconditionsforpeak-to-peakDCD(1.0ns),  
DDJ (1.2 ns) and RJ (0.76 ns) presented to the receiver.  
Attheendofonemeterofnotedopticalfiberwithcladdingmodesremoved.  
The average power value can be converted to a peak power value by  
adding 3 dB. Higher output optical power transmitters are available on  
specialrequest.PleaseconsultwithyourlocalAvagosalesrepresentative  
forfurtherdetails.  
9. The relationship between Full Width Half Maximum and RMS values for  
Spectral Width is derived from the assumption of a Gaussian shaped  
spectrum which results in a 2.35 X RMS = FWHM relationship.  
10. The optical rise and fall times are measured from 10% to 90% when the  
transmitter is driven by a 25 MBd (12.5 MHz square-wave) input signal.  
TheANSIT1E1.2committeehasdesignatedthepossibilityofdefiningan  
eye pattern mask for the transmitter optical output as an item for further  
study. Avago will incorporate this requirement into the specifications for  
these products if it is defined. The HFBR-57E0 products typically comply  
withthetemplaterequirementsofCCITT(nowITU-T)G.957Section3.2.5,  
Figure 2 for the STM- 1 rate, excluding the optical receiver filter normally  
associated with single mode fiber measurements which is the likely  
source for the ANSI T1E1.2 committee to follow in this matter.  
11a. Systematic Jitter contributed by the transmitter is defined as the  
combinationofDutyCycleDistortionandDataDependentJitter.Systematic  
Jitterismeasuredat50% thresholdusinga155.52MBd(77.5MHzsquare-  
To test a receiver with the worst case FDDI PMD Active Input jitter  
condition requires exacting control over DCD, DDJ and RJ jitter compo-  
nents that is difficult to implement with production test equipment. The  
receivercanbeequivalentlytestedtotheworstcaseFDDIPMDinputjitter  
conditionsandmeettheminimumoutputdatawindowtime-widthof2.13  
ns. This is accomplished by using a nearly ideal input optical signal (no  
DCD, insignificant DDJ and RJ) and measuring for a wider window time-  
width of 4.6 ns. This is possible due to the cumulative effect of jitter  
componentsthroughtheirsuperposition(DCDandDDJaredirectlyadditive  
and RJ components are rms additive). Specifically, when a nearly ideal  
input optical test signal is used and the maximum receiver peak-to-peak  
jittercontributionsofDCD(0.4ns),DDJ(1.0ns),andRJ(2.14ns)exist,the  
minimum window time-width becomes 8.0 ns -0.4 ns - 1.0 ns - 2.14 ns =  
4.46 ns, or conservatively 4.6 ns. This wider window time-width of 4.6 ns  
guarantees the FDDI PMD Annex E minimum window time-width of 2.13  
ns under worst case input jitter conditions to the Avago receiver.  
• Transmitter operating with an IDLE Line State pattern, 125 MBd (62.5  
MHz square-wave), input signal to simulate any cross-talk present  
between the transmitter and receiver sections of the transceiver.  
14a. All conditions of Note 13a apply except that the measurement is made at  
the center of the symbol with no window time- width.  
23  
wave), 2 - 1 psuedorandom data pattern input signal.  
11b. Duty Cycle Distortion contributed by the transmitter is measured at the  
50% threshold of the optical output signal using an IDLE Line State, 125  
MBd (62.5 MHz square-wave), input signal.  
11c. DataDependentJittercontributedbythetransmitterisspecifiedwiththe  
FDDI test pattern described in FDDI PMD Annex A.5.  
12a. Random Jitter contributed by the transmitter is specified with a 155.52  
MBd (77.5 MHz square-wave) input signal.  
12b. RandomJittercontributedbythetransmitterisspecifiedwithanIDLELine  
State, 125 MBd (62.5 MHz square-wave) input signal. See Application  
Information-TransceiverJitterPerformanceSectionofthisdatasheetfor  
furtherdetails.  
14b. All conditions of Note 13b apply except that the measurement is made at  
the center of the symbol with no window time-width.  
15a. SystematicJittercontributedbythereceiverisdefinedasthecombination  
of Duty Cycle Distortion and Data Dependent Jitter. Systematic Jitter is  
measuredat50% thresholdusinga155.52MBd(77.5MHzsquare-wave),  
23  
2
-1psuedorandomdatapatterninputsignal.  
15  
15b Duty Cycle Distortion contributed by the receiver is measured at the 50%  
thresholdoftheelectricaloutputsignalusinganIDLELineState,125MBd  
(62.5MHzsquare-wave), inputsignal. Theinputopticalpowerlevelis-20  
dBm average.  
15c. Data Dependent Jitter contributed by the receiver is specified with the  
FDDI DDJ test pattern described in the FDDI PMD Annex A.5. The input  
optical power level is -20 dBm average.  
16a. Random Jitter contributed by the receiver is specified with a 155.52 MBd  
(77.5 MHz square- wave) input signal.  
16b. Random Jitter contributed by the receiver is specified with an IDLE Line  
State, 125 MBd (62.5 MHz square-wave), input signal. The input optical  
power level is at maximum “P  
(W)”. See Application Information -  
IN MIN  
TransceiverJitterSectionforfurtherinformation.  
17. Thisvalueismeasuredduringthetransitionfromlowtohighlevelsofinput  
opticalpower.  
18. Thisvalueismeasuredduringthetransitionfromhightolowlevelsofinput  
opticalpower. AtLossofSignalassert, thereceiveroutputsDataOutand  
Data Out Bar go to steady PECL levels High and Low respectively.  
19. The Loss of Signal output shall be de-asserted within 100 µs after a step  
increase of the Input Optical Power.  
20. LossofSignaloutputshallbeassertedwithin350µsafterastepdecrease  
in the Input Optical Power. At Loss of Signal Assert, the receiver outputs  
Data Out and Data Out Bar go to steady PECL levels High and Low  
respectively.  
21. TheHFBR-57E0transceivercomplieswiththerequirementsforthetrade-  
offsbetweencenterwavelength,spectralwidth,andrise/falltimesshown  
in Figure 3. This figure is derived from the FDDI PMD standard (ISO/IEC  
9314-3 : 1990 and ANSI X3.166 - 1990) per the description in ANSI T1E1.2  
Revision 3. The interpretation of this figure is that values of Center  
Wavelength and Spectral Width must lie along the appropriate Optical  
Rise/Fall Time curve.  
OrderingInformation  
1300 nm LED (Operating Case Temperature 0 to +70 °C)  
HFBR-57E0LZ  
HFBR-57E0PZ  
Standard de-latch  
Bail de-latch  
1300 nm LED (Operating Case Temperature -40 °C to +85 °C)  
HFBR-57E0ALZ  
HFBR-57E0APZ  
Standard de-latch  
Bail de-latch  
EEPROMcontentsand/orlabeloptions  
HFBR-57E0LZ-YYY  
HFBR-57E0PZ-YYY  
Standard de-latch, 0 to +70°C  
Bail de-latch, 0 to +70°C  
HFBR-57E0ALZ-YYY Standard de-latch, -40°C to +85°C  
HFBR-57E0APZ-YYY Bail de-latch, -40°C to +85°C  
Where "YYY" is customer specific.  
HandlingPrecaution  
The HFBR-57E0xxZ is a pluggable module and is NOT designed for aqueous wash, IR reflow or  
wave soldering processes.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Pte. in the United States and other countries.  
Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved.  
5989-4773EN - January 25, 2006  

相关型号:

HFBR-57E0PZ-YYY

Multimode Small Form Factor Pluggable Transceivers with LC connector for ATM, FDDI, Fast Ethernet
AVAGO

HFBR-57E5APZ

Multimode Small Form-Factor Pluggable Transceivers with LC connector and DMI for ATM, FDDI, Fast Ethernet and SONET OC-3/SDH STM-1
AVAGO

HFBR-57E5APZ

Transceiver, 1270nm Min, 1380nm Max, LC Connector, Surface Mount, ROHS COMPLIANT PACKAGE
FOXCONN

HFBR-57L5AP

Digital Diagnostic SFP 850 nm Transceiver for Fibre Channel 1.0625 Gb/s and Ethernet 1.25 Gb/s
AVAGO

HFBR-57M5AP

FIBER OPTIC TRANSCEIVER, 830-860nm, 2125Mbps(Tx), 2125Mbps(Rx), PANEL MOUNT, LC CONNECTOR, METAL, PACKAGE-20
AVAGO

HFBR-5803

FDDI 100 Mb/s ATM and Fast Ethernet Transceivers in Low Cost 1 x 9 Package Style
AGILENT

HFBR-5803

DATACOM, ETHERNET TRANSCEIVER, XFO9, LOW PROFILE, SIP-9
AVAGO

HFBR-5803A

FDDI 100 Mb/s ATM and Fast Ethernet Transceivers in Low Cost 1 x 9 Package Style
AGILENT

HFBR-5803AT

FDDI 100 Mb/s ATM and Fast Ethernet Transceivers in Low Cost 1 x 9 Package Style
AGILENT

HFBR-5803AT

DATACOM, ETHERNET TRANSCEIVER, XFO9, LOW PROFILE, SIP-9
AVAGO

HFBR-5803E

DATACOM, ETHERNET TRANSCEIVER, XFO, LOW PROFILE, SIP-9
AVAGO

HFBR-5803F

DATACOM, ETHERNET TRANSCEIVER, XFO, LOW PROFILE, SIP-9
AVAGO