DSPB56367AG150 [FREESCALE]

24-Bit Audio Digital Signal Processor; 24位音频数字信号处理器
DSPB56367AG150
型号: DSPB56367AG150
厂家: Freescale    Freescale
描述:

24-Bit Audio Digital Signal Processor
24位音频数字信号处理器

外围集成电路 数字信号处理器 时钟
文件: 总100页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: DSP56367  
Rev. 2.1, 1/2007  
Freescale Semiconductor  
Data Sheet: Technical Data  
DSP56367  
24-Bit Audio Digital Signal Processor  
Contents  
1 Overview  
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
2 Signal/Connection Descriptions . . . . . . . . . . . 2-1  
3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
4 Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
5 Design Considerations . . . . . . . . . . . . . . . . . . 5-1  
A Power Consumption Benchmark . . . . . . . . . . A-1  
This document briefly describes the DSP56367 24-bit  
digital signal processor (DSP). The DSP56367 is a  
member of the DSP56300 family of programmable  
CMOS DSPs. The DSP56367 is targeted to applications  
that require digital audio compression/decompression,  
sound field processing, acoustic equalization and other  
digital audio algorithms. The DSP56367 offers 150  
million instructions per second (MIPS) using an internal  
150 MHz clock at 1.8 V and 100 million instructions per  
second (MIPS) using an internal 100 MHz clock at 1.5 V.  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2001, 2002, 2003, 2004, 2005, 2006, 2007. All rights reserve
Overview  
Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
Used to indicate a signal that is active when pulled low (For example, the RESET pin is active  
when low.)  
“asserted”  
Means that a high true (active high) signal is high or that a low true (active low) signal is low  
Means that a high true (active high) signal is low or that a low true (active low) signal is high  
“deasserted”  
Examples:  
Signal/Symbol  
Logic State  
Signal State  
Voltage*  
PIN  
PIN  
PIN  
PIN  
True  
False  
True  
Asserted  
Deasserted  
Asserted  
VIL / VOL  
VIH / VOH  
VIH / VOH  
VIL / VOL  
False  
Deasserted  
Note:*Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
4
8
2
16  
5
1
6
MEMORY EXPANSION AREA  
PROGRAM  
RAM  
/INSTR. CACHE  
3K x 24  
PROGRAM  
ROM  
40K x 24  
X
Y
DAX  
(SPDIF Tx.)  
INTERFACE INTER-  
HOST  
SHI  
INTER-  
FACE  
MEMORY  
RAM  
7K X 24  
ROM  
ESAI  
INTER-  
FACE  
MEMORY  
RAM  
13K X 24  
ROM  
TRIPLE  
TIMER  
FACE  
ESAI_1  
32K x 24  
8K x 24  
Bootstrap ROM  
192 x 24  
PERIPHERAL  
EXPANSION AREA  
ADDRESS  
GENERATION  
UNIT  
YAB  
EXTERNAL  
ADDRESS  
BUS  
SWITCH  
18  
XAB  
PAB  
DAB  
ADDRESS  
SIX CHANNELS  
DMA UNIT  
24-BIT  
DSP56300  
Core  
DRAM &  
SRAM BUS  
INTERFACE  
&
10  
CONTROL  
I - CACHE  
DDB  
YDB  
XDB  
PDB  
GDB  
EXTERNAL  
DATA BUS  
SWITCH  
24  
INTERNAL  
DATA  
BUS  
SWITCH  
DATA  
POWER  
MNGMNT  
PLL  
DATA ALU  
24X24 56 56-BIT MAC  
TWO 56-BIT ACCUMULATORS  
PROGRAM  
INTERRUPT  
CONTROLLER  
PROGRAM  
DECODE  
CONTROLLE  
PROGRAM  
ADDRESS  
GENERATOR  
+
->  
4
JTAG  
CLOCK  
GENERATOR  
BARREL SHIFTER  
OnCE™  
24 BITS BUS  
EXTAL  
MODA/IRQA  
MODB/IRQB  
MODC/IRQC  
MODD/IRQD  
RESET  
PINIT/NMI  
Figure 1-1 DSP56367 Block Diagram  
DSP56367 Technical Data, Rev. 2.1  
1-2  
Freescale Semiconductor  
Overview  
1.1  
Features  
Core features are described fully in the DSP56300 Family Manual.  
1.2  
DSP56300 modular chassis  
150 Million Instructions Per Second (MIPS) with a 150 MHz clock at internal logic supply  
(QVCCL) of 1.8V.  
100 Million Instructions Per Second (MIPS) with a 100 MHz clock at internal logic supply  
(QVCCL) of 1.5V.  
Object Code Compatible with the 56K core.  
Data ALU with a 24 × 24 bit multiplier-accumulator and a 56-bit barrel shifter. 16-bit arithmetic  
support.  
Program Control with position independent code support and instruction cache support.  
Six-channel DMA controller.  
PLL based clocking with a wide range of frequency multiplications (1 to 4096), predivider factors  
i
(1 to 16) and power saving clock divider (2 : i=0 to 7). Reduces clock noise.  
Internal address tracing support and OnCEfor Hardware/Software debugging.  
JTAG port.  
Very low-power CMOS design, fully static design with operating frequencies down to DC.  
STOP and WAIT low-power standby modes.  
1.3  
On-chip Memory Configuration  
7K × 24 Bit Y-Data RAM and 8K × 24 Bit Y-Data ROM.  
13K × 24 Bit X-Data RAM and 32K × 24 Bit X-Data ROM.  
40K × 24 Bit Program ROM.  
3K × 24 Bit Program RAM and 192x24 Bit Bootstrap ROM. 1K of Program RAM may be used as  
Instruction Cache or for Program ROM patching.  
2K × 24 Bit from Y Data RAM and 5K × 24 Bit from X Data RAM can be switched to Program  
RAM resulting in up to 10K × 24 Bit of Program RAM.  
1.4  
Off-chip memory expansion  
External Memory Expansion Port.  
Off-chip expansion up to two 16M x 24-bit word of Data memory.  
Off-chip expansion up to 16M x 24-bit word of Program memory.  
Simultaneous glueless interface to SRAM and DRAM.  
1.5  
Peripheral modules  
Serial Audio Interface (ESAI): up to 4 receivers and up to 6 transmitters, master or slave. I S, Sony,  
2
AC97, network and other programmable protocols.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
1-3  
Overview  
2
Serial Audio Interface I(ESAI_1): up to 4 receivers and up to 6 transmitters, master or slave. I S,  
Sony, AC97, network and other programmable protocols  
The ESAI_1 shares four of the data pins with ESAI, and ESAI_1 does NOT support HCKR and  
HCKT (high frequency clocks)  
2
Serial Host Interface (SHI): SPI and I C protocols, multi master capability, 10-word receive FIFO,  
support for 8, 16 and 24-bit words.  
Byte-wide parallel Host Interface (HDI08) with DMA support.  
Triple Timer module (TEC).  
Digital Audio Transmitter (DAX): 1 serial transmitter capable of supporting the SPDIF, IEC958,  
CP-340 and AES/EBU digital audio formats.  
1.6  
1.7  
Pins of unused peripherals (except SHI) may be programmed as GPIO lines.  
144-pin plastic LQFP package  
Documentation  
Table 1-1 lists the documents that provide a complete description of the DSP56367 and are required to  
design properly with the part. Documentation is available from a local Freescale distributor, a Freescale  
semiconductor sales office, a Freescale Literature Distribution Center, or through the Freescale DSP home  
page on the Internet (the source for the latest information).  
Table 1-1 DSP56367 Documentation  
Document Name  
Description  
Order Number  
DSP56300 Family Manual  
Detailed description of the 56000-family architecture  
and the 24-bit core processor and instruction set  
DSP56300FM  
DSP56367 Product Brief  
DSP56367 User’s Manual  
Brief description of the chip  
DSP56367 User’s Manual  
DSP56367P  
DSP56367UM  
DSP56367  
DSP56367 Technical Data Sheet  
(this document)  
Electrical and timing specifications; pin and package  
descriptions  
IBIS Model  
Input Output Buffer Information Specification  
For software or simulation  
models, contact sales or  
go to www.freescale.com.  
DSP56367 Technical Data, Rev. 2.1  
1-4  
Freescale Semiconductor  
2 Signal/Connection Descriptions  
2.1  
Signal Groupings  
The input and output signals of the DSP56367 are organized into functional groups, which are listed in  
Table 2-1 and illustrated in Figure 2-1.  
The DSP56367 is operated from a 1.8V supply; however, some of the inputs can tolerate 3.3V. A special  
notice for this feature is added to the signal descriptions of those inputs.  
Remember, the DSP56367 offers 150 million instructions per second (MIPS) using an internal 150 MHz  
clock at 1.8 V and 100 million instructions per second (MIPS) using an internal 100 MHz clock at 1.3.3V.  
Table 2-1 DSP56367 Functional Signal Groupings  
Number of  
Signals  
Detailed  
Description  
Functional Group  
Power (VCC  
)
20  
18  
3
Table 2-2  
Table 2-3  
Table 2-4  
Table 2-5  
Table 2-6  
Table 2-7  
Table 2-8  
Table 2-9  
Table 2-10  
Table 2-11  
Table 2-12  
Table 2-13  
Table 2-14  
Table 2-15  
Ground (GND)  
Clock and PLL  
Address bus  
Data bus  
18  
24  
10  
5
Port A1  
Bus control  
Interrupt and mode control  
HDI08  
Port B2  
16  
5
SHI  
ESAI  
Port C3  
Port E4  
Port D5  
12  
6
ESAI_1  
Digital audio transmitter (DAX)  
Timer  
2
1
JTAG/OnCE Port  
4
1
2
3
4
5
Port A is the external memory interface port, including the external address bus, data bus, and control signals.  
Port B signals are the GPIO port signals which are multiplexed with the HDI08 signals.  
Port C signals are the GPIO port signals which are multiplexed with the ESAI signals.  
Port E signals are the GPIO port signals which are multiplexed with the ESAI_1 signals.  
Port D signals are the GPIO port signals which are multiplexed with the DAX signals.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-1  
Signal Groupings  
OnCEON-CHIP EMULATION/  
PORT A ADDRESS BUS  
JTAG PORT  
TDI  
DSP56367  
A0-A17  
TCK  
VCCA (3)  
TDO  
TMS  
GNDA (4)  
PORT A DATA BUS  
PARALLEL HOST PORT (HDI08)  
D0-D23  
VCCD (4)  
HAD(7:0) [PB0-PB7]  
HAS/HA0 [PB8]  
Port B  
GNDD (4)  
HA8/HA1 [PB9]  
PORT A BUS CONTROL  
AA0-AA2/RAS0-RAS2  
CAS  
HA9/HA2 [PB10]  
HRW/HRD [PB11]  
HDS/HWR [PB12]  
HCS/HA10 [PB13]  
HOREQ/HTRQ [PB14]  
RD  
WR  
TA  
HACK/HRRQ [PB15]  
VCCH  
BR  
GNDH  
BG  
BB  
SERIAL AUDIO INTERFACE (ESAI)  
SCKT[PC3]  
VCCC (2)  
GNDC (2)  
FST [PC4]  
Port C  
HCKT [PC5]  
INTERRUPT AND  
MODE CONTROL  
SCKR [PC0]  
FSR [PC1]  
MODA/IRQA  
MODB/IRQB  
MODC/IRQC  
MODD/IRQD  
RESET  
HCKR [PC2]  
SDO0[PC11] / SDO0_1[PE11]  
SDO1[PC10] / SDO1_1[PE10]  
SDO2/SDI3[PC9] / SDO2_1/SDI3_1[PE9]  
SDO3/SDI2[PC8] / SDO3_1/SDI2_1[PE8]  
SDO4/SDI1 [PC7]  
PLL AND CLOCK  
SDO5/SDI0 [PC6]  
EXTAL  
PINIT/NMI  
PCAP  
SERIAL AUDIO INTERFACE(ESAI_1)  
SCKT_1[PE3]  
FS T_1[PE4]  
VCCP  
GNDP  
Port E  
SCKR_1[PE0]  
FSR_1[PE1]  
QUIET POWER  
VCCQH (3)  
SDO4_1/SDI1_1[PE7]  
SDO5_1/SDI0_1[PE6]  
VCCS (2)  
VCCQL (4)  
GNDQ (4)  
GNDS (2)  
SPDIF TRANSMITTER (DAX)  
ADO [PD1]  
Port D  
SERIAL HOST INTERFACE (SHI)  
MOSI/HA0  
ACI [PD0]  
SS/HA2  
MISO/SDA  
TIMER 0  
TIO0 [TIO0]  
SCK/SCL  
HREQ  
Figure 2-1 Signals Identified by Functional Group  
DSP56367 Technical Data, Rev. 2.1  
2-2  
Freescale Semiconductor  
Power  
2.2  
Power  
Table 2-2 Power Inputs  
Description  
Power Name  
VCCP  
PLL Power—VCCP is VCC dedicated for PLL use. The voltage should be well-regulated and the input should  
be provided with an extremely low impedance path to the VCC power rail. There is one VCCP input.  
VCCQL (4)  
Quiet Core (Low) Power—VCCQL is an isolated power for the internal processing logic. This input must be  
tied externally to all other VCCQL power pins and the VCCP power pin only. Do not tie with other power pins.  
The user must provide adequate external decoupling capacitors. There are four VCCQL inputs.  
VCCQH (3)  
Quiet External (High) Power—VCCQH is a quiet power source for I/O lines. This input must be tied externally  
to all other chip power inputs.The user must provide adequate decoupling capacitors. There are three VCCQH  
inputs.  
VCCA (3)  
Address Bus Power—VCCA is an isolated power for sections of the address bus I/O drivers. This input must  
be tied externally to all other chip power inputs. The user must provide adequate external decoupling  
capacitors. There are three VCCA inputs.  
VCCD (4)  
Data Bus Power—VCCD is an isolated power for sections of the data bus I/O drivers. This input must be tied  
externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.  
There are four VCCD inputs.  
VCCC (2)  
Bus Control Power—VCCC is an isolated power for the bus control I/O drivers. This input must be tied  
externally to all other chip power inputs. The user must provide adequate external decoupling capacitors.  
There are two VCCC inputs.  
VCCH  
Host Power—VCCH is an isolated power for the HDI08 I/O drivers. This input must be tied externally to all  
other chip power inputs. The user must provide adequate external decoupling capacitors. There is one VCCH  
input.  
VCCS (2)  
SHI, ESAI, ESAI_1, DAX and Timer Power —VCCS is an isolated power for the SHI, ESAI, ESAI_1, DAX  
and Timer. This input must be tied externally to all other chip power inputs. The user must provide adequate  
external decoupling capacitors. There are two VCCS inputs.  
2.3  
Ground  
Table 2-3 Grounds  
Description  
Ground Name  
GNDP  
PLL Ground—GNDP is a ground dedicated for PLL use. The connection should be provided with an  
extremely low-impedance path to ground. VCCP should be bypassed to GNDP by a 0.47 µF capacitor located  
as close as possible to the chip package. There is one GNDP connection.  
GNDQ (4)  
GNDA (4)  
GNDD (4)  
Quiet Ground—GNDQ is an isolated ground for the internal processing logic. This connection must be tied  
externally to all other chip ground connections. The user must provide adequate external decoupling  
capacitors. There are four GNDQ connections.  
Address Bus Ground—GNDA is an isolated ground for sections of the address bus I/O drivers. This  
connection must be tied externally to all other chip ground connections. The user must provide adequate  
external decoupling capacitors. There are four GNDA connections.  
Data Bus Ground—GNDD is an isolated ground for sections of the data bus I/O drivers. This connection  
must be tied externally to all other chip ground connections. The user must provide adequate external  
decoupling capacitors. There are four GNDD connections.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-3  
Clock and PLL  
Table 2-3 Grounds (continued)  
Description  
Ground Name  
GNDC (2)  
Bus Control Ground—GNDC is an isolated ground for the bus control I/O drivers. This connection must be  
tied externally to all other chip ground connections. The user must provide adequate external decoupling  
capacitors. There are two GNDC connections.  
GNDH  
Host Ground—GNDh is an isolated ground for the HD08 I/O drivers. This connection must be tied externally  
to all other chip ground connections. The user must provide adequate external decoupling capacitors. There  
is one GNDH connection.  
GNDS (2)  
SHI, ESAI, ESAI_1, DAX and Timer Ground—GNDS is an isolated ground for the SHI, ESAI, ESAI_1, DAX  
and Timer. This connection must be tied externally to all other chip ground connections. The user must  
provide adequate external decoupling capacitors. There are two GNDS connections.  
2.4  
Clock and PLL  
Table 2-4 Clock and PLL Signals  
Signal Description  
State During  
Signal Name Type  
Reset  
EXTAL  
Input  
Input  
Input  
External Clock Input—An external clock source must be connected to EXTAL in  
order to supply the clock to the internal clock generator and PLL.  
PCAP  
Input  
Input  
PLL Capacitor—PCAP is an input connecting an off-chip capacitor to the PLL filter.  
Connect one capacitor terminal to PCAP and the other terminal to VCCP  
.
If the PLL is not used, PCAP may be tied to VCC, GND, or left floating.  
PINIT/NMI  
Input  
PLL Initial/Nonmaskable Interrupt—During assertion of RESET, the value of  
PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register,  
determining whether the PLL is enabled or disabled. After RESET de assertion and  
during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a  
negative-edge-triggered nonmaskable interrupt (NMI) request internally synchronized  
to internal system clock.  
2.5  
External Memory Expansion Port (Port A)  
When the DSP56367 enters a low-power standby mode (stop or wait), it releases bus mastership and  
tri-states the relevant port A signals: A0–A17, D0–D23, AA0/RAS0–AA2/RAS2, RD, WR, BB, CAS.  
2.6  
External Address Bus  
Table 2-5 External Address Bus Signals  
State During  
Reset  
Signal Name Type  
A0–A17 Output  
Signal Description  
Tri-Stated  
Address Bus—When the DSP is the bus master, A0–A17 are active-high outputs  
that specify the address for external program and data memory accesses. Otherwise,  
the signals are tri-stated. To minimize power dissipation, A0–A17 do not change state  
when external memory spaces are not being accessed.  
DSP56367 Technical Data, Rev. 2.1  
2-4  
Freescale Semiconductor  
External Data Bus  
2.7  
External Data Bus  
Table 2-6 External Data Bus Signals  
State during  
Reset  
Signal Name  
D0–D23  
Type  
Signal Description  
Input/Output  
Tri-Stated  
Data Bus—When the DSP is the bus master, D0–D23 are active-high,  
bidirectional input/outputs that provide the bidirectional data bus for external  
program and data memory accesses. Otherwise, D0–D23 are tri-stated.  
2.8  
External Bus Control  
Table 2-7 External Bus Control Signals  
State During  
Reset  
Signal Name Type  
Signal Description  
AA0–AA2/  
RAS0–RAS2  
Output  
Output  
Tri-Stated  
Tri-Stated  
Address Attribute or Row Address Strobe—When defined as AA, these signals can  
be used as chip selects or additional address lines. When defined as RAS, these  
signals can be used as RAS for DRAM interface. These signals are tri-statable outputs  
with programmable polarity.  
CAS  
Column Address Strobe— When the DSP is the bus master, CAS is an active-low  
output used by DRAM to strobe the column address. Otherwise, if the bus mastership  
enable (BME) bit in the DRAM control register is cleared, the signal is tri-stated.  
RD  
WR  
TA  
Output  
Output  
Input  
Tri-Stated  
Tri-Stated  
Read Enable—When the DSP is the bus master, RD is an active-low output that is  
asserted to read external memory on the data bus (D0-D23). Otherwise, RD is tri-stated.  
Write Enable—When the DSP is the bus master, WR is an active-low output that is  
asserted to write external memory on the data bus (D0-D23). Otherwise, WR is tri-stated.  
Ignored Input Transfer Acknowledge—If the DSP is the bus master and there is no external bus  
activity, or the DSP is not the bus master, the TA input is ignored. The TA input is a data  
transfer acknowledge (DTACK) function that can extend an external bus cycle  
indefinitely. Any number of wait states (1, 2. . .infinity) may be added to the wait states  
inserted by the BCR by keeping TA deasserted. In typical operation, TA is deasserted  
at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is  
deasserted before the next bus cycle. The current bus cycle completes one clock  
period after TA is asserted synchronous to the internal system clock. The number of  
wait states is determined by the TA input or by the bus control register (BCR),  
whichever is longer. The BCR can be used to set the minimum number of wait states  
in external bus cycles.  
In order to use the TA functionality, the BCR must be programmed to at least one wait  
state. A zero wait state access cannot be extended by TA deassertion, otherwise  
improper operation may result. TA can operate synchronously or asynchronously,  
depending on the setting of the TAS bit in the operating mode register (OMR).  
TA functionality may not be used while performing DRAM type accesses, otherwise  
improper operation may result.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-5  
Interrupt and Mode Control  
Table 2-7 External Bus Control Signals (continued)  
Signal Description  
State During  
Reset  
Signal Name Type  
BR  
Output  
Output  
Bus Request—BR is an active-low output, never tri-stated. BR is asserted when the  
DSP requests bus mastership. BR is deasserted when the DSP no longer needs the  
bus. BR may be asserted or deasserted independent of whether the DSP56367 is a  
bus master or a bus slave. Bus “parking” allows BR to be deasserted even though the  
DSP56367 is the bus master. (See the description of bus “parking” in the BB signal  
description.) The bus request hold (BRH) bit in the BCR allows BR to be asserted under  
software control even though the DSP does not need the bus. BR is typically sent to an  
external bus arbitrator that controls the priority, parking, and tenure of each master on  
the same external bus. BR is only affected by DSP requests for the external bus, never  
for the internal bus. During hardware reset, BR is deasserted and the arbitration is reset  
to the bus slave state.  
(deasserted)  
BG  
Input  
Ignored Input Bus Grant—BG is an active-low input. BG is asserted by an external bus arbitration  
circuit when the DSP56367 becomes the next bus master. When BG is asserted, the  
DSP56367 must wait until BB is deasserted before taking bus mastership. When BG is  
deasserted, bus mastership is typically given up at the end of the current bus cycle.  
This may occur in the middle of an instruction that requires more than one external bus  
cycle for execution.  
For proper BG operation, the asynchronous bus arbitration enable bit (ABE) in the  
OMR register must be set.  
BB  
Input/  
Output  
Input  
Bus Busy—BB is a bidirectional active-low input/output. BB indicates that the bus is  
active. Only after BB is deasserted can the pending bus master become the bus master  
(and then assert the signal again). The bus master may keep BB asserted after ceasing  
bus activity regardless of whether BR is asserted or deasserted. This is called “bus  
parking” and allows the current bus master to reuse the bus without rearbitration until  
another device requires the bus. The deassertion of BB is done by an “active pull-up”  
method (i.e., BB is driven high and then released and held high by an external pull-up  
resistor).  
For proper BB operation, the asynchronous bus arbitration enable bit (ABE) in the OMR  
register must be set.  
BB requires an external pull-up resistor.  
2.9  
Interrupt and Mode Control  
The interrupt and mode control signals select the chip’s operating mode as it comes out of hardware reset.  
After RESET is deasserted, these inputs are hardware interrupt request lines.  
DSP56367 Technical Data, Rev. 2.1  
2-6  
Freescale Semiconductor  
Interrupt and Mode Control  
Table 2-8 Interrupt and Mode Control  
State During  
Reset  
Signal Name Type  
Signal Description  
MODA/IRQA Input  
Input  
Mode Select A/External Interrupt Request A—MODA/IRQA is an active-low  
Schmitt-trigger input, internally synchronized to the DSP clock. MODA/IRQA selects  
the initial chip operating mode during hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating  
modes, latched into the OMR when the RESET signal is deasserted. If the processor  
is in the stop standby state and the MODA/IRQA pin is pulled to GND, the processor  
will exit the stop state.  
This input is 3.3V tolerant.  
MODB/IRQB Input  
MODC/IRQC Input  
MODD/IRQD Input  
Input  
Input  
Input  
Input  
Mode Select B/External Interrupt Request B—MODB/IRQB is an active-low  
Schmitt-trigger input, internally synchronized to the DSP clock. MODB/IRQB selects  
the initial chip operating mode during hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating  
modes, latched into OMR when the RESET signal is deasserted.  
This input is 3.3V tolerant.  
Mode Select C/External Interrupt Request C—MODC/IRQC is an active-low  
Schmitt-trigger input, internally synchronized to the DSP clock. MODC/IRQC selects  
the initial chip operating mode during hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating  
modes, latched into OMR when the RESET signal is deasserted.  
This input is 3.3V tolerant.  
Mode Select D/External Interrupt Request D—MODD/IRQD is an active-low  
Schmitt-trigger input, internally synchronized to the DSP clock. MODD/IRQD selects  
the initial chip operating mode during hardware reset and becomes a level-sensitive or  
negative-edge-triggered, maskable interrupt request input during normal instruction  
processing. MODA, MODB, MODC, and MODD select one of 16 initial chip operating  
modes, latched into OMR when the RESET signal is deasserted.  
This input is 3.3V tolerant.  
RESET  
Input  
Reset—RESET is an active-low, Schmitt-trigger input. When asserted, the chip is  
placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger  
input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably.  
When the RESET signal is deasserted, the initial chip operating mode is latched from  
the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted  
during power up. A stable EXTAL signal must be supplied while RESET is being  
asserted.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-7  
Parallel Host Interface (HDI08)  
2.10 Parallel Host Interface (HDI08)  
The HDI08 provides a fast, 8-bit, parallel data port that may be connected directly to the host bus. The  
HDI08 supports a variety of standard buses and can be directly connected to a number of industry standard  
microcomputers, microprocessors, DSPs, and DMA hardware.  
Table 2-9 Host Interface  
State During  
Signal Name  
Type  
Signal Description  
Reset  
H0–H7  
Input/  
GPIO  
Host Data—When HDI08 is programmed to interface a nonmultiplexed host  
Output  
Disconnected bus and the HI function is selected, these signals are lines 0–7 of the  
bidirectional, tri-state data bus.  
HAD0–HAD7  
PB0–PB7  
Input/  
Output  
Host Address/Data—When HDI08 is programmed to interface a multiplexed  
host bus and the HI function is selected, these signals are lines 0–7 of the  
address/data bidirectional, multiplexed, tri-state bus.  
Input, Output, or  
Disconnected  
Port B 0–7—When the HDI08 is configured as GPIO, these signals are  
individually programmable as input, output, or internally disconnected.  
The default state after reset for these signals is GPIO disconnected.  
These inputs are 3.3V tolerant.  
HA0  
Input  
Input  
GPIO  
Host Address Input 0—When the HDI08 is programmed to interface a  
Disconnected nonmultiplexed host bus and the HI function is selected, this signal is line 0 of  
the host address input bus.  
HAS/HAS  
Host Address Strobe—When HDI08 is programmed to interface a  
multiplexed host bus and the HI function is selected, this signal is the host  
address strobe (HAS) Schmitt-trigger input. The polarity of the address strobe  
is programmable, but is configured active-low (HAS) following reset.  
PB8  
Input, Output, or  
Disconnected  
Port B 8—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
HA1  
HA8  
PB9  
Input  
Input  
GPIO  
Host Address Input 1—When the HDI08 is programmed to interface a  
Disconnected nonmultiplexed host bus and the HI function is selected, this signal is line 1 of  
the host address (HA1) input bus.  
Host Address 8—When HDI08 is programmed to interface a multiplexed host  
bus and the HI function is selected, this signal is line 8 of the host address  
(HA8) input bus.  
Input, Output, or  
Disconnected  
Port B 9—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
2-8  
Freescale Semiconductor  
Parallel Host Interface (HDI08)  
Table 2-9 Host Interface (continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset  
HA2  
Input  
GPIO  
Host Address Input 2—When the HDI08 is programmed to interface a  
Disconnected non-multiplexed host bus and the HI function is selected, this signal is line 2  
of the host address (HA2) input bus.  
HA9  
Input  
Host Address 9—When HDI08 is programmed to interface a multiplexed host  
bus and the HI function is selected, this signal is line 9 of the host address  
(HA9) input bus.  
PB10  
Input, Output, or  
Disconnected  
Port B 10—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
HRW  
Input  
Input  
GPIO  
Host Read/Write—When HDI08 is programmed to interface a  
Disconnected single-data-strobe host bus and the HI function is selected, this signal is the  
Host Read/Write (HRW) input.  
HRD/  
HRD  
Host Read Data—When HDI08 is programmed to interface a  
double-data-strobe host bus and the HI function is selected, this signal is the  
host read data strobe (HRD) Schmitt-trigger input. The polarity of the data  
strobe is programmable, but is configured as active-low (HRD) after reset.  
PB11  
Input, Output, or  
Disconnected  
Port B 11—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
HDS/  
HDS  
Input  
Input  
GPIO  
Host Data Strobe—When HDI08 is programmed to interface a  
Disconnected single-data-strobe host bus and the HI function is selected, this signal is the  
host data strobe (HDS) Schmitt-trigger input. The polarity of the data strobe  
is programmable, but is configured as active-low (HDS) following reset.  
HWR/  
HWR  
Host Write Data—When HDI08 is programmed to interface a  
double-data-strobe host bus and the HI function is selected, this signal is the  
host write data strobe (HWR) Schmitt-trigger input. The polarity of the data  
strobe is programmable, but is configured as active-low (HWR) following  
reset.  
PB12  
Input, Output, or  
Disconnected  
Port B 12—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-9  
Parallel Host Interface (HDI08)  
Table 2-9 Host Interface (continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset  
HCS  
Input  
GPIO  
Host Chip Select—When HDI08 is programmed to interface a  
Disconnected nonmultiplexed host bus and the HI function is selected, this signal is the host  
chip select (HCS) input. The polarity of the chip select is programmable, but  
is configured active-low (HCS) after reset.  
HA10  
PB13  
Input  
Host Address 10—When HDI08 is programmed to interface a multiplexed  
host bus and the HI function is selected, this signal is line 10 of the host  
address (HA10) input bus.  
Input, Output, or  
Disconnected  
Port B 13—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
HOREQ/  
HOREQ  
Output  
Output  
GPIO  
Host Request—When HDI08 is programmed to interface a single host  
Disconnected request host bus and the HI function is selected, this signal is the host request  
(HOREQ) output. The polarity of the host request is programmable, but is  
configured as active-low (HOREQ) following reset. The host request may be  
programmed as a driven or open-drain output.  
HTRQ/  
HTRQ  
Transmit Host Request—When HDI08 is programmed to interface a double  
host request host bus and the HI function is selected, this signal is the transmit  
host request (HTRQ) output. The polarity of the host request is  
programmable, but is configured as active-low (HTRQ) following reset. The  
host request may be programmed as a driven or open-drain output.  
PB14  
Input, Output, or  
Disconnected  
Port B 14—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
HACK/  
HACK  
Input  
GPIO  
Host Acknowledge—When HDI08 is programmed to interface a single host  
Disconnected request host bus and the HI function is selected, this signal is the host  
acknowledge (HACK) Schmitt-trigger input. The polarity of the host  
acknowledge is programmable, but is configured as active-low (HACK) after  
reset.  
HRRQ/  
HRRQ  
Output  
Receive Host Request—When HDI08 is programmed to interface a double  
host request host bus and the HI function is selected, this signal is the receive  
host request (HRRQ) output. The polarity of the host request is  
programmable, but is configured as active-low (HRRQ) after reset. The host  
request may be programmed as a driven or open-drain output.  
PB15  
Input, Output, or  
Disconnected  
Port B 15—When the HDI08 is configured as GPIO, this signal is individually  
programmed as input, output, or internally disconnected.  
The default state after reset for this signal is GPIO disconnected.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
2-10  
Freescale Semiconductor  
Serial Host Interface  
2.11 Serial Host Interface  
2
The SHI has five I/O signals that can be configured to allow the SHI to operate in either SPI or I C mode.  
Table 2-10 Serial Host Interface Signals  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
SCK  
Input or  
Output  
Tri-Stated  
SPI Serial Clock—The SCK signal is an output when the SPI is configured as a  
master and a Schmitt-trigger input when the SPI is configured as a slave. When the  
SPI is configured as a master, the SCK signal is derived from the internal SHI clock  
generator. When the SPI is configured as a slave, the SCK signal is an input, and  
the clock signal from the external master synchronizes the data transfer. The SCK  
signal is ignored by the SPI if it is defined as a slave and the slave select (SS) signal  
is not asserted. In both the master and slave SPI devices, data is shifted on one  
edge of the SCK signal and is sampled on the opposite edge where data is stable.  
Edge polarity is determined by the SPI transfer protocol.  
SCL  
Input or  
Output  
I2C Serial Clock—SCL carries the clock for I2C bus transactions in the I2C mode.  
SCL is a Schmitt-trigger input when configured as a slave and an open-drain output  
when configured as a master. SCL should be connected to VCC through a pull-up  
resistor.  
This signal is tri-stated during hardware, software, and individual reset. Thus, there  
is no need for an external pull-up in this state.  
This input is 3.3V tolerant.  
MISO  
SDA  
Input or  
Output  
Tri-Stated  
SPI Master-In-Slave-Out—When the SPI is configured as a master, MISO is the  
master data input line. The MISO signal is used in conjunction with the MOSI signal  
for transmitting and receiving serial data. This signal is a Schmitt-trigger input when  
configured for the SPI Master mode, an output when configured for the SPI Slave  
mode, and tri-stated if configured for the SPI Slave mode when SS is deasserted.  
An external pull-up resistor is not required for SPI operation.  
Input or  
Open-Drain  
Output  
I2C Data and Acknowledge—In I2C mode, SDA is a Schmitt-trigger input when  
receiving and an open-drain output when transmitting. SDA should be connected to  
V
CC through a pull-up resistor. SDA carries the data for I2C transactions. The data  
in SDA must be stable during the high period of SCL. The data in SDA is only  
allowed to change when SCL is low. When the bus is free, SDA is high. The SDA  
line is only allowed to change during the time SCL is high in the case of start and  
stop events. A high-to-low transition of the SDA line while SCL is high is a unique  
situation, and is defined as the start event. A low-to-high transition of SDA while  
SCL is high is a unique situation defined as the stop event.  
This signal is tri-stated during hardware, software, and individual reset. Thus, there  
is no need for an external pull-up in this state.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-11  
Serial Host Interface  
Table 2-10 Serial Host Interface Signals (continued)  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
MOSI  
Input or  
Output  
Tri-Stated  
SPI Master-Out-Slave-In—When the SPI is configured as a master, MOSI is the  
master data output line. The MOSI signal is used in conjunction with the MISO  
signal for transmitting and receiving serial data. MOSI is the slave data input line  
when the SPI is configured as a slave. This signal is a Schmitt-trigger input when  
configured for the SPI Slave mode.  
HA0  
Input  
Input  
Input  
I2C Slave Address 0—This signal uses a Schmitt-trigger input when configured for  
the I2C mode. When configured for I2C slave mode, the HA0 signal is used to form  
the slave device address. HA0 is ignored when configured for the I2C master mode.  
This signal is tri-stated during hardware, software, and individual reset. Thus, there  
is no need for an external pull-up in this state.  
This input is 3.3V tolerant.  
SS  
Tri-Stated  
SPI Slave Select—This signal is an active low Schmitt-trigger input when  
configured for the SPI mode. When configured for the SPI Slave mode, this signal  
is used to enable the SPI slave for transfer. When configured for the SPI master  
mode, this signal should be kept deasserted (pulled high). If it is asserted while  
configured as SPI master, a bus error condition is flagged. If SS is deasserted, the  
SHI ignores SCK clocks and keeps the MISO output signal in the high-impedance  
state.  
I2C Slave Address 2—This signal uses a Schmitt-trigger input when configured for  
the I2C mode. When configured for the I2C Slave mode, the HA2 signal is used to  
form the slave device address. HA2 is ignored in the I2C master mode.  
HA2  
This signal is tri-stated during hardware, software, and individual reset. Thus, there  
is no need for an external pull-up in this state.  
This input is 3.3V tolerant.  
HREQ  
Input or  
Output  
Tri-Stated  
Host Request—This signal is an active low Schmitt-trigger input when configured  
for the master mode but an active low output when configured for the slave mode.  
When configured for the slave mode, HREQ is asserted to indicate that the SHI is  
ready for the next data word transfer and deasserted at the first clock pulse of the  
new data word transfer. When configured for the master mode, HREQ is an input.  
When asserted by the external slave device, it will trigger the start of the data word  
transfer by the master. After finishing the data word transfer, the master will await  
the next assertion of HREQ to proceed to the next transfer.  
This signal is tri-stated during hardware, software, personal reset, or when the  
HREQ1–HREQ0 bits in the HCSR are cleared. There is no need for external pull-up  
in this state.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
2-12  
Freescale Semiconductor  
Enhanced Serial Audio Interface  
2.12 Enhanced Serial Audio Interface  
Table 2-11 Enhanced Serial Audio Interface Signals  
Signal  
Name  
State during  
Signal Type  
Signal Description  
Reset  
HCKR  
PC2  
Input or Output  
GPIO  
High Frequency Clock for Receiver—When programmed as an input, this  
Disconnected signal provides a high frequency clock source for the ESAI receiver as an  
alternate to the DSP core clock. When programmed as an output, this signal  
can serve as a high-frequency sample clock (e.g., for external digital to analog  
converters [DACs]) or as an additional system clock.  
Input, Output, or  
Disconnected  
Port C 2—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
HCKT  
PC5  
Input or Output  
GPIO  
High Frequency Clock for Transmitter—When programmed as an input,  
Disconnected this signal provides a high frequency clock source for the ESAI transmitter as  
an alternate to the DSP core clock. When programmed as an output, this  
signal can serve as a high frequency sample clock (e.g., for external DACs)  
or as an additional system clock.  
Input, Output, or  
Disconnected  
Port C 5—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
FSR  
Input or Output  
GPIO  
Frame Sync for Receiver—This is the receiver frame sync input/output  
Disconnected signal. In the asynchronous mode (SYN=0), the FSR pin operates as the  
frame sync input or output used by all the enabled receivers. In the  
synchronous mode (SYN=1), it operates as either the serial flag 1 pin  
(TEBE=0), or as the transmitter external buffer enable control (TEBE=1,  
RFSD=1).  
When this pin is configured as serial flag pin, its direction is determined by the  
RFSD bit in the RCCR register. When configured as the output flag OF1, this  
pin will reflect the value of the OF1 bit in the SAICR register, and the data in  
the OF1 bit will show up at the pin synchronized to the frame sync in normal  
mode or the slot in network mode. When configured as the input flag IF1, the  
data value at the pin will be stored in the IF1 bit in the SAISR register,  
synchronized by the frame sync in normal mode or the slot in network mode.  
PC1  
Input, Output, or  
Disconnected  
Port C 1—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-13  
Enhanced Serial Audio Interface  
Table 2-11 Enhanced Serial Audio Interface Signals (continued)  
Signal  
Name  
State during  
Reset  
Signal Type  
Signal Description  
FST  
PC4  
Input or Output  
GPIO  
Frame Sync for Transmitter—This is the transmitter frame sync input/output  
Disconnected signal. For synchronous mode, this signal is the frame sync for both  
transmitters and receivers. For asynchronous mode, FST is the frame sync for  
the transmitters only. The direction is determined by the transmitter frame  
sync direction (TFSD) bit in the ESAI transmit clock control register (TCCR).  
Input, Output, or  
Disconnected  
Port C 4—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
SCKR  
Input or Output  
GPIO  
Receiver Serial Clock—SCKR provides the receiver serial bit clock for the  
Disconnected ESAI. The SCKR operates as a clock input or output used by all the enabled  
receivers in the asynchronous mode (SYN=0), or as serial flag 0 pin in the  
synchronous mode (SYN=1).  
When this pin is configured as serial flag pin, its direction is determined by the  
RCKD bit in the RCCR register. When configured as the output flag OF0, this  
pin will reflect the value of the OF0 bit in the SAICR register, and the data in  
the OF0 bit will show up at the pin synchronized to the frame sync in normal  
mode or the slot in network mode. When configured as the input flag IF0, the  
data value at the pin will be stored in the IF0 bit in the SAISR register,  
synchronized by the frame sync in normal mode or the slot in network mode.  
PC0  
Input, Output, or  
Disconnected  
Port C 0—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
SCKT  
PC3  
Input or output  
GPIO  
Transmitter Serial Clock—This signal provides the serial bit rate clock for the  
Disconnected ESAI. SCKT is a clock input or output used by all enabled transmitters and  
receivers in synchronous mode, or by all enabled transmitters in  
asynchronous mode.  
Input, Output, or  
Disconnected  
Port C 3—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
SDO5  
SDI0  
PC6  
Output  
Input  
GPIO  
Serial Data Output 5—When programmed as a transmitter, SDO5 is used to  
Disconnected transmit data from the TX5 serial transmit shift register.  
Serial Data Input 0—When programmed as a receiver, SDI0 is used to  
receive serial data into the RX0 serial receive shift register.  
Input, Output, or  
Disconnected  
Port C 6—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
2-14  
Freescale Semiconductor  
Enhanced Serial Audio Interface  
Table 2-11 Enhanced Serial Audio Interface Signals (continued)  
Signal  
Name  
State during  
Reset  
Signal Type  
Output  
Signal Description  
SDO4  
SDI1  
PC7  
GPIO  
Serial Data Output 4—When programmed as a transmitter, SDO4 is used to  
Disconnected transmit data from the TX4 serial transmit shift register.  
Input  
Serial Data Input 1—When programmed as a receiver, SDI1 is used to  
receive serial data into the RX1 serial receive shift register.  
Input, Output, or  
Disconnected  
Port C 7—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
SDO3/  
SDO3_1  
Output  
Input  
GPIO  
Serial Data Output 3—When programmed as a transmitter, SDO3 is used to  
Disconnected transmit data from the TX3 serial transmit shift register.  
When enabled for ESAI_1 operation, this is the ESAI_1 Serial Data Output 3.  
SDI2/  
SDI2_1  
Serial Data Input 2—When programmed as a receiver, SDI2 is used to  
receive serial data into the RX2 serial receive shift register.  
When enabled for ESAI_1 operation, this is the ESAI_1 Serial Data Input 2.  
PC8/PE8 Input, Output, or  
Disconnected  
Port C 8—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
When enabled for ESAI_1 GPIO, this is the Port E 8 signal.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
SDO2/  
SDO2_1  
Output  
Input  
GPIO  
Serial Data Output 2—When programmed as a transmitter, SDO2 is used to  
Disconnected transmit data from the TX2 serial transmit shift register.  
When enabled for ESAI_1 operation, this is the ESAI_1 Serial Data Output 2.  
SDI3/  
Serial Data Input 3—When programmed as a receiver, SDI3 is used to  
SDI3_1  
receive serial data into the RX3 serial receive shift register.  
When enabled for ESAI_1 operation, this is the ESAI_1 Serial Data Input 3.  
PC9/PE9 Input, Output, or  
Disconnected  
Port C 9—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
When enabled for ESAI_1 GPIO, this is the Port E 9 signal.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
SDO1/  
SDO1_1  
Output  
GPIO  
Disconnected transmit shift register.  
When enabled for ESAI_1 operation, this is the ESAI_1 Serial Data Output 1.  
Serial Data Output 1—SDO1 is used to transmit data from the TX1 serial  
PC10/  
PE10  
Input, Output, or  
disconnected  
Port C 10—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
When enabled for ESAI_1 GPIO, this is the Port E 10 signal.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-15  
Enhanced Serial Audio Interface_1  
Table 2-11 Enhanced Serial Audio Interface Signals (continued)  
Signal  
Name  
State during  
Reset  
Signal Type  
Signal Description  
SDO0/  
Output  
GPIO  
Serial Data Output 0—SDO0 is used to transmit data from the TX0 serial  
SDO0_1  
Disconnected transmit shift register.  
When enabled for ESAI_1 operation, this is the ESAI_1 Serial Data Output 0.  
PC11/  
PE11  
Input, Output, or  
Disconnected  
Port C 11—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
When enabled for ESAI_1 GPIO, this is the Port E 11 signal.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
2.13 Enhanced Serial Audio Interface_1  
Table 2-12 Enhanced Serial Audio Interface_1 Signals  
Signal  
Name  
State during  
Signal Type  
Signal Description  
Reset  
FSR_1  
Input or Output  
GPIO  
Frame Sync for Receiver_1—This is the receiver frame sync input/output  
Disconnected signal. In the asynchronous mode (SYN=0), the FSR pin operates as the  
frame sync input or output used by all the enabled receivers. In the  
synchronous mode (SYN=1), it operates as either the serial flag 1 pin  
(TEBE=0), or as the transmitter external buffer enable control (TEBE=1,  
RFSD=1).  
When this pin is configured as serial flag pin, its direction is determined by the  
RFSD bit in the RCCR register. When configured as the output flag OF1, this  
pin will reflect the value of the OF1 bit in the SAICR register, and the data in  
the OF1 bit will show up at the pin synchronized to the frame sync in normal  
mode or the slot in network mode. When configured as the input flag IF1, the  
data value at the pin will be stored in the IF1 bit in the SAISR register,  
synchronized by the frame sync in normal mode or the slot in network mode.  
PE1  
Input, Output, or  
Disconnected  
Port E 1—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input cannot tolerate 3.3V.  
FST_1  
Input or Output  
GPIO  
Frame Sync for Transmitter_1—This is the transmitter frame sync  
Disconnected input/output signal. For synchronous mode, this signal is the frame sync for  
both transmitters and receivers. For asynchronous mode, FST is the frame  
sync for the transmitters only. The direction is determined by the transmitter  
frame sync direction (TFSD) bit in the ESAI transmit clock control register  
(TCCR).  
PE4  
Input, Output, or  
Disconnected  
Port E 4—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input cannot tolerate 3.3V.  
DSP56367 Technical Data, Rev. 2.1  
2-16  
Freescale Semiconductor  
Enhanced Serial Audio Interface_1  
Table 2-12 Enhanced Serial Audio Interface_1 Signals (continued)  
Signal  
Name  
State during  
Reset  
Signal Type  
Signal Description  
SCKR_1 Input or Output  
GPIO  
Receiver Serial Clock_1—SCKR provides the receiver serial bit clock for the  
Disconnected ESAI. The SCKR operates as a clock input or output used by all the enabled  
receivers in the asynchronous mode (SYN=0), or as serial flag 0 pin in the  
synchronous mode (SYN=1).  
When this pin is configured as serial flag pin, its direction is determined by the  
RCKD bit in the RCCR register. When configured as the output flag OF0, this  
pin will reflect the value of the OF0 bit in the SAICR register, and the data in  
the OF0 bit will show up at the pin synchronized to the frame sync in normal  
mode or the slot in network mode. When configured as the input flag IF0, the  
data value at the pin will be stored in the IF0 bit in the SAISR register,  
synchronized by the frame sync in normal mode or the slot in network mode.  
PE0  
Input, Output, or  
Disconnected  
Port E 0—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input cannot tolerate 3.3V.  
SCKT_1 Input or Output  
GPIO  
Transmitter Serial Clock_1—This signal provides the serial bit rate clock for  
Disconnected the ESAI. SCKT is a clock input or output used by all enabled transmitters and  
receivers in synchronous mode, or by all enabled transmitters in  
asynchronous mode.  
PE3  
Input, Output, or  
Disconnected  
Port E 3—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input cannot tolerate 3.3V.  
SDO5_1  
SDI0_1  
PE6  
Output  
Input  
GPIO  
Serial Data Output 5_1—When programmed as a transmitter, SDO5 is used  
Disconnected to transmit data from the TX5 serial transmit shift register.  
Serial Data Input 0_1—When programmed as a receiver, SDI0 is used to  
receive serial data into the RX0 serial receive shift register.  
Input, Output, or  
Disconnected  
Port E 6—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input cannot tolerate 3.3V.  
SDO4_1  
SDI1_1  
PE7  
Output  
Input  
GPIO  
Serial Data Output 4_1—When programmed as a transmitter, SDO4 is used  
Disconnected to transmit data from the TX4 serial transmit shift register.  
Serial Data Input 1_1—When programmed as a receiver, SDI1 is used to  
receive serial data into the RX1 serial receive shift register.  
Input, Output, or  
Disconnected  
Port E 7—When the ESAI is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-17  
SPDIF Transmitter Digital Audio Interface  
2.14 SPDIF Transmitter Digital Audio Interface  
Table 2-13 Digital Audio Interface (DAX) Signals  
Signal  
Name  
State During  
Reset  
Type  
Signal Description  
ACI  
Input  
GPIO  
Audio Clock Input—This is the DAX clock input. When programmed to use  
Disconnected an external clock, this input supplies the DAX clock. The external clock  
frequency must be 256, 384, or 512 times the audio sampling frequency  
(256 × Fs, 384 × Fs or 512 × Fs, respectively).  
PD0  
Input, Output, or  
Disconnected  
Port D 0—When the DAX is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
ADO  
PD1  
Output  
GPIO  
Digital Audio Data Output—This signal is an audio and non-audio output in  
Disconnected the form of AES/EBU, CP340 and IEC958 data in a biphase mark format.  
Input, Output, or  
Disconnected  
Port D 1—When the DAX is configured as GPIO, this signal is individually  
programmable as input, output, or internally disconnected.  
The default state after reset is GPIO disconnected.  
This input is 3.3V tolerant.  
2.15 Timer  
Table 2-14 Timer Signal  
Signal  
Name  
State during  
Signal Description  
Reset  
Type  
Input or Output  
TIO0  
Input  
Timer 0 Schmitt-Trigger Input/Output—When timer 0 functions as an  
external event counter or in measurement mode, TIO0 is used as input. When  
timer 0 functions in watchdog, timer, or pulse modulation mode, TIO0 is used  
as output.  
The default mode after reset is GPIO input. This can be changed to output or  
configured as a timer input/output through the timer 0 control/status register  
(TCSR0). If TIO0 is not being used, it is recommended to either define it as  
GPIO output immediately at the beginning of operation or leave it defined as  
GPIO input but connected to Vcc through a pull-up resistor in order to ensure  
a stable logic level at this input.  
This input is 3.3 V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
2-18  
Freescale Semiconductor  
JTAG/OnCE Interface  
2.16 JTAG/OnCE Interface  
Table 2-15 JTAG/OnCE Interface  
Signal  
Name  
State during  
Signal Type  
Signal Description  
Reset  
TCK  
Input  
Input  
Test Clock—TCK is a test clock input signal used to synchronize the JTAG test  
logic. It has an internal pull-up resistor.  
This input is 3.3V tolerant.  
TDI  
Input  
Input  
Test Data Input—TDI is a test data serial input signal used for test instructions  
and data. TDI is sampled on the rising edge of TCK and has an internal pull-up  
resistor.  
This input is 3.3V tolerant.  
TDO  
TMS  
Output  
Input  
Tri-Stated  
Input  
Test Data Output—TDO is a test data serial output signal used for test  
instructions and data. TDO is tri-statable and is actively driven in the shift-IR  
and shift-DR controller states. TDO changes on the falling edge of TCK.  
Test Mode Select—TMS is an input signal used to sequence the test  
controller’s state machine. TMS is sampled on the rising edge of TCK and has  
an internal pull-up resistor.  
This input is 3.3V tolerant.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
2-19  
JTAG/OnCE Interface  
NOTES  
DSP56367 Technical Data, Rev. 2.1  
2-20  
Freescale Semiconductor  
3 Specifications  
3.1  
Introduction  
The DSP56367 is a high density CMOS device with Transistor-Transistor Logic (TTL) compatible inputs  
and outputs.  
NOTE  
This document contains information on a new product. Specifications and  
information herein are subject to change without notice.  
Finalized specifications may be published after further characterization and device qualifications are  
completed.  
3.2  
Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage due to high static  
voltage or electrical fields. However, normal precautions should be taken to  
avoid exceeding maximum voltage ratings. Reliability of operation is  
enhanced if unused inputs are pulled to an appropriate logic voltage level  
(for example, either GND or V ). The suggested value for a pull-up or  
CC  
pull-down resistor is 10 k.  
NOTE  
In the calculation of timing requirements, adding a maximum value of one  
specification to a minimum value of another specification does not yield a  
reasonable sum. A maximum specification is calculated using a worst case  
variation of process parameter values in one direction. The minimum  
specification is calculated using the worst case for the same parameters in  
the opposite direction. Therefore, a “maximum” value for a specification  
will never occur in the same device that has a “minimum” value for another  
specification; adding a maximum to a minimum represents a condition that  
can never exist.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-1  
Thermal Characteristics  
Table 3-1 Maximum Ratings  
Symbol  
Rating1  
Value1, 2  
Unit  
Supply Voltage  
VCCQL, VCCP  
0.3 to + 2.0  
V
VCCQH, VCCA, VCCD,  
VCCC, VCCH, VCCS,  
0.3 to + 4.0  
GND 0.3 to VCC + 0.7  
10  
V
V
All “3.3V tolerant” input voltages  
Current drain per pin excluding VCC and GND  
Operating temperature range3  
Storage temperature  
VIN  
I
mA  
°C  
°C  
TJ  
40 to + 95  
TSTG  
55 to +125  
1
2
3
GND = 0 V, VCCP, VCCQL = 1.8 V 5%, TJ = –40×C to +95×C, CL = 50 pF  
All other VCC = 3.3 V 5%, TJ = –40×C to +95×C, CL = 50 pF  
Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond  
the maximum rating may affect device reliability or cause permanent damage to the device.  
Temperatures below -0°C are qualified for consumer applications.  
3.3  
Thermal Characteristics  
Table 3-2 Thermal Characteristics  
Characteristic  
Symbol  
RθJA or θJA  
RθJC or θJC  
ΨJT  
TQFP Value  
45.0  
Unit  
°C/W  
°C/W  
°C/W  
Natural Convection, Junction-to-ambient thermal resistance1,2  
Junction-to-case thermal resistance3  
10.0  
Natural Convection, Thermal characterization parameter4  
3.0  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2
3
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
4
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
DSP56367 Technical Data, Rev. 2.1  
3-2  
Freescale Semiconductor  
DC Electrical Characteristics  
3.4  
DC Electrical Characteristics  
Table 3-3 DC Electrical Characteristics1  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltages  
VCC  
1.71  
1.8  
1.89  
V
• Core (VCCQL  
• PLL(VCCP  
)
)
Supply voltages  
• VCCQH  
• VCCA  
VCC  
3.14  
3.3  
3.46  
V
• VCCD  
• VCCC  
• VCCH  
• VCCS  
Input high voltage  
V
• D(0:23), BG, BB, TA, ESAI_1 (except SDO4_1)  
• MOD2/IRQ2, RESET, PINIT/NMI and all  
JTAG/ESAI_1/Timer/HDI08/DAX/(only SDO4_1)/SHI(SPI mode)  
VIH  
2.0  
2.0  
VCCQH  
VIHP  
VCCQH + 03 max  
for both VIHP  
• SHI(I2C mode)  
VIHP  
VIHX  
1.5  
VCCQH + 03 max  
for both VIHP  
• EXTAL  
0.8 × VCCQH  
0.8 × VCCQH  
Input low voltage  
V
• D(0:23), BG, BB, TA, ESAI_1(except SDO4_1)  
VIL  
–0.3  
–0.3  
0.8  
0.8  
MOD2/IRQ2, RESET, PINIT/NMI and all  
VILP  
JTAG/ESAI/Timer/HDI08/DAX/ESAI_1(only SDO4_1)/SHI(SPI mode)  
• SHI(I2C mode)  
• EXTAL  
VILP  
VILX  
–0.3  
–0.3  
0.3 x VCC  
0.2 x VCCQH  
Input leakage current  
IIN  
–10  
–10  
2.4  
10  
10  
µA  
µA  
V
High impedance (off-state) input current (@ 2.4 V / 0.4 V)  
Output high voltage3  
ITSI  
VOH  
VOL  
Output low voltage3  
0.4  
V
Internal supply current4 at internal clock of 150MHz  
• In Normal mode  
mA  
ICCI  
ICCW  
ICCS  
58.0  
7.3  
115  
20  
4
• In Wait mode  
• In Stop mode5  
2.0  
PLL supply current  
Input capacitance6  
1
2.5  
10  
mA  
pF  
CIN  
1
VCCQL = 1.8 V 5%, TJ = –40°C to +95°C, CL = 50 pF  
All other VCC = 3.3 V 5%, TJ = –40°C to +95°C, CL = 50 pF  
2
Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-3  
AC Electrical Characteristics  
3
This characteristic does not apply to PCAP.  
4
The Appendix A, "Power Consumption Benchmark" section provides a formula to compute the estimated current  
requirements in Normal mode. In order to obtain these results, all inputs must be terminated (i.e., not allowed to float).  
Measurements are based on synthetic intensive DSP benchmarks. The power consumption numbers in this specification are  
90% of the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current is  
measured with VCCQL = 1.8V, VCC(other) = 3.3V at TJ = 25°C. Maximum internal supply current is measured with VCCQL = 1.89V,  
VCC(other) = 3.46V at TJ = 95°C.  
5
6
In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not allowed to  
float).  
Periodically sampled and not 100% tested  
3.5  
AC Electrical Characteristics  
The timing waveforms shown in the AC electrical characteristics section are tested with a V maximum  
IL  
of 0.4 V and a V minimum of 2.4 V for all pins except EXTAL. AC timing specifications, which are  
IH  
referenced to a device input signal, are measured in production with respect to the 50% point of the  
respective input signal’s transition. DSP56367 output levels are measured with the production test machine  
V
and V reference levels set at 0.4 V and 2.4 V, respectively.  
OL  
OH  
NOTE  
Although the minimum value for the frequency of EXTAL is 0 MHz, the  
device AC test conditions are 15 MHz and rated speed.  
3.6  
Internal Clocks  
Table 3-4 Internal Clocks  
Expression1, 2  
Characteristics  
Symbol  
Min  
Typ  
(Ef × MF)/(PDF × DF)  
Ef/2  
Max  
Internal operation frequency with PLL enabled  
Internal operation frequency with PLL disabled  
f
f
Internal clock high period  
• With PLL disabled  
TH  
ETC  
• With PLL enabled and MF 4  
0.49 × ETC × PDF ×  
0.51 × ETC × PDF ×  
DF/MF  
DF/MF  
• With PLL enabled and MF > 4  
0.47 × ETC × PDF ×  
0.53 × ETC × PDF ×  
DF/MF  
DF/MF  
Internal clock low period  
• With PLL disabled  
TL  
ETC  
• With PLL enabled and MF 4  
0.49 × ETC × PDF ×  
0.51 × ETC × PDF ×  
DF/MF  
DF/MF  
• With PLL enabled and MF > 4  
0.47 × ETC × PDF ×  
0.53 × ETC × PDF ×  
DF/MF  
DF/MF  
Internal clock cycle time with PLL enabled  
TC  
ETC × PDF × DF/MF  
DSP56367 Technical Data, Rev. 2.1  
3-4  
Freescale Semiconductor  
External Clock Operation  
Table 3-4 Internal Clocks (continued)  
Expression1, 2  
Characteristics  
Symbol  
Min  
Typ  
2 × ETC  
TC  
Max  
Internal clock cycle time with PLL disabled  
Instruction cycle time  
TC  
ICYC  
1
DF = Division Factor  
Ef = External frequency  
ETC = External clock cycle  
MF = Multiplication Factor  
PDF = Predivision Factor  
TC = internal clock cycle  
2
Refer to the DSP56300 Family Manual for a detailed discussion of the PLL.  
3.7  
External Clock Operation  
The DSP56367 system clock is an externally supplied square wave voltage source connected to  
EXTAL(Figure 3-1).  
VIHC  
Midpoint  
EXTAL  
ETH  
ETL  
VILC  
2
3
4
ETC  
Note: The midpoint is 0.5 (VIHC + VILC).  
Figure 3-1 External Clock Timing  
Table 3-5 Clock Operation  
No.  
Characteristics  
Symbol  
Min  
Max  
1
Frequency of EXTAL (EXTAL Pin Frequency)  
Ef  
2.0 ns  
150.0  
The rise and fall time of this external clock should be 2 ns maximum.  
2
3
EXTAL input high1, 2  
• With PLL disabled (46.7%–53.3% duty cycle3)  
• With PLL enabled (42.5%–57.5% duty cycle3)  
ETH  
ETL  
3.11 ns  
2.83 ns  
157.0 µs  
EXTAL input low1, 2  
• With PLL disabled (46.7%–53.3% duty cycle3)  
• With PLL enabled (42.5%–57.5% duty cycle3)  
3.11 ns  
2.83 ns  
157.0 µs  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-5  
Phase Lock Loop (PLL) Characteristics  
Table 3-5 Clock Operation (continued)  
Characteristics Symbol  
ETC  
No.  
Min  
Max  
4
EXTAL cycle time2  
• With PLL disabled  
• With PLL enabled  
6.7 ns  
6.7 ns  
273.1 µs  
4
7
Instruction cycle time = ICYC = TC  
• With PLL disabled  
ICYC  
13.33 ns  
6.67 ns  
• With PLL enabled  
8.53 µs  
1
2
3
Measured at 50% of the input transition.  
The maximum value for PLL enabled is given for minimum VCO and maximum MF.  
The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time  
required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock  
frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time  
requirements are met.  
4
The maximum value for PLL enabled is given for minimum VCO and maximum DF.  
3.8  
Phase Lock Loop (PLL) Characteristics  
Table 3-6 PLL Characteristics  
Characteristics  
Min  
Max  
Unit  
MHz  
pF  
V
CO frequency when PLL enabled (MF × Ef × 2/PDF)  
30  
300  
1)  
PLL external capacitor (PCAP pin to VCCP) (CPCAP  
• @ MF 4  
(MF × 580) 100  
MF × 830  
(MF × 780) 140  
MF × 1470  
• @ MF > 4  
1
CPCAP is the value of the PLL capacitor (connected between the PCAP pin and VCCP). The recommended value in pF for  
CPCAP can be computed from one of the following equations:  
(MF x 680)-120, for MF 4, or  
MF x 1100, for MF > 4.  
DSP56367 Technical Data, Rev. 2.1  
3-6  
Freescale Semiconductor  
Reset, Stop, Mode Select, and Interrupt Timing  
3.9  
Reset, Stop, Mode Select, and Interrupt Timing  
Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing1  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
8
9
Delay from RESET assertion to all pins at reset value2  
26.0  
ns  
Required RESET duration3  
• Power on, external clock generator, PLL disabled  
• Power on, external clock generator, PLL enabled  
• Power on, Internal oscillator  
50 × ETC  
1000 × ETC  
75000 × ETC  
75000 × ETC  
2.5 × TC  
333.4  
6.7  
ns  
µs  
µs  
µs  
ns  
ns  
500  
• During STOP, XTAL disabled  
500  
• During STOP, XTAL enabled  
16.7  
16.7  
• During normal operation  
2.5 × TC  
10 Delay from asynchronous RESET deassertion to first  
external address output (internal reset deassertion)4  
ns  
• Minimum  
• Maximum  
3.25 × TC + 2.0  
20.25 × TC + 10  
23.7  
145.0  
11 Syn reset setup time from RESET  
• Maximum  
ns  
ns  
TC  
6.7  
12 Syn reset deassert delay time  
• Minimum  
3.25 × TC + 1.0  
20.25 × TC + 5.0  
22.7  
• Maximum  
140.0  
13 Mode select setup time  
30.0  
0.0  
4.4  
4.4  
ns  
ns  
ns  
ns  
ns  
14 Mode select hold time  
15 Minimum edge-triggered interrupt request assertion width  
16 Minimum edge-triggered interrupt request deassertion width  
17 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
external memory access address out valid  
• Caused by first interrupt instruction fetch  
4.25 × TC + 2.0  
7.25 × TC + 2.0  
30.3  
50.3  
• Caused by first interrupt instruction execution  
18 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
general-purpose transfer output valid caused by first interrupt  
instruction execution  
10 × TC + 5.0  
71.7  
ns  
ns  
ns  
19 Delay from address output valid caused by first interrupt  
instruction execute to interrupt request deassertion for level  
sensitive fast interrupts5, 6, 7  
(WS + 3.75) × TC – 10.94  
Note 8  
Note 8  
20 Delay from RD assertion to interrupt request deassertion for (WS + 3.25) × TC – 10.94  
level sensitive fast interrupts5, 6, 7  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-7  
Reset, Stop, Mode Select, and Interrupt Timing  
Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing1 (continued)  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
21 Delay from WR assertion to interrupt request deassertion for  
level sensitive fast interrupts5, 6, 7  
ns  
• DRAM for all WS  
• SRAM WS = 1  
• SRAM WS = 2, 3  
• SRAM WS 4  
(WS + 3.5) × TC – 10.94  
N/A  
Note 8  
Note 8  
Note 8  
Note 8  
1.75 × TC – 4.0  
2.75 × TC – 4.0  
22 Synchronous int setup time from IRQs NMI assertion to the  
CLKOUT trans.  
0.6 × TC – 0.1  
3.9  
ns  
ns  
23 Synch. int delay time from the CLKOUT trans2 to the first  
external address out valid caused by first inst fetch  
• Minimum  
• Maximum  
9.25 × TC + 1.0  
24.75 × TC + 5.0  
62.7  
170.0  
24 Duration for IRQA assertion to recover from Stop state  
0.6 × TC 0.1  
3.9  
ns  
25 Delay from IRQA assertion to fetch of first instruction (when  
exiting Stop)2, 8  
• PLL is not active during Stop (PCTL Bit 17 = 0) and Stop PLC × ETC × PDF + (128 K  
delay is enabled (OMR Bit 6 = 0) PLC/2) × TC  
• PLL is not active during Stop (PCTL Bit 17 = 0) and Stop PLC × ETC × PDF + (23.75  
ms  
ms  
ns  
delay is not enabled (OMR Bit 6 = 1)  
+/- 0.5) × TC  
• PLL is active during Stop (PCTL Bit 17 = 1) (Implies No  
Stop Delay)  
(8.25 0.5) × TC  
51.7  
58.3  
26 Duration of level sensitive IRQA assertion to ensure interrupt  
service (when exiting Stop)2, 8  
• PLL is not active during Stop (PCTL Bit 17 = 0) and Stop PLC × ETC × PDF + (128 K  
delay is enabled (OMR Bit 6 = 0) PLC/2) × TC  
• PLL is not active during Stop (PCTL Bit 17 = 0) and Stop PLC × ETC × PDF + (20.5  
ms  
ms  
ns  
delay is not enabled (OMR Bit 6 = 1)  
+/- 0.5) × TC  
• PLL is active during Stop (PCTL Bit 17 = 1) (implies no  
Stop delay)  
5.5 × TC  
36.7  
27 Interrupt Requests Rate  
• HDI08, ESAI, ESAI_1, SHI, DAX, Timer  
• DMA  
ns  
12TC  
8TC  
80.0  
53.0  
53.0  
80.0  
8TC  
• IRQ, NMI (edge trigger)  
• IRQ (level trigger)  
12TC  
DSP56367 Technical Data, Rev. 2.1  
3-8  
Freescale Semiconductor  
Reset, Stop, Mode Select, and Interrupt Timing  
Table 3-7 Reset, Stop, Mode Select, and Interrupt Timing1 (continued)  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
28 DMA Requests Rate  
ns  
• Data read from HDI08, ESAI, ESAI_1, SHI, DAX  
• Data write to HDI08, ESAI, ESAI_1, SHI, DAX  
• Timer  
6TC  
7TC  
2TC  
3TC  
40.0  
46.7  
13.3  
20.0  
• IRQ, NMI (edge trigger)  
29 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
external memory (DMA source) access address out valid  
4.25 × TC + 2.0  
30.3  
ns  
1
2
3
VCCQH = 3.3 V 5%; VCC= 1.8V 5%; TJ = –40°C to + 95°C, CL = 50 pF  
Periodically sampled and not 100% tested.  
RESET duration is measured during the time in which RESET is asserted, VCC is valid, and the EXTAL input is active and  
valid. When the VCC is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met,  
the device circuitry will not be in an initialized state that can result in significant power consumption and heat-up. Designs  
should minimize this state to the shortest possible duration.  
4
5
If PLL does not lose lock.  
When using fast interrupts and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to  
prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended  
when using fast interrupts. Long interrupts are recommended when using Level-sensitive mode.  
6
7
8
WS = number of wait states (measured in clock cycles, number of TC).  
Use expression to compute maximum value.  
This timing depends on several settings:  
For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time will be defined  
by the PCTL Bit 17 and OMR Bit 6 settings.  
For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked.  
The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs  
in parallel with the stop delay counter, and stop recovery will end when the last of these two events occurs: the stop delay  
counter completes count or PLL lock procedure completion.  
PLC value for PLL disable is 0.  
The maximum value for ETC is 4096 (maximum MF) divided by the desired internal frequency (i.e., for 150 MHz it is  
4096/150 MHz = 27.3 µs). During the stabilization period, TC, TH, and TL will not be constant, and their width may vary, so  
timing may vary as well.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-9  
Reset, Stop, Mode Select, and Interrupt Timing  
VIH  
RESET  
9
10  
8
All Pins  
Reset Value  
A0–A17  
First Fetch  
AA0460  
Figure 3-2 Reset Timing  
First Interrupt Instruction  
Execution/Fetch  
A0–A17  
RD  
20  
WR  
21  
19  
17  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O  
18  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
b) General Purpose I/O  
Figure 3-3 External Fast Interrupt Timing  
DSP56367 Technical Data, Rev. 2.1  
3-10  
Freescale Semiconductor  
Reset, Stop, Mode Select, and Interrupt Timing  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
15  
16  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
AA0463  
Figure 3-4 External Interrupt Timing (Negative Edge-Triggered)  
VIH  
RESET  
13  
14  
IRQA, IRQB,  
IRQD, NMI  
VIH  
VIL  
VIH  
VIL  
MODA, MODB,  
MODC, MODD,  
PINIT  
AA0465  
Figure 3-5 Operating Mode Select Timing  
24  
IRQA  
25  
First Instruction Fetch  
A0–A17  
AA0466  
Figure 3-6 Recovery from Stop State Using IRQA Interrupt Service  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-11  
External Memory Expansion Port (Port A)  
26  
IRQA  
25  
A0–A17  
First IRQA Interrupt Instruction Fetch  
AA0467  
Figure 3-7 Recovery from Stop State Using IRQA Interrupt Service  
DMA Source Address  
A0–A17  
RD  
WR  
29  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
First Interrupt Instruction Execution  
AA1104  
Figure 3-8 External Memory Access (DMA Source) Timing  
3.10 External Memory Expansion Port (Port A)  
3.10.1 SRAM Timing  
Table 3-8 SRAM Read and Write Accesses  
150 MHz  
No.  
Characteristics  
Symbol  
Expression1  
Unit  
Min  
Max  
100 Address valid and AA assertion pulse width  
101 Address and AA valid to WR assertion  
102 WR assertion pulse width  
tRC, tWC (WS + 2) × TC 4.0 [2 WS 7] 22.7  
ns  
ns  
(WS + 3) × TC 4.0 [WS 8]  
69.3  
tAS  
tWP  
tWR  
0.75 × TC 2.0[2 WS ≤ 3]  
1.25 × TC 2.0[WS ≥ 4]  
3.0  
6.3  
ns  
ns  
WS × TC 4.0 [2 WS 3]  
9.3  
ns  
ns  
(WS 0.5) × TC 4.0[WS 4]  
19.3  
103 WR deassertion to address not valid  
1.25 × TC − 4.0[2 WS 7]  
2.25 × TC − 4.0[WS 8]  
4.3  
ns  
ns  
11.0  
DSP56367 Technical Data, Rev. 2.1  
3-12  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
Table 3-8 SRAM Read and Write Accesses (continued)  
Characteristics Symbol  
Expression1  
tAA, tAC (WS + 0.75) × TC − 5.0 [WS 2]  
150 MHz  
No.  
Unit  
Min  
Max  
13.3  
10.0  
104 Address and AA valid to input data valid  
105 RD assertion to input data valid  
ns  
ns  
ns  
ns  
ns  
tOE  
tOHZ  
tAW  
(WS + 0.25) × TC 5.0 [WS 2]  
106 RD deassertion to data not valid (data hold time)  
107 Address valid to WR deassertion2  
0.0  
(WS + 0.75) × TC 4.0 [WS 2] 14.3  
108 Data valid to WR deassertion (data setup time)  
109 Data hold time from WR deassertion  
tDS (tDW) (WS 0.25) × TC 3.0 [WS 2]  
8.7  
tDH  
1.25 × TC 2.0[2 WS 7]  
2.25 × TC 2.0 [WS 8]  
6.3  
ns  
ns  
13.0  
110 WR assertion to data active  
0.25 × TC 3.7 [2 WS 3]  
0.25 × TC 3.7 [WS 4]  
-2.0  
-5.4  
ns  
ns  
111 WR deassertion to data high impedance  
0.25 × TC + 0.2 [2 WS 3]  
1.25 × TC + 0.2 [4 WS 7]  
2.25 × TC + 0.2 [WS 8]  
1.9  
8.5  
ns  
ns  
ns  
15.2  
112 Previous RD deassertion to data active (write)  
1.25 × TC 4.0 [2 WS 3]  
2.25 × TC 4.0 [4 WS 7]  
3.25 × TC 4.0 [WS 8]  
4.3  
ns  
ns  
ns  
11.0  
17.7  
113 RD deassertion time  
114 WR deassertion time  
1.75 × TC 4.0 [2 WS 7]  
2.75 × TC 4.0 [WS 8]  
7.7  
ns  
ns  
14.3  
2.0 × TC 4.0 [2 WS ≤ 3]  
2.5 × TC 4.0 [4 WS 7]  
3.5 × TC 4.0 [WS 8]  
9.3  
ns  
ns  
ns  
12.7  
19.3  
115 Address valid to RD assertion  
116 RD assertion pulse width  
0.5 × TC 2.0  
1.3  
ns  
ns  
(WS + 0.25) × TC 4.0  
11.0  
117 RD deassertion to address not valid  
1.25 × TC 2.0 [2 WS 7]  
2.25 × TC 2.0 [WS 8]  
6.3  
ns  
ns  
13.0  
118 TA setup before RD or WR deassertion3  
119 TA hold after RD or WR deassertion  
0.25 × TC + 2.0  
3.7  
0.0  
ns  
ns  
1
WS is the number of wait states specified in the BCR. The value is given for the minimum for a given category. (For example,  
for a category of [2 WS 7] timing is specified for 2 wait states.) Two wait states is the minimum otherwise.  
Timings 100, 107 are guaranteed by design, not tested.  
2
3
In the case of TA negation: timing 118 is relative to the deassertion edge of RD or WR were TA to remain active.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-13  
External Memory Expansion Port (Port A)  
100  
A0–A17  
AA0–AA2  
117  
106  
113  
116  
RD  
115  
105  
WR  
104  
119  
118  
TA  
Data  
In  
D0–D23  
AA0468  
Figure 3-9 SRAM Read Access  
100  
107  
A0–A17  
AA0–AA2  
101  
102  
103  
WR  
114  
RD  
TA  
118  
119  
108  
109  
Data  
Out  
D0–D23  
Figure 3-10 SRAM Write Access  
DSP56367 Technical Data, Rev. 2.1  
3-14  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
3.10.2 DRAM Timing  
The selection guides provided in Figure 3-11 and Figure 3-14 should be used for primary selection only.  
Final selection should be based on the timing provided in the following tables. As an example, the selection  
guide suggests that 4 wait states must be used for 100 MHz operation when using Page Mode DRAM.  
However, by using the information in the appropriate table, a designer may choose to evaluate whether  
fewer wait states might be used by determining which timing prevents operation at 100 MHz, running the  
chip at a slightly lower frequency (e.g., 95 MHz), using faster DRAM (if it becomes available), and control  
factors such as capacitive and resistive load to improve overall system performance.  
Note: This figure should be use for primary selection. For  
exact and detailed timings see the following tables.  
DRAM Type  
(tRAC ns)  
100  
80  
70  
60  
Chip Frequency  
(MHz)  
50  
120  
40  
66  
80  
100  
1 Wait States  
2 Wait States  
3 Wait States  
4 Wait States  
AA0472  
Figure 3-11 DRAM Page Mode Wait States Selection Guide  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-15  
External Memory Expansion Port (Port A)  
Table 3-9 DRAM Page Mode Timings, Three Wait States1, 2, 3  
100 MHz  
No.  
Characteristics  
Symbol  
Expression4  
Unit  
Min  
Max  
131 Page mode cycle time for two consecutive accesses of the same  
direction  
tPC  
2 × TC  
20.0  
ns  
Page mode cycle time for mixed (read and write) accesses  
1.25 × TC  
2 × TC 7.0  
3 × TC 7.0  
12.5  
13.0  
23.0  
132 CAS assertion to data valid (read)  
tCAC  
tAA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
tOFF  
tRSH  
tRHCP  
tCAS  
tCRP  
0.0  
2.5 × TC 4.0 21.0  
4.5 × TC 4.0 41.0  
2 × TC 4.0  
16.0  
138 Last CAS deassertion to RAS assertion5  
• BRW[1:0] = 00, 01— not applicable  
• BRW[1:0] = 10  
4.75 × TC 6.0 41.5  
6.75 × TC 6.0 61.5  
• BRW[1:0] = 11  
139 CAS deassertion pulse width  
tCP  
tASC  
tCAH  
tRAL  
tRCS  
tRCH  
tWCH  
tWP  
1.5 × TC 4.0 11.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
TC 4.0  
2.5 × TC 4.0 21.0  
4 × TC 4.0 36.0  
1.25 × TC 4.0 8.5  
0.75 × TC − 4.0 3.5  
6.0  
2.25 × TC 4.2 18.3  
3.5 × TC 4.5 30.5  
3.75 × TC 4.3 33.2  
3.25 × TC 4.3 28.2  
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
tRWL  
tCWL  
tDS  
0.5 × TC 4.0  
1.0  
tDH  
2.5 × TC 4.0 21.0  
1.25 × TC 4.3 8.2  
3.5 × TC 4.0 31.0  
tWCS  
tROH  
152 Last RD assertion to RAS deassertion  
DSP56367 Technical Data, Rev. 2.1  
3-16  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
Table 3-9 DRAM Page Mode Timings, Three Wait States1, 2, 3 (continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression4  
Unit  
Min  
Max  
18.0  
153 RD assertion to data valid  
tGA  
tGZ  
2.5 × TC 7.0  
ns  
ns  
ns  
ns  
154 RD deassertion to data not valid6  
155 WR assertion to data active  
0.0  
0.75 × TC 0.3 7.2  
0.25 × TC  
156 WR deassertion to data high impedance  
2.5  
1
2
3
4
The number of wait states for Page mode access is specified in the DCR.  
The refresh period is specified in the DCR.  
The asynchronous delays specified in the expressions are valid for DSP56367.  
All the timings are calculated for the worst case. Some of the timings are better for specific cases (e.g., tPC equals 4 × TC for  
read-after-read or write-after-write sequences).  
5
6
BRW[1:0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of  
page-access.  
RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
Table 3-10 DRAM Page Mode Timings, Four Wait States1, 2, 3  
100 MHz  
Min Max  
No.  
Characteristics  
Symbol  
Expression4  
Unit  
131 Page mode cycle time for two consecutive accesses of the  
same direction  
tPC  
ns  
5 × TC  
50.0  
45.0  
Page mode cycle time for mixed (read and write) accesses  
4.5 × TC  
132 CAS assertion to data valid (read)  
tCAC  
tAA  
2.75 × TC 5.7  
3.75 × TC 5.7  
21.8  
31.8  
ns  
ns  
ns  
ns  
ns  
ns  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
tOFF  
tRSH  
tRHCP  
tCAS  
tCRP  
0.0  
3.5 × TC 4.0  
6 × TC 4.0  
31.0  
56.0  
21.0  
2.5 × TC 4.0  
138 Last CAS deassertion to RAS assertion5  
• BRW[1–0] = 00, 01—Not applicable  
• BRW[1–0] = 10  
ns  
ns  
5.25 × TC 6.0  
7.25 × TC 6.0  
46.5  
66.5  
• BRW[1–0] = 11  
139 CAS deassertion pulse width  
tCP  
2 × TC 4.0  
TC 4.0  
16.0  
6.0  
ns  
ns  
140 Column address valid to CAS assertion  
tASC  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-17  
External Memory Expansion Port (Port A)  
Table 3-10 DRAM Page Mode Timings, Four Wait States1, 2, 3 (continued)  
100 MHz  
Min Max  
No.  
Characteristics  
Symbol  
Expression4  
Unit  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
tCAH  
tRAL  
tRCS  
tRCH  
tWCH  
tWP  
3.5 × TC 4.0  
5 × TC 4.0  
31.0  
46.0  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.25 × TC 4.0  
1.25 × TC – 3.7  
3.25 × TC 4.2  
4.5 × TC 4.5  
4.75 × TC 4.3  
3.75 × TC 4.3  
0.5 × TC – 4.5  
3.5 × TC 4.0  
1.25 × TC 4.3  
4.5 × TC 4.0  
3.25 × TC 5.7  
8.8  
28.3  
40.5  
43.2  
33.2  
0.5  
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
tRWL  
tCWL  
tDS  
tDH  
31.0  
8.2  
tWCS  
tROH  
tGA  
41.0  
26.8  
154 RD deassertion to data not valid6  
155 WR assertion to data active  
tGZ  
0.0  
0.75 × TC – 1.5  
0.25 × TC  
6.0  
156 WR deassertion to data high impedance  
2.5  
1
2
3
4
The number of wait states for Page mode access is specified in the DCR.  
The refresh period is specified in the DCR.  
The asynchronous delays specified in the expressions are valid for DSP56367.  
All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, tPC equals  
3 × TC for read-after-read or write-after-write sequences). An expressions is used to calculate the maximum or minimum  
value listed, as appropriate.  
5
6
BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page  
access.  
RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
DSP56367 Technical Data, Rev. 2.1  
3-18  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
RAS  
CAS  
136  
135  
131  
137  
139  
141  
138  
142  
140  
151  
Column  
Address  
Last Column  
Address  
Column  
Address  
Row  
Add  
A0–A17  
144  
143  
147  
145  
WR  
RD  
146  
148  
155  
149  
156  
150  
D0–D23  
Data Out  
Data Out  
Data Out  
AA0473  
Figure 3-12 DRAM Page Mode Write Accesses  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-19  
External Memory Expansion Port (Port A)  
RAS  
136  
135  
131  
CAS  
137  
140  
139  
141  
138  
142  
Row  
Add  
Last Column  
Address  
Column  
Address  
Column  
Address  
A0–A17  
WR  
143  
132  
133  
153  
152  
RD  
134  
154  
D0–D23  
Data In  
Data In  
Data In  
AA0474  
Figure 3-13 DRAM Page Mode Read Accesses  
DSP56367 Technical Data, Rev. 2.1  
3-20  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
DRAM Type  
(tRAC ns)  
Note: This figure should be use for primary selection. For exact  
and detailed timings see the following tables.  
100  
80  
70  
60  
50  
Chip Frequency  
(MHz)  
120  
40  
66  
80  
100  
4 Wait States  
8 Wait States  
11 Wait States  
15 Wait States  
AA0475  
Figure 3-14 DRAM Out-of-Page Wait States Selection Guide  
Table 3-11 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2  
20 MHz3 30 MHz3  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
Min  
166.7  
Max  
157 Random read or write cycle time  
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
tRC  
tRAC  
tCAC  
tAA  
5 × TC  
250.0  
ns  
ns  
ns  
ns  
ns  
2.75 × TC 7.5  
1.25 × TC 7.5  
1.5 × TC 7.5  
130.0  
55.0  
67.5  
84.2  
34.2  
42.5  
161 CAS deassertion to data not valid (read hold  
time)  
tOFF  
0.0  
0.0  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
tRP  
1.75 × TC 4.0  
3.25 × TC 4.0  
1.75 × TC 4.0  
83.5  
158.5  
83.5  
54.3  
104.3  
54.3  
ns  
ns  
ns  
tRAS  
tRSH  
164 CAS assertion to RAS deassertion  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-21  
External Memory Expansion Port (Port A)  
Table 3-11 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2 (continued)  
20 MHz3 30 MHz3  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
Min  
Max  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
tCSH  
tCAS  
tRCD  
tRAD  
tCRP  
tCP  
2.75 × TC 4.0  
1.25 × TC 4.0  
133.5  
58.5  
73.0  
60.5  
108.5  
83.5  
83.5  
58.5  
8.5  
87.7  
37.7  
48.0  
39.7  
71.0  
54.3  
54.3  
37.7  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
167 RAS assertion to CAS assertion  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
1.5 × TC  
2
77.0  
64.5  
52.0  
43.7  
1.25 × TC  
2
2.25 × TC 4.0  
1.75 × TC 4.0  
1.75 × TC 4.0  
1.25 × TC 4.0  
0.25 × TC 4.0  
1.75 × TC 4.0  
3.25 × TC 4.0  
2 × TC 4.0  
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
178 CAS deassertion to WR assertion  
179 RAS deassertion to WR assertion  
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
tASR  
tRAH  
tASC  
tCAH  
tAR  
83.5  
158.5  
96.0  
71.2  
33.8  
8.8  
54.3  
104.3  
62.7  
46.2  
21.3  
4.6  
tRAL  
tRCS  
tRCH  
tRRH  
tWCH  
tWCR  
tWP  
1.5 × TC 3.8  
0.75 × TC 3.7  
0.25 × TC 3.7  
1.5 × TC 4.2  
3 × TC 4.2  
70.8  
145.8  
220.5  
233.2  
208.2  
108.5  
83.5  
158.5  
145.7  
21.0  
58.5  
45.8  
95.8  
145.5  
154.0  
137.4  
71.0  
54.3  
104.3  
95.7  
12.7  
37.7  
4.5 × TC 4.5  
4.75 × TC 4.3  
4.25 × TC 4.3  
2.25 × TC 4.0  
1.75 × TC 4.0  
3.25 × TC 4.0  
3 × TC 4.3  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
tRWL  
tCWL  
tDS  
tDH  
tDHR  
tWCS  
tCSR  
tRPC  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
0.5 × TC 4.0  
1.25 × TC 4.0  
DSP56367 Technical Data, Rev. 2.1  
3-22  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
Table 3-11 DRAM Out-of-Page and Refresh Timings, Four Wait States1, 2 (continued)  
20 MHz3 30 MHz3  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
Min  
Max  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
tROH  
tGA  
4.5 × TC 4.0  
4 × TC 7.5  
221.0  
146.0  
ns  
ns  
ns  
ns  
ns  
192.5  
125.8  
193 RD deassertion to data not valid4  
194 WR assertion to data active  
tGZ  
0.0  
0.0  
0.75 × TC 0.3  
0.25 × TC  
37.2  
24.7  
195 WR deassertion to data high impedance  
12.5  
8.3  
1
2
3
4
The number of wait states for out of page access is specified in the DCR.  
The refresh period is specified in the DCR.  
Reduced DSP clock speed allows use of DRAM out-of-page access with four Wait states (Figure 3-14).  
RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
Table 3-12 DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2, 3  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
120.0  
Max  
157 Random read or write cycle time  
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
tRC  
tRAC  
tCAC  
tAA  
12 × TC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.25 × TC 7.0  
3.75 × TC 7.0  
4.5 × TC 7.0  
55.5  
30.5  
38.0  
tOFF  
tRP  
0.0  
4.25 × TC 4.0  
7.75 × TC 4.0  
5.25 × TC 4.0  
6.25 × TC 4.0  
3.75 × TC 4.0  
2.5 × TC 4.0  
1.75 × TC 4.0  
5.75 × TC 4.0  
4.25 × TC 4.0  
4.25 × TC 4.0  
1.75 × TC 4.0  
38.5  
73.5  
48.5  
58.5  
33.5  
21.0  
13.5  
53.5  
38.5  
38.5  
13.5  
tRAS  
tRSH  
tCSH  
tCAS  
tRCD  
tRAD  
tCRP  
tCP  
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
167 RAS assertion to CAS assertion  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
29.0  
21.5  
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
tASR  
tRAH  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-23  
External Memory Expansion Port (Port A)  
Table 3-12 DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2, 3 (continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
3.5  
Max  
93.0  
2.5  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
178 CAS deassertion to WR4 assertion  
179 RAS deassertion to WR4 assertion  
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
tASC  
tCAH  
tAR  
0.75 × TC 4.0  
5.25 × TC 4.0  
7.75 × TC 4.0  
6 × TC 4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
48.5  
73.5  
56.0  
26.0  
13.5  
0.5  
tRAL  
tRCS  
tRCH  
tRRH  
tWCH  
tWCR  
tWP  
3.0 × TC 4.0  
1.75 × TC 4.0  
0.25 × TC 2.0  
5 × TC 4.2  
45.8  
70.8  
110.5  
113.2  
103.2  
53.5  
48.5  
73.5  
60.7  
11.0  
23.5  
111.0  
7.5 × TC 4.2  
11.5 × TC 4.5  
11.75 × TC 4.3  
10.25 × TC 4.3  
5.75 × TC 4.0  
5.25 × TC 4.0  
7.75 × TC 4.0  
6.5 × TC 4.3  
1.5 × TC 4.0  
2.75 × TC 4.0  
11.5 × TC 4.0  
10 × TC 7.0  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
tRWL  
tCWL  
tDS  
tDH  
tDHR  
tWCS  
tCSR  
tRPC  
tROH  
tGA  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
193 RD deassertion to data not valid5  
194 WR assertion to data active  
tGZ  
0.0  
0.75 × TC 0.3  
0.25 × TC  
7.2  
195 WR deassertion to data high impedance  
1
2
3
4
5
The number of wait states for out-of-page access is specified in the DCR.  
The refresh period is specified in the DCR.  
The asynchronous delays specified in the expressions are valid for DSP56367.  
Either tRCH or tRRH must be satisfied for read cycles.  
RD deassertion will always occur after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
DSP56367 Technical Data, Rev. 2.1  
3-24  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
Table 3-13 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1, 2  
100 MHz  
No.  
Characteristics  
Symbol  
Expression3  
Unit  
Min  
Max  
157 Random read or write cycle time  
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
tRC  
tRAC  
tCAC  
tAA  
16 × TC  
160.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8.25 × TC 5.7  
4.75 × TC 5.7  
5.5 × TC 5.7  
0.0  
76.8  
41.8  
49.3  
tOFF  
tRP  
0.0  
6.25 × TC 4.0  
9.75 × TC 4.0  
6.25 × TC 4.0  
8.25 × TC 4.0  
4.75 × TC 4.0  
58.5  
93.5  
58.5  
78.5  
43.5  
33.0  
25.5  
73.5  
56.5  
58.5  
23.5  
3.5  
tRAS  
tRSH  
tCSH  
tCAS  
tRCD  
tRAD  
tCRP  
tCP  
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
167 RAS assertion to CAS assertion  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
3.5 × TC  
2
37.0  
29.5  
2.75 × TC  
2
7.75 × TC 4.0  
6.25 × TC – 6.0  
6.25 × TC 4.0  
2.75 × TC 4.0  
0.75 × TC 4.0  
6.25 × TC 4.0  
9.75 × TC 4.0  
7 × TC 4.0  
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
178 CAS deassertion to WR4 assertion  
179 RAS deassertion to WR4 assertion  
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
tASR  
tRAH  
tASC  
tCAH  
tAR  
58.5  
93.5  
66.0  
46.2  
13.8  
0.5  
tRAL  
tRCS  
tRCH  
tRRH  
tWCH  
tWCR  
tWP  
5 × TC 3.8  
1.75 × TC – 3.7  
0.25 × TC 2.0  
6 × TC 4.2  
55.8  
90.8  
150.5  
9.5 × TC 4.2  
15.5 × TC 4.5  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-25  
External Memory Expansion Port (Port A)  
Table 3-13 DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1, 2 (continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression3  
Unit  
Min  
Max  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
tRWL  
tCWL  
tDS  
15.75 × TC 4.3  
14.25 × TC 4.3  
8.75 × TC 4.0  
6.25 × TC 4.0  
9.75 × TC 4.0  
9.5 × TC 4.3  
1.5 × TC 4.0  
4.75 × TC 4.0  
15.5 × TC 4.0  
14 × TC 5.7  
153.2  
138.2  
83.5  
58.5  
93.5  
90.7  
11.0  
43.5  
151.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tDHR  
tWCS  
tCSR  
tRPC  
tROH  
tGA  
134.3  
193 RD deassertion to data not valid5  
194 WR assertion to data active  
tGZ  
0.0  
0.75 × TC – 1.5  
0.25 × TC  
6.0  
195 WR deassertion to data high impedance  
2.5  
1
2
3
4
5
The number of wait states for an out-of-page access is specified in the DCR.  
The refresh period is specified in the DCR.  
An expression is used to compute the maximum or minimum value listed (or both if the expression includes ).  
Either tRCH or tRRH must be satisfied for read cycles.  
RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
DSP56367 Technical Data, Rev. 2.1  
3-26  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
157  
162  
169  
163  
165  
162  
RAS  
167  
168  
164  
170  
166  
CAS  
171  
173  
174  
175  
Row Address  
172  
Column Address  
176  
A0–A17  
177  
179  
191  
WR  
RD  
168  
160  
159  
193  
158  
192  
161  
Data  
In  
D0–D23  
AA0476  
Figure 3-15 DRAM Out-of-Page Read Access  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-27  
External Memory Expansion Port (Port A)  
157  
162  
163  
165  
162  
RAS  
167  
168  
164  
169  
166  
170  
CAS  
171  
173  
172  
174  
176  
Row Address  
Column Address  
A0–A17  
181  
175  
188  
180  
182  
WR  
RD  
184  
183  
187  
186  
185  
195  
194  
D0–D23  
Data Out  
AA0477  
Figure 3-16 DRAM Out-of-Page Write Access  
DSP56367 Technical Data, Rev. 2.1  
3-28  
Freescale Semiconductor  
External Memory Expansion Port (Port A)  
157  
162  
163  
165  
162  
RAS  
CAS  
190  
170  
189  
177  
WR  
AA0478  
Figure 3-17 DRAM Refresh Access  
3.10.3 Arbitration Timings  
Table 3-14 Asynchronous Bus Arbitration Timing1, 2, 3  
150 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
21.7  
250 BB assertion window from BG input negation.  
251 Delay from BB assertion to BG assertion  
2 .5* Tc + 5  
2 * Tc + 5  
ns  
ns  
18.3  
1
2
3
Bit 13 in the OMR register must be set to enter Asynchronous Arbitration mode.  
If Asynchronous Arbitration mode is active, none of the timings in Table 3-14 is required.  
In order to guarantee timings 250, and 251, it is recommended to assert BG inputs to different 56300 devices (on the same  
bus) in a non overlap manner as shown in Figure 3-18.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-29  
External Memory Expansion Port (Port A)  
BG1  
BB  
250  
BG2  
251  
Figure 3-18 Asynchronous Bus Arbitration Timing  
BG1  
BG2  
250+251  
Figure 3-19 Asynchronous Bus Arbitration Timing  
3.10.4 Background explanation for Asynchronous Bus Arbitration:  
The asynchronous bus arbitration is enabled by internal synchronization circuits on BG and BB inputs.  
These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a  
result of this delay, a 56300 part may assume mastership and assert BB for some time after BG is negated.  
This is the reason for timing 250.  
Once BB is asserted, there is a synchronization delay from BB assertion to the time this assertion is  
exposed to other 56300 components which are potential masters on the same bus. If BG input is asserted  
before that time, a situation of BG asserted, and BB negated, may cause another 56300 component to  
assume mastership at the same time. Therefore some non-overlap period between one BG input active to  
another BG input active is required. Timing 251 ensures that such a situation is avoided.  
DSP56367 Technical Data, Rev. 2.1  
3-30  
Freescale Semiconductor  
Parallel Host Interface (HDI08) Timing  
3.11 Parallel Host Interface (HDI08) Timing  
Table 3-15 Host Interface (HDI08) Timing1, 2, 3  
150 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
317 Read data strobe assertion width4  
HACK read assertion width  
TC + 9.9  
16.7  
ns  
318 Read data strobe deassertion width4  
HACK read deassertion width  
9.9  
ns  
ns  
,
319 Read data strobe deassertion width4 after “Last Data Register” reads5 6, or 2.5 × TC + 6.6  
23.3  
between two consecutive CVR, ICR, or ISR reads7  
HACK deassertion width after “Last Data Register” reads5, 6  
320 Write data strobe assertion width8  
HACK write assertion width  
13.2  
ns  
ns  
321 Write data strobe deassertion width8  
HACK write deassertion width  
• after ICR, CVR and “Last Data Register” writes5  
2.5 × TC + 6.6  
23.3  
16.5  
• after IVR writes, or  
• after TXH:TXM writes (with HBE=0), or  
• after TXL:TXM writes (with HBE=1)  
322 HAS assertion width  
9.9  
0.0  
9.9  
ns  
ns  
ns  
323 HAS deassertion to data strobe assertion9  
324 Host data input setup time before write data strobe deassertion8  
Host data input setup time before HACK write deassertion  
325 Host data input hold time after write data strobe deassertion8  
Host data input hold time after HACK write deassertion  
3.3  
3.3  
ns  
ns  
ns  
ns  
ns  
326 Read data strobe assertion to output data active from high impedance4  
HACK read assertion to output data active from high impedance  
327 Read data strobe assertion to output data valid4  
HACK read assertion to output data valid  
24.2  
9.9  
328 Read data strobe deassertion to output data high impedance4  
HACK read deassertion to output data high impedance  
329 Output data hold time after read data strobe deassertion4  
Output data hold time after HACK read deassertion  
3.3  
330 HCS assertion to read data strobe deassertion4  
331 HCS assertion to write data strobe deassertion8  
TC +9.9  
16.7  
9.9  
ns  
ns  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-31  
Parallel Host Interface (HDI08) Timing  
Table 3-15 Host Interface (HDI08) Timing1, 2, 3 (continued)  
150 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
19.1  
332 HCS assertion to output data valid  
ns  
ns  
ns  
ns  
ns  
333 HCS hold time after data strobe deassertion9  
0.0  
4.7  
3.3  
334 Address (AD7–AD0) setup time before HAS deassertion (HMUX=1)  
335 Address (AD7–AD0) hold time after HAS deassertion (HMUX=1)  
336 A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W setup time before data  
strobe assertion9  
• Read  
• Write  
0
4.7  
337 A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W hold time after data strobe  
deassertion9  
TC  
3.3  
6.7  
13.4  
ns  
ns  
ns  
ns  
ns  
ns  
338 Delay from read data strobe deassertion to host request assertion for “Last  
Data Register” read4, 5, 10  
339 Delay from write data strobe deassertion to host request assertion for “Last  
Data Register” write5, 8, 10  
2 × TC  
340 Delay from data strobe assertion to host request deassertion for “Last Data  
Register” read or write (HROD = 0)5, 9, 10  
19.1  
300.0  
341 Delay from data strobe assertion to host request deassertion for “Last Data  
Register” read or write (HROD = 1, open drain Host Request)5, 9, 10, 11  
342 Delay from DMA HACK deassertion to HOREQ assertion  
• For “Last Data Register” read5  
2 × TC + 19.1  
32.5  
• For “Last Data Register” write5  
1.5 × TC + 19.1 29.2  
• For other cases  
0.0  
343 Delay from DMA HACK assertion to HOREQ deassertion  
• HROD = 05  
20.2  
ns  
ns  
344 Delay from DMA HACK assertion to HOREQ deassertion for “Last Data  
Register” read or write  
300.0  
• HROD = 1, open drain Host Request5, 11  
1
2
3
4
5
6
See Host Port Usage Considerations in the DSP56367 User’s Manual.  
In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.  
VCC = 1.8 V 5%; TJ = –40°C to +95°C, CL = 50 pF  
The read data strobe is HRD in the dual data strobe mode and HDS in the single data strobe mode.  
The “last data register” is the register at address $7, which is the last location to be read or written in data transfers.  
This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers  
without first polling RXDF or HREQ bits, or waiting for the assertion of the HOREQ signal.  
7
8
This timing is applicable only if two consecutive reads from one of these registers are executed.  
The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.  
DSP56367 Technical Data, Rev. 2.1  
3-32  
Freescale Semiconductor  
Parallel Host Interface (HDI08) Timing  
9
The data strobe is host read (HRD) or host write (HWR) in the dual data strobe mode and host data strobe (HDS) in the single  
data strobe mode.  
10 The host request is HOREQ in the single host request mode and HRRQ and HTRQ in the double host request mode.  
11 In this calculation, the host request signal is pulled up by a 4.7 kresistor in the open-drain mode.  
317  
318  
HACK  
328  
327  
326  
329  
HD7–HD0  
HOREQ  
AA1105  
Figure 3-20 Host Interrupt Vector Register (IVR) Read Timing Diagram  
HA0–HA2  
336  
337  
333  
330  
HCS  
317  
HRD, HDS  
318  
319  
328  
332  
327  
329  
326  
341  
HD0–HD7  
338  
340  
HOREQ,  
HRRQ,  
HTRQ  
AA0484  
Figure 3-21 Read Timing Diagram, Non-Multiplexed Bus  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-33  
Parallel Host Interface (HDI08) Timing  
HA0–HA2  
337  
333  
336  
331  
HCS  
320  
HWR, HDS  
321  
325  
324  
HD0–HD7  
340  
339  
341  
HOREQ, HRRQ, HTRQ  
AA0485  
Figure 3-22 Write Timing Diagram, Non-Multiplexed Bus  
DSP56367 Technical Data, Rev. 2.1  
3-34  
Freescale Semiconductor  
Parallel Host Interface (HDI08) Timing  
HA8–HA10  
336  
337  
322  
HAS  
323  
317  
HRD, HDS  
334  
318  
319  
335  
327  
328  
329  
HAD0–HAD7  
Address  
Data  
326  
338  
340  
341  
HOREQ, HRRQ, HTRQ  
AA0486  
Figure 3-23 Read Timing Diagram, Multiplexed Bus  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-35  
Parallel Host Interface (HDI08) Timing  
HA8–HA10  
336  
322  
HAS  
323  
320  
HWR, HDS  
334  
324  
321  
325  
335  
HAD0–HAD7  
Data  
340  
Address  
339  
341  
HOREQ, HRRQ, HTRQ  
AA0487  
Figure 3-24 Write Timing Diagram, Multiplexed Bus  
HOREQ  
(Output)  
342  
343  
344  
320  
321  
TXH/M/L  
Write  
HACK  
(Input)  
324  
325  
Data  
Valid  
H0–H7  
(Input)  
Figure 3-25 Host DMA Write Timing Diagram  
DSP56367 Technical Data, Rev. 2.1  
3-36  
Freescale Semiconductor  
Serial Host Interface SPI Protocol Timing  
HOREQ  
(Output)  
343  
342  
342  
318  
317  
HACK  
(Input)  
RXH  
Read  
327  
326  
328  
329  
H0-H7  
(Output)  
Data  
Valid  
Figure 3-26 Host DMA Read Timing Diagram  
3.12 Serial Host Interface SPI Protocol Timing  
Table 3-16 Serial Host Interface SPI Protocol Timing  
Filter  
Mode  
No.  
Characteristics1  
Mode  
Expression2  
Min  
Max  
Unit  
140 Tolerable spike width on clock or data in  
Bypassed  
Narrow  
Wide  
0
ns  
50  
100  
141 Minimum serial clock cycle = tSPICC(min) Master Bypassed  
6 × TC+46  
6 × TC+152  
6 × TC+223  
86.2  
192.2  
263.2  
ns  
ns  
ns  
ns  
ns  
Narrow  
Wide  
142 Serial clock high period  
Master Bypassed  
Narrow  
0.5 × tSPICC –10  
0.5 × tSPICC –10  
0.5 × tSPICC –10  
38  
91  
Wide  
126.5  
Slave  
Bypassed  
2.5 × TC + 12  
2.5 × TC + 102  
2.5 × TC + 189  
28.8  
118.8  
205.8  
Narrow  
Wide  
143 Serial clock low period  
Master Bypassed  
Narrow  
0.5 × tSPICC –10  
0.5 × tSPICC –10  
0.5 × tSPICC –10  
38  
Wide  
Slave  
Bypassed  
Narrow  
Wide  
2.5 × TC + 12  
2.5 × TC + 102  
2.5 × TC + 189  
28.8  
118.8  
205.8  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-37  
Serial Host Interface SPI Protocol Timing  
Table 3-16 Serial Host Interface SPI Protocol Timing (continued)  
Filter  
Mode  
No.  
Characteristics1  
Mode  
Expression2  
Min  
Max  
Unit  
144 Serial clock rise/fall time  
Master  
Slave  
10  
ns  
2000  
146 SS assertion to first SCK edge  
CPHA = 0  
Slave  
Slave  
Slave  
Bypassed  
Narrow  
Wide  
3.5 × TC + 15  
38.5  
0
ns  
ns  
ns  
ns  
ns  
0
0
0
CPHA = 1  
Bypassed  
Narrow  
Wide  
10  
0
10  
0
0
0
147 Last SCK edge to SS not asserted  
Bypassed  
Narrow  
Wide  
12  
12  
102  
189  
102  
189  
148 Data input valid to SCK edge (data input  
set-up time)  
Master/ Bypassed  
Slave  
0
0
Narrow  
MAX{(20-TC), 0}  
MAX{(40-TC), 0}  
13.3  
33.3  
Wide  
149 SCK last sampling edge to data input not Master/ Bypassed  
2.5 × TC + 10  
2.5 × TC + 30  
2.5 × TC + 50  
26.8  
46.8  
66.8  
valid  
Slave  
Narrow  
Wide  
150 SS assertion to data out active  
Slave  
Slave  
2
9
2
9
ns  
ns  
ns  
151 SS deassertion to data high impedance3  
152 SCK edge to data out valid (data out delay Master/ Bypassed  
2 × TC + 33  
2 × TC + 123  
2 × TC + 210  
46.4  
136.4  
223.4  
time)  
Slave  
Narrow  
Wide  
153 SCK edge to data out not valid (data out  
hold time)  
Master/ Bypassed  
TC + 5  
TC + 55  
TC + 106  
11.7  
61.7  
ns  
Slave  
Narrow  
Wide  
112.7  
154 SS assertion to data out valid (CPHA = 0) Slave  
TC + 33  
39.7  
ns  
ns  
157 First SCK sampling edge to HREQ output Slave  
deassertion  
Bypassed  
Narrow  
Wide  
2.5 × TC + 30  
2.5 × TC + 120  
2.5 × TC + 217  
46.8  
136.8  
233.8  
158 Last SCK sampling edge to HREQ output Slave  
not deasserted (CPHA = 1)  
Bypassed  
Narrow  
Wide  
2.5 × TC + 30  
2.5 × TC + 80  
2.5 × TC + 136  
46.8  
96.8  
ns  
ns  
152.8  
159 SS deassertion to HREQ output not  
deasserted (CPHA = 0)  
Slave  
2.5 × TC + 30  
46.8  
DSP56367 Technical Data, Rev. 2.1  
3-38  
Freescale Semiconductor  
Serial Host Interface SPI Protocol Timing  
Table 3-16 Serial Host Interface SPI Protocol Timing (continued)  
Filter  
Mode  
No.  
Characteristics1  
Mode  
Expression2  
Min  
Max  
Unit  
160 SS deassertion pulse width (CPHA = 0)  
161 HREQ in assertion to first SCK edge  
Slave  
TC + 6  
12.7  
ns  
ns  
Master Bypassed 0.5 × tSPICC + 2.5 × TC + 43 97.8  
Narrow  
Wide  
0.5 × tSPICC + 2.5 × TC + 43 160.8  
0.5 × tSPICC + 2.5 × TC + 43 196.8  
162 HREQ in deassertion to last SCK  
sampling edge (HREQ in set-up time)  
(CPHA = 1)  
Master  
Master  
0
0
ns  
ns  
163 First SCK edge to HREQ in not asserted  
(HREQ in hold time)  
0
0
1
2
VCC = 1.8 V 5%; TJ = –40°C to +95°C, CL = 50 pF  
The timing values calculated are based on simulation data at 150MHz. Tester restrictions limit SHI testing to lower clock  
frequencies.  
3
Periodically sampled, not 100% tested  
SS  
(Input)  
143  
141  
141  
142  
143  
144  
144  
144  
144  
SCK (CPOL = 0)  
(Output)  
142  
SCK (CPOL = 1)  
(Output)  
148  
149  
148  
149  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
153  
152  
MSB  
MOSI  
(Output)  
LSB  
161  
163  
HREQ  
(Input)  
AA0271  
Figure 3-27 SPI Master Timing (CPHA = 0)  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-39  
Serial Host Interface SPI Protocol Timing  
SS  
(Input)  
143  
142  
141  
141  
142  
144  
144  
144  
SCK (CPOL = 0)  
(Output)  
143  
144  
SCK (CPOL = 1)  
(Output)  
148  
148  
149  
149  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
152  
153  
MOSI  
(Output)  
MSB  
LSB  
161  
162  
163  
HREQ  
(Input)  
AA0272  
Figure 3-28 SPI Master Timing (CPHA = 1)  
DSP56367 Technical Data, Rev. 2.1  
3-40  
Freescale Semiconductor  
Serial Host Interface SPI Protocol Timing  
SS  
(Input)  
143  
141  
141  
147  
142  
144  
144  
144  
160  
SCK (CPOL = 0)  
(Input)  
146  
142  
144  
143  
SCK (CPOL = 1)  
(Input)  
154  
152  
153  
153  
151  
LSB  
150  
MISO  
(Output)  
MSB  
148  
148  
149  
149  
MSB  
Valid  
MOSI  
(Input)  
LSB  
Valid  
157  
159  
HREQ  
(Output)  
AA0273  
Figure 3-29 SPI Slave Timing (CPHA = 0)  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-41  
Serial Host Interface (SHI) I2C Protocol Timing  
SS  
(Input)  
143  
141  
147  
142  
144  
144  
144  
SCK (CPOL = 0)  
(Input)  
146  
142  
144  
143  
SCK (CPOL = 1)  
(Input)  
152  
152  
153  
151  
150  
MISO  
(Output)  
MSB  
LSB  
148  
148  
149  
149  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
157  
158  
HREQ  
(Output)  
AA0274  
Figure 3-30 SPI Slave Timing (CPHA = 1)  
2
3.13 Serial Host Interface (SHI) I C Protocol Timing  
Table 3-17 SHI I2C Protocol Timing  
Standard I2C  
Standard4, 5  
Fast-Mode5, 6  
Unit  
Symbol/  
Expression  
No.  
Characteristics1, 2, 3  
Min  
Max  
Min  
Max  
Tolerable spike width on SCL or SDA  
• Filters bypassed  
ns  
0
0
• Narrow filters enabled  
• Wide filters enabled  
50  
50  
100  
100  
171 SCL clock frequency  
171 SCL clock cycle  
FSCL  
TSCL  
10  
100  
400  
kHz  
µs  
2.5  
1.3  
0.6  
0.6  
172 Bus free time  
TBUF  
4.7  
4.7  
4.0  
µs  
173 Start condition set-up time  
174 Start condition hold time  
TSU;STA  
THD;STA  
µs  
µs  
DSP56367 Technical Data, Rev. 2.1  
3-42  
Freescale Semiconductor  
Serial Host Interface (SHI) I2C Protocol Timing  
Table 3-17 SHI I2C Protocol Timing (continued)  
Standard I2C  
Standard4, 5  
Fast-Mode5, 6  
Unit  
Symbol/  
Expression  
No.  
Characteristics1, 2, 3  
Min  
4.7  
4.0  
Max  
Min  
1.3  
1.3  
Max  
175 SCL low period  
176 SCL high period  
TLOW  
THIGH  
µs  
µs  
177 SCL and SDA rise time  
178 SCL and SDA fall time  
179 Data set-up time  
T
1000 20 + 0.1 × Cb 300  
300 20 + 0.1 × Cb 300  
ns  
R
T
F
ns  
TSU;DAT  
THD;DAT  
FDSP  
250  
0.0  
100  
0.0  
ns  
180 Data hold time  
0.9  
µs  
181 DSP clock frequency  
• Filters bypassed  
MHz  
10.6  
11.8  
13.1  
28.5  
39.7  
61.0  
• Narrow filters enabled  
• Wide filters enabled  
182 SCL low to data out valid  
183 Stop condition setup time  
TVD;DAT  
TSU;STO  
tSU;RQI  
3.4  
0.9  
µs  
µs  
ns  
4.0  
0.0  
0.6  
0.0  
184 HREQ in deassertion to last SCL edge (HREQ in set-up  
time)  
186 First SCL sampling edge to HREQ output deassertion2  
• Filters bypassed  
TNG;RQO  
ns  
ns  
ns  
ns  
2 × TC + 30  
2 × TC + 120  
2 × TC + 208  
50  
50  
• Narrow filters enabled  
140  
228  
140  
228  
• Wide filters enabled  
187 Last SCL edge to HREQ output not deasserted2  
• Filters bypassed  
TAS;RQO  
2 × TC + 30  
2 × TC + 80  
2 × TC + 135  
50  
50  
• Narrow filters enabled  
100  
155  
100  
155  
• Wide filters enabled  
188 HREQ in assertion to first SCL edge  
• Filters bypassed  
TAS;RQI  
4327  
4282  
4238  
927  
882  
838  
0.5 × TI2CCP  
0.5 × TC - 21  
-
• Narrow filters enabled  
• Wide filters enabled  
187 First SCL edge to HREQ in not asserted (HREQ in hold  
time.)  
tHO;RQI  
0.0  
0.0  
1
2
3
4
5
6
VCC = 1.8 V 5%; TJ = –40°C to +95°C, CL = 50 pF  
Pull-up resistor: RP (min) = 1.5 kOhm  
Capacitive load: Cb (max) = 400 pF  
It is recommended to enable the wide filters when operating in the I2C Standard Mode.  
The timing values are derived from frequencies not exceeding 100 MHz.  
It is recommended to enable the narrow filters when operating in the I2C Fast Mode.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-43  
Serial Host Interface (SHI) I2C Protocol Timing  
3.13.1 Programming the Serial Clock  
2
The programmed serial clock cycle, T  
HCKR (SHI clock control register).  
, is specified by the value of the HDM[7:0] and HRS bits of the  
I CCP  
2
The expression for T  
is  
I CCP  
T
= [T × 2 × (HDM[7:0] + 1) × (7 × (1 – HRS) + 1)]  
C
I2CCP  
where  
HRS is the prescaler rate select bit. When HRS is cleared, the fixed divide-by-eight prescaler is  
operational. When HRS is set, the prescaler is bypassed.  
HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256  
(HDM[7:0] = $00 to $FF) may be selected.  
2
In I C mode, the user may select a value for the programmed serial clock cycle from  
6 × T (if HDM[7:0] = 02 and HRS = 1)  
$
C
to  
4096 × T (if HDM[7:0] =  
$FF and HRS = 0)  
C
2
The programmed serial clock cycle (T  
), SCL rise time (T ), and the filters selected should be chosen  
R
I CCP  
in order to achieve the desired SCL serial clock cycle (T ), as shown in Table 3-18.  
SCL  
Table 3-18 SCL Serial Clock Cycle (TSCL) Generated as Master  
2
Filters bypassed  
T
T
T
+ 2.5 × TC + 45ns + T  
I CCP  
R
2
Narrow filters enabled  
Wide filters enabled  
+ 2.5 × TC + 135ns + T  
+ 2.5 × TC + 223ns + T  
I CCP  
R
R
2
I CCP  
EXAMPLE:  
2
For DSP clock frequency of 100 MHz (i.e. T = 10ns), operating in a standard mode I C environment  
C
(F  
= 100 kHz (i.e. T  
= 10µs), T = 1000ns), with wide filters enabled:  
SCL  
SCL R  
T
= 10µs – 2.5 × 10ns – 223ns – 1000ns = 8752ns  
I2CCP  
Choosing HRS = 0 gives  
HDM[7:0] = (8752ns) ⁄ (2 × 10ns × 8) – 1 = 53.7  
Thus the HDM[7:0] value should be programmed to $36 (=54).  
2
The resulting T  
will be:  
I CCP  
T
= [T × 2 × (HDM[7:0] + 1) × (7 × (1 – 0) + 1)]  
C
I2CCP  
T
= [10ns × 2 × (54 + 1) × (7 × (1 – 0) + 1)]  
I2CCP  
T
= [10ns × 2 × 54 × 8] = 8640ns  
I2CCP  
DSP56367 Technical Data, Rev. 2.1  
3-44  
Freescale Semiconductor  
Enhanced Serial Audio Interface Timing  
171  
173  
176  
175  
SCL  
SDA  
177  
180  
178  
172  
179  
MSB  
LSB  
ACK  
Stop  
Stop  
Start  
174  
188  
186  
182  
183  
187  
189  
184  
HREQ  
AA0275  
Figure 3-31 I2C Timing  
3.14 Enhanced Serial Audio Interface Timing  
Table 3-19 Enhanced Serial Audio Interface Timing1, 2  
No.  
Characteristics3, 4, 5  
Symbol  
Expression  
Min  
Max Condition6 Unit  
430 Clock cycle7  
tSSICC  
4 × T  
26.8  
20.1  
i ck  
x ck  
x ck  
ns  
C
3 × T  
C
TXC:max[3*tc; 26.5  
t454]  
431 Clock high period  
• For internal clock  
• For external clock  
ns  
ns  
2 × T 10.0  
3.4  
C
1.5 × T  
10.0  
C
432 Clock low period  
• For internal clock  
• For external clock  
2 × T 10.0  
3.4  
C
1.5 × T  
10.0  
C
433 RXC rising edge to FSR out (bl) high  
434 RXC rising edge to FSR out (bl) low  
435 RXC rising edge to FSR out (wr) high8  
436 RXC rising edge to FSR out (wr) low8  
37.0  
22.0  
x ck  
ns  
ns  
ns  
ns  
i ck a  
37.0  
22.0  
x ck  
i ck a  
39.0  
24.0  
x ck  
i ck a  
39.0  
24.0  
x ck  
i ck a  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-45  
Enhanced Serial Audio Interface Timing  
Table 3-19 Enhanced Serial Audio Interface Timing1, 2 (continued)  
No.  
Characteristics3, 4, 5  
Symbol  
Expression  
Min  
Max Condition6 Unit  
437 RXC rising edge to FSR out (wl) high  
36.0  
21.0  
x ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
i ck a  
438 RXC rising edge to FSR out (wl) low  
37.0  
22.0  
x ck  
i ck a  
439 Data in setup time before RXC (SCK in synchronous  
mode) falling edge  
0.0  
x ck  
i ck  
19.0  
440 Data in hold time after RXC falling edge  
441 FSR input (bl, wr) high before RXC falling edge8  
442 FSR input (wl) high before RXC falling edge  
443 FSR input hold time after RXC falling edge  
444 Flags input setup before RXC falling edge  
445 Flags input hold time after RXC falling edge  
446 TXC rising edge to FST out (bl) high  
447 TXC rising edge to FST out (bl) low  
5.0  
3.0  
x ck  
i ck  
23.0  
1.0  
x ck  
i ck a  
23.0  
1.0  
x ck  
i ck a  
3.0  
0.0  
x ck  
i ck a  
0.0  
x ck  
19.0  
i ck s  
6.0  
0.0  
x ck  
i ck s  
29.0  
15.0  
x ck  
i ck  
31.0  
17.0  
x ck  
i ck  
448 TXC rising edge to FST out (wr) high8  
449 TXC rising edge to FST out (wr) low8  
450 TXC rising edge to FST out (wl) high  
451 TXC rising edge to FST out (wl) low  
31.0  
17.0  
x ck  
i ck  
33.0  
19.0  
x ck  
i ck  
30.0  
16.0  
x ck  
i ck  
31.0  
17.0  
x ck  
i ck  
452 TXC rising edge to data out enable from high  
impedance  
31.0  
17.0  
x ck  
i ck  
453 TXC rising edge to transmitter #0 drive enable  
assertion  
34.0  
20.0  
x ck  
i ck  
DSP56367 Technical Data, Rev. 2.1  
3-46  
Freescale Semiconductor  
Enhanced Serial Audio Interface Timing  
Table 3-19 Enhanced Serial Audio Interface Timing1, 2 (continued)  
No.  
Characteristics3, 4, 5  
Symbol  
Expression  
Min  
Max Condition6 Unit  
454 TXC rising edge to data out valid  
23 + 0.5 × T  
26.5  
21.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
C
21.0  
455 TXC rising edge to data out high impedance9  
31.0  
16.0  
x ck  
i ck  
456 TXC rising edge to transmitter #0 drive enable  
deassertion9  
34.0  
20.0  
x ck  
i ck  
457 FST input (bl, wr) setup time before TXC falling  
edge8  
2.0  
x ck  
i ck  
21.0  
458 FST input (wl) to data out enable from high  
impedance  
27.0  
ns  
ns  
ns  
459 FST input (wl) to transmitter #0 drive enable  
assertion  
31.0  
460 FST input (wl) setup time before TXC falling edge  
461 FST input hold time after TXC falling edge  
462 Flag output valid after TXC rising edge  
2.0  
x ck  
i ck  
21.0  
4.0  
0.0  
x ck  
i ck  
ns  
ns  
32.0  
18.0  
x ck  
i ck  
463 HCKR/HCKT clock cycle  
40.0  
ns  
ns  
ns  
464 HCKT input rising edge to TXC output  
465 HCKR input rising edge to RXC output  
27.5  
27.5  
1
The timing values calculated are based on simulation data at 150MHz. Tester restrictions limit ESAI testing to lower clock  
frequencies.  
2
3
4
ESAI_1 specs match those of ESAI_0.  
VCC = 1.8 V 5%; TJ = –40°C to +95°C, CL = 50 pF  
i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode (asynchronous implies that TXC and RXC are two different clocks)  
i ck s = internal clock, synchronous mode (synchronous implies that TXC and RXC are the same clock)  
5
6
bl = bit length  
wl = word length  
wr = word length relative  
TXC(SCKT pin) = transmit clock  
RXC(SCKR pin) = receive clock  
FST(FST pin) = transmit frame sync  
FSR(FSR pin) = receive frame sync  
HCKT(HCKT pin) = transmit high frequency clock  
HCKR(HCKR pin) = receive high frequency clock  
7
For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-47  
Enhanced Serial Audio Interface Timing  
8
The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync  
signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one  
before last bit clock of the first word in frame.  
9
Periodically sampled and not 100% tested.  
430  
431  
432  
TXC  
(Input/Output)  
446  
447  
FST (Bit)  
Out  
450  
451  
FST (Word)  
Out  
454  
452  
454  
455  
First Bit  
Last Bit  
Data Out  
459  
Transmitter #0  
Drive Enable  
457  
453  
456  
461  
460  
FST (Bit) In  
458  
461  
FST (Word) In  
Flags Out  
462  
See Note  
Note: In network mode, output flag transitions can occur at the start of each time slot within the  
frame. In normal mode, the output flag state is asserted for the entire frame period.  
AA0490  
Figure 3-32 ESAI Transmitter Timing  
DSP56367 Technical Data, Rev. 2.1  
3-48  
Freescale Semiconductor  
Enhanced Serial Audio Interface Timing  
430  
431  
432  
RXC  
(Input/Output)  
433  
434  
FSR (Bit)  
Out  
437  
438  
FSR (Word)  
Out  
440  
439  
443  
Last Bit  
First Bit  
Data In  
441  
FSR (Bit)  
In  
442  
443  
445  
FSR (Word)  
In  
444  
Flags In  
AA0491  
Figure 3-33 ESAI Receiver Timing  
HCKT  
463  
SCKT (output)  
464  
Figure 3-34 ESAI HCKT Timing  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-49  
Digital Audio Transmitter Timing  
HCKR  
463  
SCKR (output)  
465  
Figure 3-35 ESAI HCKR Timing  
3.15 Digital Audio Transmitter Timing  
Table 3-20 Digital Audio Transmitter Timing  
150 MHz  
No.  
Characteristic  
Expression  
Unit  
Min  
Max  
75  
ACI frequency1  
1 / (2 x TC)  
2 × TC  
MHz  
ns  
220  
221  
222  
223  
ACI period  
13.4  
3.4  
3.4  
ACI high duration  
ACI low duration  
0.5 × TC  
0.5 × TC  
1.5 × TC  
ns  
ns  
ACI rising edge to ADO valid  
10.0  
ns  
1
In order to assure proper operation of the DAX, the ACI frequency should be less than 1/2 of the DSP56367 internal  
clock frequency. For example, if the DSP56367 is running at 150 MHz internally, the ACI frequency should be less  
than 75 MHz.  
ACI  
220  
221  
222  
223  
ADO  
AA1280  
Figure 3-36 Digital Audio Transmitter Timing  
DSP56367 Technical Data, Rev. 2.1  
3-50  
Freescale Semiconductor  
Timer Timing  
3.16 Timer Timing  
Table 3-21 Timer Timing1  
Expression  
150 MHz  
No.  
Characteristics  
Unit  
Min  
15.4  
15.4  
Max  
480  
481  
TIO Low  
TIO High  
2 × TC + 2.0  
2 × TC + 2.0  
ns  
ns  
1
VCC = 1.8 V 0.09 V; TJ = –40°C to +95°C, CL = 50 pF  
TIO  
480  
481  
AA0492  
Figure 3-37 TIO Timer Event Input Restrictions  
3.17 GPIO Timing  
Table 3-22 GPIO Timing  
No.  
Characteristics1  
Expression  
Min  
Max  
32.8  
Unit  
ns  
4902  
491  
492  
493  
4942  
495  
496  
EXTAL edge to GPIO out valid (GPIO out delay time)  
EXTAL edge to GPIO out not valid (GPIO out hold time)  
GPIO In valid to EXTAL edge (GPIO in set-up time)  
EXTAL edge to GPIO in not valid (GPIO in hold time)  
Fetch to EXTAL edge before GPIO change  
GPIO out rise time  
4.8  
10.2  
1.8  
43.4  
ns  
ns  
ns  
6.75 × TC-1.8  
ns  
13  
ns  
GPIO out fall time  
13  
ns  
1
2
VCC = 1.8 V 0.09 V; TJ = -40°C to +95°C, CL = 50 pF  
Valid only when PLL enabled with multiplication factor equal to one.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-51  
JTAG Timing  
EXTAL  
(Input)  
490  
491  
GPIO  
(Output)  
492  
493  
GPIO  
(Input)  
Valid  
A0–A17  
494  
Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO  
and R0 contains the address of GPIO data register.  
GPIO  
(Output)  
495  
496  
Figure 3-38 GPIO Timing  
3.18 JTAG Timing  
Table 3-23 JTAG Timing1, 2  
All frequencies  
Min Max  
No.  
Characteristics  
Unit  
500  
501  
502  
503  
504  
505  
506  
507  
508  
TCK frequency of operation (1/(TC × 3); maximum 22 MHz)  
TCK cycle time in Crystal mode  
0.0  
45.0  
20.0  
0.0  
22.0  
MHz  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
ns  
3.0  
ns  
Boundary scan input data setup time  
Boundary scan input data hold time  
TCK low to output data valid  
5.0  
ns  
24.0  
0.0  
ns  
40.0  
40.0  
ns  
TCK low to output high impedance  
TMS, TDI data setup time  
0.0  
ns  
5.0  
ns  
DSP56367 Technical Data, Rev. 2.1  
3-52  
Freescale Semiconductor  
JTAG Timing  
Unit  
Table 3-23 JTAG Timing1, 2 (continued)  
Characteristics  
All frequencies  
Min Max  
No.  
509  
510  
511  
TMS, TDI data hold time  
25.0  
0.0  
ns  
ns  
ns  
TCK low to TDO data valid  
44.0  
44.0  
TCK low to TDO high impedance  
0.0  
1
2
VCC = 1.8 V 0.09 V; TJ = -40°C to +95°C, CL = 50 pF  
All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
501  
502  
VM  
502  
VM  
VIH  
503  
TCK  
(Input)  
VIL  
503  
AA0496  
Figure 3-39 Test Clock Input Timing Diagram  
VIH  
TCK  
(Input)  
VIL  
504  
Input Data Valid  
505  
Data  
Inputs  
506  
507  
506  
Data  
Output Data Valid  
Outputs  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
AA0497  
Figure 3-40 Boundary Scan (JTAG) Timing Diagram  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
3-53  
JTAG Timing  
VIH  
509  
TCK  
(Input)  
VIL  
508  
Input Data Valid  
TDI  
TMS  
(Input)  
510  
TDO  
(Output)  
Output Data Valid  
511  
TDO  
(Output)  
510  
TDO  
(Output)  
Output Data Valid  
AA0498  
Figure 3-41 Test Access Port Timing Diagram  
DSP56367 Technical Data, Rev. 2.1  
3-54  
Freescale Semiconductor  
4 Packaging  
4.1  
Pin-out and Package Information  
This section provides information about the available package for this product, including diagrams of the  
package pinouts and tables describing how the signals described in Section 1 are allocated for the package.  
The DSP56367 is available in a 144-pin LQFP package. Table 4-1and Table 4-2 show the pin/name  
assignments for the packages.  
4.1.1  
LQFP Package Description  
Top view of the 144-pin LQFP package is shown in Figure 4-1 with its pin-outs. The package drawing is  
shown in Figure 4-2.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
4-1  
Pin-out and Package Information  
SCK/SCL  
SS#/HA2  
1
2
3
4
5
6
7
8
9
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
D6  
D5  
HREQ#  
D4  
D3  
SDO0/SDO0_1  
SDO1/SDO1_1  
SDO2/SDI3/SDO2_1/SDI3_1  
SDO3/SDI2/SDO3_1/SDI2_1  
VCCS  
GNDD  
VCCD  
D2  
D1  
D0  
GNDS  
SDO4/SDI1  
SDO5/SDI0  
FST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A17  
A16  
A15  
GNDA  
VCCQH  
A14  
A13  
A12  
VCCQL  
GNDQ  
A11  
A10  
GNDA  
VCCA  
A9  
98  
97  
FSR  
96  
SCKT  
95  
SCKR  
94  
HCKT  
93  
HCKR  
92  
VCCQL  
GNDQ  
91  
90  
VCCQH  
HDS/HWR  
HRW/HRD  
HACK/HRRQ  
HOREQ/HTRQ  
VCCS  
89  
88  
87  
86  
85  
84  
A8  
GNDS  
83  
A7  
ADO  
82  
A6  
ACI  
81  
GNDA  
VCCA  
A5  
TIO0  
80  
HCS/HA10  
HA9/HA2  
HA8/HA1  
HAS/HA0  
HAD7  
79  
78  
A4  
77  
A3  
76  
A2  
75  
GNDA  
VCCA  
A1  
HAD6  
HAD5  
74  
73  
Figure 4-1 144-pin package  
DSP56367 Technical Data, Rev. 2.1  
4-2  
Freescale Semiconductor  
Pin-out and Package Information  
Table 4-1 Signal Identification by Name  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Pin  
Signal Name  
A0  
Signal Name  
D9  
Signal Name  
Signal Name  
No.  
72  
73  
76  
77  
78  
79  
82  
83  
84  
85  
88  
89  
92  
93  
94  
97  
98  
99  
70  
69  
51  
28  
27  
64  
71  
63  
52  
113 GNDS  
114 GNDS  
115 HA8/HA1  
116 HA9/HA2  
117 HACK/HRRQ  
118 HAD0  
121 HAD1  
122 HAD2  
123 HAD3  
124 HAD4  
125 HAD5  
128 HAD6  
131 HAD7  
132 HAS/HA0  
133 HCKR  
9
SDO0/SDO0_1  
4
5
A1  
D10  
26  
32  
31  
23  
43  
42  
41  
40  
37  
36  
35  
34  
33  
17  
16  
30  
21  
24  
3
SDO1/SDO1_1  
A2  
D11  
SDO2/SDI3/SDO2_1/SDI3_1  
6
A3  
D12  
SDO3/SDI2/SDO3_1/SDI2_1  
7
A4  
D13  
SDO4/SDI1  
SDO4_1/SDI1_1  
SDO5/SDI0  
SDO5_1/SDI0_1  
SS#/HA2  
TA#  
10  
138  
11  
48  
2
A5  
D14  
A6  
D15  
A7  
D16  
A8  
D17  
A9  
D18  
62  
141  
140  
139  
29  
142  
74  
80  
86  
57  
65  
103  
111  
119  
129  
38  
20  
95  
49  
18  
56  
91  
126  
45  
8
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
AA0  
AA1  
AA2  
ACI  
ADO  
BB#  
BG#  
BR#  
CAS#  
D0  
D19  
TCK  
D20  
TDI  
D21  
TDO  
D22  
TIO0  
D23  
TMS  
EXTAL  
FSR  
55  
13  
59  
12  
50  
75  
81  
87  
96  
58  
66  
HCKT  
VCCA  
HCS/HA10  
HDS/HWR  
HOREQ/HTRQ  
HREQ#  
VCCA  
FSR_1  
FST  
VCCA  
VCCC  
FST_1  
GNDA  
GNDA  
GNDA  
GNDA  
GNDC  
GNDC  
GNDD  
VCCC  
HRW/HRD  
MODA/IRQA#  
MODB/IRQB#  
MODC/IRQC#  
MODD/IRQD#  
MISO/SDA  
22  
VCCD  
137 VCCD  
136 VCCD  
135 VCCD  
134 VCCH  
144 VCCQH  
143 VCCQH  
104 MOSI/HA0  
112 PCAP  
100 GNDD  
101 GNDD  
102 GNDD  
105 GNDH  
106 GNDP  
107 GNDQ  
108 GNDQ  
109 GNDQ  
110 GNDQ  
46  
61  
68  
44  
1
VCCQH  
VCCQL  
VCCQL  
VCCQL  
VCCQL  
VCCP  
D1  
120 PINIT/NMI#  
130 RD#  
D2  
D3  
39  
47  
19  
54  
90  
RESET#  
SCK/SCL  
SCKR  
D4  
D5  
15  
60  
14  
53  
D6  
SCKR_1  
SCKT  
VCCS  
D7  
VCCS  
25  
67  
D8  
127 SCKT_1  
WR#  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
4-3  
Pin-out and Package Information  
Table 4-2 Signal Identification by Pin Number  
Pin  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
No.  
Signal Name  
HAD4  
Signal Name  
A1  
Signal Name  
1
SCK/SCL  
SS#/HA2  
HREQ#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
109 D7  
110 D8  
2
VCCH  
GNDH  
HAD3  
HAD2  
HAD1  
HAD0  
RESET#  
VCCP  
PCAP  
GNDP  
SDO5_1/SDI0_1  
VCCQH  
FST_1  
AA2  
VCCA  
GNDA  
A2  
3
111 VCCD  
112 GNDD  
113 D9  
4
SDO0/SDO0_1  
SDO1/SDO1_1  
SDO2/SDI3/SDO2_1/SDI3_1  
SDO3/SDI2/SDO3_1/SDI2_1  
VCCS  
5
A3  
6
A4  
114 D10  
7
A5  
115 D11  
8
VCCA  
GNDA  
A6  
116 D12  
9
GNDS  
117 D13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
SDO4/SDI1  
SDO5/SDI0  
FST  
118 D14  
A7  
119 VCCD  
120 GNDD  
121 D15  
A8  
FSR  
A9  
SCKT  
VCCA  
GNDA  
A10  
122 D16  
SCKR  
123 D17  
HCKT  
CAS#  
124 D18  
HCKR  
SCKT_1  
GNDQ  
EXTAL  
VCCQL  
VCCC  
GNDC  
FSR_1  
SCKR_1  
PINIT/NMI#  
TA#  
A11  
125 D19  
VCCQL  
GNDQ  
VCCQL  
A12  
126 VCCQL  
127 GNDQ  
128 D20  
GNDQ  
VCCQH  
HDS/HWR  
HRW/HRD  
HACK/HRRQ  
HOREQ/HTRQ  
VCCS  
A13  
129 VCCD  
130 GNDD  
131 D21  
A14  
VCCQH  
GNDA  
A15  
132 D22  
133 D23  
GNDS  
A16  
134 MODD/IRQD#  
135 MODC/IRQC#  
136 MODB/IRQB#  
137 MODA/IRQA#  
138 SDO4_1/SDI1_1  
139 TDO  
ADO  
BR#  
A17  
ACI  
BB#  
100 D0  
101 D1  
102 D2  
103 VCCD  
104 GNDD  
105 D3  
106 D4  
107 D5  
108 D6  
TIO0  
VCCC  
GNDC  
WR#  
HCS/HA10  
HA9/HA2  
HA8/HA1  
HAS/HA0  
HAD7  
RD#  
140 TDI  
AA1  
141 TCK  
AA0  
142 TMS  
HAD6  
BG#  
143 MOSI/HA0  
144 MISO/SDA  
HAD5  
A0  
DSP56367 Technical Data, Rev. 2.1  
4-4  
Freescale Semiconductor  
Pin-out and Package Information  
4.1.2  
LQFP Package Mechanical Drawing  
Figure 4-2 DSP56367 144-pin LQFP Package (1 of 3)  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
4-5  
Pin-out and Package Information  
Figure 4-3 DSP56367 144-pin LQFP Package (2 of 3)  
DSP56367 Technical Data, Rev. 2.1  
4-6  
Freescale Semiconductor  
Pin-out and Package Information  
Figure 4-4 DSP56367 144-pin LQFP Package (3 of 3)  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
4-7  
Pin-out and Package Information  
DSP56367 Technical Data, Rev. 2.1  
4-8  
Freescale Semiconductor  
5 Design Considerations  
5.1  
Thermal Design Considerations  
An estimation of the chip junction temperature, T , in °C can be obtained from the following equation:  
J
T = T + (P × R )  
θJA  
J
A
D
Where:  
T
= ambient temperature °C  
A
R
= package junction-to-ambient thermal resistance °C/W  
qJA  
D
P
= power dissipation in package W  
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance.  
R
= R  
+ R  
θJA  
θJC  
θCA  
Where:  
R
R
R
= package junction-to-ambient thermal resistance °C/W  
= package junction-to-case thermal resistance °C/W  
= package case-to-ambient thermal resistance °C/W  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through  
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where  
the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the  
device thermal performance may need the additional modeling capability of a system level thermal  
simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which  
the package is mounted. Again, if the estimations obtained from R  
the thermal performance is adequate, a system level model may be appropriate.  
do not satisfactorily answer whether  
θJA  
A complicating factor is the existence of three common ways for determining the junction-to-case thermal  
resistance in plastic packages.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
5-1  
Electrical Design Considerations  
To minimize temperature variation across the surface, the thermal resistance is measured from the  
junction to the outside surface of the package (case) closest to the chip mounting area when that  
surface has a proper heat sink.  
To define a value approximately equal to a junction-to-board thermal resistance, the thermal  
resistance is measured from the junction to where the leads are attached to the case.  
If the temperature of the package case (T ) is determined by a thermocouple, the thermal resistance  
T
is computed using the value obtained by the equation: (T – T )/P .  
J
T
D
As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the  
first definition. From a practical standpoint, that value is also suitable for determining the junction  
temperature from a case thermocouple reading in forced convection environments. In natural convection,  
using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple  
reading on the case of the package will estimate a junction temperature slightly hotter than actual  
temperature. Hence, the new thermal metric, thermal characterization parameter or Ψ , has been defined  
JT  
to be (T – T )/P . This value gives a better estimate of the junction temperature in natural convection  
J
T
D
when using the surface temperature of the package. Remember that surface temperature readings of  
packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and  
to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge  
thermocouple wire and bead to the top center of the package with thermally conductive epoxy.  
5.2  
Electrical Design Considerations  
CAUTION  
This device contains circuitry protecting against damage due to high static  
voltage or electrical fields. However, normal precautions should be taken to  
avoid exceeding maximum voltage ratings. Reliability of operation is  
enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,  
either GND or V ). The suggested value for a pull-up or pull-down resistor  
CC  
is 10 k ohm.  
Use the following list of recommendations to assure correct DSP operation:  
Provide a low-impedance path from the board power supply to each V pin on the DSP and from  
the board ground to each GND pin.  
CC  
Use at least six 0.01–0.1 µF bypass capacitors positioned as close as possible to the four sides of  
the package to connect the V power source to GND.  
CC  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V and  
CC  
GND pins are less than 1.2 cm (0.5 inch) per capacitor lead.  
Use at least a four-layer PCB with two inner layers for V and GND.  
CC  
Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal.  
This recommendation particularly applies to the address and data buses as well as the IRQA,  
IRQB, IRQD, and TA pins. Maximum PCB trace lengths on the order of 15 cm (6 inches) are  
recommended.  
DSP56367 Technical Data, Rev. 2.1  
5-2  
Freescale Semiconductor  
Power Consumption Considerations  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating  
capacitance. This is especially critical in systems with higher capacitive loads that could create  
higher transient currents in the V and GND circuits.  
CC  
All inputs must be terminated (i.e., not allowed to float) using CMOS levels, except for the three  
pins with internal pull-up resistors (TMS, TDI, TCK).  
Take special care to minimize noise levels on the V  
and GND pins.  
CCP P  
If multiple DSP56367 devices are on the same board, check for cross-talk or excessive spikes on  
the supplies due to synchronous operation of the devices.  
RESET must be asserted when the chip is powered up. A stable EXTAL signal must be supplied  
before deassertion of RESET.  
At power-up, ensure that the voltage difference between the 3.3 V tolerant pins and the chip V  
never exceeds a TBD voltage.  
CC  
5.3  
Power Consumption Considerations  
Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current  
consumption are described in this section. Most of the current consumed by CMOS devices is alternating  
current (ac), which is charging and discharging the capacitances of the pins and internal nodes.  
Current consumption is described by the following formula:  
I = C × V × f  
where:  
C
V
f
= node/pin capacitance  
= voltage swing  
= frequency of node/pin toggle  
Example 1. Power Consumption  
For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 100 MHz clock,  
toggling at its maximum possible rate (50 MHz), the current consumption is  
–12  
6
I = 50 × 10  
× 3.3 × 50 × 10 = 8.25mA  
The maximum internal current (I max) value reflects the typical possible switching of the internal buses  
CCI  
on best-case operation conditions, which is not necessarily a real application case. The typical internal  
current (I  
) value reflects the average switching of the internal buses on typical operating conditions.  
CCItyp  
For applications that require very low current consumption, do the following:  
Set the EBD bit when not accessing external memory.  
Minimize external memory accesses and use internal memory accesses.  
Minimize the number of pins that are switching.  
Minimize the capacitive load on the pins.  
Connect the unused inputs to pull-up or pull-down resistors.  
Disable unused peripherals.  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
5-3  
PLL Performance Issues  
One way to evaluate power consumption is to use a current per MIPS measurement methodology to  
minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP).  
A benchmark power consumption test algorithm is listed in Appendix A, "Power Consumption  
Benchmark". Use the test algorithm, specific test current measurements, and the following equation to  
derive the current per MIPS value.  
I MIPS = I MHz = (I  
– I  
) ⁄ (F2 – F1)  
typF1  
typF2  
where:  
I
I
= current at F2  
typF2  
= current at F1  
typF1  
F2  
F1  
= high frequency (any specified operating frequency)  
= low frequency (any specified operating frequency lower than F2)  
NOTE  
F1 should be significantly less than F2. For example, F2 could be 66 MHz  
and F1 could be 33 MHz. The degree of difference between F1 and F2  
determines the amount of precision with which the current rating can be  
determined for an application.  
5.4  
PLL Performance Issues  
The following explanations should be considered as general observations on expected PLL behavior.  
There is no testing that verifies these exact numbers. These observations were measured on a limited  
number of parts and were not verified over the entire temperature and voltage ranges.  
5.4.1  
Input (EXTAL) Jitter Requirements  
The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL  
is slow (i.e., it does not jump between the minimum and maximum values in one cycle) or the frequency  
of the jitter is fast (i.e., it does not stay at an extreme value for a long time), then the allowed jitter can be  
2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the  
prescribed values.  
DSP56367 Technical Data, Rev. 2.1  
5-4  
Freescale Semiconductor  
Appendix A Power Consumption Benchmark  
The following benchmark program permits evaluation of DSP power usage in a test situation. It enables  
the PLL, disables the external clock, and uses repeated multiply-accumulate instructions with a set of  
synthetic DSP application data to emulate intensive sustained DSP operation.  
;***********************************;********************************  
;* ;* CHECKS  
Typical Power Consumption  
;********************************************************************  
page  
200,55,0,0,0  
nolist  
I_VEC EQU $000000  
START EQU $8000  
; Interrupt vectors for program debug only  
; MAIN (external) program starting address  
INT_PROG EQU $100 ; INTERNAL program memory starting address  
INT_XDAT EQU $0  
INT_YDAT EQU $0  
; INTERNAL X-data memory starting address  
; INTERNAL Y-data memory starting address  
INCLUDE "ioequ.asm"  
INCLUDE "intequ.asm"  
list  
org  
P:START  
;
movep #$0123FF,x:M_BCR; BCR: Area 3 : 1 w.s (SRAM)  
; Default: 1 w.s (SRAM)  
;
movep  
#$0d0000,x:M_PCTL  
; XTAL disable  
; PLL enable  
; CLKOUT disable  
;
; Load the program  
;
move  
move  
#INT_PROG,r0  
#PROG_START,r1  
do  
move  
#(PROG_END-PROG_START),PLOAD_LOOP  
p:(r1)+,x0  
move  
x0,p:(r0)+  
nop  
PLOAD_LOOP  
;
; Load the X-data  
;
move  
move  
#INT_XDAT,r0  
#XDAT_START,r1  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
A-1  
do  
move  
move  
#(XDAT_END-XDAT_START),XLOAD_LOOP  
p:(r1)+,x0  
x0,x:(r0)+  
XLOAD_LOOP  
;
; Load the Y-data  
;
move  
#INT_YDAT,r0  
move  
#YDAT_START,r1  
do  
move  
#(YDAT_END-YDAT_START),YLOAD_LOOP  
p:(r1)+,x0  
move  
x0,y:(r0)+  
YLOAD_LOOP  
;
jmp  
INT_PROG  
PROG_START  
move  
move  
move  
move  
;
#$0,r0  
#$0,r4  
#$3f,m0  
#$3f,m4  
clr  
a
clr  
b
move  
move  
move  
move  
bset  
;
#$0,x0  
#$0,x1  
#$0,y0  
#$0,y1  
#4,omr  
; ebd  
sbr  
dor  
mac  
mac  
add  
mac  
mac  
move  
#60,_end  
x0,y0,a  
x1,y1,a  
a,b  
x0,y0,a  
x1,y1,a  
b1,x:$ff  
x:(r0)+,x1  
x:(r0)+,x0  
y:(r4)+,y1  
y:(r4)+,y0  
x:(r0)+,x1  
y:(r4)+,y0  
_end  
bra  
nop  
nop  
nop  
nop  
sbr  
PROG_END  
nop  
nop  
XDAT_START  
;
org  
dc  
dc  
dc  
dc  
x:0  
$262EB9  
$86F2FE  
$E56A5F  
$616CAC  
DSP56367 Technical Data, Rev. 2.1  
A-2  
Freescale Semiconductor  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
$8FFD75  
$9210A  
$A06D7B  
$CEA798  
$8DFBF1  
$A063D6  
$6C6657  
$C2A544  
$A3662D  
$A4E762  
$84F0F3  
$E6F1B0  
$B3829  
$8BF7AE  
$63A94F  
$EF78DC  
$242DE5  
$A3E0BA  
$EBAB6B  
$8726C8  
$CA361  
$2F6E86  
$A57347  
$4BE774  
$8F349D  
$A1ED12  
$4BFCE3  
$EA26E0  
$CD7D99  
$4BA85E  
$27A43F  
$A8B10C  
$D3A55  
$25EC6A  
$2A255B  
$A5F1F8  
$2426D1  
$AE6536  
$CBBC37  
$6235A4  
$37F0D  
$63BEC2  
$A5E4D3  
$8CE810  
$3FF09  
$60E50E  
$CFFB2F  
$40753C  
$8262C5  
$CA641A  
$EB3B4B  
$2DA928  
$AB6641  
$28A7E6  
$4E2127  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
A-3  
dc  
dc  
dc  
dc  
dc  
$482FD4  
$7257D  
$E53C72  
$1A8C3  
$E27540  
XDAT_END  
YDAT_START  
;
org  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
y:0  
$5B6DA  
$C3F70B  
$6A39E8  
$81E801  
$C666A6  
$46F8E7  
$AAEC94  
$24233D  
$802732  
$2E3C83  
$A43E00  
$C2B639  
$85A47E  
$ABFDDF  
$F3A2C  
$2D7CF5  
$E16A8A  
$ECB8FB  
$4BED18  
$43F371  
$83A556  
$E1E9D7  
$ACA2C4  
$8135AD  
$2CE0E2  
$8F2C73  
$432730  
$A87FA9  
$4A292E  
$A63CCF  
$6BA65C  
$E06D65  
$1AA3A  
$A1B6EB  
$48AC48  
$EF7AE1  
$6E3006  
$62F6C7  
$6064F4  
$87E41D  
$CB2692  
$2C3863  
$C6BC60  
$43A519  
$6139DE  
$ADF7BF  
DSP56367 Technical Data, Rev. 2.1  
A-4  
Freescale Semiconductor  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
$4B3E8C  
$6079D5  
$E0F5EA  
$8230DB  
$A3B778  
$2BFE51  
$E0A6B6  
$68FFB7  
$28F324  
$8F2E8D  
$667842  
$83E053  
$A1FD90  
$6B2689  
$85B68E  
$622EAF  
$6162BC  
$E4A245  
YDAT_END  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
A-5  
NOTES  
DSP56367 Technical Data, Rev. 2.1  
A-6  
Freescale Semiconductor  
Index  
wait states selection guide 21  
write access 28  
A
out of page and refresh timings  
11 wait states 23  
ac electrical characteristics 4  
15 wait states 25  
4 wait states 21  
Page mode  
B
read accesses 20  
wait states selection guide 15  
write accesses 19  
Boundary Scan (JTAG Port) timing diagram 53  
bus  
Page mode timings  
3 wait states 16  
external address 4  
external data 4  
4 wait states 17  
refresh access 29  
DSP56300 Family Manual 3  
C
E
Clock 4  
clock  
external 4  
operation 5  
clocks  
electrical design considerations 3  
Enhanced Serial Audio Interface 13, 16  
ESAI 13, 16  
receiver timing 49, 50  
internal 4  
timings 45  
transmitter timing 48  
EXTAL jitter 4  
external address bus 4  
D
external bus control 4, 5, 6  
external clock operation 4  
external data bus 4  
external interrupt timing (negative edge-triggered)  
11  
external level-sensitive fast interrupt timing 10  
external memory access (DMA Source) timing 12  
External Memory Expansion Port 4, 12  
DAX 18  
dc electrical characteristics 3  
design considerations  
electrical 3  
PLL 4  
power consumption 3  
thermal 1  
Digital Audio Transmitter 18  
DRAM  
out of page  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
Index-1  
F
M
functional signal groups 1  
maximum ratings 1, 2  
mode control 6, 7  
Mode select timing 7  
multiplexed bus timings  
read 35  
G
write 36  
GPIO 18  
GPIO timing 51  
Ground 3  
N
non-multiplexed bus timings  
H
read 33  
write 34  
HDI08 8, 10  
HDI08 timing 31  
Host Interface 8, 10  
Host Interface timing 31  
O
OnCE module 19  
operating mode select timing 11  
I
P
internal clocks 4  
interrupt and mode control 6, 7  
interrupt control 6, 7  
interrupt timing 7  
package  
external level-sensitive fast 10  
external negative edge-triggered 11  
TQFP description 1, 4  
Phase Lock Loop 6  
PLL 4, 6  
Characteristics 6  
performance issues 4  
PLL design considerations 4  
PLL performance issues 4  
Port A 4  
Port B 9, 10  
Port C 13, 16  
Port D 18  
Power 2  
J
Jitter 4  
JTAG 19  
JTAG Port  
timing 52, 53  
power consumption design considerations 3  
DSP56367 Technical Data, Rev. 2.1  
Index-2  
Freescale Semiconductor  
interrupt 7  
mode select 7  
Reset 7  
R
Stop 7  
TQFP  
recovery from Stop state using IRQA 11, 12  
RESET 7  
Reset timing 7, 10  
pin list by number 4  
pin-out drawing (top) 1  
S
Serial Host Interface 11  
SHI 11  
signal groupings 1  
signals 1  
SRAM  
read and write accesses 12  
write access 14  
Stop state  
recovery from 11, 12  
Stop timing 7  
supply voltage 2  
T
Test Access Port timing diagram 54  
Test Clock (TCLK) input timing diagram 53  
thermal characteristics 2  
thermal design considerations 1  
Timer 18  
event input restrictions 51  
timing 51  
Timing  
Digital Audio Transmitter (DAX) 50  
Enhanced Serial Audio Interface (ESAI) 48  
General Purpose I/O (GPIO) Timing 45  
OnCE™ (On Chip Emulator) Timing 45  
Serial Host Interface (SHI) SPI Protocol Tim-  
ing 37  
Serial Host Interface (SHI) Timing 37  
timing  
DSP56367 Technical Data, Rev. 2.1  
Freescale Semiconductor  
Index-3  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
Home Page:  
www.freescale.com  
E-mail:  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other  
product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2001, 2002, 2003, 2004, 2005, 2006, 2007. All rights reserved.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical  
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further  
information, see http://www.freescale.com or contact your Freescale sales representative.  
Denver, Colorado 80217  
1-800-521-6274 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Document Number: DSP56367  
Rev. 2.1  
1/2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY