KMPC860TZQ80D4 [FREESCALE]

Hardware Specifications; 硬件规格
KMPC860TZQ80D4
型号: KMPC860TZQ80D4
厂家: Freescale    Freescale
描述:

Hardware Specifications
硬件规格

外围集成电路 时钟
文件: 总80页 (文件大小:2125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC860EC  
Rev. 7, 09/2004  
Freescale Semiconductor  
Technical Data  
MPC860 Family  
Hardware Specifications  
Contents  
This hardware specification contains detailed information on  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 5  
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 6  
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7. Thermal Calculation and Measurement . . . . . . . . . . . 9  
8. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
9. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
10. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 41  
11. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 43  
12. UTOPIA AC Electrical Specifications . . . . . . . . . . . 67  
13. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 68  
14. Mechanical Data and Ordering Information . . . . . . . 71  
15. Document Revision History . . . . . . . . . . . . . . . . . . . 77  
power considerations, DC/AC electrical characteristics, and AC  
timing specifications for the MPC860 family.  
1 Overview  
The MPC860 Power Quad Integrated Communications Controller  
(PowerQUICC™) is a versatile one-chip integrated  
microprocessor and peripheral combination designed for a variety  
of controller applications. It particularly excels in  
communications and networking systems. The PowerQUICC unit  
is referred to as the MPC860 in this hardware specification.  
The MPC860 implements the PowerPC architecture and contains  
a superset of Freescale’s MC68360 Quad Integrated  
Communications Controller (QUICC ), referred to here as the  
QUICC, RISC Communications Proccessor Module (CPM). The  
CPM from the MC68360 QUICC has been enhanced by the  
2
addition of the inter-integrated controller (I C) channel. The  
memory controller has been enhanced, enabling the MPC860 to  
support any type of memory, including high-performance  
memories and new types of DRAMs. A PCMCIA socket  
controller supports up to two sockets. A real-time clock has also  
been integrated.  
Table 1 shows the functionality supported by the members of the  
MPC860 family.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
Features  
Table 1. MPC860 Family Functionality  
Cache (Kbytes) Ethernet  
Part  
ATM  
SCC  
Reference 1  
Instruction  
Cache  
Data Cache  
10T  
10/100  
MPC860DE  
MPC860DT  
MPC860DP  
MPC860EN  
MPC860SR  
MPC860T  
4
4
4
4
8
4
4
4
8
4
Up to 2  
Up to 2  
Up to 2  
Up to 4  
Up to 4  
Up to 4  
Up to 4  
1
1
2
2
2
4
4
4
4
1
1
1
1
1
1
1
1
2
Yes  
Yes  
16  
4
1
1
4
Yes  
Yes  
Yes  
Yes  
4
MPC860P  
MPC855T  
16  
4
1
1
1
Supporting documentation for these devices refers to the following:  
1. MPC860 PowerQUICC Family User’s Manual (MPC860UM, Rev. 3)  
2. MPC855T User’s Manual (MPC855TUM/D, Rev. 1)  
2 Features  
The following list summarizes the key MPC860 features:  
TM  
Embedded single-issue, 32-bit PowerPC core (implementing the PowerPC architecture) with  
thirty-two 32-bit general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch without conditional execution.  
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)  
– 16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction caches  
are two-way, set-associative with 128 sets.  
– 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are two-way,  
set-associative with 128 sets.  
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache  
blocks.  
– Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and  
are lockable on a cache block basis.  
— MMUs with 32-entry TLB, fully-associative instruction, and data TLBs  
— MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual address spaces  
and 16 protection groups  
— Advanced on-chip-emulation debug mode  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
32 address lines  
Operates at up to 80 MHz  
Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
MPC860 Family Hardware Specifications, Rev. 7  
2
Freescale Semiconductor  
Features  
— Each bank can be a chip select or RAS to support a DRAM bank.  
— Up to 15 wait states programmable per memory bank  
— Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory devices  
— DRAM controller programmable to support most size and speed memory interfaces  
— Four CAS lines, four WE lines, and one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Variable block sizes (32 Kbyte to 256 Mbyte)  
— Selectable write protection  
— On-chip bus arbitration logic  
General-purpose timers  
— Four 16-bit timers or two 32-bit timers  
— Gate mode can enable/disable counting  
— Interrupt can be masked on reference match and event capture.  
System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
— Periodic interrupt timer (PIT)  
— Low-power stop mode  
— Clock synthesizer  
— Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture  
— Reset controller  
— IEEE 1149.1 test access port (JTAG)  
Interrupts  
— Seven external interrupt request (IRQ) lines  
— 12 port pins with interrupt capability  
— 23 internal interrupt sources  
— Programmable priority between SCCs  
— Programmable highest priority request  
10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u Standard (not available when using  
ATM over UTOPIA interface)  
ATM support compliant with ATM forum UNI 4.0 specification  
— Cell processing up to 50–70 Mbps at 50-MHz system clock  
— Cell multiplexing/demultiplexing  
— Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and software  
implementation of other protocols.  
ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and  
unspecified bit rate (UBR) and providing control mechanisms enabling software support of available  
bit rate (ABR)  
— Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and  
byte-aligned serial (for example, T1/E1/ADSL)  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
3
Features  
— UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four physical  
layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system clock ratios of 1/2 or  
1/3.  
— Serial-mode ATM connection supports transmission convergence (TC) function for T1/E1/ADSL lines,  
cell delineation, cell payload scrambling/descrambling, automatic idle/unassigned cell  
insertion/stripping, header error control (HEC) generation, checking, and statistics.  
Communications processor module (CPM)  
— RISC communications processor (CP)  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and  
RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
— Up to 8 Kbytes of dual-port RAM  
— 16 serial DMA (SDMA) channels  
— Three parallel I/O registers with open-drain capability  
Four baud-rate generators (BRGs)  
— Independent (can be tied to any SCC or SMC)  
— Allows changes during operation  
— Autobaud support option  
Four serial communications controllers (SCCs)  
— Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation (available only on  
specially programmed devices)  
— HDLC/SDLC (all channels supported at 2 Mbps)  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support point-to-point protocol (PPP)  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame-based with optional cyclic redundancy check (CRC))  
Two SMCs (serial management channels)  
— UART  
— Transparent  
— General circuit interface (GCI) controller  
— Can be connected to the time-division multiplexed (TDM) channels  
One SPI (serial peripheral interface)  
— Supports master and slave modes  
— Supports multimaster operation on the same bus  
2
One I C (inter-integrated circuit) port  
— Supports master and slave modes  
MPC860 Family Hardware Specifications, Rev. 7  
4
Freescale Semiconductor  
Maximum Tolerated Ratings  
— Multiple-master environment support  
Time-slot assigner (TSA)  
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined  
— 1- or 8-bit resolution  
— Allows independent transmit and receive routing, frame synchronization, and clocking  
— Allows dynamic changes  
— Can be internally connected to six serial channels (four SCCs and two SMCs)  
Parallel interface port (PIP)  
— Centronics interface support  
— Supports fast connection between compatible ports on the MPC860 or the MC68360  
PCMCIA interface  
— Master (socket) interface, release 2.1 compliant  
— Supports two independent PCMCIA sockets  
— Supports eight memory or I/O windows  
Low power support  
— Full on—all units fully powered  
— Doze—core functional units disabled except time base decrementer, PLL, memory controller, RTC, and  
CPM in low-power standby  
— Sleep—all units disabled except RTC and PIT, PLL active for fast wake up  
— Deep sleep—all units disabled including PLL except RTC and PIT  
— Power down mode—all units powered down except PLL, RTC, PIT, time base, and decrementer  
Debug interface  
— Eight comparators: four operate on instruction address, two operate on data address, and two operate on  
data  
— Supports conditions: = < >  
— Each watchpoint can generate a break-point internally.  
3.3-V operation with 5-V TTL compatibility except EXTAL and EXTCLK  
357-pin ball grid array (BGA) package  
3 Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the MPC860. Table 2 provides the  
maximum ratings.  
This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it  
is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages  
to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic  
voltage level (for example, either GND or V ).  
dd  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
5
Thermal Characteristics  
Table 2. Maximum Tolerated Ratings  
(GND = 0 V)  
Rating  
Symbol  
Value  
Unit  
Supply voltage 1  
VDDH  
VDDL  
–0.3 to 4.0  
–0.3 to 4.0  
–0.3 to 4.0  
–0.3 to 4.0  
V
V
V
V
V
KAPWR  
VDDSYN  
Vin  
Input voltage 2  
GND – 0.3 to  
VDDH  
Temperature 3 (standard)  
TA(min)  
Tj(max)  
TA(min)  
Tj(max)  
Tstg  
0
95  
°C  
°C  
°C  
°C  
°C  
Temperature 3 (extended)  
–40  
95  
Storage temperature range  
–55 to 150  
1
The power supply of the device must start its ramp from 0.0 V.  
2
Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum  
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may  
affect device reliability or cause permanent damage to the device.  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies  
to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be  
applied to its inputs).  
3
Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures are guaranteed as  
junction temperature, Tj.  
4 Thermal Characteristics  
Table 3. Package Description  
Package Designator  
Package Code (Case No.)  
Package Description  
ZP  
5050 (1103-01)  
PBGA 357 25*25*0.9P1.27  
PBGA 357 25*25*1.2P1.27  
ZQ / VR  
5058 (1103D-02)  
Table 4 shows the thermal characteristics for the MPC860.  
MPC860 Family Hardware Specifications, Rev. 7  
6
Freescale Semiconductor  
Power Dissipation  
Table 4. MPC860 Thermal Resistance Data  
ZP  
ZQ / VR  
Unit  
Rating  
Environment  
Symbol  
MPC860P MPC860P  
Mold Compound Thickness  
0.85  
34  
22  
27  
18  
14  
6
1.15  
34  
22  
27  
18  
13  
8
mm  
1
2
Junction-to-ambient  
Natural convection  
Single-layer board (1s)  
RθJA  
°C/W  
3
Four-layer board (2s2p)  
Single-layer board (1s)  
Four-layer board (2s2p)  
RθJMA  
3
Airflow (200 ft/min)  
RθJMA  
3
RθJMA  
4
Junction-to-board  
RθJB  
RθJC  
ΨJT  
5
Junction-to-case  
6
Junction-to-package top Natural convection  
2
2
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad  
packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from  
the junction to the exposed pad without contact resistance.  
6
Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2.  
5 Power Dissipation  
Table 5 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1,  
where CPU frequency is twice the bus speed.  
Table 5. Power Dissipation (PD)  
1
2
Die Revision  
Frequency (MHz) Typical  
Maximum  
Unit  
D.4  
50  
66  
66  
80  
656  
TBD  
722  
851  
735  
TBD  
762  
909  
mW  
mW  
mW  
mW  
(1:1 mode)  
D.4  
(2:1 mode)  
1
2
Typical power dissipation is measured at 3.3 V.  
Maximum power dissipation is measured at 3.5 V.  
NOTE  
-based power dissipation and do not include I/O  
Values in Table 5 represent V  
DDL  
power dissipation over V  
. I/O power dissipation varies widely by application  
DDH  
due to buffer current, depending on external circuitry.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
7
DC Characteristics  
6 DC Characteristics  
Table 6 provides the DC electrical characteristics for the MPC860.  
Table 6. DC Electrical Specifications  
Symbol  
Characteristic  
Min  
Max  
Unit  
Operating voltage at 40 MHz or less  
VDDH, VDDL, VDDSYN  
3.0  
2.0  
3.6  
3.6  
V
V
KAPWR  
(power-down mode)  
KAPWR  
(all other operating modes)  
VDDH – 0.4  
3.135  
VDDH  
3.465  
3.6  
V
V
V
V
V
Operating voltage greater than 40 MHz  
VDDH, VDDL, KAPWR,  
VDDSYN  
KAPWR  
(power-down mode)  
2.0  
KAPWR  
(all other operating modes)  
VDDH – 0.4  
2.0  
VDDH  
5.5  
Input high voltage (all inputs except EXTAL and  
EXTCLK)  
VIH  
Input low voltage 1  
VIL  
VIHC  
Iin  
GND  
0.7 × (VDDH  
0.8  
VDDH + 0.3  
100  
V
V
EXTAL, EXTCLK input high voltage  
)
Input leakage current, Vin = 5.5 V (except TMS,  
TRST, DSCK, and DSDI pins)  
µA  
Input leakage current, Vin = 3.6 V (except TMS,  
TRST, DSCK, and DSDI pins)  
IIn  
10  
10  
µA  
µA  
Input leakage current, Vin = 0 V (except TMS,  
TRST, DSCK, and DSDI pins)  
IIn  
2
Input capacitance  
Cin  
20  
pF  
V
Output high voltage, IOH = –2.0 mA, VDDH = 3.0 V  
(except XTAL, XFC, and open-drain pins)  
VOH  
2.4  
Output low voltage  
VOL  
0.5  
V
IOL = 2.0 mA, CLKOUT  
3
IOL = 3.2 mA  
IOL = 5.3 mA  
4
IOL = 7.0 mA, TXD1/PA14, TXD2/PA12  
IOL = 8.9 mA, TS, TA, TEA, BI, BB,  
HRESET, SRESET  
1
VIL(max) for the I2C interface is 0.8 V rather than the 1.5 V as specified in the I2C standard.  
Input capacitance is periodically sampled.  
2
MPC860 Family Hardware Specifications, Rev. 7  
8
Freescale Semiconductor  
Thermal Calculation and Measurement  
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/  
3
VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0,  
IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8,  
TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5,  
TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/  
PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/  
PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/  
PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19,  
L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/  
DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11,  
TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/  
L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4, PD3,  
MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3]  
4
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,  
WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/  
GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A,  
CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30)  
7 Thermal Calculation and Measurement  
For the following discussions, P = (V × I ) + PI/O, where PI/O is the power dissipation of the I/O drivers.  
D
DD  
DD  
7.1 Estimation with Junction-to-Ambient Thermal Resistance  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the equation:  
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = ambient temperature (ºC)  
A
R
= package junction-to-ambient thermal resistance (ºC/W)  
θJA  
P = power dissipation in package  
D
The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation  
of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor  
of two (in the quantity T T ) are possible.  
J
A
7.2 Estimation with Junction-to-Case Thermal Resistance  
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance  
and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJC θCA  
θJA  
where:  
R
R
R
= junction-to-ambient thermal resistance (ºC/W)  
= junction-to-case thermal resistance (ºC/W)  
= case-to-ambient thermal resistance (ºC/W)  
θJA  
θJC  
θCA  
R
is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the  
θJC  
case-to-ambient thermal resistance, R  
heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the  
. For instance, the user can change the air flow around the device, add a  
θCA  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
9
Thermal Calculation and Measurement  
printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks  
where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most  
packages, a better model is required.  
7.3 Estimation with Junction-to-Board Thermal Resistance  
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model  
consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance  
covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the  
package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is  
conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages,  
especially PBGA packages, is strongly dependent on the board temperature; see Figure 1.  
Board Temperature Rise Above Ambient Divided by Package Power  
Figure 1. Effect of Board Temperature Rise on Thermal Behavior  
If the board temperature is known, an estimate of the junction temperature in the environment can be made using  
the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
R
= junction-to-board thermal resistance (ºC/W)  
θJB  
T = board temperature (ºC)  
B
P = power dissipation in package  
D
If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable  
predictions of junction temperature can be made. For this method to work, the board and board mounting must be  
similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a  
power and a ground plane) and by attaching the thermal balls to the ground plane.  
MPC860 Family Hardware Specifications, Rev. 7  
10  
Freescale Semiconductor  
Layout Practices  
7.4 Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor  
model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the  
package can be used in the thermal simulation.  
7.5 Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are available, the thermal  
characterization parameter (Ψ ) can be used to determine the junction temperature with a measurement of the  
JT  
temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
Ψ
= thermal characterization parameter  
JT  
T = thermocouple temperature on top of package  
T
P = power dissipation in package  
D
The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the  
thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and  
over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to  
avoid measurement errors caused by cooling effects of the thermocouple wire.  
7.6 References  
Semiconductor Equipment and Materials International  
805 East Middlefield Rd.  
(415) 964-5111  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) Specifications  
(Available from Global Engineering Documents)  
800-854-7179 or  
303-397-7956  
JEDEC Specifications  
http://www.jedec.org  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive  
Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 4754.  
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its  
Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212220.  
8 Layout Practices  
Each VDD pin on the MPC860 should be provided with a low-impedance path to the board’s supply. Each GND pin  
should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of  
logic on the chip. The VDD power supply should be bypassed to ground using at least four 0.1 µF-bypass capacitors  
located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces  
connecting to chip VDD and GND should be kept to less than half an inch per capacitor lead. A four-layer board  
employing two inner layers as VCC and GND planes is recommended.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
11  
Bus Signal Timing  
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length should  
be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This  
recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6 inches are  
recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the  
PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher  
capacitive loads because these loads create higher transient currents in the VCC and GND circuits. Pull up all unused  
inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the  
PLL supply pins.  
9 Bus Signal Timing  
Table 7 provides the bus operation timing for the MPC860 at 33, 40, 50, and 66 MHz.  
The maximum bus speed supported by the MPC860 is 66 MHz. Higher-speed parts must be operated in half-speed  
bus mode (for example, an MPC860 used at 80 MHz must be configured for a 40 MHz bus).  
The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum  
delays.  
Table 7. Bus Operation Timings  
33 MHz  
Min Max  
30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30 ns  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min Max  
Min Max  
Min Max  
B1  
CLKOUT period  
B1a EXTCLK to CLKOUT phase skew  
(EXTCLK > 15 MHz and MF <= 2)  
–0.90 0.90 –0.90 0.90 –0.90 0.90 –0.90 0.90  
–2.30 2.30 –2.30 2.30 –2.30 2.30 –2.30 2.30  
–0.60 0.60 –0.60 0.60 –0.60 0.60 –0.60 0.60  
–2.00 2.00 –2.00 2.00 –2.00 2.00 –2.00 2.00  
ns  
ns  
ns  
B1b EXTCLK to CLKOUT phase skew  
(EXTCLK > 10 MHz and MF < 10)  
B1c CLKOUT phase jitter (EXTCLK >  
1
15 MHz and MF <= 2)  
B1d CLKOUT phase jitter1  
ns  
%
%
B1e CLKOUT frequency jitter (MF < 10) 1  
0.50  
2.00  
0.50  
2.00  
0.50  
2.00  
0.50  
2.00  
B1f CLKOUT frequency jitter (10 < MF  
< 500) 1  
B1g CLKOUT frequency jitter (MF > 500)  
3.00  
3.00  
3.00  
3.00  
%
1
2
B1h Frequency jitter on EXTCLK  
12.12  
12.12  
0.50  
10.00  
10.00  
0.50  
8.00  
8.00  
0.50  
6.06  
6.06  
0.50  
%
ns  
ns  
ns  
ns  
ns  
B2  
B3  
B4  
CLKOUT pulse width low  
CLKOUT width high  
CLKOUT rise time 3  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
B533 CLKOUT fall time3  
B7  
CLKOUT to A(0:31), BADDR(28:30), 7.58  
RD/WR, BURST, D(0:31), DP(0:3)  
invalid  
6.25  
5.00  
3.80  
MPC860 Family Hardware Specifications, Rev. 7  
12  
Freescale Semiconductor  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B7a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3), BDIP, PTR invalid  
7.58  
7.58  
6.25  
6.25  
5.00  
5.00  
3.80  
ns  
ns  
B7b CLKOUT to BR, BG, FRZ,  
VFLS(0:1), VF(0:2) IWP(0:2),  
3.80  
4
LWP(0:1), STS invalid  
B8  
CLKOUT to A(0:31), BADDR(28:30) 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
RD/WR, BURST, D(0:31), DP(0:3)  
valid  
B8a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3) BDIP, PTR valid  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
B8b CLKOUT to BR, BG, VFLS(0:1),  
VF(0:2), IWP(0:2), FRZ, LWP(0:1),  
STS valid 4  
B9  
CLKOUT to A(0:31), BADDR(28:30), 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
RD/WR, BURST, D(0:31), DP(0:3),  
TSIZ(0:1), REG, RSV, AT(0:3), PTR  
High-Z  
B11 CLKOUT to TS, BB assertion  
7.58 13.58 6.25 12.25 5.00 11.00 3.80 11.29 ns  
B11a CLKOUT to TA, BI assertion (when  
driven by the memory controller or  
PCMCIA interface)  
2.50  
9.25  
2.50  
9.25  
2.50  
9.25  
2.50  
9.75  
ns  
B12 CLKOUT to TS, BB negation  
7.58 14.33 6.25 13.00 5.00 11.75 3.80  
2.50 11.00 2.50 11.00 2.50 11.00 2.50  
8.54  
9.00  
ns  
ns  
B12a CLKOUT to TA, BI negation (when  
driven by the memory controller or  
PCMCIA interface)  
B13 CLKOUT to TS, BB High-Z  
7.58 21.58 6.25 20.25 5.00 19.00 3.80 14.04 ns  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
B13a CLKOUT to TA, BI High-Z (when  
driven by the memory controller or  
PCMCIA interface)  
B14 CLKOUT to TEA assertion  
B15 CLKOUT to TEA High-Z  
2.50 10.00 2.50 10.00 2.50 10.00 2.50  
9.00  
ns  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
B16 TA, BI valid to CLKOUT (setup time) 9.75  
9.75  
9.75  
6.00  
4.50  
ns  
ns  
B16a TEA, KR, RETRY, CR valid to  
CLKOUT (setup time)  
10.00  
10.00  
10.00  
B16b BB, BG, BR, valid to CLKOUT (setup 8.50  
8.50  
1.00  
2.00  
8.50  
1.00  
2.00  
4.00  
2.00  
2.00  
ns  
ns  
ns  
5
time)  
B17 CLKOUT to TA, TEA, BI, BB, BG, BR 1.00  
valid (hold time)  
B17a CLKOUT to KR, RETRY, CR valid  
(hold time)  
2.00  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
13  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B18 D(0:31), DP(0:3) valid to CLKOUT  
6.00  
1.00  
4.00  
2.00  
6.00  
1.00  
4.00  
2.00  
6.00  
1.00  
4.00  
2.00  
6.00  
2.00  
4.00  
2.00  
ns  
ns  
ns  
ns  
6
rising edge (setup time)  
B19 CLKOUT rising edge to D(0:31),  
DP(0:3) valid (hold time) 6  
B20 D(0:31), DP(0:3) valid to CLKOUT  
7
falling edge (setup time)  
B21 CLKOUT falling edge to D(0:31),  
DP(0:3) valid (hold time) 7  
B22 CLKOUT rising edge to CS asserted 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
GPCM ACS = 00  
B22a CLKOUT falling edge to CS asserted  
GPCM ACS = 10, TRLX = 0  
8.00  
8.00  
8.00  
8.00  
ns  
B22b CLKOUT falling edge to CS asserted 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
GPCM ACS = 11, TRLX = 0,  
EBDF = 0  
B22c CLKOUT falling edge to CS asserted 10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns  
GPCM ACS = 11, TRLX = 0,  
EBDF = 1  
B23 CLKOUT rising edge to CS negated 2.00  
GPCM read access, GPCM write  
access ACS = 00, TRLX = 0, and  
CSNT = 0  
8.00  
2.00  
4.25  
8.00  
2.00  
3.00  
8.00  
2.00  
1.79  
8.00  
ns  
ns  
B24 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10,  
TRLX = 0  
5.58  
B24a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 0  
13.15  
10.50  
8.00  
5.58  
ns  
ns  
B25 CLKOUT rising edge to OE, WE(0:3)  
asserted  
9.00  
9.00  
9.00  
9.00  
B26 CLKOUT rising edge to OE negated 2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
ns  
ns  
B27 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 1  
35.88  
43.45  
29.25  
23.00  
16.94  
B27a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 1  
35.50  
28.00  
20.73  
ns  
ns  
B28 CLKOUT rising edge to WE(0:3)  
negated GPCM write access  
CSNT = 0  
9.00  
9.00  
9.00  
9.00  
B28a CLKOUT falling edge to WE(0:3)  
negated GPCM write access  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
TRLX = 0, 1, CSNT = 1, EBDF = 0  
MPC860 Family Hardware Specifications, Rev. 7  
14  
Freescale Semiconductor  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B28b CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0, 1,  
CSNT = 1, ACS = 10, or ACS = 11,  
EBDF = 0  
14.33  
13.00  
11.75  
10.54 ns  
B28c CLKOUT falling edge to WE(0:3)  
negated GPCM write access  
10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns  
TRLX = 0, 1, CSNT = 1 write access  
TRLX = 0, CSNT = 1, EBDF = 1  
B28d CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0, 1,  
CSNT = 1, ACS = 10, or ACS = 11,  
EBDF = 1  
17.99  
16.00  
14.13  
12.31 ns  
B29 WE(0:3) negated to D(0:31), DP(0:3) 5.58  
High-Z GPCM write access  
4.25  
10.5  
4.25  
3.00  
8.00  
3.00  
1.79  
5.58  
1.79  
ns  
ns  
ns  
CSNT = 0, EBDF = 0  
B29a WE(0:3) negated to D(0:31), DP(0:3) 13.15  
High-Z GPCM write access,  
TRLX = 0, CSNT = 1, EBDF = 0  
B29b CS negated to D(0:31), DP(0:3),  
High-Z GPCM write access,  
ACS = 00, TRLX = 0, 1, and CSNT =  
0
5.58  
B29c CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
13.15  
10.5  
8.00  
5.58  
ns  
TRLX = 0, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 0  
B29d WE(0:3) negated to D(0:31), DP(0:3) 43.45  
High-Z GPCM write access,  
35.5  
35.5  
28.00  
28.00  
20.73  
29.73  
ns  
ns  
TRLX = 1, CSNT = 1, EBDF = 0  
B29e CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
43.45  
TRLX = 1, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 0  
B29f WE(0:3) negated to D(0:31), DP(0:3) 8.86  
High-Z GPCM write access,  
6.88  
6.88  
5.00  
5.00  
3.18  
3.18  
ns  
ns  
TRLX = 0, CSNT = 1, EBDF = 1  
B29g CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
8.86  
TRLX = 0, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 1  
B29h WE(0:3) negated to D(0:31), DP(0:3) 38.67  
High-Z GPCM write access,  
31.38  
24.50  
17.83  
ns  
TRLX = 1, CSNT = 1, EBDF = 1  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
15  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
38.67  
Max  
Min  
31.38  
Max  
Min  
24.50  
Max  
Min  
17.83  
Max  
B29i CS negated to D(0:31), DP(0:3)  
High-Z GPCM write access,  
ns  
How to Reach Us:  
TRLX = 1, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 1  
Home Page:  
www.freescale.com  
email:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
(800) 521-6274  
Information in this document is provided solely to enable system and software implementers to  
use Freescale Semiconductor products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation or guarantee  
regarding the suitability of its products for any particular purpose, nor does Freescale  
Semiconductor assume any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor  
data sheets and/or specifications can and do vary in different applications and actual performance  
may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. Freescale Semiconductor does not convey  
any license under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could create a situation  
where personal injury or death may occur. Should Buyer purchase or use Freescale  
Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Freescale  
Semiconductor was negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-0047 Japan  
0120 191014  
+81 3 3440 3569  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The  
PowerPC name is a trademark of IBM Corp. and is used under license. All other product or service  
names are the property of their respective owners.  
Denver, Colorado 80217  
(800) 441-2447  
© Freescale Semiconductor, Inc. 2004.  
303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@  
hibbertgroup.com  
MPC860EC  
Rev. 7  
09/2004  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B30 CS, WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
5.58  
4.25  
3.00  
1.79  
ns  
8
access  
B30a WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM, write  
access, TRLX = 0, CSNT = 1,  
13.15  
10.50  
8.00  
5.58  
ns  
ns  
CS negated to A(0:31) invalid GPCM  
write access, TRLX = 0, CSNT =1  
ACS = 10, or ACS = 11, EBDF = 0  
B30b WE(0:3) negated to A(0:31),  
invalid GPCM BADDR(28:30) invalid  
GPCM write access, TRLX = 1,  
CSNT = 1. CS negated to A(0:31),  
Invalid GPCM, write access,  
43.45  
35.50  
28.00  
20.73  
TRLX = 1, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 0  
B30c WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access, TRLX = 0, CSNT = 1.  
8.36  
38.67  
1.50  
6.38  
31.38  
1.50  
4.50  
24.50  
1.50  
2.68  
17.83  
1.50  
ns  
ns  
ns  
CS negated to A(0:31) invalid GPCM  
write access, TRLX = 0, CSNT = 1,  
ACS = 10, ACS = 11, EBDF = 1  
B30d WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access, TRLX = 1, CSNT =1.  
CS negated to A(0:31) invalid GPCM  
write access TRLX = 1, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 1  
B31 CLKOUT falling edge to CS  
valid—as requested by control bit  
CST4 in the corresponding word in  
UPM  
6.00  
6.00  
6.00  
6.00  
B31a CLKOUT falling edge to CS  
valid—as requested by control bit  
CST1 in the corresponding word in  
UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
B31b CLKOUT rising edge to CS valid—as 1.50  
requested by control bit CST2 in the  
corresponding word in UPM  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
B31c CLKOUT rising edge to CS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
requested by control bit CST3 in the  
corresponding word in UPM  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
17  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
Min Max Min Max Min Max  
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
B31d CLKOUT falling edge to CS  
valid—as requested by control bit  
CST1 in the corresponding word in  
UPM, EBDF = 1  
B32 CLKOUT falling edge to BS  
valid—as requested by control bit  
BST4 in the corresponding word in  
UPM  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
B32a CLKOUT falling edge to BS  
valid—as requested by control bit  
BST1 in the corresponding word in  
UPM, EBDF = 0  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
B32b CLKOUT rising edge to BS valid—as 1.50  
requested by control bit BST2 in the  
corresponding word in UPM  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
B32c CLKOUT rising edge to BS valid—as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
requested by control bit BST3 in the  
corresponding word in UPM  
B32d CLKOUT falling edge to BS  
valid—as requested by control bit  
BST1 in the corresponding word in  
UPM, EBDF = 1  
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns  
B33 CLKOUT falling edge to GPL  
valid—as requested by control bit  
GxT4 in the corresponding word in  
UPM  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
B33a CLKOUT rising edge to GPL  
valid—as requested by control bit  
GxT3 in the corresponding word in  
UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
B34 A(0:31), BADDR(28:30), andD(0:31) 5.58  
to CS valid—as requested by control  
bit CST4 in the corresponding word  
in UPM  
4.25  
10.50  
16.75  
3.00  
8.00  
1.79  
5.58  
9.36  
ns  
ns  
ns  
B34a A(0:31), BADDR(28:30), andD(0:31) 13.15  
to CS valid—as requested by control  
bit CST1 in the corresponding word  
in UPM  
B34b A(0:31), BADDR(28:30), andD(0:31) 20.73  
to CS valid—as requested by control  
bit CST2 in the corresponding word  
in UPM  
13.00  
MPC860 Family Hardware Specifications, Rev. 7  
18  
Freescale Semiconductor  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
5.58  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B35 A(0:31), BADDR(28:30) to CS  
valid—as requested by control bit  
BST4 in the corresponding word in  
UPM  
4.25  
10.50  
16.75  
4.25  
3.00  
8.00  
1.79  
ns  
B35a A(0:31), BADDR(28:30), andD(0:31) 13.15  
to BS valid—as requested by control  
bit BST1 in the corresponding word  
in UPM  
5.58  
9.36  
1.79  
ns  
ns  
ns  
B35b A(0:31), BADDR(28:30), andD(0:31) 20.73  
to BS valid—as requested by control  
bit BST2 in the corresponding word  
in UPM  
13.00  
3.00  
B36 A(0:31), BADDR(28:30), andD(0:31) 5.58  
to GPL valid—as requested by  
control bit GxT4 in the corresponding  
word in UPM  
B37 UPWAIT valid to CLKOUT falling  
6.00  
1.00  
7.00  
6.00  
1.00  
6.00  
1.00  
6.00  
1.00  
ns  
ns  
9
edge  
B38 CLKOUT falling edge to UPWAIT  
valid 9  
10  
B39 AS valid to CLKOUT rising edge  
7.00  
7.00  
7.00  
7.00  
7.00  
7.00  
ns  
ns  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST, 7.00  
valid to CLKOUT rising edge  
B41 TS valid to CLKOUT rising edge  
(setup time)  
7.00  
2.00  
7.00  
2.00  
7.00  
2.00  
7.00  
2.00  
ns  
ns  
ns  
B42 CLKOUT rising edge to TS valid  
(hold time)  
B43 AS negation to memory controller  
signals negation  
TBD  
TBD  
TBD  
TBD  
1
2
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.  
If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum  
values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time)  
then the maximum allowed jitter on EXTAL can be up to 2%.  
3
4
The timings specified in B4 and B5 are based on full strength clock.  
The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for  
BG output is relevant when the MPC860 is selected to work with internal bus arbiter.  
5
6
7
The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing  
for BG input is relevant when the MPC860 is selected to work with external bus arbiter.  
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input  
signal is asserted.  
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only  
for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where  
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
19  
Bus Signal Timing  
8
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
9
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified  
in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 17.  
10  
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior  
specified in Figure 20.  
Figure 2 is the control timing diagram.  
2.0 V  
2.0 V  
CLKOUT  
0.8 V  
0.8 V  
A
B
2.0 V  
2.0 V  
0.8 V  
Outputs  
0.8 V  
A
B
2.0 V  
2.0 V  
0.8 V  
Outputs  
Inputs  
Inputs  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
A
B
C
D
Maximum output delay specification  
Minimum output hold time  
Minimum input setup time specification  
Minimum input hold time specification  
Figure 2. Control Timing  
Figure 3 provides the timing for the external clock.  
MPC860 Family Hardware Specifications, Rev. 7  
20  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
B1  
B3  
B1  
B2  
B4  
B5  
Figure 3. External Clock Timing  
Figure 4 provides the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
B9  
Output  
Signals  
B8a  
B7a  
Output  
Signals  
B8b  
B7b  
Output  
Signals  
Figure 4. Synchronous Output Signals Timing  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
21  
Bus Signal Timing  
Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
B12a  
B15  
TS, BB  
TA, BI  
TEA  
B13a  
B11a  
B14  
Figure 5. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing  
Figure 6 provides the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
TA, BI  
B16a  
B17a  
TEA, KR,  
RETRY, CR  
B16b  
B17  
BB, BG, BR  
Figure 6. Synchronous Input Signals Timing  
Figure 7 provides normal case timing for input data. It also applies to normal read accesses under the control of the  
UPM in the memory controller.  
MPC860 Family Hardware Specifications, Rev. 7  
22  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
B16  
B18  
B17  
B19  
TA  
D[0:31],  
DP[0:3]  
Figure 7. Input Data Timing in Normal Case  
Figure 8 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM  
RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
CLKOUT  
TA  
B20  
B21  
D[0:31],  
DP[0:3]  
Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller  
and DLT3 = 1  
Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
23  
Bus Signal Timing  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
B18  
D[0:31],  
DP[0:3]  
Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00)  
MPC860 Family Hardware Specifications, Rev. 7  
24  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B23  
B22a  
B24  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)  
CLKOUT  
TS  
B11  
B8  
B12  
B22b  
B22c  
A[0:31]  
CSx  
B23  
B24a  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
25  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B8  
B23  
B22a  
B27  
B26  
B19  
OE  
B27a  
B22bB22c  
B18  
D[0:31],  
DP[0:3]  
Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)  
Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors.  
MPC860 Family Hardware Specifications, Rev. 7  
26  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
B30  
A[0:31]  
CSx  
B22  
B23  
B25  
B28  
WE[0:3]  
OE  
B26  
B29b  
B29  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
27  
Bus Signal Timing  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B30aB30c  
B22  
B28b B28d  
B25  
B23  
B29c B29g  
WE[0:3]  
OE  
B26  
B29a B29f  
B28aB28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)  
MPC860 Family Hardware Specifications, Rev. 7  
28  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B12  
B8  
B30b B30d  
A[0:31]  
CSx  
B22  
B28b B28d  
B23  
B25  
B29eB29i  
B29dB29h  
WE[0:3]  
OE  
B26  
B29b  
B8  
B28a B28c  
B9  
D[0:31],  
DP[0:3]  
Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)  
Figure 16 provides the timing for the external bus controlled by the UPM.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
29  
Bus Signal Timing  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31  
B31b  
CSx  
B34  
B34a  
B34b  
B32aB32d  
B32c  
B32  
B32b  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35b  
B35a  
B33a  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 16. External Bus Timing (UPM Controlled Signals)  
Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
MPC860 Family Hardware Specifications, Rev. 7  
30  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
UPWAIT  
CSx  
B37  
B38  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing  
Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing  
Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
31  
Bus Signal Timing  
CLKOUT  
B41  
B40  
B42  
TS  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)  
Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 20. Asynchronous External Master Memory Access Timing  
(GPCM Controlled—ACS = 00)  
Figure 21 provides the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 21. Asynchronous External Master—Control Signals Negation Timing  
MPC860 Family Hardware Specifications, Rev. 7  
32  
Freescale Semiconductor  
Bus Signal Timing  
Table 8 provides interrupt timing for the MPC860.  
Table 8. Interrupt Timing  
All Frequencies  
Num  
Characteristic 1  
Unit  
Min  
Max  
I39  
I40  
I41  
I42  
I43  
IRQx valid to CLKOUT rising edge (setup time)  
IRQx hold time after CLKOUT  
IRQx pulse width low  
6.00  
2.00  
ns  
ns  
ns  
ns  
3.00  
IRQx pulse width high  
3.00  
IRQx edge-to-edge time  
4 × TCLOCKOUT  
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as  
level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference  
to the CLKOUT.  
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have  
no direct relation with the total system interrupt latency that the MPC860 is able to support.  
Figure 22 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 22. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
33  
Bus Signal Timing  
Table 9 shows the PCMCIA timing for the MPC860.  
Table 9. PCMCIA Timing  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
20.73  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
P44 A(0:31), REG valid to PCMCIA  
16.75  
13.00  
9.36  
ns  
1
Strobe asserted  
P45 A(0:31), REG valid to ALE negation 1 28.30  
23.00  
18.00  
13.15  
ns  
ns  
ns  
ns  
ns  
ns  
P46 CLKOUT to REG valid  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
8.58 7.25 6.00 4.84  
P47 CLKOUT to REG invalid  
P48 CLKOUT to CE1, CE2 asserted  
P49 CLKOUT to CE1, CE2 negated  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
P50 CLKOUT to PCOE, IORD, PCWE,  
IOWR assert time  
11.00  
11.00  
11.00  
11.00  
P51 CLKOUT to PCOE, IORD, PCWE,  
IOWR negate time  
2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 10.04  
ns  
P52 CLKOUT to ALE assert time  
P53 CLKOUT to ALE negate time  
ns  
ns  
ns  
15.58  
14.25  
13.00  
11.84  
P54 PCWE, IOWR negated to D(0:31)  
invalid 1  
5.58  
4.25  
8.00  
2.00  
3.00  
1.79  
P55 WAITA and WAITB valid to CLKOUT 8.00  
rising edge 1  
8.00  
2.00  
8.00  
2.00  
ns  
ns  
P56 CLKOUT rising edge to WAITA and  
WAITB invalid 1  
2.00  
1
PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the  
PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL  
timer expiration. See Chapter 16, “PCMCIA Interface,” in the MPC860 PowerQUICC Users Manual.  
Figure 24 provides the PCMCIA access cycle timing for the external bus read.  
MPC860 Family Hardware Specifications, Rev. 7  
34  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
P44  
P45  
A[0:31]  
REG  
P46  
P48  
P47  
P49  
P51  
P52  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 24. PCMCIA Access Cycle Timing External Bus Read  
Figure 25 provides the PCMCIA access cycle timing for the external bus write.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
35  
Bus Signal Timing  
CLKOUT  
TS  
A[0:31]  
P44  
P45  
P46  
P48  
P47  
P49  
P51  
P52  
B9  
REG  
CE1/CE2  
PCWE, IOWR  
ALE  
P50  
P53  
B8  
P54  
P52  
D[0:31]  
Figure 25. PCMCIA Access Cycle Timing External Bus Write  
Figure 26 provides the PCMCIA WAIT signal detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 26. PCMCIA WAIT Signal Detection Timing  
Table 10 shows the PCMCIA port timing for the MPC860.  
MPC860 Family Hardware Specifications, Rev. 7  
36  
Freescale Semiconductor  
Bus Signal Timing  
Table 10. PCMCIA Port Timing  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
P57 CLKOUT to OPx valid  
19.00  
19.00  
19.00  
19.00  
ns  
ns  
ns  
ns  
P58 HRESET negated to OPx drive 1  
25.73  
21.75  
5.00  
1.00  
18.00  
5.00  
1.00  
14.36  
5.00  
1.00  
P59 IP_Xx valid to CLKOUT rising edge 5.00  
P60 CLKOUT rising edge to IP_Xx  
invalid  
1.00  
1
OP2 and OP3 only  
Figure 27 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 27. PCMCIA Output Port Timing  
Figure 28 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 28. PCMCIA Input Port Timing  
Table 11 shows the debug port timing for the MPC860.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
37  
Bus Signal Timing  
Table 11. Debug Port Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
P61 DSCK cycle time  
3 × TCLOCKOUT  
ns  
ns  
ns  
ns  
ns  
P62 DSCK clock pulse width  
P63 DSCK rise and fall times  
P64 DSDI input data setup time  
P65 DSDI data hold time  
1.25 × TCLOCKOUT  
0.00  
8.00  
5.00  
0.00  
0.00  
3.00  
P66 DSCK low to DSDO data valid  
P67 DSCK low to DSDO invalid  
15.00  
2.00  
Figure 29 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
Figure 29. Debug Port Clock Input Timing  
Figure 30 provides the timing for the debug port.  
D63  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 30. Debug Port Timings  
MPC860 Family Hardware Specifications, Rev. 7  
38  
Freescale Semiconductor  
Bus Signal Timing  
Table 12 shows the reset timing for the MPC860.  
Table 12. Reset Timing  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R69 CLKOUT to HRESET high  
impedance  
20.00  
20.00  
20.00  
20.00  
ns  
ns  
ns  
R70 CLKOUT to SRESET high  
impedance  
20.00  
20.00  
20.00  
20.00  
R71 RSTCONF pulse width  
515.1  
5
425.0  
0
340.0  
0
257.5  
8
R72  
R73 Configuration data to HRESET rising 504.5  
425.0  
0
350.0  
0
277.2  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
edge setup time  
5
R74 Configuration data to RSTCONF  
rising edge setup time  
350.0  
0
350.0  
0
350.0  
0
350.0  
0
R75 Configuration data hold time after  
RSTCONF negation  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
R76 Configuration data hold time after  
HRESET negation  
0.00  
R77 HRESET and RSTCONFasserted to  
data out drive  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
R78 RSTCONF negated to data out high  
impedance  
R79 CLKOUT of last rising edge before  
chip three-state HRESET to data out  
high impedance  
R80 DSDI, DSCK setup  
90.91  
0.00  
75.00  
0.00  
60.00  
0.00  
45.45  
0.00  
ns  
ns  
ns  
R81 DSDI, DSCK hold time  
R82 SRESET negated to CLKOUT rising 242.4  
edge for DSDI and DSCK sample  
200.0  
0
160.0  
0
121.2  
1
2
Figure 31 shows the reset timing for the data bus configuration.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
39  
Bus Signal Timing  
HRESET  
R71  
R76  
RSTCONF  
D[0:31] (IN)  
R73  
R74  
R75  
Figure 31. Reset Timing—Configuration from Data Bus  
Figure 32 provides the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 32. Reset Timing—Data Bus Weak Drive During Configuration  
Figure 33 provides the reset timing for the debug port configuration.  
MPC860 Family Hardware Specifications, Rev. 7  
40  
Freescale Semiconductor  
IEEE 1149.1 Electrical Specifications  
CLKOUT  
SRESET  
R70  
R81  
R82  
R80  
R80  
R81  
DSCK, DSDI  
Figure 33. Reset Timing—Debug Port Configuration  
10 IEEE 1149.1 Electrical Specifications  
Table 13 provides the JTAG timings for the MPC860 shown in Figure 34 through Figure 37.  
Table 13. JTAG Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82  
J83  
J84  
J85  
J86  
J87  
J88  
J89  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TCK cycle time  
100.00  
40.00  
0.00  
5.00  
25.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
10.00  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
27.00  
TCK low to TDO data invalid  
0.00  
TCK low to TDO high impedance  
TRST assert time  
20.00  
100.00  
40.00  
TRST setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
50.00  
50.00  
50.00  
50.00  
50.00  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
41  
IEEE 1149.1 Electrical Specifications  
TCK  
J82  
J83  
J82  
J83  
J84  
J84  
Figure 34. JTAG Test Clock Input Timing  
TCK  
TMS, TDI  
TDO  
J85  
J86  
J87  
J88  
J89  
Figure 35. JTAG Test Access Port Timing Diagram  
TCK  
J91  
J90  
TRST  
TCK  
Figure 36. JTAG TRST Timing Diagram  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 37. Boundary Scan (JTAG) Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
42  
Freescale Semiconductor  
CPM Electrical Characteristics  
11 CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications processor module (CPM) of  
the MPC860.  
11.1 PIP/PIO AC Electrical Specifications  
Table 14 provides the PIP/PIO AC timings as shown in Figure 38 through Figure 42.  
Table 14. PIP/PIO Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Data-in setup time to STBI low  
0
2.5 – t3  
1.5  
2
ns  
CLK  
CLK  
ns  
1
Data-in hold time to STBI high  
STBI pulse width  
STBO pulse width  
1 CLK – 5 ns  
Data-out setup time to STBO low  
Data-out hold time from STBO high  
STBI low to STBO low (Rx interlock)  
STBI low to STBO high (Tx interlock)  
Data-in setup time to clock high  
Data-in hold time from clock high  
Clock low to data-out valid (CPU writes data, control, or direction)  
2
5
CLK  
CLK  
CLK  
CLK  
ns  
2
25  
15  
7.5  
ns  
ns  
1
t3 = Specification 23.  
DATA-IN  
21  
22  
23  
STBI  
27  
24  
STBO  
Figure 38. PIP Rx (Interlock Mode) Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
43  
CPM Electrical Characteristics  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 39. PIP Tx (Interlock Mode) Timing Diagram  
DATA-IN  
21  
22  
23  
24  
STBI  
(Input)  
STBO  
(Output)  
Figure 40. PIP Rx (Pulse Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
23  
STBO  
(Output)  
STBI  
(Input)  
Figure 41. PIP TX (Pulse Mode) Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
44  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
DATA-IN  
29  
30  
31  
DATA-OUT  
Figure 42. Parallel I/O Data-In/Data-Out Timing Diagram  
11.2 Port C Interrupt AC Electrical Specifications  
Table 15 provides the timings for port C interrupts.  
Table 15. Port C Interrupt Timing  
1
33.34 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
35  
36  
Port C interrupt pulse width low (edge-triggered mode)  
Port C interrupt minimum time between active edges  
55  
55  
ns  
ns  
1
External bus frequency of greater than or equal to 33.34 MHz.  
Figure 43 shows the port C interrupt detection timing.  
36  
Port C  
(Input)  
35  
Figure 43. Port C Interrupt Detection Timing  
11.3 IDMA Controller AC Electrical Specifications  
Table 16 provides the IDMA controller timings as shown in Figure 44 through Figure 47.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
45  
CPM Electrical Characteristics  
Table 16. IDMA Controller Timing  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
40  
41  
42  
43  
44  
45  
46  
DREQ setup time to clock high  
DREQ hold time from clock high  
7
3
12  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
SDACK negation delay from TA low  
SDACK negation delay from clock high  
7
TA assertion to falling edge of the clock setup time (applies to  
external TA)  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 44. IDMA External Requests Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
46  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 45. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 46. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
47  
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 47. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
11.4 Baud Rate Generator AC Electrical Specifications  
Table 17 provides the baud rate generator timings as shown in Figure 48.  
Table 17. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
40  
40  
10  
60  
ns  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 48. Baud Rate Generator Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
48  
Freescale Semiconductor  
CPM Electrical Characteristics  
11.5 Timer AC Electrical Specifications  
Table 18 provides the general-purpose timer timings as shown in Figure 49.  
Table 18. Timer Timing  
All Frequencies  
Unit  
Num  
Characteristic  
Min  
Max  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
10  
1
25  
ns  
TIN/TGATE low time  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
CLK  
CLK  
CLK  
ns  
2
3
3
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 49. CPM General-Purpose Timers Timing Diagram  
11.6 Serial Interface AC Electrical Specifications  
Table 19 provides the serial interface timings as shown in Figure 50 through Figure 54.  
Table 19. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
70  
71  
L1RCLK, L1TCLK frequency (DSC = 0) 1, 2  
SYNCCLK/2.5 MHz  
L1RCLK, L1TCLK width low (DSC = 0) 2  
P + 10  
P + 10  
ns  
ns  
ns  
ns  
ns  
3
71a L1RCLK, L1TCLK width high (DSC = 0)  
72  
73  
74  
L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time  
15.00  
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)  
L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)  
20.00  
35.00  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
49  
CPM Electrical Characteristics  
Table 19. SI Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
75  
76  
77  
78  
L1RSYNC, L1TSYNC rise/fall time  
15.00  
ns  
ns  
L1RXD valid to L1CLK edge (L1RXD setup time)  
L1CLK edge to L1RXD invalid (L1RXD hold time)  
17.00  
13.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
ns  
4
L1CLK edge to L1ST(1–4) valid  
45.00  
45.00  
45.00  
55.00  
55.00  
42.00  
ns  
78A L1SYNC valid to L1ST(1–4) valid  
ns  
79  
80  
L1CLK edge to L1ST(1–4) invalid  
L1CLK edge to L1TXD valid  
ns  
ns  
80A L1TSYNC valid to L1TXD valid 4  
ns  
81  
82  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1)  
ns  
16.00 or  
MHz  
SYNCCLK/2  
83  
L1RCLK, L1TCLK width low (DSC =1)  
P + 10  
P + 10  
ns  
ns  
ns  
83a L1RCLK, L1TCLK width high (DSC = 1)3  
84  
85  
L1CLK edge to L1CLKO valid (DSC = 1)  
30.00  
L1RQ valid before falling edge of L1TSYNC4  
1.00  
L1TCL  
K
86  
87  
88  
L1GR setup time2  
L1GR hold time  
42.00  
42.00  
ns  
ns  
ns  
L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0,  
DSC = 0)  
0.00  
1
2
3
4
The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.  
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.  
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes  
later.  
MPC860 Family Hardware Specifications, Rev. 7  
50  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE=1, CE=1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
Figure 50. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
51  
CPM Electrical Characteristics  
L1RCLK  
(FE=1, CE=1)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=0, CE=0)  
(Input)  
RFSD=1  
75  
L1RSYNC  
(Input)  
73  
74  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
84  
L1CLKO  
(Output)  
Figure 51. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MPC860 Family Hardware Specifications, Rev. 7  
52  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1TCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE=1, CE=1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
BIT0  
80  
81  
L1TXD  
(Output)  
79  
78  
L1ST(4-1)  
(Output)  
Figure 52. SI Transmit Timing Diagram (DSC = 0)  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
53  
CPM Electrical Characteristics  
L1RCLK  
(FE=0, CE=0)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=1, CE=1)  
(Input)  
TFSD=0  
75  
L1RSYNC  
(Input)  
73  
74  
81  
L1TXD  
(Output)  
BIT0  
80  
78a  
79  
L1ST(4-1)  
(Output)  
78  
84  
L1CLKO  
(Output)  
Figure 53. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MPC860 Family Hardware Specifications, Rev. 7  
54  
Freescale Semiconductor  
CPM Electrical Characteristics  
Figure 54. IDL Timing  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
55  
CPM Electrical Characteristics  
11.7 SCC in NMSI Mode Electrical Specifications  
Table 20 provides the NMSI external clock timing.  
Table 20. NMSI External Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
100 RCLK1 and TCLK1 width high 1  
1/SYNCCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
101 RCLK1 and TCLK1 width low  
1/SYNCCLK + 5  
102 RCLK1 and TCLK1 rise/fall time  
15.00  
50.00  
50.00  
103 TXD1 active delay (from TCLK1 falling edge)  
104 RTS1 active/inactive delay (from TCLK1 falling edge)  
105 CTS1 setup time to TCLK1 rising edge  
106 RXD1 setup time to RCLK1 rising edge  
107 RXD1 hold time from RCLK1 rising edge 2  
108 CD1 setup Time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as external sync signals.  
Table 21 provides the NMSI internal clock timing.  
Table 21. NMSI Internal Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
100 RCLK1 and TCLK1 frequency 1  
0.00  
SYNCCLK/3  
MHz  
ns  
102 RCLK1 and TCLK1 rise/fall time  
30.00  
30.00  
103 TXD1 active delay (from TCLK1 falling edge)  
104 RTS1 active/inactive delay (from TCLK1 falling edge)  
105 CTS1 setup time to TCLK1 rising edge  
106 RXD1 setup time to RCLK1 rising edge  
107 RXD1 hold time from RCLK1 rising edge 2  
108 CD1 setup time to RCLK1 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as external sync signals.  
Figure 55 through Figure 57 show the NMSI timings.  
MPC860 Family Hardware Specifications, Rev. 7  
56  
Freescale Semiconductor  
CPM Electrical Characteristics  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 55. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 56. SCC NMSI Transmit Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
57  
CPM Electrical Characteristics  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 57. HDLC Bus Timing Diagram  
11.8 Ethernet Electrical Specifications  
Table 22 provides the Ethernet timings as shown in Figure 58 through Figure 62.  
Table 22. Ethernet Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
120 CLSN width high  
121 RCLK1 rise/fall time  
122 RCLK1 width low  
123 RCLK1 clock period 1  
124 RXD1 setup time  
125 RXD1 hold time  
40  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
80  
20  
5
120  
126 RENA active delay (from RCLK1 rising edge of the last data bit)  
127 RENA width low  
10  
100  
128 TCLK1 rise/fall time  
15  
129 TCLK1 width low  
40  
99  
10  
10  
10  
130 TCLK1 clock period1  
101  
50  
50  
50  
131 TXD1 active delay (from TCLK1 rising edge)  
132 TXD1 inactive delay (from TCLK1 rising edge)  
133 TENA active delay (from TCLK1 rising edge)  
MPC860 Family Hardware Specifications, Rev. 7  
58  
Freescale Semiconductor  
CPM Electrical Characteristics  
Table 22. Ethernet Timing (continued)  
Characteristic  
All Frequencies  
Unit  
Num  
Min  
Max  
134 TENA inactive delay (from TCLK1 rising edge)  
135 RSTRT active delay (from TCLK1 falling edge)  
136 RSTRT inactive delay (from TCLK1 falling edge)  
137 REJECT width low  
10  
10  
10  
1
50  
50  
50  
20  
20  
ns  
ns  
ns  
CLK  
ns  
138 CLKO1 low to SDACK asserted 2  
139 CLKO1 low to SDACK negated 2  
ns  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2/1.  
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 58. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
Last Bit  
RxD1  
(Input)  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 59. Ethernet Receive Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
59  
CPM Electrical Characteristics  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
(NOTE 2)  
NOTES:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 60. Ethernet Transmit Timing Diagram  
RCLK1  
RxD1  
(Input)  
0
1
1
BIT1  
125  
BIT2  
136  
Start Frame De-  
RSTRT  
(Output)  
Figure 61. CAM Interface Receive Start Timing Diagram  
REJECT  
137  
Figure 62. CAM Interface REJECT Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
60  
Freescale Semiconductor  
CPM Electrical Characteristics  
11.9 SMC Transparent AC Electrical Specifications  
Table 23 provides the SMC transparent timings as shown in Figure 63.  
Table 23. SMC Transparent Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
150 SMCLK clock period 1  
151 SMCLK width low  
151A SMCLK width high  
152 SMCLK rise/fall time  
100  
50  
50  
10  
20  
5
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
153 SMTXD active delay (from SMCLK falling edge)  
154 SMRXD/SMSYNC setup time  
155 RXD1/SMSYNC hold time  
1
SYNCCLK must be at least twice as fast as SMCLK.  
SMCLK  
152  
152  
151  
151  
150  
SMTXD  
(Output)  
NOTE  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
NOTE:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 63. SMC Transparent Timing Diagram  
11.10SPI Master AC Electrical Specifications  
Table 24 provides the SPI master timings as shown in Figure 64 and Figure 65.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
61  
CPM Electrical Characteristics  
Table 24. SPI Master Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
160 MASTER cycle time  
4
2
1024  
512  
tcyc  
tcyc  
ns  
ns  
ns  
ns  
ns  
ns  
161 MASTER clock (SCK) high or low time  
162 MASTER data setup time (inputs)  
163 Master data hold time (inputs)  
164 Master data valid (after SCK edge)  
165 Master data hold time (outputs)  
166 Rise time output  
50  
0
0
20  
15  
167 Fall time output  
15  
SPICLK  
(CI=0)  
(Output)  
161  
163  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
162  
SPIMISO  
(Input)  
msb  
Data  
165  
lsb  
164  
msb  
167  
msb  
166  
SPIMOSI  
(Output)  
Data  
lsb  
msb  
Figure 64. SPI Master (CP = 0) Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
62  
Freescale Semiconductor  
CPM Electrical Characteristics  
SPICLK  
(CI=0)  
(Output)  
161  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
Data  
165  
lsb  
164  
msb  
msb  
167  
msb  
166  
SPIMOSI  
(Output)  
Data  
lsb  
Figure 65. SPI Master (CP = 1) Timing Diagram  
11.11SPI Slave AC Electrical Specifications  
Table 25 provides the SPI slave timings as shown in Figure 66 and Figure 67.  
Table 25. SPI Slave Timing  
All Frequencies  
Unit  
Num  
Characteristic  
Min  
Max  
170 Slave cycle time  
2
50  
tcyc  
ns  
171 Slave enable lead time  
172 Slave enable lag time  
15  
15  
1
ns  
173 Slave clock (SPICLK) high or low time  
174 Slave sequential transfer delay (does not require deselect)  
175 Slave data setup time (inputs)  
tcyc  
tcyc  
ns  
1
20  
20  
176 Slave data hold time (inputs)  
ns  
177 Slave access time  
ns  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
63  
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
181  
173  
170  
SPICLK  
(CI=1)  
(Input)  
177  
msb  
176  
182  
180  
Data  
179  
178  
Undef  
SPIMISO  
(Output)  
lsb  
msb  
175  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
msb  
Figure 66. SPI Slave (CP = 0) Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
64  
Freescale Semiconductor  
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
173  
181  
SPICLK  
(CI=1)  
(Input)  
177  
182  
180  
Data  
179  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
lsb  
176  
181 182  
Data  
Figure 67. SPI Slave (CP = 1) Timing Diagram  
SPIMOSI  
(Input)  
msb  
lsb  
11.12I2C AC Electrical Specifications  
2
Table 26 provides the I C (SCL < 100 kHz) timings.  
Table 26. I2C Timing (SCL < 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
200 SCL clock frequency (slave)  
0
100  
100  
1
kHz  
kHz  
µs  
200 SCL clock frequency (master) 1  
202 Bus free time between transmissions  
203 Low period of SCL  
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
µs  
204 High period of SCL  
µs  
205 Start condition setup time  
206 Start condition hold time  
207 Data hold time  
µs  
µs  
µs  
208 Data setup time  
250  
ns  
209 SDL/SCL rise time  
µs  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
65  
CPM Electrical Characteristics  
Table 26. I2C Timing (SCL < 100 kHZ) (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
210 SDL/SCL fall time  
300  
ns  
211  
Stop condition setup time  
4.7  
µs  
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2).  
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.  
2
Table 27 provides the I C (SCL > 100 kHz) timings.  
Table 27. . I2C Timing (SCL > 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Expression  
Unit  
Min  
Max  
200 SCL clock frequency (slave)  
200 SCL clock frequency (master) 1  
202 Bus free time between transmissions  
203 Low period of SCL  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
Hz  
s
BRGCLK/16512  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
0
BRGCLK/48  
s
204 High period of SCL  
s
205 Start condition setup time  
206 Start condition hold time  
207 Data hold time  
s
s
s
208 Data setup time  
1/(40 * fSCL)  
s
209 SDL/SCL rise time  
1/(10 * fSCL)  
1/(33 * fSCL)  
s
210 SDL/SCL fall time  
s
211  
Stop condition setup time  
1/2(2.2 * fSCL)  
s
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2).  
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.  
2
Figure 68 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
Figure 68. I2C Bus Timing Diagram  
MPC860 Family Hardware Specifications, Rev. 7  
66  
Freescale Semiconductor  
UTOPIA AC Electrical Specifications  
12 UTOPIA AC Electrical Specifications  
Table 28 shows the AC electrical specifications for the UTOPIA interface.  
Table 28. UTOPIA AC Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Output  
50  
40  
2
3.5  
50  
50  
3.5  
60  
50  
16  
ns  
%
Duty cycle  
Frequency  
MHz  
ns  
U1a UtpClk rise/fall time (external clock option)  
Input  
Duty cycle  
Frequency  
%
MHz  
ns  
U2  
U3  
U4  
U5  
RxEnb and TxEnb active delay  
Output  
Input  
UTPB, SOC, Rxclav and Txclav setup time  
UTPB, SOC, Rxclav and Txclav hold time  
8
ns  
Input  
1
ns  
UTPB, SOC active delay (and PHREQ and PHSEL active delay  
in MPHY mode)  
Output  
2
16  
ns  
Figure 69 shows signal timings during UTOPIA receive operations.  
U1  
U1  
UtpClk  
U5  
PHREQn  
U3  
U4  
RxClav  
RxEnb  
HghZ at MPHY  
U2  
UTPB  
SOC  
U3  
U4  
Figure 69. UTOPIA Receive Timing  
Figure 70 shows signal timings during UTOPIA transmit operations.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
67  
FEC Electrical Characteristics  
U1  
U1  
UtpClk  
U5  
PHSELn  
TxClav  
U3  
U4  
Y  
i
U2  
TxEnb  
UTPB  
SOC  
U5  
Figure 70. UTOPIA Transmit Timing  
13 FEC Electrical Characteristics  
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing  
specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII  
signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV,  
MII_RX_ER, MII_RX_CLK)  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz +1%. There is no minimum  
frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency – 1%.  
Table 29 provides information on the MII receive signal timing.  
Table 29. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
5
ns  
ns  
35%  
65%  
MII_RX_CL  
K period  
M4  
MII_RX_CLK pulse width low  
35%  
65%  
MII_RX_CL  
K period  
Figure 71 shows MII receive signal timing.  
MPC860 Family Hardware Specifications, Rev. 7  
68  
Freescale Semiconductor  
FEC Electrical Characteristics  
M3  
MII_RX_CLK (Input)  
M4  
MII_RXD[3:0] (Inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 71. MII Receive Signal Timing Diagram  
13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN,  
MII_TX_ER, MII_TX_CLK)  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK  
frequency – 1%.  
Table 30 provides information on the MII transmit signal timing.  
Table 30. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid  
MII_TX_CLK pulse width high  
5
25  
ns  
35  
65%  
MII_TX_CLK  
period  
M8  
MII_TX_CLK pulse width low  
35%  
65%  
MII_TX_CLK  
period  
Figure 72 shows the MII transmit signal timing diagram.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
69  
FEC Electrical Characteristics  
M7  
MII_TX_CLK (Input)  
M5  
M8  
MII_TXD[3:0] (Outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 72. MII Transmit Signal Timing Diagram  
13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 31 provides information on the MII async inputs signal timing.  
Table 31. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK  
period  
Figure 73 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 73. MII Async Inputs Timing Diagram  
13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly  
with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.  
Table 32. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 MII_MDC falling edge to MII_MDIO output valid (max prop delay)  
M12 MII_MDIO (input) to MII_MDC rising edge setup  
25  
ns  
ns  
10  
MPC860 Family Hardware Specifications, Rev. 7  
70  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 32. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M13 MII_MDIO (input) to MII_MDC rising edge hold  
M14 MII_MDC pulse width high  
0
ns  
40%  
60%  
MII_MDC  
period  
M15 MII_MDC pulse width low  
40%  
60%  
MII_MDC  
period  
Figure 74 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (Output)  
M10  
MII_MDIO (Output)  
MII_MDIO (Input)  
M11  
M12  
M13  
Figure 74. MII Serial Management Channel Timing Diagram  
14 Mechanical Data and Ordering Information  
Table 33 provides information on the MPC860 Revision D.4 derivative devices.  
Table 33. MPC860 Family Revision D.4 Derivatives  
2
Number of Ethernet Support  
Multichannel  
HDLC Support  
ATM  
Support  
Device  
SCCs 1  
(Mbps)  
MPC855T  
1
2
10/100  
10  
Yes  
N/A  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
MPC860DE  
MPC860DT  
MPC860DP  
10/100  
10/100  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
71  
Mechanical Data and Ordering Information  
Table 33. MPC860 Family Revision D.4 Derivatives (continued)  
2
Number of Ethernet Support  
Multichannel  
HDLC Support  
ATM  
Support  
Device  
SCCs 1  
(Mbps)  
MPC860EN  
MPC860SR  
MPC860T  
MPC860P  
4
10  
N/A  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
10  
10/100  
10/100  
1
2
Serial communications controller (SCC)  
Up to 4 channels at 40 MHz or 2 channels at 25 MHz  
Table 34 identifies the packages and operating frequencies available for the MPC860.  
Table 34. MPC860 Family Package/Frequency Availability  
Freq (MHz) /  
Temp (Tj)  
Package Type  
Package  
Order Number  
1
Ball grid array  
50  
ZP/ZQ  
MPC855TZQ50D4  
MPC860DEZQ50D4  
MPC860DTZQ50D4  
MPC860ENZQ50D4  
MPC860SRZQ50D4  
MPC860TZQ50D4  
MPC860DPZQ50D4  
MPC860PZQ50D4  
0° to 95°C  
ZP suffix — Leaded  
ZQ suffix — Leaded  
VR suffix — Lead-Free are available as needed  
Tape and Reel MPC855TZQ50D4R2  
MPC860DEZQ50D4R2  
MPC860ENZQ50D4R2  
MPC860SRZQ50D4R2  
MPC860TZQ50D4R2  
MPC860DPZQ50D4R2  
Sample  
KMPC855TZQ50D4  
KMPC860DEZQ50D4  
KMPC860DTZQ50D4  
KMPC860TZQ50D4  
KMPC860SRZQ50D4  
66  
ZP/ZQ 1  
MPC855TZQ66D4  
MPC860DEZQ66D4  
MPC860DTZQ66D4  
MPC860ENZQ66D4  
MPC860SRZQ66D4  
MPC860TZQ66D4  
MPC860DPZQ66D4  
MPC860PZQ66D4  
0° to 95°C  
Tape and Reel MPC860SRZQ66D4R2  
MPC860PZQ66D4R2  
MPC860 Family Hardware Specifications, Rev. 7  
72  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 34. MPC860 Family Package/Frequency Availability (continued)  
Freq (MHz) /  
Temp (Tj)  
Package Type  
Package  
Order Number  
Sample  
KMPC855TZQ66D4  
KMPC860SRZQ66D4  
KMPC860TZQ66D4  
KMPC860ENZQ66D4  
KMPC860PZQ66D4  
80  
ZP/ZQ 1  
MPC855TZQ80D4  
MPC860DEZQ80D4  
MPC860DTZQ80D4  
MPC860ENZQ80D4  
MPC860SRZQ80D4  
MPC860TZQ80D4  
MPC860DPZQ80D4  
MPC860PZQ80D4  
0° to 95°C  
Tape and Reel MPC860PZQ80D4R2  
Sample  
KMPC855TZQ80D4  
KMPC860DEZQ80D4  
KMPC860DTZQ80D4  
KMPC860ENZQ80D4  
KMPC860SRZQ80D4  
KMPC860TZQ80D4  
KMPC860DPZQ80D4  
KMPC860PZQ80D4  
Ball grid array (CZP suffix)  
50  
ZP/ZQ 1  
MPC855TCZQ50D4  
MPC860DECZQ50D4  
MPC860DTCZQ50D4  
MPC860ENCZQ50D4  
MPC860SRCZQ50D4  
MPC860TCZQ50D4  
MPC860DPCZQ50D4  
MPC860PCZQ50D4  
–40° to 95°C  
CZP suffix — Leaded  
CZQ suffix — Leaded  
CVR suffix — Lead-Free are available as needed  
Tape and Reel MPC855TCZQ50D4R2  
66  
ZP/ZQ 1  
MPC855TCZQ66D4  
MPC860ENCZQ66D4  
MPC860SRCZQ66D4  
MPC860TCZQ66D4  
MPC860DPCZQ66D4  
MPC860PCZQ66D4  
–40° to 95°C  
1
The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
73  
Mechanical Data and Ordering Information  
14.1 Pin Assignments  
Figure 75 shows the top view pinout of the PBGA package. For additional information, see the MPC860  
PowerQUICC Users Manual, or the MPC855T Users Manual.  
NOTE: This is the top view of the device.  
W
V
U
T
PD10 PD8  
PD14 PD13 PD9  
PA0 PB14 PD15  
PD3  
IRQ7 D0  
D4  
D1  
D2  
D10  
D11  
D9  
D3  
D5  
VDDL  
D20  
D6  
D7  
D29  
DP1  
DP2 CLKOUT IPA3  
VSSSYN1  
N/C  
PD6 M_Tx_EN IRQ0 D13  
D27  
D23  
D17  
D14  
D16  
D15  
D18  
D19  
D22  
D24  
D26  
D31  
D28  
D30  
DP3  
DP0  
PD4  
PD5 IRQ1  
D8  
D21  
IPA5 IPA4 IPA2  
N/C VSSSYN  
PA1  
PC6  
PC5 PC4 PD11  
PA2 PB15 PD12  
PD7 VDDH D12  
VDDH  
D25  
IPA6 IPA0 IPA1 IPA7 XFC VDDSYN  
R
VDDH  
WAIT_B WAIT_A  
VDDL RSTCONF  
KAPWR  
PORESET  
SRESET  
P
N
M
L
PA4 PB17 PA3 VDDL  
PB19 PA5 PB18 PB16  
GND  
GND  
XTAL  
TEXP  
HRESET  
EXTCLK EXTAL  
PA7  
PC8  
PA6  
PC7  
BADDR28  
AS  
MODCK2  
OP0  
BADDR29  
VDDL  
PB22 PC9  
PA8 PB20  
OP1 MODCK1  
K
J
PC10 PA9 PB23 PB21  
PC11 PB24 PA10 PB25  
GND  
BADDR30 IPB6 ALEA IRQ4  
IPB5 IPB1 IPB2 ALEB  
M_COL IRQ2 IPB0 IPB7  
H
G
F
VDDL M_MDIO TDI  
TCK  
TRST TMS TDO PA11  
PB26 PC12 PA12 VDDL  
PB27 PC13 PA13 PB29  
PB28 PC14 PA14 PC15  
BR  
VDDL  
CS3  
IRQ6 IPB4 IPB3  
GND  
GND  
TS  
BI  
IRQ3 BURST  
VDDH  
VDDH  
CS6  
E
D
C
B
A
BG  
BB  
A8  
A9  
N/C  
A12  
A13  
N/C  
A16  
A17  
A15  
A20  
A21  
A19  
A24  
A23  
A25  
A18 BSA0 GPLA0 N/C  
CS2 GPLA5 BDIP TEA  
PB30 PA15 PB31  
A3  
A6  
A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7  
CS0  
TA GPLA4  
A0  
19  
A1  
A4  
A10  
A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4  
A2  
18  
A5  
17  
A7  
16  
A11  
15  
A14  
14  
A27  
13  
A29  
12  
A30  
11  
A28  
10  
A31 VDDL BSA2 WE1 WE3 CS4 CE2A CS1  
9
8
7
6
5
4
3
2
1
Figure 75. Pinout of the PBGA Package  
14.2 Mechanical Dimensions of the PBGA Package  
Figure 76 shows the mechanical dimensions of the ZP PBGA package.  
MPC860 Family Hardware Specifications, Rev. 7  
74  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
C
0.2  
4X  
0.2 C  
D
A
0.25 C  
0.35 C  
E2  
E
D2  
B
TOP VIEW  
A2  
A3  
A1  
A
D1  
SIDE VIEW  
18X e  
W
V
U
T
R
P
N
M
L
K
J
E1  
H
G
F
MILLIMETERS  
E
D
C
B
A
DIM  
A
MIN  
---  
0.50  
0.95  
0.70  
0.60  
MAX  
2.05  
0.70  
1.35  
0.90  
0.90  
A1  
A2  
A3  
b
1
3
5
7
9
11 13 15 17 19  
2
4 6 8 10 12 14 16 18  
357X  
b
BOTTOM VIEW  
M
0.3  
C A B  
C
D
25.00 BSC  
22.86 BSC  
M
0.15  
D1  
D2  
e
22.40  
22.60  
1.27 BSC  
25.00 BSC  
22.86 BSC  
E
NOTE  
E1  
E2  
1. Dimensions and tolerance per ASME Y14.5M, 1994  
2. Dimensions in millimeters  
22.40  
22.60  
3. Dimension b is the maximum solder ball diameter  
Figure 76. Mechanical Dimensions and Bottom Surface Nomenclature  
of the ZP PBGA Package  
Figure 77 shows the mechanical dimensions of the ZQ PBGA package.  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
75  
Mechanical Data and Ordering Information  
NOTE  
1. All Dimensions in millimeters  
2. Dimensions and tolerance per ASME Y14.5M, 1994  
3. Maximum Solder Ball Diameter measured parallel to Datum A  
Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature  
of the ZQ PBGA Package  
MPC860 Family Hardware Specifications, Rev. 7  
76  
Freescale Semiconductor  
Document Revision History  
15 Document Revision History  
Table 35 lists significant changes between revisions of this hardware specification.  
Table 35. Document Revision History  
Revision  
Date  
Changes  
5.1  
11/2001  
• Revised template format, removed references to MAC functionality, changed Table 7  
B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table  
6
10/2002  
11/2002  
• Added the MPC855T. Corrected Figure 25 on page 36.  
6.1  
• Corrected UTOPIA RXenb* and TXenb* timing values  
• Changed incorrect usage of Vcc to Vdd  
• Corrected dual port RAM to 8 Kbytes  
6.2  
8/2003  
• Changed B28a through B28d and B29d to show that TRLX can be 0 or 1  
• Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family  
Users Manual  
• Nontechnical reformatting  
6.3  
7.0  
9/2003  
9/2004  
• •Added Section 11.2 on the Port C interrupt pins  
• •Nontechnical reformatting  
• Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL  
Max of the I2C Standard  
• Replaced the thermal characteristics in Table 4 by the ZQ package  
• Add the new parts to the Ordering and Availablity Chart in Table 34  
• Added the mechanical spec of the ZQ package in Figure 77  
• Removed all of the old revisions from Table 5  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
77  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC860 Family Hardware Specifications, Rev. 7  
78  
Freescale Semiconductor  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC860 Family Hardware Specifications, Rev. 7  
Freescale Semiconductor  
79  
How to Reach Us:  
Home Page:  
www.freescale.com  
email:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
(800) 521-6274  
Information in this document is provided solely to enable system and software implementers to  
use Freescale Semiconductor products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation or guarantee  
regarding the suitability of its products for any particular purpose, nor does Freescale  
Semiconductor assume any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor  
data sheets and/or specifications can and do vary in different applications and actual performance  
may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. Freescale Semiconductor does not convey  
any license under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could create a situation  
where personal injury or death may occur. Should Buyer purchase or use Freescale  
Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Freescale  
Semiconductor was negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-0047 Japan  
0120 191014  
+81 3 3440 3569  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The  
PowerPC name is a trademark of IBM Corp. and is used under license. All other product or service  
names are the property of their respective owners.  
Denver, Colorado 80217  
(800) 441-2447  
© Freescale Semiconductor, Inc. 2004.  
303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@  
hibbertgroup.com  
MPC860EC  
Rev. 7  
09/2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY