MC33689DDWBR2 [FREESCALE]

System Basis Chip with LIN Transceiver; 系统基础芯片LIN收发器
MC33689DDWBR2
型号: MC33689DDWBR2
厂家: Freescale    Freescale
描述:

System Basis Chip with LIN Transceiver
系统基础芯片LIN收发器

驱动器 接口集成电路 光电二极管
文件: 总31页 (文件大小:519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33689  
Rev. 7.0, 8/2006  
Freescale Semiconductor  
Technical Data  
System Basis Chip with LIN  
Transceiver  
33689D  
The 33689 is a SPI-controlled System Basis Chip (SBC) that  
combines many frequently used functions in an MCU-based system  
plus a Local Interconnect Network (LIN) transceiver. Applications  
include power window, mirror, and seat controls. The 33689 has a  
5.0 V, 50 mA low dropout regulator with full protection and reporting  
features. The device provide full SPI-readable diagnostics and a  
selectable timing watchdog for detecting errant operation.  
SYSTEM BASIS CHIP WITH LIN  
The LIN transceiver waveshaping circuitry can be disabled for  
higher data rates. One 50 mA and two 150 mA high-side switches with  
output protection are available to drive inductive or resistive loads. The  
150 mA switches can be pulse-width modulated (PWM).  
Two high-voltage inputs are available for contact monitoring or as  
external wake-up inputs. A current sense operational amplifier is  
available for load current monitoring.  
DWB SUFFIX  
EW SUFFIX (PB-FREE)  
98ARH99137A  
The 33689 has three operational modes:  
• Normal (all functions available)  
• Sleep (VDD OFF, wake-up via LIN bus or wake-up inputs)  
• Stop (VDD ON, wake-up via MCU, LIN bus, or wake-up inputs)  
32-PIN SOICW  
Features  
ORDERING INFORMATION  
Temperature  
• Full-Duplex SPI Interface at Frequencies up to 4.0 MHz  
• LIN Transceiver Capable to 100 kbps with Waveshaping Capability  
• 5.0 V Low Dropout Regulator Full Fault Detection and Protection  
• One 50 mA and Two 150 mA Protected High-Side Switches  
• Current Sense Operational Amplifier  
Device  
Package  
Range (T )  
A
MC33689DDWB/R2  
MCZ33689DEW/R2  
-40°C to 125°C  
32 SOICW  
• The 33689 is compatible with LIN 2.0 Specification Package.  
• Pb-Free Packaging Designated by Suffix Code EW  
V
V
DD PWR  
33689  
VS1  
VS2  
VCC  
VDD  
WDC  
HS3  
L1  
L2  
5.0 V  
HS1  
HS2  
CS  
SCK  
MOSI  
MISO  
CS  
SCLK  
MOSI  
MISO  
INT  
RST  
IN  
OUT  
TXD  
RXD  
MCU  
SPI  
E+  
E-  
GND  
TGND  
AGND  
LIN  
BUS  
Figure 1. 33689 Simplified Application Diagram  
Freescale Semiconductor, Inc. reserves the right to change the detail specifications, as  
may be required, to permit improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
INTERNAL BLOCK DIAGRAM  
INTERNAL BLOCK DIAGRAM  
5.0 V/50 mA  
VS1  
VDD  
RST  
Voltage  
Regulator  
Reset  
Control  
Window  
Watchdog  
VS2  
HS1  
HS2  
HS3  
WDC  
IN  
MOSI  
MISO  
SCLK  
CS  
SPI  
and  
Mode  
Control  
Pre-Driver  
INT  
VCC  
L1  
L2  
Current  
Sense  
Op Amp  
E-  
E+  
OUT  
VS1  
TXD  
RXD  
LIN  
LIN Physical Interface  
GND  
TGND  
AGND  
Figure 2. 33689 Simplified Internal Block Diagram  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
PIN CONNECTIONS  
PIN CONNECTIONS  
NC  
L1  
TXD  
RXD  
INT  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
2
NC  
3
CS  
L2  
4
HS3  
HS2  
HS1  
TGND  
TGND  
VS2  
LIN  
5
MISO  
MOSI  
SCLK  
TGND  
TGND  
IN  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
RST  
GND  
VS1  
NC  
WDC  
E+  
E-  
OUT  
VDD  
AGND  
VCC  
Figure 3. 33689 32-SOICW Pin Connections  
Table 1. 33689 32-SOICW Pin Definitions  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 19.  
Pin  
Pin Name  
Formal Name  
Pin Function  
Definition  
No internal connection to these pins.  
1, 3, 14  
2, 4  
NC  
No Connect  
N/A  
Input  
Inputs from external switches or from logic circuitry.  
L1, L2  
Level Inputs 1 and 2  
High-side (HS) drive power outputs. SPI-controlled for driving system  
loads.  
5–7  
HS3–HS1  
High-Side Driver  
Outputs 3 through 1  
Output  
Thermal ground pins for the device.  
8, 9, 24, 25  
TGND  
VS2  
Thermal Ground  
Voltage Supply 2  
LIN Bus  
N/A  
Input  
Supply pin for the high-side switches HS1, HS2, and HS3.  
10  
11  
Bidirectional pin that represents the single-wire bus transmitter and  
receiver.  
LIN  
Input/Output  
Electrical ground pin for the device.  
12  
13  
GND  
VS1  
Ground  
N/A  
Supply pin for the 5.0 V regulator, the LIN physical interface, and the  
internal logic.  
Voltage Supply 1  
Input  
Output of the 5.0 V regulator.  
15  
16  
VDD  
5.0 V Regulator  
Output  
Output  
N/A  
Analog ground pin for voltage regulator and current sense operational  
amplifier.  
AGND  
Analog Ground  
5.0 V supply for the internal current sense operational amplifier.  
Output of the internal current sense operational amplifier.  
Inverted input of the internal current sense operational amplifier.  
17  
18  
19  
VCC  
OUT  
E-  
Power Supply In  
Amplifier Output  
Input  
Output  
Input  
Amplifier Inverted  
Input  
Non-inverted input of the internal current sense operational amplifier.  
Configuration pin for the watchdog timer.  
20  
21  
E+  
AmplifierNon-Inverted  
Input  
Input  
Watchdog  
Configuration  
(Active Low)  
Reference  
WDC  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
PIN CONNECTIONS  
Table 1. 33689 32-SOICW Pin Definitions (continued)  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 19.  
Pin  
Pin Name  
Formal Name  
Pin Function  
Definition  
5.0 V regulator and watchdog reset output pin.  
22  
Reset Output  
(Active LOW)  
Output  
RST  
External input PWM control pin for high-side switches HS1 and HS2.  
Clock input for the SPI of the 33689.  
23  
26  
27  
28  
IN  
PWM Input Control  
Serial Data Clock  
Input  
Input  
SCLK  
MOSI  
MISO  
SPI data received by the 33689.  
Master Out Slave In  
Master In Slave Out  
Input  
Output  
SPI data sent to the MCU by the 33689. When CS is HIGH, pin is in the  
high-impedance state.  
SPI control chip select input pin.  
29  
30  
31  
32  
Chip Select  
(Active LOW)  
Input  
Output  
Output  
Input  
CS  
INT  
This output pin reports faults to the MCU when an enabled interrupt  
condition occurs.  
Interrupt Output  
(Active LOW)  
Receiver output of the LIN interface and reports the state of the bus  
voltage.  
RXD  
TXD  
Receiver Output  
Transmitter input of the LIN interface and controls the state of the bus  
output.  
Transmitter Input  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 2. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
Supply Voltage at VS1 and VS2  
V
V
PWR  
V
SUPDC  
-0.3 to 27  
40  
Continuous  
Transient (Load Dump)  
V
SUPTR  
VDD  
Supply Voltage at VDD and VCC  
Output Current at VDD  
-0.3 to 5.5  
Internally Limited  
-0.3 to VDD+0.3  
-0.3 to VDD+0.3  
-0.3 to 7.0  
V
A
I
DD  
Logic Input Voltage at MOSI, SCLK, CS, IN, and TXD  
Logic Output Voltage at MISO, INT, RST, and RXD  
Input Voltage at E+ and E-  
V
V
INLOG  
V
V
OUTLOG  
V
/V  
V
E+ E-  
I
/I  
±20  
mA  
V
Input Current at E+ and E-  
E+ E-  
Output Voltage at OUT  
V
-0.3 to VCC+0.33  
±20  
OUT  
OUT  
Output Current at OUT  
I
mA  
V
Input Voltage at L1 and L2  
DC Input with a 33 kResistor  
V
-18 to 40  
±100  
LXDC  
Transient Input with External Component (per ISO7637 Specification) (See  
Figure 4, page 6)  
V
LXTR  
Input/Output Voltage at LIN  
DC Voltage  
V
V
V
-18 to 40  
BUSDC  
Transient Input Voltage with specified External Component (per ISO7637  
Specification) (See Figure 4, page 6)  
V
-150 to 100  
BUSTR  
DC Output Voltage at HS1 and HS2  
V
V
+ 0.3  
VS2  
HS+  
Positive  
Internally Clamped  
-0.3 to V + 0.3  
V
Negative  
HS  
-
DC Output Voltage at HS3  
V
V
V
HS3  
VS2  
ESD Voltage, Human Body Model (1)  
ESD1  
V
GND Configured as Ground. TGND and AGND Configured as I/O Pins  
LIN, L1, and L2  
All Other Pins  
±4000  
±2000  
ESD Voltage, Charge Device Model (1)  
Corner Pins (Pins 1, 16, 17, and 32)  
All other Pins (Pins 2–15 and 18–31)  
ESD2  
V
V
±750  
±500  
Notes  
1. ESD1 testing is performed in accordance with the Human Body Model (CZAP =100 pF, RZAP = 1500 ), ESD2 testing is performed in  
accordance with the Charge Device Model, Robotic (CZAP =4.0 pF).  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
ELECTRICAL CHARACTERISTICS  
MAXIMUM RATINGS  
Table 2. Maximum Ratings(continued)  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or  
permanent damage to the device.  
Ratings  
Symbol  
Value  
Unit  
THERMAL RATINGS  
Operating Temperature  
Ambient  
°C  
TA  
TJ  
-40 to 125  
-40 to 150  
Junction  
Storage Temperature  
TSTG  
-55 to 165  
80  
°C  
°C/W  
°C  
Thermal Resistance, Junction-to-Ambient  
Peak Package Reflow Temperature During Solder Mounting (2)  
Notes  
R
θJA  
T
240  
SOLDER  
2. Pin soldering temperature is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause permanent damage to the device.  
33689D  
Transient Pulse  
Generator  
(Note)  
1.0 nF  
LIN, L1, L2  
10 k  
GND  
GND TGND AGND  
Note Waveform per ISO 7637-1. Test Pulses 1, 2, 3a, and 3b.  
Figure 4. ISO 7637 Test Setup for LIN, L1, and L2 Pins  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
VS1 AND VS2 INPUT PINS (DEVICE POWER SUPPLY)  
Supply Input Voltage  
Nominal DC  
V
V
SUP  
5.5  
18  
40  
27  
V
Load Dump  
SUPLD  
Jump Start (3)  
V
SUPJS  
Supply Input Current (4)  
I
SUP(NORM)  
5.0  
35  
60  
8.0  
45  
75  
mA  
µA  
µA  
Normal Mode, IOUT at VDD = 10 mA, LIN Recessive State  
I
SLEEP  
Sleep Mode, VDD OFF, V  
13.5 V  
SUP  
I
STOP  
Stop Mode, VDD ON with IOUT < 100 µA, V  
13.5 V  
SUP  
Input Threshold Voltage (Normal Mode, Interrupt Generated)  
Fall Early Warning, Bit VSUV Set  
V
VSUVEW  
VSOVW  
5.7  
18  
6.1  
6.6  
Overvoltage Warning, Bit VSOV Set  
19.75  
20.5  
Hysteresis (5)  
VSUV Flag  
VSOV Flag  
HYS  
V
1.0  
V
220  
mV  
VDD OUTPUT PIN (EXTERNAL 5.0 V OUTPUT FOR MCU USE) (6)  
Output Voltage  
V
V
V
DDOUT  
I
from 2.0 mA to 50 mA, 5.5 V < V  
< 27 V  
4.75  
5.0  
5.25  
DD  
SUP  
Dropout Voltage (7)  
= 50 mA  
DDDROP  
V
0.1  
0.2  
I
DD  
Output Current Limitation (8)  
Overtemperature Pre-warning (Junction)  
DD  
I
50  
120  
200  
mA  
T
°C  
PRE  
Normal Mode, Interrupt Generated, Bit VDDT Set  
Thermal Shutdown (Junction)  
Normal Mode  
120  
165  
135  
170  
160  
T
°C  
SD  
Notes  
3. Device is fully functional. All features are operating. An overtemperature fault may occur.  
4. Total current (I + I ) at VS1 and VS2 pins is measured at the ground pins.  
VS1  
VS2  
5. Parameter guaranteed by design; however, it is not production tested.  
6. Specification with external capacitor 2.0 µF < C < 10 µF and 200 mΩ ≤ ESR 10 . Normal mode. Low ESR electrolytic capacitor values  
up to 47 µF can be used.  
7. Measured when the voltage has dropped 100 mV below its nominal value.  
8. Internally limited. Total 5.0 V regulator current. A 5.0 mA current for the Current Sense Operational Amplifier operation is included.  
Digital outputs are supplied from VDD.  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
VDD OUTPUT PIN (5.0 V OUTPUT FOR MCU USE) (CONTINUED) (9)  
Temperature Threshold Difference  
T
°C  
V
DIFF  
Normal Mode (T - T  
)
20  
30  
40  
SD  
PRE  
V
Range for Reset Active  
V
SUPR  
SUP  
4.0  
0.5 V < V < V (V  
)
DD  
DD  
RSTTH  
Line Regulation  
5.5 V < V  
V
mV  
mV  
LR1  
LD1  
< 27 V, I = 10 mA  
20  
10  
150  
150  
SUP  
DD  
Load Regulation  
V
1.0 mA < I < 50 mA  
DD  
VDD OUTPUT PIN IN STOP MODE  
Output Voltage (10)  
V
I
V
DDS  
4.75  
4.0  
5.0  
8.0  
5.25  
14  
I
2.0 mA  
DD  
Output Current Capability (11)  
Line Regulation  
mA  
mV  
DDS  
V
LRS  
5.5 V < V  
< 27 V, I = 2.0 mA  
DD  
10  
40  
100  
150  
SUP  
Load Regulation  
V
mV  
LDS  
1.0 mA < I < 5.0 mA  
DD  
RST OUTPUT PIN IN NORMAL AND STOP MODES  
Reset Threshold Voltage  
V
4.5  
0.0  
4.7  
VDD-0.2  
0.9  
V
V
RSTTH  
Low-Level Output Voltage  
V
OL  
I
= 1.5 mA, 4.5 V < V  
< 27 V  
O
SUP  
High-Level Output Current  
0.0 V < V < 0.7VDD  
I
µA  
OH  
-275  
OUT  
Reset Pulldown Current  
Internally Limited, VDD < 4.0 V, V  
I
mA  
PDRST  
= 4.6 V  
1.5  
8.0  
RST  
IN INPUT PIN  
Low-Level Input Voltage  
High-Level Input Voltage  
V
-0.3  
0.3VDD  
V
V
IL  
IH  
IN  
V
0.7VDD  
VDD +0.3  
Input Current  
I
µA  
0.0 V < VIN < VDD  
-10  
10  
Notes  
9. Specification with external capacitor 2.0 µF < C < 10 µF and 200 mΩ ≤ ESR 10 . Normal mode. Low ESR electrolytic capacitor values  
up to 47 µF can be used.  
10. When switching from Normal mode to Stop mode or from Stop mode to Normal mode, the voltage can vary within the output voltage  
specification.  
11. When I  
is above I  
, the 33689 enters the Reset mode.  
DDS  
DD  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
MISO SPI OUTPUT PIN  
Low-Level Output Voltage  
V
V
V
OL  
OH  
HZ  
I
= 1.5 mA  
0.0  
VDD - 0.9  
-2.0  
1.0  
VDD  
2.0  
OUT  
High-Level Output Voltage  
= 250 µA  
V
I
OUT  
Tri-Stated MISO Output Leakage Current  
0.0 V < V < VDD  
I
µA  
MISO  
MOSI, SCLK, CS SPI INPUT PINS  
Low-Level Input Voltage  
V
-0.3  
0.3 VDD  
V
V
IL  
High-Level Input Voltage  
V
0.7VDD  
VDD +0.3  
IH  
I
µA  
Pullup Input Current on CS  
PUCS  
-100  
-10  
-20  
10  
V
= 4.0 V  
CS  
MOSI, SCLK Input Current  
0.0 V < VIN < VDD  
I
µA  
IN  
INT OUTPUT PIN  
Low-Level Output Voltage  
V
V
V
OL  
I
= 1.5 mA  
0.0  
0.9  
O
High-Level Output Voltage  
= -250 µA  
V
OH  
I
VDD -0.9  
VDD  
O
WDC PIN  
External Resistor Range  
HS1 AND HS2 HIGH-SIDE OUTPUT PINS  
Output Clamp Voltage  
REXT  
10  
100  
kΩ  
V
V
CL  
I
= -100 mA  
-6.0  
OUT  
Output Drain-to-Source ON Resistance  
R
DS(ON)  
T
T
T
= 25°C, I  
-150 mA  
OUT  
2.0  
2.5  
4.5  
4.0  
A
A
A
= 125°C, I  
= 125°C, I  
-150 mA  
-120 mA  
OUT  
OUT  
3.0  
Output Current Limitation  
I
300  
155  
430  
600  
190  
10  
mA  
°C  
LIM  
Overtemperature Shutdown (12)  
Output Leakage Current  
OTSD  
T
I
µA  
LEAK  
Notes  
12. When overtemperature occurs, switch is turned off and latched off. Flag is set in SPI Register. Refer to description on page 26.  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
HS3 HIGH-SIDE OUTPUT PIN  
Output Drain-to-Source ON Resistance  
Symbol  
Min  
Typ  
Max  
Unit  
R
DS(ON)  
T
T
T
= 25°C, I  
-50 mA  
-50 mA  
5.5  
7.0  
10  
14  
A
A
A
OUT  
= 125°C, I  
= 125°C, I  
OUT  
10  
-30 mA  
OUT  
Output Current Limitation  
I
60  
155  
100  
mA  
°C  
200  
190  
10  
LIM  
Overtemperature Shutdown (13)  
Output Leakage Current  
OTSD  
T
I
µA  
LEAK  
OUT, E+, AND E- PINS AT CURRENT SENSE OPERATIONAL AMPLIFIER  
Input Voltage – Rail-to-Rail at E+ and E-  
VIMC  
-0.1  
V
V
VCC +0.1  
Output Voltage Range at OUT  
VOUT  
0.1  
0.3  
With ±1.0 mA Output Load Current  
With ± 5.0 mA Output Load Current  
VCC - 0.1  
VCC - 0.3  
Input Bias Current  
IB  
VIO  
IO  
-15  
nA  
mV  
nA  
250  
15  
Input Offset Voltage  
Input Offset Current  
-100  
100  
L1 AND L2 INPUT PINS  
Low-Voltage Detection Input Threshold Voltage  
V
V
V
THL  
THH  
HYS  
5.5 V < V  
6.0 V < V  
< 6.0 V  
< 18 V  
< 27 V  
2.0  
2.5  
2.7  
2.5  
3.0  
3.2  
3.0  
3.5  
3.7  
SUP  
SUP  
SUP  
18 V < V  
High-Voltage Detection Input Threshold Voltage  
V
5.5 V < V  
6.0 V < V  
< 6.0 V  
< 18 V  
< 27 V  
2.7  
3.0  
3.5  
3.3  
4.0  
4.2  
3.8  
4.5  
4.7  
SUP  
SUP  
SUP  
18 V < V  
Input Hysteresis  
V
V
5.5 V < V  
SUP  
< 27 V  
0.5  
-10  
1.3  
10  
Input Current  
I
µA  
IN  
-0.2 V < VIN < 40 V  
Notes  
13. When overtemperature occurs, switch is turned off and latched off. Flag is set in SPI Register. Refer to description on page 26.  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
ELECTRICAL CHARACTERISTICS  
STATIC ELECTRICAL CHARACTERISTICS  
Table 3. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
RXD OUTPUT PIN (LIN PHYSICAL LAYER)  
Low-Level Output Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
V
V
V
OL  
I
1.5 mA  
0.0  
0.9  
OUT  
High-Level Output Voltage  
250 µA  
V
OH  
I
3.75  
5.25  
OUT  
TXD INPUT PIN (LIN PHYSICAL LAYER)  
Low-Level Input Voltage  
High-Level Input Voltage  
Input Hysteresis  
V
3.5  
50  
1.5  
V
V
IL  
V
IH  
V
145  
300  
mV  
µA  
INHYS  
Pullup Current Source  
I
PUTXD  
1.0 V < V  
< 3.5 V  
-100  
-20  
TXD  
LIN PHYSICAL LAYER, TRANSCEIVER  
Transceiver Output Voltage  
V
V
LINDOM  
Dominant State, TXD LOW, External Bus Pullup 500 Ω  
1.4  
V
Recessive State, TXD HIGH, I  
= 1.0 µA  
V
-1.0  
LINREC  
OUT  
SUP  
Pullup Resistor to VSUP  
R
kΩ  
PU  
In Normal Mode and in Sleep and Stop Modes When Not Disabled by  
SPI  
20  
30  
47  
Pullup Current Source  
I
µA  
PULIN  
In Sleep and Stop Modes When Pullup Disabled by SPI  
Output Current Shutdown Threshold  
1.3  
75  
I
50  
150  
mA  
OUTSD  
Leakage Output Current to GND  
I
BUSLEAK  
VS1 and VS2 Disconnected, V  
= 18 V  
0.0  
-1.0  
1.0  
3.0  
10  
20  
µA  
µA  
LIN  
Recessive State, 8.0 V < V  
< 18 V, 8.0 V < V  
< 18 V  
LIN  
SUP  
1.0  
mA  
GND Disconnected, V  
= V  
, V  
= -18 V  
LIN  
GND  
SUP  
LIN PHYSICAL LAYER, RECEIVER  
Receiver Input Threshold Voltage  
V
SUP  
SUP  
V
Dominant State, TXD HIGH, RXD LOW  
Recessive State, TXD HIGH, RXD HIGH  
0.0  
0.6  
0.4  
1.0  
BUSDOM  
V
V
V
BUSREC  
BUSCNT  
BUSHYS  
Center (V  
-V  
)/2  
0.475  
0.5  
0.525  
0.175  
BUSDOM BUSREC  
Hysteresis (V  
-V  
)
BUSDOM BUSREC  
Bus Wake-Up Threshold  
V
0.5  
V
BUSWU  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Table 4. Dynamic Electrical Characteristics  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
SPI INTERFACE CHARACTERISTICS  
Symbol  
Min  
Typ  
Max  
Unit  
SPI Operation Frequency  
SCLK Clock Period  
0.25  
250  
125  
125  
100  
4.0  
N/A  
N/A  
N/A  
N/A  
MHz  
ns  
f
SPI  
tPSCLK  
tWSCLKH  
tWSCLKL  
tLEAD  
SCLK Clock High Time  
SCLK Clock Low Time  
ns  
ns  
ns  
Falling Edge of CS to Rising Edge of SCLK  
100  
N/A  
ns  
tLAG  
Falling Edge of SCLK to CS Rising Edge  
MOSI to Falling Edge of SCLK (Data Setup Time)  
Falling Edge of SCLK to MOSI (Data Hold Time)  
40  
40  
N/A  
N/A  
ns  
ns  
ns  
tSI(SU)  
tSI(HOLD)  
tRSO  
MISO Rise Time (14)  
25  
25  
50  
50  
C = 220 pF  
L
MISO Fall Time (14)  
ns  
ns  
tFSO  
C = 220 pF  
L
Time from Falling or Rising Edge of CS to: (14)  
MISO Low Impedance (Enable)  
0.0  
0.0  
50  
50  
tSO(EN)  
tSO(DIS)  
tVALID  
MISO High Impedance (Disable)  
Time from Rising Edge of SCLK to MISO Data Valid (14)  
ns  
0.0  
50  
0.2 VDD MISO 0.8 VDD, CL = 100 pF  
RST OUTPUT PIN IN NORMAL AND STOP MODES  
Reset Duration After VDD HIGH  
t
0.65  
-15  
1.0  
1.35  
15  
ms  
DURRST  
WDC PIN  
Watchdog Period Accuracy Using an External Resistor (Excluding Resistor  
Tolerances) (15)  
%
ACC  
WDC  
Watchdog Time Period (15)  
ms  
tWDC  
10.558  
99.748  
160  
10 kExternal Resistor  
100 kExternal Resistor  
107  
215  
No External Resistor, WDC Open, Normal Mode  
Notes  
14. Parameter guaranteed by design; however, it is not production tested.  
15. Watchdog time period calculation formula: tWDC = 0.991 * R + 0.648 (R in kand tWDC in ms).  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Table 4. Dynamic Electrical Characteristics (continued)  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
CURRENT SENSE OPERATIONAL AMPLIFIER  
Supply Voltage Rejection Ratio (16)  
Common Mode Rejection Ratio (16)  
SVR  
CMR  
GBP  
60  
70  
dB  
dB  
Gain Bandwidth (16)  
Output Slew Rate  
Phase Margin  
1.0  
MHz  
SR  
0.5  
40  
85  
V/µs  
deg.  
dB  
PHMO  
OLG  
Open Loop Gain (16)  
L1 AND L2 INPUT PINS  
Wake-Up Filter Time (16)  
8.0  
20  
38  
µs  
µs  
tWUF  
STATE MACHINE TIMING  
tSTOP  
Delay Between CS LOW-to-HIGH Transition (at End of SPI Stop Command)  
and Stop Mode Activation (16)  
1.4  
6.0  
12  
5.0  
30  
50  
Minimum Watchdog Period  
No Watchdog Selected  
Maximum Watchdog Period  
Interrupt Low-Level Duration  
7.0  
-35  
97  
10  
13  
35  
µs  
%
tINT  
fOSC  
tNRTOUT  
tSHSON  
Internal Oscillator Frequency Accuracy (All Modes, for Information Only)  
Normal Request Mode Time-Out (Normal Request Mode)  
150  
205  
ms  
µs  
,
Delay Between SPI Command and HS1 or HS2 Turn On (17)  
(18)  
20  
20  
20  
Normal Mode, V  
> 9.0 V, V 0.2 V  
HS VS2  
SUP  
,
Delay Between SPI Command and HS1 or HS2 Turn Off (17)  
Normal Mode, V > 9.0 V, V 0.8 V  
(18)  
µs  
µs  
µs  
tSHSOFF  
tSHSON  
tSHSOFF  
tSNR2N  
SUP  
HS  
VS2  
,
Delay Between SPI Command and HS3 Turn On (17)  
(19)  
Normal Mode, V  
> 9.0 V, V 0.2 V  
HS VS2  
SUP  
,
Delay Between SPI Command and HS3 Turn Off (17)  
Normal Mode, V > 9.0 V, V 0.8 V  
(19)  
20  
30  
SUP  
HS  
VS2  
Delay Between Normal Request and Normal Mode After a Watchdog Trigger  
Command (Normal Request Mode) (16)  
7.0  
15  
µs  
µs  
Delay Between CS Wake-Up (CS LOW to HIGH) in Stop Mode and:  
Normal Request Mode, VDD ON and RST HIGH  
First Accepted SPI Command  
tWUCS  
tWUSPI  
15  
90  
40  
80  
N/A  
30  
N/A  
µs  
µs  
tS1STSPI  
Delay Between Interrupt Pulse in Stop Mode After Wake-Up and First  
Accepted SPI Command  
15  
t2CS  
Minimum Time Between Rising and Falling Edge on the CS  
Notes  
16. Parameter guaranteed by design; however, it is not production tested.  
17. When IN input is set to HIGH, delay starts at falling edge of clock cycle #8 of the SPI command and start of device activation/deactivation.  
30 mA load on high-side switches. Excluding rise or fall time due to external load.  
18. When IN is used to control the high-side switches, delays are measured between IN and HS1 or HS2 ON/OFF. 30 mA load on high-side  
switches, excluding rise or fall time due to external load.  
19. Delay between turn on or turn off command and HS ON or HS OFF, excluding rise or fall time due to external load.  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Table 4. Dynamic Electrical Characteristics (continued)  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LIN PHYSICAL LAYER: BUS DRIVER TIMING CHARACTERISTICS FOR NORMAL SLEW RATE (20)  
Propagation Delay TXD to LIN (21)  
Dominant State Minimum Threshold (50% TXD to 58.1% V  
µs  
tDOMMIN  
50  
50  
50  
50  
)
SUP  
tDOMMAX  
tRECMIN  
tRECMAX  
Dominant State Maximum Threshold (50% TXD to 28.4% V  
Recessive State Minimum Threshold (50% TXD to 42.2% V  
)
SUP  
)
SUP  
Recessive State Maximum Threshold (50% TXD to 74.4% V  
)
SUP  
Propagation Delay Symmetry  
tDOMMIN - tRECMAX  
µs  
µs  
dt1s  
dt2s  
-10.44  
11  
tDOMMAX - tRECMIN  
LIN PHYSICAL LAYER: BUS DRIVER TIMING CHARACTERISTICS FOR SLOW SLEW RATE (20)  
Propagation Delay TXD to LIN (22)  
Dominant State Minimum Threshold (50% TXD to 61.6% V  
tDOMMIN  
100  
100  
100  
100  
)
SUP  
tDOMMAX  
tRECMIN  
tRECMAX  
Dominant State Maximum Threshold (50% TXD to 25.1% V  
Recessive State Minimum Threshold (50% TXD to 38.9% V  
)
SUP  
SUP  
)
Recessive State Maximum Threshold (50% TXD to 77.8% V  
)
SUP  
Propagation Delay Symmetry  
tDOMMIN - tRECMAX  
µs  
dt1s  
dt2s  
-22  
23  
tDOMMAX - tRECMIN  
LIN PHYSICAL LAYER: BUS DRIVER FAST SLEW RATE  
LIN High Slew Rate (Programming Mode)  
dv/dt Fast  
tOUTDLY  
13  
10  
V/µs  
µs  
LIN PHYSICAL LAYER, TRANSCEIVER  
Output Current Shutdown Delay (23)  
Notes  
20. 7.0 V < V  
< 18 V, bus load C0 and R0 1.0 nF/1.0 k, 6.8 nF/660 , 10 nF/500 . 50% of TXD signal to LIN signal threshold. See  
SUP  
Figure 5, page 16.  
21. See Figure 7, page 17.  
22. See Figure 8, page 17.  
23. Parameter guaranteed by design; however, it is not production tested.  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
ELECTRICAL CHARACTERISTICS  
DYNAMIC ELECTRICAL CHARACTERISTICS  
Table 4. Dynamic Electrical Characteristics (continued)  
Characteristics noted under conditions 5.5 V VSUP 18 V, -40°C TA 125°C, GND = 0.0 V unless otherwise noted.  
Typical values noted reflect the approximate parameter means at TA = 25°C under nominal conditions unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LIN PHYSICAL LAYER: RECEIVER CHARACTERISTICS AND WAKE-UP TIMINGS  
Propagation Delay LIN to RXD (24)  
µs  
tRDOM  
tRREC  
tRSYM  
3.0  
3.0  
6.0  
6.0  
2.0  
Dominant State (LIN LOW to RXD LOW)  
Recessive State (LIN HIGH to RXD HIGH)  
Symmetry (tRDOM - tRREC  
)
-2.0  
Bus Wake-Up Deglitcher (Sleep and Stop Modes) (25)  
Bus Wake-Up Event Reported  
From Sleep Mode (26)  
30  
70  
90  
µs  
µs  
tPROPWL  
30  
20  
tWU  
tWU  
From Stop Mode (27)  
Notes  
24. Measured between LIN signal threshold V  
25. See Figures 9 and 10, page 18.  
or V  
and 50% of RXD signal.  
INH  
INL  
26. tWU is typically 2 internal clock cycles after a LIN rising edge is detected. In Sleep Mode, the measurement is done without a capacitor  
connected to the regulator. The delay is measured between the V /2 rising edge of the LIN bus and when V reaches 3.0 V. The  
SUP  
DD  
V
rise time is strongly dependent upon the decoupling capacitor at V  
pin. See Figure 9, page 18.  
DD  
DD  
27. tWU is typically 2 internal clock cycles after a LIN rising edge is detected. In Stop Mode, the delay is measured between the V  
rising edge of the LIN bus and the falling edge of the INT pin. See Figure 10, page 18.  
/2  
SUP  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TIMING DIAGRAMS  
V
PWR  
33689  
VS1/VS2  
R0/C0 Combinations:  
1.0 k/1.0 nF  
TXD  
RXD  
R0  
C0  
660 /6.8 nF  
500 /10 nF  
LIN  
GND TGND AGND  
Figure 5. Test Circuit for Timing Measurements  
tPSCLK  
CS  
tWSCLKH  
tLEAD  
tLAG  
SCLK  
tWSCLKL  
tSI(HOLD)  
tSI(SU)  
MOSI  
MISO  
Undefined  
DI 7  
Don’t Care  
DI 0  
Don’t Care  
tVALID  
tSO(EN)  
tSO(DIS)  
DO 0  
DO 7  
Note Incoming data at MOSI pin is sampled by the 33689 at SCLK falling edge. Outgoing data at MISO is set by the 33689  
at SCLK rising edge (after tVALID delay time).  
Figure 6. SPI Timing Characteristics  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
TXD  
Recessive State  
tRECMAX  
VLINREC  
74.4%  
V
SUP  
58.1%  
V
SUP  
tDOMMIN  
60%  
42.2%  
V
V
40%  
V
SUP  
SUP  
LIN  
SUP  
28.4%  
V
SUP  
Dominant State  
tDOMMAX  
tRECMIN  
RXD  
t
t
RREC  
RDOM  
Figure 7. Timing Characteristics for Normal LIN Output Slew Rate  
TXD  
Recessive State  
tRECMAX  
VLINREC  
77.8%  
V
SUP  
61.6%  
V
SUP  
tDOMMIN  
60%  
V
SUP  
40%  
V
SUP  
LIN  
38.9%  
V
SUP  
25.1%  
V
SUP  
Dominant State  
tDOMMAX  
tRECMIN  
RXD  
t
t
RREC  
RDOM  
Figure 8. Timing Characteristics for Slow LIN Output Slew Rate  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
ELECTRICAL CHARACTERISTICS  
TIMING DIAGRAMS  
Recessive State  
Recessive State  
V
V
LINREC  
LINREC  
LIN  
LIN  
0.4  
V
0.4 V  
SUP  
SUP  
Dominant Level  
Dominant State  
VDD  
INT  
tPROPWL  
tWU  
tPROPWL  
tWU  
Figure 9. LIN Bus Wake-Up Behavior, Sleep Mode  
Figure 10. LIN Bus Wake-Up Behavior, Stop Mode  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
A System Basis Chip (SBC) is a monolithic IC combining  
many functions found in standard microcontroller-based  
systems; e.g., power management, communication interface,  
system protection, and diagnostics.  
The LIN transceiver has waveshaping that can be disabled  
when high data rates are warranted. A single 50 mA and two  
150 mA fully protected high-side switches with output  
clamping are available for switching inductive or resistive  
loads. The 150 mA switches are PWM capable.  
The 33689 is a SPI-controlled SBC combining many  
functions with a LIN transceiver for slave node applications.  
The 33689 has a 5.0 V, 50 mA regulator with undervoltage  
reset, output current limiting, overtemperature pre-warning,  
and thermal shutdown. An externally selectable timing  
Window Watchdog is also included.  
Two high-voltage inputs can be used to monitor switches  
or provide external wake-up. An internal current sense  
operational amplifier is available for load current monitoring.  
FUNCTIONAL PIN DESCRIPTION  
battery. The 33689 can operate from 4.5 V and under the  
jump start condition at 27 V DC. Device functionality is  
guaranteed down to 4.5 V at VS1 and VS2 pins. These pins  
sustain standard automotive voltage conditions such as load  
dump at 40 V.  
LEVEL 1 AND LEVEL 2 INPUT PINS  
(L1 AND L2)  
These pins are used to sense external switches and to  
wake up the 33689 from Sleep or Stop mode. During Normal  
mode, the state of these pins can be read through the SPI  
Register. (Refer to the section entitled SPI Interface and  
Register Description on page 24 for information on the SPI  
Register.)  
LIN BUS PIN (LIN)  
The LIN pin represents the single-wire bus transmitter and  
receiver. It is suited for automotive bus systems and is based  
on the LIN bus specification.  
HIGH-SIDE DRIVER OUTPUT PINS 1 AND 2 (HS1  
AND HS2)  
VOLTAGE SOURCE PIN (VDD)  
These two high-side switches are able to drive loads such  
as relays or lamps. They are protected against overcurrent  
and overtemperature and include internal clamp circuitry for  
inductive load protection. Switch control is done through  
selecting the correct bit in the SPI Register. HS1 and HS2  
can be PWM-ed if required through the IN input pin. The  
internal circuitry that drives both high-side switches is an  
AND function between the SPI bit HS1 (or HS2) and the IN  
input pin.  
The VDD pin is the 5.0 V supply pin for the MCU and the  
current sense operational amplifier.  
CURRENT SENSE OPERATIONAL AMPLIFIER  
PINS (E+, E-, VCC, AND OUT)  
These are the pins of the single-supply current sense  
operational amplifier.  
• The E+ and the E- input pins are the non-inverting and  
inverting inputs of the current sense operational amplifier,  
respectively.  
If no PWM control is required, the IN pin must be  
connected to the VDD pin.  
• The OUT pin is the output pin of the current sense  
operational amplifier.  
• The VCC pin is the +5.0 V single-supply connection for the  
current sense operational amplifier.  
HIGH-SIDE DRIVER OUTPUT PIN 3 (HS3)  
This high-side switch can be used to drive small lamps,  
Hall sensors, or switch pullup resistors. Control is done  
through the SPI Register only.  
The current sense operational amplifier is enabled in  
Normal mode only.  
No direct PWM control is possible on this pin.  
This high-side switch features current limit to protect it  
against overcurrent and short circuit conditions. It is also  
protected against overtemperature.  
WATCHDOG CONFIGURATION PIN (WDC)  
The WDC pin is the configuration pin for the internal  
watchdog. A resistor is connected to this pin. The resistor  
value defines the watchdog period. If the pin is left open, the  
watchdog period is fixed to its default value (150 ms typical).  
If no watchdog function is required, the WDC pin must be  
connected to GND.  
VOLTAGE SUPPLY PINS 1 AND 2  
(VS1 AND VS2)  
The 33689 is supplied from a battery line or other supply  
source through the VS1 and VS2 pins. An external diode is  
required to protect against negative transients and reverse  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL PIN DESCRIPTION  
• Voltage regulator temperature pre-warning  
• HS1, HS2, or HS3 thermal shutdown  
• VS1 or VS2 overvoltage (20 V typical)  
• VS1 or VS2 undervoltage (6.0 V typical)  
RESET OUTPUT PIN (RST)  
The RST pin is the 5.0 V regulator and Watchdog reset  
output pin.  
PWM INPUT CONTROL PIN (IN)  
If an interrupt is generated, then when the next SPI read  
operation is performed bit D7 in the SPI Register will be set  
to logic [1] and bits D6:D0 will report the interrupt source.  
The IN pin is the external PWM control pin for the HS1 and  
HS2 high-side switches.  
In cases of wake-up from the Stop mode, INT is set LOW  
in order to signal to the MCU that a wake-up event from the  
L1, L2, or LIN bus pin has occurred.  
SERIAL DATA CLOCK PIN (SCLK)  
The SCLK pin is the SPI clock input pin. MISO data  
changes on the negative transition of the SCLK. MOSI is  
sampled on the positive edge of the SCLK.  
RECEIVER OUTPUT PIN (RXD)  
The RXD pin is the receiver output of the LIN interface and  
reports the state of the bus voltage (RXD LOW when LIN bus  
is dominant, RXD HIGH when LIN bus is recessive).  
MASTER OUT SLAVE IN PIN (MOSI)  
The MOSI pin receives SPI data from the MCU. This data  
input is sampled on the positive edge of SCLK.  
TRANSMITTER INPUT PIN (TXD)  
The TXD pin is the transmitter input of the LIN interface  
and controls the state of the bus output (dominant when TXD  
is LOW, recessive when TXD is HIGH).  
MASTER IN SLAVE OUT PIN (MISO)  
The MISO pin sends data to an SPI-enabled MCU. Data  
on this output pin changes on the negative edge of the SCLK.  
When CS is HIGH, this pin enters the high-impedance state.  
GROUND PINS (GND, TGND, AND AGND)  
The 33689 has three different types of ground pins.  
CHIP SELECT PIN (CS)  
• The GND pin is the electrical ground pin for the device.  
• The AGND is the analog ground pin for the voltage  
regulator and current sense operational amplifier.  
• The four TGND pins are the thermal ground pins for the  
device.  
The CS pin is the chip select input pin for SPI use. When  
this signal is high, SPI signals are ignored. Asserting this pin  
LOW starts an SPI transaction. The transaction is completed  
when this signal returns HIGH.  
INTERRUPT OUTPUT PIN (INT)  
Important The GND, the AGND, and the four TGND pins  
must be connected together to a ground external to the  
33689.  
The INT pin is used to report 33689 faults to the MCU.  
Interrupt pulses are generated for:  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
20  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL INTERNAL BLOCK DESCRIPTION  
FUNCTIONAL INTERNAL BLOCK DESCRIPTION  
the device. The output of the regulator is also connected to  
the VDD pin to provide the 5.0 V to the microcontroller.  
WINDOW WATCHDOG  
The window watchdog can be configured using an external  
resistor at WDC pin. The watchdog is cleared through  
MODE1 and MODE2 bit in the SPI Register (refer to Table 2,  
page 24; also refer to the section entitled Functional Pin  
Description on page 19.  
Current Limit (Overcurrent) Protection  
The voltage regulator has current limit to protect the device  
against overcurrent and short circuit conditions.  
A watchdog clear is only allowed in the open window (see  
Figure 1). If the watchdog is cleared in the closed window or  
has not been cleared at the end of the open window, the  
watchdog will generate a reset on the RST pin and reset the  
whole device.  
Overtemperature Protection  
The voltage regulator also features overtemperature  
protection that has an overtemperature warning (Interrupt -  
VDDT) and an overtemperature shutdown.  
Note The watchdog clear in Normal request mode  
(150 ms) (first watchdog clear) has no window.  
Stop Mode  
During Stop mode, the Stop mode regulator supplies a  
regulated output voltage. The Stop mode regulator has a  
limited output current capability.  
Window Closed.  
No Watchdog Clear Allowed  
Window Open  
for Watchdog Clear  
Sleep Mode  
tWDC 50%  
*
tWDC 50%  
*
In Sleep mode, the voltage regulator external VDD is  
turned off.  
Watchdog Period  
tWDC  
VDD VOLTAGE REGULATOR TEMPERATURE  
PREWARNING  
Figure 1. Window Watchdog Operation  
VDD voltage regulator temperature prewarning (VDDT) is  
generated if the voltage regulator temperature is above the  
TPRE threshold. It will set the VDDT bit in the SPI Register  
and an interrupt will be initiated. The VDDT bit remains set as  
long as the error condition is present.  
Window Watchdog Configuration  
If the WDC pin is left open, the default watchdog period is  
selected (typ. 150 ms). If no watchdog function is required,  
the WDC pin must be connected to GND.  
During Sleep and Stop modes the VDD voltage regulator  
temperature prewarning circuitry is disabled.  
The watchdog timer’s period is calculated using the  
following formula:  
HIGH-SIDE SWITCH THERMAL SHUTDOWN  
tWDC = 0.991 R +0.648 (with R in kand tWDC in ms).  
*
The high-side switch thermal shutdown HSST is  
generated if one of the high-side switches HS1:HS3 is above  
the HSST threshold. It will shutdown all high-side switches  
and set the HSST flag in the SPI Register, and an interrupt  
will be initiated. The HSST bit remains set as long as the error  
condition is present. During Sleep and Stop modes the high-  
side switch thermal shutdown circuitry is disabled.  
VDD VOLTAGE REGULATOR  
The 33689 chip contains a low-power, low dropout voltage  
regulator to provide internal power and external power for the  
MCU. The on-chip regulator consist of two elements, the  
main voltage regulator and the low-voltage reset circuit.  
The VDD regulator accepts an unregulated input supply  
and provides a regulated VDD supply to all digital sections of  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL DEVICE OPERATION  
FUNCTIONAL DEVICE OPERATION  
OPERATIONAL MODES  
As described below and depicted in Figure 1 below and  
Table 1 on page 23, the 33689 has three operational modes:  
Normal, Sleep, and Stop. Operational modes are controlled  
by MODE1 and MODE2 bits in the SPI Register (refer to  
Logic Commands and Registers on page 24). In additional,  
there are two transitional modes: Reset and Normal Request.  
RESET MODE  
At power up, the 33689 switches automatically to Reset  
Mode for 1 ms if VDD goes high. If VDD stays low, after  
150 ms the 33689 goes in Sleep Mode.  
NORMAL REQUEST MODE  
Before entering in Normal Request Mode, the 33689 stays  
for 1 ms in Reset Mode. In this mode, the LIN bus can  
transmit and receive information.  
VDD LOW (150 ms) Expired & VSUV Bit = Logic [0]  
VDD HIGH & Reset Counter (1.0 ms) Expired & Watchdog Not Selected  
VDD HIGH & Reset Counter (1.0 ms)  
Expired & Watchdog Selected  
Normal  
Request  
Reset  
VDD LOW OR  
(Normal Request  
Timeout Occurs  
[150 ms] & Watchdog  
Selected)  
Normal  
VDD LOW OR (Watchdog  
Fail & Watchdog Selected)  
Power  
Down  
VDD LOW  
Wake-Up  
Stop  
Sleep  
Legend  
Watchdog Selected: External resistor between WDC pin and GND or WDC pin open.  
Watchdog Not Selected: WDC pin connected to GND.  
Watchdog Fail: Watchdog trigger occurs in closed window or no SPI Watchdog trigger command.  
Stop Command: SPI stop command.  
Sleep Command: SPI sleep request followed by SPI sleep command.  
Wake-Up: L1 or L2 state change or LIN bus wake-up or CS rising edge.  
Figure 1. 33689 Modes State Diagram  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
22  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL DEVICE OPERATION  
Entering Sleep Mode  
NORMAL MODE  
In Normal Mode, the 33689 has slew rate and timing  
compatible with the LIN protocol specification. The LIN bus  
can transmit and receive information. The VDD regulator is  
ON and the watchdog function can be enabled.  
First and second SPI commands (with bit D6=1, D7=1,  
D5 =0 or 1, D1=0, and D0=0) 11x00000 must be sent.  
Entering Stop Mode  
First and second SPI commands (with bit D6=1, D7=1,  
D5 =0 or 1, D1=0, and D0=1) 11x00001 must be sent.  
SLEEP AND STOP MODE  
To safely enter Sleep or Stop modes and to ensure that  
these modes are not inadvertently entered due to noise  
issues during SPI transmission, a dedicated sequence must  
be sent twice: data with the bits controlling the LIN bus and  
the device mode.  
Sleep or Stop modes are entered after the second SPI  
command. Register bit D5 must be set accordingly.  
Table 1. Operational Modes and Associated Functions  
VDD Voltage  
Regulator  
Wake-Up  
Capabilities  
Watchdog  
Function  
Operational  
Amplifier  
Device Mode  
RST Output  
HS1, HS2, HS3 LIN Interface  
VDD: ON  
VDD: ON  
N/A  
LOW for 1.0 ms  
typical, then  
HIGH (if VDD  
above threshold)  
Disabled  
OFF  
Recessive only  
Not active  
Reset  
N/A  
HIGH.  
Active LOW if  
VDD  
150 ms timeout  
if Watchdog  
enabled  
ON or OFF  
Transmit and  
receive  
Not active  
undervoltage  
occurs and if  
Normal Request  
timeout (if  
Normal  
Request  
Watchdog  
enabled)  
VDD: ON  
N/A  
HIGH.  
Active LOW if  
VDD  
Window  
Watchdog if  
enabled  
ON or OFF  
Transmit and  
receive  
Active  
undervoltage  
occurs or if  
Watchdog fail (if  
Watchdog  
enabled)  
Normal  
VDD: ON  
(Limitedcurrent  
capability)  
LIN and state  
change on  
L1:L2 inputs  
Normally HIGH.  
Active LOW if  
VDD  
Disabled  
Disabled  
OFF  
OFF  
Recessivestate  
with Wake  
Not active  
Not active  
capability  
Stop  
undervoltage  
occurs  
VDD: OFF  
(Set to 5.0 V  
after Wake-Up  
to enter Normal  
Request)  
LIN and state  
change on  
L1:L2 inputs  
LOW.  
Recessivestate  
with Wake  
Go to HIGH after  
Wake-Up and  
VDD within  
Sleep  
capability  
specification  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL DEVICE OPERATION  
LOGIC COMMANDS AND REGISTERS  
During an SPI data communication, the state of MISO  
reports the state of the 33689 at time of a CS HIGH-to-LOW  
transition. The status flags are latched at a CS HIGH-to-LOW  
transition.  
SPI INTERFACE AND REGISTER DESCRIPTION  
As shown in Figure 2, the SPI is an 8-bit SPI. All data is  
sent as bytes. The MSB, D7, is sent first. The minimum time  
between two rising edges on the CS pin is 15 µs.  
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1  
D7 D6 D5 D4 D3 D2 D1  
Bit0  
D0  
MISO  
MOSI  
Figure 2. Data Format Description  
The following tables describe the SPI Register bits,  
showing reset values and reset conditions.  
Table 2. SPI Register Overview  
MSB  
Bits  
LSB  
D0  
Read/Write  
Information  
D7  
D6  
D5  
D4  
HS3  
D3  
D2  
D1  
MODE2  
L2  
Write  
Read  
LINSL2  
LINSL1  
LIN-PU  
VSOV  
HS2  
HS1  
MODE1  
L1  
INTSRC (1)  
LINWU or  
LINFAIL  
VSUV or  
VDDT  
HSST  
BATFAIL(2)  
Write Reset  
Value  
0
0
0
0
0
0
Write Reset  
Condition  
POR,  
RESET  
POR,  
RESET  
POR  
POR,  
RESET  
POR,  
RESET  
POR,  
RESET  
Notes  
1. D7 signals interrupt source. After interrupt occurs, if D7 is a logic [1] D6:D0 indicate the interrupt source. If D7 is a logic [0] no interrupt  
has occurred and D6:D0 report real-time status.  
2. The first SPI read after a 33689 reset returns the BATFAIL status flag bit D4.  
SPI Register: Write Control Bits  
LINSL2 and LINSL1—LIN Baud Rate and Low-Power  
Table 3. LIN Slew Rate Control and Device Low Power  
Mode Pre-Selection Bits  
Mode Pre-Selection Bits (D7 and D6)  
These bits select the LIN slew rate and requested low-  
power mode in accordance with Table 3. Reset clears the  
LINSL2:1 bits.  
LINSL2  
LINSL1  
Description  
0
0
LIN slew rate normal  
(baud rate up to 20 kbps)  
0
1
1
1
0
1
LIN slew rate slow  
(baud rate up to 10 kbps)  
LIN slew rate fast (for program download,  
baud rate up to 100 kbps)  
Low power mode (Sleep or Stop mode)  
request, no change in LIN slew rate  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL DEVICE OPERATION  
LIN-PU—LIN Pullup Enable Bit  
This bit controls the LIN pullup resistor during Sleep and  
Stop modes in accordance with Table 4. Reset clears the  
LIN-PU bit.  
Table 4. LIN Pullup Termination Control Bit (D5)  
LIN-PU  
Description  
0
1
30 kpullup connected in Sleep and Stop mode  
30 kpullup disconnected in Sleep and Stop mode  
HS3:HS1—High-Side H3:HS1 Enable Bits  
These bits enable the HS3:HS1 bits in accordance with  
Table 5. Reset clears the HSx bit.  
Note If no PWM on HS1 and HS2 is required, the IN pin  
must be connected to the VDD pin.  
Table 5. High-Side Switches Control Bits (D4, D3, and D2)  
HS3  
0
Description  
HS3 OFF  
HS3 ON  
HS2  
0
Description  
HS2 OFF  
HS1  
0
Description  
HS1 OFF  
1
1
HS2 ON (if IN = 1)  
1
HS1 ON (if IN = 1)  
MODE2 and MODE1—Mode Section Bits  
To safely enter Sleep or Stop mode and to ensure that  
these modes are not affected by noise issue during SPI  
transmission, the Sleep/Stop commands require two SPI  
transmissions.  
The MODE2 and MODE1 bits control the 33689 operating  
modes in accordance with Table 6.  
Table 6. Mode Control Bits (D1 and D0)  
Sleep Mode Sequence The Sleep command, as shown in  
Table 7, must be sent twice.  
MODE2  
MODE1  
Description  
Sleep mode (3)  
Table 7. Sleep Command Bits  
0
0
1
0
1
LINSL2 LINSL1 LIN-PU  
HS3  
0
HS2  
0
HS1  
0
MODE2 MODE1  
0
1
Stop mode  
1
1
x
0
0
Normal mode + Watchdog clear (4)  
Normal mode  
x = Don’t care.  
1
Stop Mode Sequence The Stop command, as shown in  
Table 8, must be sent twice.  
Notes  
3. Special SPI command and sequence is implemented in  
order to avoid going into Sleep or Stop mode with a single  
8-bit SPI command. Refer to Tables 7 and 8.  
Table 8. Stop Command Bits  
4. When a logic [0] is written to MODE1 bit while MODE2 bit  
is written as a logic [1]. After the SPI command is  
completed, MODE1 bit is set to logic [1] and the 33689  
stays in Normal mode. In order to set the 33689 in Sleep  
mode, both MODE1 and MODE2 bits must be written in  
the same 8-bit SPI command. The Watchdog clear on  
Normal Request mode (150 ms) has no window.  
LINSL2 LINSL1 LIN-PU  
HS3  
0
HS2  
0
HS1  
0
MODE2 MODE1  
1
1
x
0
1
x = Don’t care.  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
25  
FUNCTIONAL DESCRIPTION  
FUNCTIONAL DEVICE OPERATION  
SPI Register: Read Control Bits  
INTSCR —Register Content Flags or Interrupt Source  
LINWU/LINFAIL—LIN Bus Status Flag Bit  
The INTSCR bit, as shown in Table 9, indicates if the  
register contents reflect the flags or an interrupt/wake-up  
source.  
This bit indicates a LIN wake-up condition or a LIN  
overcurrent/overtemperature in accordance with Table 10.  
Table 10. LIN Bus Status (D6)  
Table 9. Interrupt Status (D7)  
LINWU/  
Description  
LINFAIL  
INTSCR  
Description  
0
1
No LIN bus wake-up or failure  
0
1
SPI word read reflects the flag state  
LIN bus wake-up occurred or LIN overcurrent/  
overtemperature  
SPI word read reflects the interrupt or wake-up  
source  
VSOV—Overvoltage Flag Bit, VSUV/BATFAIL—Under-  
voltage Flag Bit, VDDT—VDD Voltage Regulator Status  
Flag Bit, and HSST—High-Side Status Flag Bit  
Table 11 indicates the register contents of the following  
flags:  
• VSOV flag is set on an overvoltage condition.  
• VSUV/BATFAIL flag is set on an undervoltage condition.  
• VDDT flag is set as pre-warning in case of an  
overtemperature condition on the voltage regulator.  
• HSST flag is set on overtemperature conditions on one of  
the high-side outputs.  
Table 11. Over- and Undervoltage, VDD Voltage Regulator, and High-Side Status Flag Bits (D5, D4, D3, and D2)  
VSUV/  
VSOV  
Description  
Description  
VDDT  
Description  
HSST  
Description  
BATFAIL  
0
V
below 19 V  
above 18 V  
0
V
above 6.0 V  
below 6.0 V  
0
No overtemperature  
0
HS  
SUP  
SUP  
SUP  
No overtemperature  
1
V
1
V
1
VDD overtemperature  
pre-warning  
1
HS1, HS2, or HS3  
OFF  
SUP  
(overtemperature)  
L2 and L1— Wake-Up Inputs L2 and L1 Status Flag Bit  
The L2 and L1 flags, as shown in Table 12, reflect the  
status of the L2 and L1 input pins and indicate the wake-up  
source.  
Table 12. Switch Input Wake-Up and Real Time Status (D1 and D0)  
L2  
0
Description  
L1  
0
Description  
L2 input LOW  
L1 input LOW  
1
L2 input HIGH or wake-up by L2  
(first register read after wake-up)  
1
L1 input HIGH or wake-up by L1  
(first register read after wake-up)  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
26  
TYPICAL APPLICATIONS  
TYPICAL APPLICATIONS  
The 33689 can be configured in several applications. Figure 3 shows the 33689 in the typical master node application.  
33689  
V
BAT  
VDD1  
D1  
5.0 V/50 mA  
VDD  
RST  
VS1  
Voltage  
Regulator  
C4  
C3  
C2  
C1  
Reset  
Control  
WDC  
Window  
Watchdog  
VS2  
HS1  
R1  
IN  
MOSI  
MISO  
SCLK  
CS  
SPI and  
Mode  
Control  
HS2  
HS3  
Pre-Driver  
INT  
VDD1  
R6  
VCC  
L2  
C5  
EXT INPUT  
R2  
MCU  
E
-
R7  
Current  
Sense  
Op Amp  
E+  
L1  
R3  
C7  
R4  
D2  
VS1  
OUT  
TXD  
RXD  
R5  
(1)  
L1  
LIN Bus  
LIN  
LIN Physical Interface  
C6  
R8(1)  
TGND  
AGND  
GND  
Component Values  
C1=47 µF  
R1=33 kΩ  
C2=C4=C5=100 nF  
R2 and R3 depend on the application  
C3=10 µF  
R4>5.0 kΩ  
C6=220 pF  
R5=1.0 kΩ  
C7=4.7 nF  
R6= 10 kΩ  
R7=2.2 kΩ  
R8=Varistor type TDK AVR-M1608C270MBAAB(1)  
L1 = SMD Ferrite Bead-Type TDK MMZ2012Y202B(1)  
Notes:  
1. L1 and R8 are external components to improve EMC and ESD performances.  
2. Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit  
drawings or tables. While freescale offers component recommendations in this configuration, it is the customer’s responsibility to  
validate their application.  
Figure 3. 33689 in Typical Master Node Application  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
27  
PACKAGING  
PACKAGING DIMENSIONS  
PACKAGING  
PACKAGING DIMENSIONS  
Important For the most current revision of the package, visit www.freescale.com and do a keyword search on the 98A  
drawing number below.  
DWB SUFFIX  
EW SUFFIX (Pb-FREE)  
32-PIN SOIC WIDE BODY  
PLASTIC PACKAGE  
98ARH99137A  
ISSUE B  
33689  
Analog Integrated Circuit Device Data  
28  
Freescale Semiconductor  
PACKAGING  
PACKAGING DIMENSIONS (CONTINUED)  
PACKAGING DIMENSIONS (CONTINUED)  
DWB SUFFIX  
EW SUFFIX (Pb-FREE)  
32-PIN SOIC WIDE BODY  
PLASTIC PACKAGE  
98ARH99137A  
ISSUE B  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
29  
REVISION HISTORY  
REVISION HISTORY  
REVISION  
DATE  
DESCRIPTION OF CHANGES  
Implemented Revision History page  
Updated Outline Drawing to Revision “B”  
Eliminated all pages (pages 30 to 47) referring to the MC33689DWB/R2 device  
Removed MC33689DWB/R2 from the orderable parts information  
Updated to the prevailing form and style  
6/2006  
6.0  
Removed MC33689DEW/R2 and replaced with MCZ33689DEW/R2 in the Ordering Information  
block  
8/2006  
7.0  
33689  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
30  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
For information on Freescale’s Environmental Products program, go to http://  
www.freescale.com/epp.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Denver, Colorado 80217  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC33689  
Rev. 7.0  
8/2006  

相关型号:

MC33689DEW

LINE TRANSCEIVER, PDSO32, 0.65 MM PITCH, LEAD FREE, PLASTIC, SOIC-32
NXP

MC33689DEWR2

LINE TRANSCEIVER, PDSO32, 0.65 MM PITCH, LEAD FREE, PLASTIC, SOIC-32
NXP

MC33689DPEW

System Basis Chip, LIN, 3x 5.0V/50mA LDOs, SOIC 32, Rail
NXP

MC33689DWB

System Basis Chip with LIN transceiver
MOTOROLA

MC33689DWBR2

System Basis Chip with LIN transceiver
MOTOROLA

MC33690

MC33690 Standalone Tag
FREESCALE

MC33690DW

STANDALONE TAG READER CIRCUIT
MOTOROLA

MC33690DW

Standalone Tag Reader Circuit
FREESCALE

MC33690DWER2

SPECIALTY CONSUMER CIRCUIT, PDSO20, ROHS COMPLIANT, PLASTIC, SOIC-20
NXP

MC33690DWR2

Consumer Circuit, BICMOS, PDSO20, PLASTIC, SOIC-20
MOTOROLA

MC33690_07

MC33690 Standalone Tag
FREESCALE

MC33696

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE