MC56F8367MPYE [FREESCALE]

16-bit Digital Signal Controllers; 16位数字信号控制器
MC56F8367MPYE
型号: MC56F8367MPYE
厂家: Freescale    Freescale
描述:

16-bit Digital Signal Controllers
16位数字信号控制器

外围集成电路 微控制器 时钟
文件: 总180页 (文件大小:2743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56F8367/56F8167  
Data Sheet  
Preliminary Technical Data  
56F8300  
16-bit Digital Signal Controllers  
MC56F8367  
Rev. 3.0  
09/2005  
freescale.com  
Document Revision History  
Version History  
Description of Change  
Rev 0  
Pre-release, Alpha customers only  
Initial Public Release  
Rev 1.0  
Rev 2.0  
Added output voltage maximum value and note to clarify in Table 10-1.; also removed  
overall life expectancy note, since life expectancy is dependent on customer usage and  
must be determined by reliability engineering. Clarified value and unit measure for  
Maximum allowed PD in Table 10-3. Corrected note about average value for Flash Data  
Retention in Table 10-4. Added new RoHS-compliant orderable part numbers in  
Table 13-1.  
Rev 3.0  
Added 160MAPBGA information, TA equation updated in Table 10-4 and additional minor  
edits throughout data sheet  
Please see http://www.freescale.com for the most current Data Sheet revision.  
56F8367 Technical Data, Rev. 3.0  
2
Freescale Semiconductor  
Preliminary  
56F8367/56F8167 General Description  
Note: Features in italics are NOT available in the 56F8167 device.  
• Up to 60 MIPS at 60MHz core frequency  
• Temperature Sensor  
• DSP and MCU functionality in a unified,  
C-efficient architecture  
• Up to two Quadrature Decoders  
• Optional on-chip regulator  
• Access up to 4MB of off-chip program and 32MB of  
data memory  
• Up to two FlexCAN modules  
• Two Serial Communication Interfaces (SCIs)  
• Up to two Serial Peripheral Interfaces (SPIs)  
• Up to four general-purpose Quad Timers  
• Computer Operating Properly (COP) / Watchdog  
• Chip Select Logic for glueless interface to ROM and  
SRAM  
• 512KB of Program Flash  
• 4KB of Program RAM  
• 32KB of Data Flash  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
• 32KB of Data RAM  
• Up to 76 GPIO lines  
• 32KB Boot Flash  
• 160-pin LQFP Package and 160 MAPBGA  
• Up to two 6-channel PWM modules  
• Four 4-channel, 12-bit ADCs  
OCR_DIS  
* Configuration  
shown for on-chip  
2.5V regulator  
EMI_MODE  
RSTO  
VPP  
2
VCAP VDD  
VSS VDDA  
VSSA  
EXTBOOT  
5
RESET  
4
7
6
2
6
6
JTAG/  
EOnCE  
Port  
PWM Outputs  
Digital Reg  
Analog Reg  
PWMA  
Current Sense Inputs  
or GPIOC  
3
4
Low Voltage  
Supervisor  
16-Bit  
56800E Core  
Fault Inputs  
Program Controller  
and  
Hardware Looping Unit  
Address  
Generation Unit  
Data ALU  
Bit  
Manipulation  
Unit  
PWM Outputs  
PWMB  
16 x 16 + 36 -> 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
3
4
Current Sense Inputs  
or GPIOD  
Fault Inputs  
PAB  
PDB  
CDBR  
CDBW  
4
4
AD0  
ADCA  
AD1  
R/W Control  
6
2
8
5
Memory  
Program Memory  
256K x 16 Flash  
2K x 16 RAM  
A0-5 or GPIOA8-13  
A6-7 or GPIOE2-3  
VREF  
XDB2  
XAB1  
XAB2  
4
4
External  
Address Bus  
Switch  
AD0  
AD1  
ADCB  
A8-15 or GPIOA0-7  
4
3
GPIOB0-3 (A16-19)  
System Bus  
Control  
PAB  
Boot ROM  
16K x 16 Flash  
Temp_Sense  
GPIOB4 (A20, prescaler_clock)  
PDB  
Quadrature  
Decoder 0 or  
Quad  
Timer A or  
GPIOC  
GPIOB5-7 (A21-23, clk0-3**)  
CDBR  
CDBW  
D
ata Memory  
16K x 16 Flash  
4K x 16 Flash  
7
9
4
D0-6 or GPIOF9-15  
D7-15 or GPIOF0-8  
External Data  
Bus Switch  
WR  
Quadrature  
Decoder 1 or  
Quad  
Timer B or  
SPI1 or  
RD  
4
GPIOD2-5 or CS4 -7  
Bus Control  
4
2
PS / CS0 (GPIOD8)  
DS / CS1 (GPIOD9)  
IPBus Bridge (IPBB)  
GPIOC  
Quad  
Timer C or  
GPIOE  
Peripheral  
Device Selects  
GPIO or EMI CS or  
FlexCAN2  
GPIOD0 (CS2 or CAN2_TX)  
GPIOD1 (CS3 or CAN2_RX)  
RW  
Control  
IPAB  
IPWDB  
IPRDB  
Decoding  
Peripherals  
Quad  
Timer D or  
GPIOE  
4
2
Clock  
resets  
PLL  
FlexCAN  
P
O
R
System  
Integration  
Module  
O
SPI0 or  
GPIOE  
SCI1 or  
GPIOD  
SCI0 or  
GPIOE  
COP/  
Interrupt  
Clock  
XTAL  
S
Generator  
C
Watchdog Controller  
EXTAL  
**See Table 2-2  
for explanation  
4
2
2
CLKMODE  
IRQA IRQB  
CLKO  
56F8367/56F8167 Block Diagram  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
3
Table of Contents  
Part 1: Overview . . . . . . . . . . . . . . . . . . . . . . .5  
Part 8: General Purpose Input/Output  
1.1. 56F8367/56F8167 Features . . . . . . . . . . . . . 5  
1.2. Device Description . . . . . . . . . . . . . . . . . . . . 7  
1.3. Award-Winning Development Environment . 9  
1.4. Architecture Block Diagram. . . . . . . . . . . . . 10  
1.5. Product Documentation. . . . . . . . . . . . . . . . 14  
1.6. Data Sheet Conventions . . . . . . . . . . . . . . . 14  
(GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 132  
8.2. Memory Maps . . . . . . . . . . . . . . . . . . . . . .132  
8.3. Configuration. . . . . . . . . . . . . . . . . . . . . . . 132  
Part 9: Joint Test Action Group (JTAG) . 137  
9.1. 56F8367 Information . . . . . . . . . . . . . . . . .137  
Part 2: Signal/Connection Descriptions . . .15  
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.2. Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Part 10: Specifications . . . . . . . . . . . . . . . 137  
10.1. General Characteristics . . . . . . . . . . . . . .137  
10.2. DC Electrical Characteristics . . . . . . . . . .141  
10.3. AC Electrical Characteristics . . . . . . . . . .145  
10.4. Flash Memory Characteristics . . . . . . . . .145  
10.5. External Clock Operation Timing . . . . . . 146  
10.6. Phase Locked Loop Timing . . . . . . . . . . .146  
10.7. Crystal Oscillator Timing . . . . . . . . . . . . . 147  
10.8. External Memory Interface Timing . . . . . .147  
10.9. Reset, Stop, Wait, Mode Select, and Interrupt  
Timing . . . . . . . . . . . . . . . . . . . . .150  
Part 3: On-Chip Clock Synthesis (OCCS) . .38  
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.2. External Clock Operation . . . . . . . . . . . . . . 38  
3.3. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Part 4: Memory Operating Modes (MEM) . .40  
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.2. Program Map. . . . . . . . . . . . . . . . . . . . . . . . 41  
4.3. Interrupt Vector Table . . . . . . . . . . . . . . . . . 42  
4.4. Data Map . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.5. Flash Memory Map . . . . . . . . . . . . . . . . . . . 46  
4.6. EOnCE Memory Map . . . . . . . . . . . . . . . . . 48  
4.7. Peripheral Memory Mapped Registers . . . . 49  
4.8. Factory Programmed Memory . . . . . . . . . . 79  
10.10. Serial Peripheral Interface (SPI) Timing .152  
10.11. Quad Timer Timing . . . . . . . . . . . . . . . .156  
10.12. Quadrature Decoder Timing . . . . . . . . . .156  
10.13. Serial Communication Interface  
(SCI) Timing . . . . . . . . . . . . . . . .157  
10.14. Controller Area Network (CAN) Timing .158  
10.15. JTAG Timing . . . . . . . . . . . . . . . . . . . . . 158  
10.16. Analog-to-Digital Converter  
(ADC) Parameters . . . . . . . . . . . .160  
10.17. Equivalent Circuit for ADC Inputs . . . . . .163  
10.18. Power Consumption . . . . . . . . . . . . . . . 163  
Part 5: Interrupt Controller (ITCN) . . . . . . . .80  
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.3. Functional Description. . . . . . . . . . . . . . . . . 80  
5.4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . 82  
5.5. Operating Modes . . . . . . . . . . . . . . . . . . . . 82  
5.6. Register Descriptions . . . . . . . . . . . . . . . . . 83  
5.7. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Part 11: Packaging . . . . . . . . . . . . . . . . . . . 165  
11.1. 56F8367 Package and Pin-Out Information 165  
11.2. 56F8167 Package and Pin-Out Information 172  
Part 6: System Integration Module (SIM) .110  
6.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . 110  
6.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
6.3. Operating Modes . . . . . . . . . . . . . . . . . . . 111  
6.4. Operating Mode Register . . . . . . . . . . . . . 111  
6.5. Register Descriptions . . . . . . . . . . . . . . . . 112  
6.6. Clock Generation Overview. . . . . . . . . . . . 126  
6.7. Power Down Modes Overview . . . . . . . . . 127  
6.8. Stop and Wait Mode Disable Function . . . 128  
6.9. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Part 12: Design Considerations . . . . . . . . 176  
12.1. Thermal Design Considerations . . . . . . . .176  
12.2. Electrical Design Considerations . . . . . . .177  
12.3. Power Distribution and I/O Ring  
12.4. Implementation . . . . . . . . . . . . . . . . . . . . .178  
Part 13: Ordering Information . . . . . . . . . 179  
Part 7: Security Features . . . . . . . . . . . . . .129  
7.1. Operation with Security Enabled. . . . . . . . 129  
7.2. Flash Access Blocking Mechanisms . . . . . 129  
56F8367 Technical Data, Rev. 3.0  
4
Freescale Semiconductor  
Preliminary  
56F8367/56F8167 Features  
Part 1 Overview  
1.1 56F8367/56F8167 Features  
1.1.1  
Core  
Efficient 16-bit 56800E family controller engine with dual Harvard architecture  
Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
Arithmetic and logic multi-bit shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses and one external address bus  
Four internal data buses and one external data bus  
Instruction set supports both DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/EOnCE debug programming interface  
1.1.2  
Differences Between Devices  
Table 1-1 outlines the key differences between the 56F8367 and 56F8167 devices.  
Table 1-1 Device Differences  
Feature  
56F8367  
56F8167  
Guaranteed Speed  
Program RAM  
Data Flash  
60MHz/60 MIPS  
40MHZ/40MIPS  
Not Available  
Not Available  
1 x 6  
4KB  
32KB  
2 x 6  
2
PWM  
CAN  
Not Available  
2
Quad Timer  
4
Quadrature Decoder  
Temperature Sensor  
Dedicated GPIO  
2 x 4  
1
1 x 4  
Not Available  
7
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
5
1.1.3  
Memory  
Note: Features in italics are NOT available in the 56F8167 device.  
Harvard architecture permits as many as three simultaneous accesses to program and data memory  
Flash security protection feature  
On-chip memory, including a low-cost, high-volume Flash solution  
— 512KB of Program Flash  
— 4KB of Program RAM  
— 32KB of Data Flash  
— 32KB of Data RAM  
— 32KB of Boot Flash  
Off-chip memory expansion capabilities provide a simple method for interfacing additional external  
memory and/or peripheral devices  
— Access up to 4MB of external program memory or 32MB of external data memory  
— Chip select logic for glueless interface to ROM and SRAM  
EEPROM emulation capability  
1.1.4  
Peripheral Circuits  
Note: Features in italics are NOT available in the 56F8167 device.  
Pulse Width Modulator:  
— In the 56F8367, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense  
inputs, and three Fault inputs; fault-tolerant design with dead time insertion; supports both  
center-aligned and edge-aligned modes  
— In the 56F8167, one Pulse Width Modulator module, with six PWM outputs, three Current Sense inputs,  
and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and  
edge-aligned modes  
Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with  
quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels  
2 and 3  
Quadrature Decoder:  
— In the 56F8367, two four-input Quadrature Decoders or two additional Quad Timers  
— In the 56F8167, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A  
Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip  
temperature  
Quad Timer:  
— In the 56F8367, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with  
two pins and Timer D with four pins  
— In the 56F8167, two general-purpose Quad Timers; Timer A works in conjunction with Quadrature  
Decoder 0 or GPIO and Timer C works in conjunction with GPIO  
Up to two FlexCAN (CAN Version 2.0 B-compliant ) modules with 2-pin port for transmit and receive  
56F8367 Technical Data, Rev. 3.0  
6
Freescale Semiconductor  
Preliminary  
Device Description  
Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)  
Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO  
lines)  
— In the 56F8367, SPI1 can also be used as Quadrature Decoder 1, Quad Timer B or GPIO  
— In the 56F8167, SPI1 can alternately be used only as GPIO  
Computer Operating Properly (COP) / Watchdog timer  
Two dedicated external interrupt pins  
Up to 76 General Purpose I/O (GPIO) pins  
External reset input pin for hardware reset  
External reset output pin for system reset  
Integrated Low-Voltage Interrupt Module  
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent debugging  
Software-programmable, Phase Lock Loop (PLL)-based frequency synthesizer for the core clock  
1.1.5  
Energy Information  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
ADC smart power management  
Each peripheral can be individually disabled to save power  
1.2 Device Description  
The 56F8367 and 56F8167 are members of the 56800E core-based family of controllers. Each combines,  
on a single chip, the processing power of a Digital Signal Processor (DSP) and the functionality of a  
microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because  
of its low cost, configuration flexibility, and compact program code, the 56F8367 and 56F8167 are  
well-suited for many applications. The device includes many peripherals that are especially useful for  
motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and  
control, automotive control (56F8367 only), engine management, noise suppression, remote utility  
metering, industrial control for power, lighting, and automation applications.  
The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and  
optimized instruction set allow straightforward generation of efficient, compact DSP and control code.  
The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized  
control applications.  
The 56F8367 and 56F8167 support program execution from internal or external memories. Two data  
operands can be accessed from the on-chip data RAM per instruction cycle. These devices also provide  
two external dedicated interrupt lines and up to 76 General Purpose Input/Output (GPIO) lines, depending  
on peripheral configuration.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
7
1.2.1  
56F8367 Features  
The 56F8367 controller includes 512KB of Program Flash and 32KB of Data Flash (each programmable  
through the JTAG port) with 4KB of Program RAM and 32KB of Data RAM. It also supports program  
execution from external memory.  
A total of 32KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software  
routines that can be used to program the main Program and Data Flash memory areas. Both Program and  
Data Flash memories can be independently bulk erased or erased in page sizes. Program Flash page erase  
size is 1KB. Boot and Data Flash page erase size is 512 bytes. The Boot Flash memory can also be either  
bulk or page erased.  
A key application-specific feature of the 56F8367 is the inclusion of two Pulse Width Modulator (PWM)  
modules. These modules each incorporate three complementary, individually programmable PWM signal  
output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12  
PWM outputs) to enhance motor control functionality. Complementary operation permits programmable  
dead time insertion, distortion correction via current sensing by software, and separate top and bottom  
output polarity control. The up-counter value is programmable to support a continuously variable PWM  
frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is  
supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both  
BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance  
Motors); and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting  
with sufficient output drive capability to directly drive standard optoisolators. A “smoke-inhibit”,  
write-once protection feature for key parameters is also included. A patented PWM waveform distortion  
correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit  
integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to  
synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.  
The 56F8367 incorporates two Quadrature Decoders capable of capturing all four transitions on the  
two-phase inputs, permitting generation of a number proportional to actual position. Speed computation  
capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the  
Quadrature Decoder can be programmed with a time-out value to alarm when no shaft motion is detected.  
Each input is filtered to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required.  
Two Flex Controller Area Network (FlexCAN) interfaces (CAN Version 2.0 B-compliant) and an internal  
interrupt controller are a part of the 56F8367.  
1.2.2  
56F8167 Features  
The 56F8167 controller includes 128KB of Program Flash, programmable through the JTAG port, with  
8KB of Data RAM. It also supports program execution from external memory.  
A total of 8KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software  
routines that can be used to program the main Program Flash memory area, which can be independently  
56F8367 Technical Data, Rev. 3.0  
8
Freescale Semiconductor  
Preliminary  
Award-Winning Development Environment  
bulk erased or erased in pages. Program Flash page erase size is 1KB. Boot Flash page erase size is 512  
bytes and the Boot Flash memory can also be either bulk or page erased.  
A key application-specific feature of the 56F8167 is the inclusion of one Pulse Width Modulator (PWM)  
module. This module incorporates three complementary, individually programmable PWM signal output  
pairs and can also support six independent PWM functions to enhance motor control functionality.  
Complementary operation permits programmable dead time insertion, distortion correction via current  
sensing by software, and separate top and bottom output polarity control. The up-counter value is  
programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned  
synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of  
controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless  
DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM  
incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to  
directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters  
is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is  
double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1  
to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters  
through two channels of Quad Timer C.  
The 56F8167 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase  
inputs, permitting generation of a number proportional to actual position. Speed computation capabilities  
accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder  
can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered  
to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An  
internal interrupt controller is also a part of the 56F8167.  
1.3 Award-Winning Development Environment  
TM  
Processor Expert  
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
9
1.4 Architecture Block Diagram  
Note: Features in italics are NOT available in the 56F8167 device and are shaded in the following figures.  
The 56F8367/56F8167 architecture is shown in Figure 1-1 and Figure 1-2. Figure 1-1 illustrates how the  
56800E system buses communicate with internal memories, the external memory interface and the IPBus  
Bridge. Table 1-2 lists the internal buses in the 56800E architecture and provides a brief description of  
their function. Figure 1-2 shows the peripherals and control blocks connected to the IPBus Bridge. The  
figures do not show the on-board regulator and power and ground signals. They also do not show the  
multiplexing between peripherals or the dedicated GPIOs. Please see Part 2, Signal/Connection  
Descriptions, to see which signals are multiplexed with those of other peripherals.  
Also shown in Figure 1-2 are connections between the PWM, Timer C and ADC blocks. These  
connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The  
Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions.  
In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer  
C input channel as indicated. The timer can then be used to introduce a controllable delay before  
generating its output signal. The timer output then triggers the ADC. To fully understand this interaction,  
please see the 56F8300 Peripheral User Manual for clarification on the operation of all three of these  
peripherals.  
56F8367 Technical Data, Rev. 3.0  
10  
Freescale Semiconductor  
Preliminary  
Architecture Block Diagram  
5
JTAG / EOnCE  
Boot  
Flash  
pdb_m[15:0]  
pab[20:0]  
Program  
Flash  
Program  
RAM  
cdbw[31:0]  
56800E  
24  
Address  
Data  
CHIP  
TAP  
Controller  
EMI  
16  
10  
Control  
TAP  
Linking  
Module  
Data RAM  
Data Flash  
xab1[23:0]  
xab2[23:0]  
ExternalJTAG  
Port  
cdbr_m[31:0]  
xdb2_m[15:0]  
To Flash  
Control Logic  
IPBus  
Bridge  
Flash  
Memory  
Module  
NOT available on the 56F8167 device.  
IPBus  
Figure 1-1 System Bus Interfaces  
Note:  
Note:  
Flash memories are encapsulated within the Flash Memory (FM) Module . Flash control is  
accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed  
between the core and the Flash memories.  
The primary data RAM port is 32 bits wide. Other data ports are 16 bits.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
11  
To/From IPBus Bridge  
Interrupt  
Controller  
CLKGEN  
(OSC/PLL)  
Low Voltage Interrupt  
POR & LVI  
System POR  
RESET  
Timer A  
4
Quadrature Decoder 0  
Timer D  
SIM  
4
COP Reset  
Timer B  
COP  
2
2
4
FlexCAN  
FlexCAN2  
Quadrature Decoder 1  
SPI 1  
13  
PWMA  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIO E  
GPIO F  
SYNC Output  
13  
PWMB  
SYNC Output  
ch3i  
ch2i  
2
Timer C  
ch3o  
ch2o  
8
ADCB  
ADCA  
4
SPI 0  
SCI 0  
8
2
1
2
TEMP_SENSE  
SCI 1  
Note: ADC A and ADC B use the same voltage  
IPBus  
NOT available on the 56F8167 device.  
reference circuit with VREFH, VREFP, VREFMID  
VREFN, and VREFLO pins.  
,
Figure 1-2 Peripheral Subsystem  
56F8367 Technical Data, Rev. 3.0  
12  
Freescale Semiconductor  
Preliminary  
Architecture Block Diagram  
Table 1-2 Bus Signal Names  
Name  
Function  
Program Memory Interface  
pdb_m[15:0] Program data bus for instruction word fetches or read operations.  
cdbw[15:0]  
Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus  
are used for writes to program memory.)  
pab[20:0]  
Program memory address bus. Data is returned on pdb_m bus.  
Primary Data Memory Interface Bus  
cdbr_m[31:0] Primary core data bus for memory reads. Addressed via xab1 bus.  
cdbw[31:0]  
xab1[23:0]  
Primary core data bus for memory writes. Addressed via xab1 bus.  
Primary data address bus. Capable of addressing bytes1, words, and long data types. Data is written  
on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.  
Secondary Data Memory Interface  
xdb2_m[15:0] Secondary data bus used for secondary data address bus xab2 in the dual memory reads.  
xab2[23:0]  
Secondary data address bus used for the second of two simultaneous accesses. Capable of  
addressing only words. Data is returned on xdb2_m.  
Peripheral Interface Bus  
IPBus [15:0] Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate  
as the Primary Data Memory and therefore generates no delays when accessing the processor.  
Write data is obtained from cdbw. Read data is provided to cdbr_m.  
1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced  
to 0.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
13  
1.5 Product Documentation  
The documents in Table 1-2 are required for a complete description and proper design with the  
56F8367/56F8167 devices. Documentation is available from local Freescale distributors, Freescale  
semiconductor sales offices, Freescale Literature Distribution Centers, or online at  
http://www.freescale.com.  
Table 1-3 Chip Documentation  
Topic  
DSP56800E  
Description  
Order Number  
Detailed description of the 56800E family architecture,  
and 16-bit controller core processor and the instruction  
set  
DSP56800EERM  
Reference Manual  
56F8300 Peripheral User  
Manual  
Detailed description of peripherals of the 56F8300  
devices  
MC56F8300UM  
MC56F83xxBLUM  
MC56F8367  
56F8300 SCI/CAN  
Bootloader User Manual  
Detailed description of the SCI/CAN Bootloaders  
56F8300 family of devices  
56F8367/56F8167  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
Errata  
Details any chip issues that might be present  
MC56F8367E  
MC56F8167E  
1.6 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F8367 Technical Data, Rev. 3.0  
14  
Freescale Semiconductor  
Preliminary  
Introduction  
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F8367 and 56F8167 are organized into functional groups, as detailed  
in Table 2-1 and as illustrated in Figure 2-1. In Table 2-2, each table row describes the signal or signals  
present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Number of Pins in Package  
Functional Group  
56F8367  
56F8167  
Power (VDD or VDDA  
)
9
9
Power Option Control  
1
7
1
7
Ground (VSS or VSSA  
)
Supply Capacitors1 & VPP  
6
6
PLL and Clock  
4
24  
16  
10  
6
4
24  
16  
10  
6
Address Bus  
Data Bus  
Bus Control  
Interrupt and Program Control  
Pulse Width Modulator (PWM) Ports  
Serial Peripheral Interface (SPI) Port 0  
Serial Peripheral Interface (SPI) Port 1  
26  
4
13  
4
4
4
Quadrature Decoder Port 02  
Quadrature Decoder Port 13  
4
4
4
4
Serial Communications Interface (SCI) Ports2  
CAN Ports  
2
21  
6
21  
2
Analog to Digital Converter (ADC) Ports  
Timer Module Ports  
JTAG/Enhanced On-Chip Emulation (EOnCE)  
Temperature Sense  
5
5
1
7
Dedicated GPIO  
1. If the on-chip regulator is disabled, the VCAP pins serve as 2.5V VDD_CORE power inputs  
2. Alternately, can function as Quad Timer pins  
3. Pins in this section can function as Quad Timer, SPI #1, or GPIO  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
15  
V
DD_IO  
Power  
Power  
7
1
1
6
PHASEA0 (TA0, GPIOC4)  
PHASEB0 (TA1, GPIOC5)  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
V
Quadrature  
Decoder 0  
or Quad  
1
1
1
1
DDA_OSC_PLL  
V
V
DDA_ADC  
Power  
V
SS  
Ground  
Ground  
Timer A  
SSA_ADC  
1
1
56F8367  
OCR_DIS  
SCLK0  
1
1
1
1
SPI0 or  
GPIO  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
SS0 (GPIOE7)  
*V  
1 - V  
4
2
Other  
Supply  
Ports  
CAP  
CAP  
4
2
V
1 & V  
PP  
PP  
CLKMODE  
EXTAL  
XTAL  
1
1
Quadrature  
Decoder 1 or  
Quad Timer B  
or SPI 1 or  
GPIO  
PHASEA1(TB0, SCLK1, GPIOC0)  
PHASEB1 (TB1, MOSI1, GPIOC1)  
INDEX1 (TB2, MISO1, GPIOC2)  
HOME1 (TB3, SS1, GPIOC3)  
PLL  
and  
Clock  
1
1
1
1
1
1
CLKO  
A0 - A5 (GPIOA8 - 13)  
A6 - A7 (GPIOE2 - 3)  
A8 - A15 (GPIOA0 - 7)  
6
2
PWMA0 - 5  
6
3
4
ISA0 - 2 (GPIOC8 - 10)  
FAULTA0 - 3  
PWMA  
PWMB  
External  
Address  
Bus  
8
8
1
1
1
1
GPIOB0 - 7 (A16 - 23)  
GPIOB4 (A20, prescaler_clock)  
GPIOB5 (A21, SYS_CLK)  
or GPIO  
PWMB0 - 5  
6
ISB0 - 2 (GPIOD10 - 12)  
FAULTB0 - 3  
GPIOB6 (A22, SYS_CLK2)  
GPIOB7 (A23, oscillator_clock)  
3
4
D0 - D6 (GPIOF9 - 15)  
D7 - D15 (GPIOF0 - 8)  
External  
Data Bus  
7
9
ANA0 - 7  
8
ADCA  
ADCB  
V
REF  
5
8
ANB0 - 7  
RD  
1
1
WR  
Temperature  
Sense  
Temp_Sense  
PS/CS0 (GPIODF8)  
DS/CS1 (GPIOFD9)  
1
1
1
1
External  
Bus  
Control  
CAN_RX  
CAN_TX  
GPIOD0 (CS2, CAN2_TX)  
1
1
FlexCAN  
GPIOD1 (CS3, CAN2_RX)  
GPIOD2 - 5 (CS4 - 7)  
1
4
Quad Timer  
C and D or  
GPIO  
TC0 - 1 (GPIOE8 - 9)  
2
4
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI 0 or  
GPIO  
1
1
TD0 - 3 (GPIOE10 - 13)  
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
SCI 1 or  
GPIOD  
1
1
IRQA  
1
IRQB  
1
1
TCK  
TMS  
TDI  
EXTBOOT  
EMI_MODE  
INTERRUPT/  
PROGRAM  
CONTROL  
1
1
1
JTAG/  
EOnCE  
Port  
1
RESET  
RSTO  
TDO  
TRST  
1
1
1
1
* When the on-chip regulator is disabled, these four pins become 2.5V V  
.
DD_CORE  
1
Figure 2-1 56F8367 Signals Identified by Functional Group (160-pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8367 Technical Data, Rev. 3.0  
16  
Freescale Semiconductor  
Preliminary  
Introduction  
V
DD_IO  
Power  
Power  
Quadrature  
PHASEA0 (TA0, GPIOC4)  
PHASEB0 (TA1, GPIOC5)  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
7
1
1
1
1
1
V
Decoder 0  
or Quad  
Timer A or  
GPIO  
DDA_ADC  
V
DDA_OSC_PLL  
Power  
1
6
V
Ground  
Ground  
SS  
V
SSA_ADC  
1
1
56F8167  
OCR_DIS  
SCLK0  
1
1
1
1
SPI0 or  
GPIO  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
SS0 (GPIOE7)  
*V  
1 - V  
4
CAP  
Other  
Supply  
Ports  
CAP  
4
2
V
1 & V  
2
PP  
PP  
CLKMODE  
EXTAL  
XTAL  
1
1
(SCLK1, GPIOC0)  
(MOSI1, GPIOC1)  
(MISO1, GPIOC2)  
(SS1, GPIOC3)  
PLL  
and  
Clock  
1
1
1
1
SPI 1 or  
GPIO  
1
1
CLKO  
A0 - A5 (GPIOA8 - 13)  
A6 - A7 (GPIOE2 - 3)  
A8 - A15 (GPIOA0 - 7)  
6
2
(GPIOC8 - 10)  
GPIO  
3
External  
Address  
Bus  
8
4
1
1
1
1
GPIOB0 - 3 (A16 - 19)  
GPIOB4 (A20, prescaler_clock)  
GPIOB5 (A21, SYS_CLK)  
PWMB0 - 5  
or GPIO  
6
3
4
PWMB or  
GPIO  
ISB0 - 2 (GPIOD10 - 12)  
FAULTB0 - 3  
GPIOB6 (A22, SYS_CLK2)  
GPIOB7 (A23, oscillator_clock)  
ADCA  
ADCB  
ANA0 - 7  
External  
Data Bus  
or GPIO  
8
D0 - D6 (GPIOF9 - 15)  
D7 - D15 (GPIOF0 - 8)  
7
9
V
REF  
5
8
ANB0 - 7  
RD  
WR  
1
1
1
1
6
External  
Bus  
Control or  
GPIO  
PS (CS0, GPIOD8)  
DS (CS1, GPIOD9)  
GPIOD0 - 5 (CS2 - 7)  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI 0 or  
GPIO  
1
1
QUAD  
TIMER C or  
GPIO  
TC0 - 1 (GPIOE8 - 9)  
(GPIOE10 - 13)  
2
4
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
SCI 1  
or GPIO  
1
1
IRQA  
1
IRQB  
1
1
TCK  
TMS  
TDI  
1
1
1
EXTBOOT  
EMI_MODE  
INTERRUPT  
/ PROGRAM  
CONTROL  
JTAG/  
EOnCE  
Port  
1
RESET  
RSTO  
TDO  
TRST  
1
1
1
1
* When the on-chip regulator is disabled, these four pins become 2.5V V  
.
DD_CORE  
1
Figure 2-2 56F8167 Signals Identified by Functional Group (160-pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
17  
2.2 Signal Pins  
After reset, each pin is configured for its primary function (listed first). Any alternate functionality must  
be programmed.  
Note: Signals in italics are NOT available in the 56F8167 device.  
Note: The 160 Map Ball Grid Array is not available in the 56F8167 device.  
If the “State During Reset” lists more than one state for a pin, the first state is the actual reset state. Other  
states show the reset condition of the alternate function, which you get if the alternate pin function is  
selected without changing the configuration of the alternate peripheral. For example, the A8/GPIOA0 pin  
shows that it is tri-stated during reset. If the GPIOA_PER is changed to select the GPIO function of the  
pin, it will become an input if no other registers are changed.  
Note: LQFP Pin numbers and MBGA Ball numbers do not always correlate in Table 2-2. Please contact  
factory for exact correlation.  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDDA_ADC  
1,16  
31,42  
77,96  
134  
F4,K5  
E5,K7  
E9,K10  
F11  
Supply  
I/O Power — This pin supplies 3.3V power to the chip I/O interface  
and also the Processor core throught the on-chip voltage regulator, if it  
is enabled.  
114  
92  
C14  
K13  
Supply  
Supply  
ADC Power — This pin supplies 3.3V power to the ADC modules. It  
must be connected to a clean analog power supply.  
VDDA_OSC_  
Oscillator and PLL Power — This pin supplies 3.3V power to the  
OSC and to the internal regulator that in turn supplies the Phase  
Locked Loop. It must be connected to a clean analog power supply.  
PLL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
27,41  
74,80 G11,E7  
125  
160  
J4,K11  
Supply  
VSS — These pins provide ground for chip logic and I/O drivers.  
J11,E6  
56F8367 Technical Data, Rev. 3.0  
18  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
VSSA_ADC  
OCR_DIS  
115  
D12  
K14  
Supply  
Input  
ADC Analog Ground — This pin supplies an analog ground to the  
ADC modules.  
91  
Input  
On-Chip Regulator Disable —  
Tie this pin to VSS to enable the on-chip regulator  
Tie this pin to VDD to disable the on-chip regulator  
This pin is intended to be a static DC signal from power-up to  
shut down. Do not try to toggle this pin for power savings during  
operation.  
VCAP1*  
VCAP2*  
VCAP3*  
VCAP4*  
62  
144  
95  
K8  
E8  
Supply  
Supply  
VCAP1 - 4 — When OCR_DIS is tied to VSS (regulator enabled),  
connect each pin to a 2.2µF or greater bypass capacitor in order to  
bypass the core logic voltage regulator, required for proper chip  
operation. When OCR_DIS is tied to VDD (regulator disabled), these  
H11  
G4  
pins become VDD_CORE and should be connected to a regulated 2.5V  
power supply.  
15  
Note: This bypass is required even if the chip is powered with an  
external supply.  
* When the on-chip regulator is disabled, these four pins become 2.5V VDD_CORE  
.
VPP  
1
2
141  
2
A7  
C2  
Input  
Input  
VPP1 - 2 — These pins should be left unconnected as an open circuit  
for normal functionality.  
VPP  
CLKMODE  
99  
H12  
Input  
Input  
Clock Input Mode Selection — This input determines the function of  
the XTAL and EXTAL pins.  
1 = External clock input on XTAL is used to directly drive the input  
clock of the chip. The EXTAL pin should be grounded.  
0 = A crystal or ceramic resonator should be connected between XTAL  
and EXTAL.  
EXTAL  
XTAL  
94  
93  
J12  
Input  
Input  
External Crystal Oscillator Input — This input can be connected to  
an 8MHz external crystal. Tie this pin low if XTAL is driven by an  
external clock source.  
K12  
Input/  
Chip-drive Crystal Oscillator Output — This output connects the internal crystal  
Output  
n
oscillator output to an external crystal.  
If an external clock is used, XTAL must be used as the input and  
EXTAL connected to GND.  
The input clock can be selected to provide the clock directly to the  
core. This input clock can also be selected as the input clock for the  
on-chip PLL.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
19  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
CLKO  
3
D3  
Output  
Tri-Stated Clock Output — This pin outputs a buffered clock signal. Using the  
SIM CLKO Select Register (SIM_CLKOSR), this pin can be  
programmed as any of the following: disabled, CLK_MSTR (system  
clock), IPBus clock, oscillator output, prescaler clock and postscaler  
clock. Other signals are also available for test purposes.  
See Part 6.5.7 for details.  
A0  
154  
C3  
Output  
Tri-stated Address Bus — A0 - A5 specify six of the address lines for external  
program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), A0 - A5 and EMI control signals are tri-stated when the external  
bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOA8)  
Input/  
Input  
Port A GPIO — These six GPIO pins can be individually programmed  
Output  
as input or output pins.  
A1  
(GPIOA9)  
10  
11  
12  
13  
14  
17  
E3  
E4  
F2  
F1  
F3  
G1  
After reset, the default state is Address Bus.  
A2  
(GPIOA10)  
To deactivate the internal pull-up resistor, clear the appropriate GPIO  
bit in the GPIOA_PUR register.  
A3  
(GPIOA11)  
Example: GPIOA8, clear bit 8 in the GPIOA_PUR register.  
A4  
(GPIOA12)  
A5  
(GPIOA13)  
A6  
Output  
Tri-stated Address Bus — A6 - A7 specify two of the address lines for external  
program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), A6 - A7 and EMI control signals are tri-stated when the external  
bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOE2)  
Schmitt  
Input/  
Output  
Input  
Port E GPIO — These two GPIO pins can be individually programmed  
as input or output pins.  
A7  
(GPIOE3)  
18  
G3  
After reset, the default state is Address Bus.  
To deactivate the internal pull-up resistor, clear the appropriate GPIO  
bit in the GPIOE_PUR register.  
Example: GPIOE2, clear bit 2 in the GPIOE_PUR register.  
56F8367 Technical Data, Rev. 3.0  
20  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
A8  
19  
G2  
Output  
Tri-stated Address Bus— A8 - A15 specify eight of the address lines for external  
program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), A8 - A15 and EMI control signals are tri-stated when the external  
bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOA0)  
Schmitt  
Input/  
Output  
Input  
Port A GPIO — These eight GPIO pins can be individually  
programmed as input or output pins.  
A9  
(GPIOA1)  
20  
21  
22  
23  
24  
25  
26  
H1  
H2  
H4  
H3  
J1  
After reset, the default state is Address Bus.  
A10  
(GPIOA2)  
To deactivate the internal pull-up resistor, clear the appropriate GPIO  
bit in the GPIOA_PUR register.  
A11  
(GPIOA3)  
Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.  
A12  
(GPIOA4)  
A13  
(GPIOA5)  
A14  
(GPIOA6)  
J2  
A15  
J3  
(GPIOA7)  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
21  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
GPIOB0  
33  
L1  
Schmitt  
Input/  
Input  
Port B GPIO — These four GPIO pins can be programmed as input or  
output pins.  
Output  
(A16)  
Output  
Tri-stated Address Bus — A16 - A19 specify one of the address lines for  
external program or data memory accesses.  
GPIOB1  
(A17)  
34  
35  
36  
L3  
L2  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), A16 - A19 and EMI control signals are tri-stated when the external  
bus is inactive.  
GPIOB2  
(A18)  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
GPIOB3  
(A19)  
M1  
After reset, the startup state of GPIOB0 - GPIOB3 (GPIO or address)  
is determined as a function of EXTBOOT, EMI_MODE and the Flash  
security setting. See Table 4-4 for further information on when this pin  
is configured as an address pin at reset. In all cases, this state may be  
changed by writing to GPIOB_PER.  
To deactivate the internal pull-up resistor, clear the appropriate GPIO  
bit in the GPIOB_PUR register.  
GPIOB4  
(A20)  
37  
M2  
Schmitt  
Input/  
Output  
Input  
Port B GPIO — These four GPIO pins can be programmed as input or  
output pins.  
Output  
Tri-stated Address Bus — A20 - A23 specify one of the address lines for  
external program or data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), A20–A23 and EMI control signals are tri-stated when the external  
bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(prescaler_  
clock)  
Output  
Output  
Clock Outputs — can be used to monitor the prescaler_clock,  
SYS_CLK, SYS_CLK2 or oscillator_clock on GPIOB4 through  
GPIOB7, respectively.  
GPIOB5  
(A21)  
(SYS_CLK)  
46  
47  
N4  
P3  
After reset, the default state is GPIO.  
These pins can also be used to extend the external address bus to its  
full length or to view any of several system clocks. In these cases, the  
GPIO_B_PER can be used to individually disable the GPIO. The  
CLKOSR register in the SIM ( see Part 6.5.7) can then be used to  
choose between address and clock functions.  
GPIOB6  
(A22)  
(SYS_CLK2  
)
GPIOB7  
(A23)  
48  
M4  
(oscillator_  
clock)  
56F8367 Technical Data, Rev. 3.0  
22  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
D0  
70  
P10  
Input/  
Tri-stated Data Bus — D0 - D6 specify part of the data for external program or data  
Output  
memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), D0–D6 are tri-stated when the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOF9)  
Input/  
Input  
Port F GPIO — These seven GPIO pins can be individually  
Output  
programmed as input or output pins.  
D1  
(GPIOF10)  
71  
83  
86  
88  
89  
90  
N10  
P14  
L13  
L14  
L12  
L11  
After reset, these pins default to the EMI Data Bus function.  
D2  
(GPIOF11)  
To deactivate the internal pull-up resistor, clear the appropriate GPIO  
bit in the GPIOF_PUR register.  
D3  
(GPIOF12)  
Example: GPIOF9, clear bit 9 in the GPIOF_PUR register.  
D4  
(GPIOF13)  
D5  
(GPIOF14)  
D6  
(GPIOF15)  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
23  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
D7  
28  
K1  
Input/  
Tri-stated Data Bus — D7 - D15 specify part of the data for external program or  
Output  
data memory accesses.  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), D7 - D15 are tri-stated when the external bus is  
inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(GPIOF0)  
Input/  
Input  
Port F GPIO — These nine GPIO pins can be individually  
Output  
programmed as input or output pins.  
D8  
(GPIOF1)  
29  
30  
K3  
K2  
K4  
A5  
A4  
B5  
C4  
A3  
P5  
At reset, these pins default to Data Bus functionality.  
D9  
(GPIOF2)  
To deactivate the internal pull-up resistor, clear the appropriate GPIO  
bit in the GPIOF_PUR register.  
D10  
(GPIOF3)  
32  
Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.  
D11  
(GPIOF4)  
149  
150  
151  
152  
153  
52  
D12  
(GPIOF5)  
D13  
(GPIOF6)  
D14  
(GPIOF7)  
D15  
(GPIOF8)  
RD  
Output  
Tri-stated Read Enable — RD is asserted during external memory read cycles.  
When RD is asserted low, pins D0 - D15 become inputs and an  
external device is enabled onto the data bus. When RD is deasserted  
high, the external data is latched inside the device. When RD is  
asserted, it qualifies the A0 - A23, PS, DS, and CSn pins. RD can be  
connected directly to the OE pin of a static RAM or ROM.  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), RD is tri-stated when the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
To deactivate the internal pull-up resistor, set the CTRL bit in the  
SIM_PUDR register.  
56F8367 Technical Data, Rev. 3.0  
24  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
WR  
51  
L4  
Output  
Tri-stated Write Enable — WR is asserted during external memory write cycles.  
When WR is asserted low, pins D0 - D15 become outputs and the  
device puts data on the bus. When WR is deasserted high, the  
external data is latched inside the external device. When WR is  
asserted, it qualifies the A0 - A23, PS, DS, and CSn pins. WR can be  
connected directly to the WE pin of a static RAM.  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), WR is tri-stated when the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
To deactivate the internal pull-up resistor, set the CTRL bit in the  
SIM_PUDR register.  
PS  
53  
N6  
Output  
Tri-stated Program Memory Select — This signal is actually CS0 in the EMI,  
which is programmed at reset for compatibility with the 56F80x PS  
signal. PS is asserted low for external program memory access.  
(CS0)  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), CS0 is tri-stated when the external bus is inactive.  
CS0 resets to provide the PS function as defined on the 56F80x  
devices.  
(GPIOD8)  
Input/  
Input  
Port D GPIO — This GPIO pin can be individually programmed as an  
Output  
input or output pin.  
To deactivate the internal pull-up resistor, clear bit 8 in the  
GPIOD_PUR register.  
DS  
54  
L5  
Outpu  
Tri-stated Data Memory Select — This signal is actually CS1 in the EMI, which  
is programmed at reset for compatibility with the 56F80x DS signal. DS  
is asserted low for external data memory access.  
(CS1)  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), CS1 is tri-stated when the external bus is inactive.  
CS1 resets to provide the DS function as defined on the 56F80x  
devices.  
(GPIOD9)  
Input/  
Input  
Port D GPIO — This GPIO pin can be individually programmed as an  
Outputt  
input or output pin.  
To deactivate the internal pull-up resistor, clear bit 9 in the  
GPIOD_PUR register.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
25  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
GPIOD0  
(CS2)  
55  
P6  
Input/  
Output  
Input  
Port D GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
Tri-stated Chip Select — CS2 may be programmed within the EMI module to act  
as a chip select for specific areas of the external memory map.  
Depending upon the state of the DRV bit in the EMI Bus Control  
Register (BCR), CS2 is tri-stated when the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(CAN2_TX)  
Open  
Drain  
Output  
FlexCAN2 Transmit Data — CAN output.  
Output  
At reset, this pin is configured as GPIO. This configuration can be  
changed by setting bit 0 in the GPIO_D_PER register. Then change bit  
4 in the SIM_GPS register to select the desired peripheral function.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOD_PUR register.  
GPIOD1  
(CS3)  
56  
L6  
Schmitt  
Input/  
Output  
Input  
Port D GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
Tri-stated Chip Select — CS3 may be programmed within the EMI module to act  
as a chip select for specific areas of the external memory map.  
Depending upon the state of the DRV bit in the EMI Bus Control  
Register (BCR), CS3 is tri-stated when the external bus is inactive.  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
(CAN2_RX)  
Schmitt  
Input  
Input  
FlexCAN2 Receive Data — This is the CAN input. This pin has an  
internal pull-up resistor.  
At reset, this pin is configured as GPIO. This configuration can be  
changed by setting bit 1 in the GPIO_D_PER register. Then change bit  
5 in the SIM_GPS register to select the desired peripheral function.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOD_PUR register.  
56F8367 Technical Data, Rev. 3.0  
26  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
GPIOD2  
57  
K6  
Input/  
Input  
Port D GPIO — These four GPIO pins can be individually programmed  
Output  
as input or output pins.  
(CS4)  
Output  
Tri-stated Chip Select — CS4 - CS7 may be programmed within the EMI module  
to act as chip selects for specific areas of the external memory map.  
GPIOD3  
(CS5)  
58  
59  
60  
N7  
P7  
L7  
Depending upon the state of the DRV bit in the EMI bus control register  
(BCR), CS4 - CS7 are tri-stated when the external bus is inactive.  
GPIOD4  
(CS6)  
Most designs will want to change the DRV state to DRV = 1 instead of  
using the default setting.  
GPIOD5  
(CS7)  
At reset, these pins are configured as GPIO.  
To deactivate the internal pull-up resistor, clear the appropriate GPIO  
bit in the GPIOD_PUR register.  
Example: GPIOD2, clear bit 2 in the GPIOD_PUR register.  
TXD0  
4
B1  
D2  
P4  
Output  
Tri-stated Transmit Data — SCI0 transmit data output  
(GPIOE0)  
Input/  
Output  
Input  
Port E GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOE_PUR register.  
RXD0  
5
Input  
Input  
Input  
Receive Data — SCI0 receive data input  
(GPIOE1)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOE_PUR register.  
TXD1  
49  
Output  
Tri-stated Transmit Data — SCI1 transmit data output  
(GPIOD6)  
Input/  
Input  
Port D GPIO — This GPIO pin can be individually programmed as an  
Output  
input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOD_PUR register.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
27  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
RXD1  
50  
N5  
Input  
Input  
Input  
Receive Data — SCI1 receive data input  
(GPIOD7)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as an  
Output  
input or output pin.  
After reset, the default state is SCI input.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOD_PUR register.  
TCK  
TMS  
137  
138  
D8  
A8  
Schmitt  
Input  
Input,  
Test Clock Input — This input pin provides a gated clock to  
pulled low synchronize the test logic and shift serial data to the JTAG/EOnCE  
internally port. The pin is connected internally to a pull-down resistor.  
Schmitt  
Input  
Input,  
pulled  
high  
Test Mode Select Input — This input pin is used to sequence the  
JTAG TAP controller’s state machine. It is sampled on the rising edge  
of TCK and has an on-chip pull-up resistor.  
internally  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
TDI  
139  
B8  
Schmitt  
Input  
Input,  
pulled  
high  
Test Data Input — This input pin provides a serial input data stream to  
the JTAG/EOnCE port. It is sampled on the rising edge of TCK and  
has an on-chip pull-up resistor.  
internally  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
TDO  
140  
136  
D7  
D9  
Output  
Tri-stated Test Data Output — This tri-stateable output pin provides a serial  
output data stream from the JTAG/EOnCE port. It is driven in the  
shift-IR and shift-DR controller states, and changes on the falling edge  
of TCK.  
TRST  
Schmitt  
Input  
Input,  
pulled  
high  
Test Reset — As an input, a low signal on this pin provides a reset  
signal to the JTAG TAP controller. To ensure complete hardware  
reset, TRST should be asserted whenever RESET is asserted. The  
internally only exception occurs in a debugging environment when a hardware  
device reset is required and the JTAG/EOnCE module must not be  
reset. In this case, assert RESET, but do not assert TRST.  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
56F8367 Technical Data, Rev. 3.0  
28  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
Phase A — Quadrature Decoder 0, PHASEA input  
TA0 — Timer A, Channel 0  
PHASEA0  
(TA0)  
155  
A2  
Schmitt  
Input  
Input  
Input  
Schmitt  
Input/  
Output  
(GPIOC4)  
Schmitt  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
After reset, the default state is PHASEA0.  
To deactivate the internal pull-up resistor, clear bit 4 of the  
GPIOC_PUR register.  
PHASEB0  
(TA1)  
156  
B4  
Schmitt  
Input  
Input  
Input  
Phase B — Quadrature Decoder 0, PHASEB input  
Schmitt  
Input/  
TA1 — Timer A, Channel  
Output  
(GPIOC5)  
Schmitt  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
After reset, the default state is PHASEB0.  
To deactivate the internal pull-up resistor, clear bit 5 of the  
GPIOC_PUR register.  
INDEX0  
(TA2)  
157  
A1  
Schmitt  
Input  
Input  
Input  
Index — Quadrature Decoder 0, INDEX input  
Schmitt  
Input/  
TA2 — Timer A, Channel 2  
Output  
(GPOPC6)  
Schmitt  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
After reset, the default state is INDEX0.  
To deactivate the internal pull-up resistor, clear bit 6 of the  
GPIOC_PUR register.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
29  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
Home — Quadrature Decoder 0, HOME input  
TA3 — Timer A, Channel 3  
HOME0  
(TA3)  
158  
B3  
Schmitt  
Input  
Input  
Input  
Schmitt  
Input/  
Output  
(GPIOC7)  
Schmitt  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
After reset, the default state is HOME0.  
To deactivate the internal pull-up resistor, clear bit 7 of the  
GPIOC_PUR register.  
SCLK0  
146  
A6  
Schmitt  
Input/  
Output  
Input  
Input  
SPI 0 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as the  
data clock input.  
(GPIOE4)  
Schmitt  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
After reset, the default state is SCLK0.  
To deactivate the internal pull-up resistor, clear bit 4 in the  
GPIOE_PUR register.  
MOSI0  
148  
D4  
Input/  
Output  
Tri-stated SPI 0 Master Out/Slave In — This serial data pin is an output from a  
master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge the  
slave device uses to latch the data.  
(GPIOE5)  
Input/  
Input  
Port E GPIO — This GPIO pin can be individually programmed as an  
Output  
input or output pin.  
After reset, the default state is MOSI0.  
To deactivate the internal pull-up resistor, clear bit 5 in the  
GPIOE_PUR register.  
56F8367 Technical Data, Rev. 3.0  
30  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
MISO0  
147  
B6  
Input/  
Output  
Input  
SPI 0 Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device  
is not selected. The slave device places data on the MISO line a  
half-cycle before the clock edge the master device uses to latch the  
data.  
(GPIOE6)  
Input/  
Input  
Port E GPIO — This GPIO pin can be individually programmed as an  
Output  
input or output pin.  
After reset, the default state is MISO0.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOE_PUR register.  
SS0  
145  
D5  
Input  
Input  
Input  
SPI 0 Slave Select — SS0 is used in slave mode to indicate to the SPI  
module that the current transfer is to be received.  
(GPIOE7)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
input or output pin.  
After reset, the default state is SS0.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOE_PUR register.  
PHASEA1  
(TB0)  
6
C1  
Schmitt  
Input  
Input  
Input  
Phase A1 — Quadrature Decoder 1, PHASEA input for decoder 1.  
Schmitt  
Input/  
TB0 — Timer B, Channel 0  
Output  
(SCLK1)  
Schmitt  
Input/  
Output  
Input  
Input  
SPI 1 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as the  
data clock input. To activate the SPI function, set the PHSA_ALT bit in  
the SIM_GPS register. For details, see Part 6.5.8.  
(GPIOC0)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
In the 56F8367, the default state after reset is PHASEA1.  
In the 56F8167, the default state is not one of the functions offered and  
must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOC_PUR register.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
31  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
Phase B1 — Quadrature Decoder 1, PHASEB input for decoder 1.  
TB1 — Timer B, Channel 1  
PHASEB1  
(TB1)  
7
D1  
Schmitt  
Input  
Input  
Input  
Schmitt  
Input/  
Output  
(MOSI1)  
Schmitt  
Input/  
Output  
Tri-stated SPI 1 Master Out/Slave In — This serial data pin is an output from a  
master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge the  
slave device uses to latch the data. To activate the SPI function, set  
the PHSB_ALT bit in the SIM_GPS register. For details, see Part  
6.5.8.  
(GPIOC1)  
Schmitt  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
In the 56F8367, the default state after reset is PHASEB1.  
In the 56F8167, the default state is not one of the functions offered and  
must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOC_PUR register.  
INDEX1  
(TB2)  
8
E2  
Schmitt  
Input  
Input  
Input  
Index1 — Quadrature Decoder 1, INDEX input  
Schmitt  
Input/  
TB2 — Timer B, Channel 2  
Output  
(MISO1)  
Schmitt  
Input/  
Output  
Input  
SPI 1 Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device  
is not selected. The slave device places data on the MISO line a  
half-cycle before the clock edge the master device uses to latch the  
data. To activate the SPI function, set the INDEX_ALT bit in the  
SIM_GPS register. For details, see Part 6.5.8.  
(GPIOC2)  
Schmitt  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
In the 56F8367, the default state after reset is INDEX1.  
In the 56F8167, the default state is not one of the functions offered and  
must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 2 in the  
GPIOC_PUR register.  
56F8367 Technical Data, Rev. 3.0  
32  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
Home — Quadrature Decoder 1, HOME input  
TB3 — Timer B, Channel 3  
HOME1  
(TB3)  
9
E1  
Schmitt  
Input  
Input  
Input  
Schmitt  
Input/  
Output  
(SS1)  
Schmitt  
Input  
Input  
Input  
SPI 1 Slave Select — In the master mode, this pin is used to arbitrate  
multiple masters. In slave mode, this pin is used to select the slave. To  
activate the SPI function, set the HOME_ALT bit in the SIM_GPS  
register. For details, see Part 6.5.8.  
(GPIOC3)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as an  
input or output pin.  
Output  
In the 56F8367, the default state after reset is HOME1.  
In the 56F8167, the default state is not one of the functions offered and  
must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 3 in the  
GPIOC_PUR register.  
PWMA0  
PWMA1  
PWMA2  
PWMA3  
PWMA4  
PWMA5  
ISA0  
73  
75  
M11  
P12  
N11  
M12  
P13  
N12  
A11  
Output  
Tri-State PWMA0 - 5 — These are six PWMA outputs.  
76  
78  
79  
81  
126  
Schmitt  
Input  
Input  
Input  
ISA0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel operation  
for PWMA.  
(GPIOC8)  
Schmitt  
Input/  
Output  
Port C GPIO — These GPIO pins can be individually programmed as  
input or output pins.  
ISA1  
(GPIOC9)  
127  
128  
C11  
D11  
In the 56F8367, these pins default to ISA functionality after reset.  
ISA2  
(GPIOC10)  
In the 56F8167, the default state is not one of the functions offered and  
must be reconfigured.  
To deactivate the internal pull-up resistor, clear the appropriate bit of  
the GPIOC_PUR register. For details, see Part 6.5.8.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
33  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
FAULTA0  
FAULTA1  
FAULTA2  
82  
84  
85  
N13  
N14  
M13  
Schmitt  
Input  
Input  
FAULTA0 - 2 — These three fault input pins are used for disabling  
selected PWMA outputs in cases where fault conditions originate  
off-chip.  
To deactivate the internal pull-up resistor, set the PWMA0 bit in the  
SIM_PUDR register. For details, see Part 6.5.8.  
FAULTA3  
87  
M14  
Schmitt  
Input  
Input  
FAULTA3 — This fault input pin is used for disabling selected PWMA  
outputs in cases where fault conditions originate off-chip.  
To deactivate the internal pull-up resistor, set the PWMA1 bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
PWMB0  
PWMB1  
PWMB2  
PWMB3  
PWMB4  
PWMB5  
ISB0  
38  
39  
40  
43  
44  
45  
61  
N1  
P1  
N2  
N3  
P2  
M3  
N8  
Output  
Tri-State PWMB0 - 5 — Six PWMB output pins.  
Schmitt  
Input  
Input  
Input  
ISB0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel operation  
for PWMB.  
(GPIOD10)  
Schmitt  
Input/  
Output  
Port D GPIO — These GPIO pins can be individually programmed as  
input or output pins.  
ISB1  
(GPIOD11)  
63  
64  
L8  
P8  
At reset, these pins default to ISB functionality.  
ISB2  
(GPIOD12)  
To deactivate the internal pull-up resistor, clear the appropriate bit of  
the GPIOD_PUR register. For details, see Part 6.5.8.  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
ANA0  
67  
68  
N9  
L9  
Schmitt  
Input  
Input  
Input  
FAULTB0 - 3 — These four fault input pins are used for disabling  
selected PWMB outputs in cases where fault conditions originate  
off-chip.  
69  
L10  
P11  
G13  
H13  
G12  
F13  
To deactivate the internal pull-up resistor, set the PWMB bit in the  
SIM_PUDR register. For details, see Part 6.5.8.  
72  
100  
101  
102  
103  
Input  
ANA0 - 3 — Analog inputs to ADC A, channel 0  
ANA1  
ANA2  
ANA3  
56F8367 Technical Data, Rev. 3.0  
34  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
ANA4  
ANA5  
ANA6  
ANA7  
VREFH  
104  
105  
106  
107  
113  
F12  
H14  
G14  
E13  
D14  
Input  
Input  
ANA4 - 7 — Analog inputs to ADC A, channel 1  
Input  
Input  
VREFH — Analog Reference Voltage High. VREFH must be less than or  
equal to VDDA_ADC.  
VREFP  
VREFMID  
VREFN  
112  
111  
110  
109  
D13  
E14  
F14  
E12  
Input/  
Output  
Input/  
Output  
VREFP, VREFMID & VREFN — Internal pins for voltage reference which  
are brought off-chip so they can be bypassed. Connect to a 0.1µF low  
ESR capacitor.  
VREFLO  
Input  
Input  
Input  
Input  
VREFLO — Analog Reference Voltage Low. This should normally be  
connected to a low-noise VSS  
.
ANB0  
ANB1  
ANB2  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
116  
117  
118  
119  
120  
121  
122  
123  
C13  
B14  
C12  
B13  
A14  
A13  
B12  
A12  
E11  
ANB0 - 3 — Analog inputs to ADC B, channel 0  
Input  
Input  
ANB4 - 7 — Analog inputs to ADC B, channel 1  
TEMP_SEN 108  
Output  
Output  
Input  
Temperature Sense Diode — This signal connects to an on-chip  
diode that can be connected to one of the ADC inputs and used to  
monitor the temperature of the die. Must be bypassed with a 0.01µF  
capacitor.  
SE  
CAN_RX  
CAN_TX  
143  
142  
B7  
D6  
Schmitt  
Input  
FlexCAN Receive Data — This is the CAN input. This pin has an  
internal pull-up resistor.  
To deactivate the internal pull-up resistor, set the CAN bit in the  
SIM_PUDR register.  
Open  
Drain  
Open  
Drain  
FlexCAN Transmit Data — CAN output  
Output  
Output  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
35  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
TC0  
133  
A9  
Schmitt  
Input/  
Input  
TC0 — Timer C, Channel 0 and 1  
Output  
(GPIOE8)  
Schmitt  
Input/  
Output  
Input  
Port E GPIO — These GPIO pins can be individually programmed as  
input or output pins.  
TC1  
(GPIOE9)  
135  
129  
B9  
At reset, these pins default to Timer functionality.  
To deactivate the internal pull-up resistor, clear the appropriate bit of  
the GPIOE_PUR register.  
TD0  
B10  
Schmitt  
Input/  
Output  
Input  
Input  
TD0 - 3— Timer D, Channels 0, 1, 2 and 3  
(GPIOE10)  
Schmitt  
Input/  
Output  
Port E GPIO — These GPIO pins can be individually programmed as  
input or output pins.  
TD1  
(GPIOE11)  
130  
131  
132  
A10  
D10  
E10  
At reset, these pins default to Timer functionality.  
TD2  
(GPIOE12)  
To deactivate the internal pull-up resistor, clear the appropriate bit of  
the GPIOE_PUR register. See Part 6.5.6 for details.  
TD3  
(GPIOE13)  
IRQA  
IRQB  
65  
66  
K9  
P9  
Schmitt  
Input  
Input  
External Interrupt Request A and B — The IRQA and IRQB inputs  
are asynchronous external interrupt requests during Stop and Wait  
mode operation. During other operating modes, they are synchronized  
external interrupt requests, which indicate an external device is  
requesting service. They can be programmed to be level-sensitive or  
negative-edge triggered.  
To deactivate the internal pull-up resistor, set the IRQ bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
56F8367 Technical Data, Rev. 3.0  
36  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 160-Pin LQFP and MBGA  
State  
During  
Reset  
Signal  
Name  
Pin  
No.  
Ball No.  
Type  
Signal Description  
RESET  
98  
J14  
Schmitt  
Input  
Input  
Reset — This input is a direct hardware reset on the processor. When  
RESET is asserted low, the device is initialized and placed in the reset  
state. A Schmitt trigger input is used for noise immunity. When the  
RESET pin is deasserted, the initial chip operating mode is latched  
from the EXTBOOT pin. The internal reset signal will be deasserted  
synchronous with the internal clocks after a fixed number of internal  
clocks.  
To ensure complete hardware reset, RESET and TRST should be  
asserted together. The only exception occurs in a debugging  
environment when a hardware device reset is required and the  
JTAG/EOnCE module must not be reset. In this case, assert RESET  
but do not assert TRST.  
Note: The internal Power-On Reset will assert on initial power-up.  
To deactivate the internal pull-up resistor, set the RESET bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
RSTO  
97  
J13  
Output  
Output  
Input  
Reset Output — This output reflects the internal reset state of the  
chip.  
EXTBOOT  
124  
B11  
Schmitt  
Input  
External Boot — This input is tied to VDD to force the device to boot  
from off-chip memory (assuming that the on-chip Flash memory is not  
in a secure state). Otherwise, it is tied to ground. For details, see  
Table 4-4.  
Note: When this pin is tied low, the customer boot software should  
disable the internal pull-up resistor by setting the XBOOT bit of the  
SIM_PUDR; see Part 6.5.6.  
EMI_MODE 159  
B2  
Schmitt  
Input  
Input  
External Memory Mode — This input is tied to VDD in order to enable  
an extra four address lines, for a total of 20 address lines out of reset.  
This function is also affected by EXTBOOT and the Flash security  
mode. For details, see Table 4-4.  
If a 20-bit address bus is not desired, then this pin is tied to ground.  
Note: When this pin is tied low, the customer boot software should  
disable the internal pull-up resistor by setting the EMI_MODE bit of the  
SIM_PUDR; see Part 6.5.6.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
37  
Part 3 On-Chip Clock Synthesis (OCCS)  
3.1 Introduction  
Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the OCCS.  
The material contained here identifies the specific features of the OCCS design. Figure 3-1 shows the  
specific OCCS block diagram to reference in the OCCS chapter of the 56F8300 Peripheral User Manual.  
CLKMODE  
XTAL  
ZSRC  
Crystal  
OSC  
Prescaler CLK  
PLLCOD  
SYS_CLK2  
Source to SIM  
EXTAL  
PLLCID  
PLLDB  
PLL  
F
F
OUT/2  
OUT  
Prescaler  
÷ (1,2,4,8  
Postscaler  
÷ (1,2,4,8)  
Postscaler CLK  
÷
2
x (1 to 128)  
)
Bus  
Interface  
Bus Interface & Control  
LCK  
Lock  
Detector  
Loss of Reference  
Clock Interrupt  
Loss of  
Reference  
Clock  
Detector  
Figure 3-1 OCCS Block Diagram  
3.2 External Clock Operation  
The system clock can be derived from an external crystal, ceramic resonator, or an external system clock  
signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic  
resonator must be connected between the EXTAL and XTAL pins.  
3.2.1  
Crystal Oscillator  
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the  
frequency range specified for the external crystal in Table 10-13. A recommended crystal oscillator circuit  
is shown in Figure 3-2. Follow the crystal supplier’s recommendations when selecting a crystal, since  
crystal parameters determine the component values required to provide maximum stability and reliable  
start-up. The crystal and associated components should be mounted as near as possible to the EXTAL and  
XTAL pins to minimize output distortion and start-up stabilization time.  
56F8367 Technical Data, Rev. 3.0  
38  
Freescale Semiconductor  
Preliminary  
External Clock Operation  
Crystal Frequency = 4 - 8MHz (optimized for 8MHz)  
EXTAL XTAL EXTAL XTAL  
RZ RZ  
Sample External Crystal Parameters:  
Rz = 750 KΩ  
Note: If the operating temperature range is limited to  
CLKMODE = 0  
below 85oC (105oC junction), then Rz = 10 Meg Ω  
CL1  
CL2  
Figure 3-2 Connecting to a Crystal Oscillator  
Note:  
The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
3.2.2  
Ceramic Resonator (Default)  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in Figure 3-3.  
Refer to the supplier’s recommendations when selecting a ceramic resonator and associated components.  
The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins.  
Resonator Frequency = 4 - 8MHz (optimized for 8MHz)  
3 Terminal  
2 Terminal  
Sample External Ceramic Resonator Parameters:  
Rz = 750 KΩ  
EXTAL XTAL  
RZ  
EXTAL XTAL  
RZ  
CLKMODE = 0  
CL1  
CL2  
C1  
C2  
Figure 3-3 Connecting a Ceramic Resonator  
Note:  
The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
3.2.3  
External Clock Source  
The recommended method of connecting an external clock is given in Figure 3-4. The external clock  
source is connected to XTAL and the EXTAL pin is grounded. When using an external clock source, set  
the OCCS_COHL bit high as well.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
39  
Note: When using an external clocking source with  
this configuration, the input “CLKMODE” should be  
high and the COHL bit in the OSCTL register  
should be set to 1.  
XTAL  
EXTAL  
VSS  
External  
Clock  
Figure 3-4 Connecting an External Clock Register  
3.3 Registers  
When referring to the register definitions for the OCCS in the 56F8300 Peripheral User Manual, use the  
register definitions without the internal Relaxation Oscillator, since the 56F8367/56F8167 do NOT  
contain this oscillator.  
Part 4 Memory Operating Modes (MEM)  
4.1 Introduction  
The 56F8367 and 56F8167 devices are 16-bit motor-control chips based on the 56800E core. These parts  
use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip  
RAM and Flash memory are used in both spaces.  
This chapter provides memory maps for:  
Program Address Space including the Interrupt Vector Table  
Data Address Space including the EOnCE Memory and Peripheral Memory Maps  
On-chip memory sizes for each device are summarized in Table 4-1. Flash memories’ restrictions are  
identified in the “Use Restrictions” column of Table 4-1.  
Note: Data Flash and Program RAM are NOT available on the 56F8167 device.  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8367  
56F8167  
Use Restrictions  
Program Flash  
512KB  
512KB  
Erase/Program via Flash interface unit and word writes to  
CDBW  
Data Flash  
32KB  
Erase/Program via Flash interface unit and word writes to  
CDBW. Data Flash can be read via one of CDBR or XDB2, but  
not both simultaneously  
Program RAM  
Data RAM  
4KB  
32KB  
32KB  
None  
32KB  
32KB  
None  
Program Boot Flash  
Erase/Program via Flash Interface unit and word to CDWB  
56F8367 Technical Data, Rev. 3.0  
40  
Freescale Semiconductor  
Preliminary  
Program Map  
4.2 Program Map  
The operating mode control bits (MA and MB) in the Operating Mode Register (OMR) control the  
Program memory map. At reset, these bits are set as indicated in Table 4-2. Table 4-4 shows the memory  
map configurations that are possible at reset. After reset, the OMR MA bit can be changed and will have  
an effect on the P-space memory map, as shown in Table 4-3. Changing the OMR MB bit will have no  
effect.  
Table 4-2 OMR MB/MA Value at Reset  
OMR MB =  
OMR MA =  
Flash Secured  
State1, 2  
Chip Operating Mode  
EXTBOOT Pin  
Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash Memory is  
secured; external P-space is not allowed; the EOnCE is disabled  
0
0
0
Not valid; cannot boot externally if the Flash is secured and will actually configure to  
00 state  
1
Mode 0 – Internal Boot; EMI is configured to use 16 address lines  
1
1
0
1
Mode 1 – External Boot; Flash Memory is not secured; EMI configuration is  
determined by the state of the EMI_MODE pin  
1. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset.  
2. Changing MB in software will not affect Flash memory security.  
Table 4-3 Changing OMR MA Value During Normal Operation  
OMR MA  
Chip Operating Mode  
Use internal P-space memory map configuration  
Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no effect.  
0
1
The device’s external memory interface (EMI) can operate much like the 56F80x family’s EMI, or it can  
be operated in a mode similar to that used on other products in the 56800E family. Initially, CS0 and CS1  
are configured as PS and DS, in a mode compatible with earlier 56800 devices.  
Eighteen address lines are required to shadow the first 192K of internal program space when booting  
externally for development purposes. Therefore, the entire complement of on-chip memory cannot be  
accessed using a 16-bit 56800-compatible address bus. To address this situation, the EMI_MODE pin can  
be used to configure four GPIO pins as Address[19:16] upon reset (Software reconfiguration of the highest  
address lines [A20-23] is required if the full address range is to be used.)  
The EMI_MODE bit also affects the reset vector address, as provided in Table 4-4. Additional pins must  
be configured as address or chip select signals to access addresses at P: $10 0000 and above.  
Note: Program RAM is NOT available on the 56F8167 device.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
41  
Table 4-4 Program Memory Map at Reset  
Mode 11 (MA = 1)  
Mode 0 (MA = 0)  
Begin/End  
Address  
Internal Boot  
External Boot  
EMI_MODE = 02,3  
EMI_MODE = 14  
Internal Boot  
16-Bit External Address Bus  
16-Bit External Address Bus  
20-Bit External Address Bus  
External Program Memory6  
P:$1F FFFF  
P:$10 0000  
External Program Memory5  
External Program Memory5  
P:$0F FFFF  
P:$05 0000  
P:$04 FFFF  
P:$04 F800  
On-Chip Program RAM  
4KB  
P:$04 F7FF  
P:$04 4000  
Reserved  
92KB  
P:$04 3FFF  
P:$04 0000  
Boot Flash  
32KB  
COP Reset Address = 04 0002  
Boot Location = 04 0000  
Boot Flash  
32KB  
(Not Used for Boot in this Mode)  
External Program Memory  
COP Reset Address = 04 00027  
Boot Location = 04 00007  
Internal Program Flash8  
256KB  
Internal Program Flash  
256KB  
P:$03 FFFF  
P:$02 0000  
P:$01 FFFF  
P:$01 0000  
Internal Program Flash  
128KB  
Internal Program Flash8  
256KB  
P:$00 FFFF  
P:$00 0000  
External Program Memory  
COP Reset Address = 00 0002  
Boot Location = 00 0000  
1. If Flash Security Mode is enabled, EXTBOOT Mode 1 cannot be used. See Security Features, Part 7.  
2. This mode provides maximum compatibility with 56F80x parts while operating externally.  
3. “EMI_MODE = 0” when EMI_MODE pin is tied to ground at boot up.  
4. “EMI_MODE = 1” when EMI_MODE pin is tied to VDD at boot up.  
5. Not accessible in reset configuration, since the address is above P:$00 FFFF. The higher bit address/GPIO (and/or chip  
selects) pins must be reconfigured before this external memory is accessible.  
6. Not accessible in reset configuration, since the address is above P:$0F FFFF. The higher bit address/GPIO (and/or chip  
selects) pins must be reconfigured before this external memory is accessible.  
7. Booting from this external address allows prototyping of the internal Boot Flash.  
8. Two independent program flash blocks allow one to be programmed/erased while executing from another. Each block must  
have its own mass erase.  
4.3 Interrupt Vector Table  
Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The table is  
organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. The  
priority of an interrupt can be assigned to different levels, as indicated, allowing some control over  
interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority  
level, the lowest vector number has the highest priority.  
56F8367 Technical Data, Rev. 3.0  
42  
Freescale Semiconductor  
Preliminary  
Interrupt Vector Table  
The location of the vector table is determined by the Vector Base Address (VBA) register. Please see Part  
5.6.11 for the reset value of the VBA.  
In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the  
interrupt vector table. In these instances, the first two locations in the vector table must contain branch or  
JMP instructions. All other entries must contain JSR instructions.  
Note: PWMA, FlexCAN, Quadrature Decoder 1, and Quad Timers B and D are NOT available on the  
56F8167 device.  
1
Table 4-5 Interrupt Vector Table Contents  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved for Reset Overlay2  
Reserved for COP Reset Overlay2  
Illegal Instruction  
core  
2
3
4
5
6
7
3
3
P:$04  
P:$06  
P:$08  
P:$0A  
P:$0C  
P:$0E  
core  
core  
core  
core  
core  
SW Interrupt 3  
3
HW Stack Overflow  
Misaligned Long Word Access  
OnCE Step Counter  
OnCE Breakpoint Unit 0  
Reserved  
3
1-3  
1-3  
core  
core  
core  
9
1-3  
1-3  
1-3  
P:$12  
P:$14  
P:$16  
OnCE Trace Buffer  
OnCE Transmit Register Empty  
OnCE Receive Register Full  
Reserved  
10  
11  
core  
core  
core  
core  
core  
14  
15  
16  
17  
18  
2
1
P:$1C  
P:$1E  
P:$20  
P:$22  
P:$24  
SW Interrupt 2  
SW Interrupt 1  
0
SW Interrupt 0  
0-2  
0-2  
IRQA  
IRQB  
Reserved  
LVI  
PLL  
FM  
FM  
FM  
20  
21  
22  
23  
24  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$28  
P:$2A  
P:$2C  
P:$2E  
P:$30  
Low-Voltage Detector (power sense)  
PLL  
FM Access Error Interrupt  
FM Command Complete  
FM Command, data and address Buffers Empty  
Reserved  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
43  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
FLEXCAN  
FLEXCAN  
FLEXCAN  
FLEXCAN  
GPIOF  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$34  
P:$36  
P:$38  
P:$3A  
P:$3C  
P:$3E  
P:$40  
P:$42  
P:$44  
P:$46  
FLEXCAN Bus Off  
FLEXCAN Error  
FLEXCAN Wake Up  
FLEXCAN Message Buffer Interrupt  
GPIO F  
GPIOE  
GPIO E  
GPIOD  
GPIO D  
GPIOC  
GPIO C  
GPIOB  
GPIO B  
GPIOA  
GPIO A  
Reserved  
SPI1  
SPI1  
SPI0  
SPI0  
SCI1  
SCI1  
38  
39  
40  
41  
42  
43  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$4C  
P:$4E  
P:$50  
P:$52  
P:$54  
P:$56  
SPI 1 Receiver Full  
SPI 1 Transmitter Empty  
SPI 0 Receiver Full  
SPI 0 Transmitter Empty  
SCI 1 Transmitter Empty  
SCI 1 Transmitter Idle  
Reserved  
SCI1  
45  
46  
47  
48  
49  
50  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$5A  
P:$5C  
P:$5E  
P:$60  
P:$62  
P:$64  
SCI 1 Receiver Error  
SCI 1 Receiver Full  
Quadrature Decoder #1 Home Switch or Watchdog  
Quadrature Decoder #1 INDEX Pulse  
Quadrature Decoder #0 Home Switch or Watchdog  
Quadrature Decoder #0 INDEX Pulse  
Reserved  
SCI1  
DEC1  
DEC1  
DEC0  
DEC0  
TMRD  
TMRD  
TMRD  
TMRD  
TMRC  
TMRC  
TMRC  
TMRC  
TMRB  
52  
53  
54  
55  
56  
57  
58  
59  
60  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$68  
P:$6A  
P:$6C  
P:$6E  
P:$70  
P:$72  
P:$74  
P:$76  
P:$78  
Timer D, Channel 0  
Timer D, Channel 1  
Timer D, Channel 2  
Timer D, Channel 3  
Timer C, Channel 0  
Timer C, Channel 1  
Timer C, Channel 2  
Timer C, Channel 3  
Timer B, Channel 0  
56F8367 Technical Data, Rev. 3.0  
44  
Freescale Semiconductor  
Preliminary  
Interrupt Vector Table  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
TMRB  
TMRB  
TMRB  
TMRA  
TMRA  
TMRA  
TMRA  
SCI0  
61  
62  
63  
64  
65  
66  
67  
68  
69  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$7A  
P:$7C  
P:$7E  
P:$80  
P:$82  
P:$84  
P:$86  
P:$88  
P:$8A  
Timer B, Channel 1  
Timer B, Channel 2  
Timer B, Channel 3  
Timer A, Channel 0  
Timer A, Channel 1  
Timer A, Channel 2  
Timer A, Channel 3  
SCI 0 Transmitter Empty  
SCI 0 Transmitter Idle  
Reserved  
SCI0  
SCI0  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
- 1  
P:$8E  
P:$90  
P:$92  
P:$94  
P:$96  
P:$98  
P:$9A  
P:$9C  
P:$9E  
P:$A0  
P:$A2  
P:$A4  
P:$A6  
P:$A8  
P:$AA  
SCI 0 Receiver Error  
SCI 0 Receiver Full  
SCI0  
ADCB  
ADC B Conversion Compete / End of Scan  
ADC A Conversion Complete / End of Scan  
ADC B Zero Crossing or Limit Error  
ADC A Zero Crossing or Limit Error  
Reload PWM B  
ADCA  
ADCB  
ADCA  
PWMB  
PWMA  
PWMB  
PWMA  
core  
Reload PWM A  
PWM B Fault  
PWM A Fault  
SW Interrupt LP  
FLEXCAN2  
FLEXCAN2  
FLEXCAN2  
FLEXCAN2  
0-2  
0-2  
0-2  
0-2  
FlexCAN Bus Off  
FlexCAN Error  
FlexCAN Wake Up  
FlexCAN Message Buffer Interrupt  
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced from the  
vector table, providing only 19 bits of address.  
2. If the VBA is set to $0200 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are the chip  
reset addresses; therefore, these locations are not interrupt vectors.  
2.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
45  
4.4 Data Map  
Note: Data Flash is NOT available on the 56F8167 device.  
1
Table 4-6 Data Memory Map  
Begin/End  
Address  
EX = 02  
EX = 1  
X:$FF FFFF  
X:$FF FF00  
EOnCE  
256 locations allocated  
EOnCE  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
External Memory  
External Memory  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 8000  
External Memory  
External Memory  
X:$00 7FFF  
X:$00 4000  
On-Chip Data Flash  
32KB  
X:$00 3FFF  
X:$00 0000  
On-Chip Data RAM  
32KB3  
1. All addresses are 16-bit Word addresses, not byte addresses.  
2. In the Operation Mode Register (OMR).  
3. The Data RAM is organized as an 8K x 32-bit memory to allow single-cycle, long-word operations.  
4.5 Flash Memory Map  
Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.  
The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the  
Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides  
on the Data Memory buses and is controlled separately by its own set of banked registers.  
The top nine words of the Program Memory Flash are treated as special memory locations. The content of  
these words is used to control the operation of the Flash Controller. Because these words are part of the  
Flash Memory content, their state is maintained during power down and reset. During chip initialization,  
the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash  
Memory chapter of the 56F8300 Peripheral User Manual. These configuration parameters are located  
between $03_FFF7 and $03_FFFF.  
56F8367 Technical Data, Rev. 3.0  
46  
Freescale Semiconductor  
Preliminary  
Flash Memory Map  
Program Memory  
Data Memory  
FM_BASE + $14  
FM_BASE + $00  
BOOT_FLASH_START + $3FFF  
Banked Registers  
32KB  
Boot  
Unbanked Registers  
BOOT_FLASH_START = $04_0000  
PROG_FLASH_START + $03_FFFF  
FM_PROG_MEM_TOP = $01_FFFF  
Configure Field  
DATA_FLASH_START + $3FFF  
DATA_FLASH_START + $0000  
256KB  
Program  
32KB  
Note: Data Flash is  
NOT available in the  
56F8167 device.  
BLOCK 1 Odd (2 Bytes) $02_0003  
BLOCK 1 Even (2 Bytes) $02_0002  
BLOCK 1 Odd (2 Bytes) $02_0001  
BLOCK 1 Even (2 Bytes) $02_0000  
PROG_FLASH_START + $02_0000  
PROG_FLASH_START + $01_FFFF  
256KB  
Program  
BLOCK 0 Odd (2 Bytes) $00_0003  
BLOCK 0 Even (2 Bytes) $00_0002  
BLOCK 0 Odd (2 Bytes) $00_0001  
BLOCK 0 Even (2 Bytes) $00_0000  
PROG_FLASH_START = $00_0000  
Figure 4-1 Flash Array Memory Maps  
Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.  
Note: Data Flash is NOT available on the 56F8167 device.  
Table 4-7 Flash Memory Partitions  
Flash Size  
Sectors  
Sector Size  
Page Size  
Program Flash  
Data Flash  
512KB  
32KB  
32KB  
16  
16  
4
16K x 16 bits  
1024 x 16 bits  
4K x 16 bits  
1024 x 16 bits  
256 x 16 bits  
512 x 16 bits  
Boot Flash  
Please see 56F8300 Peripheral User Manual for additional Flash information.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
47  
4.6 EOnCE Memory Map  
Table 4-8 EOnCE Memory Map  
Address  
Register Acronym  
Register Name  
Reserved  
X:$FF FF8A  
X:$FF FF8E  
OESCR  
External Signal Control Register  
Reserved  
OBCNTR  
Breakpoint Unit [0] Counter  
Reserved  
X:$FF FF90  
X:$FF FF91  
X:$FF FF92  
X:$FF FF93  
X:$FF FF94  
X:$FF FF95  
X:$FF FF96  
X:$FF FF97  
X:$FF FF98  
X:$FF FF99  
X:$FF FF9A  
X:$FF FF9B  
X:$FF FF9C  
X:$FF FF9D  
X:$FF FF9E  
X:$FF FF9F  
:X:$FF FFA0  
OBMSK (32 bits)  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint Unit [0] Control Register  
Breakpoint Unit [0] Control Register  
Trace Buffer Register Stages  
Trace Buffer Register Stages  
Trace Buffer Pointer Register  
Trace Buffer Control Register  
Peripheral Base Address Register  
Status Register  
OBAR2 (32 bits)  
OBAR1 (24 bits)  
OBCR (24 bits)  
OTB (21-24 bits/stage)  
OTBPR (8 bits)  
OTBCR  
OBASE (8 bits)  
OSR  
OSCNTR (24 bits)  
Instruction Step Counter  
Instruction Step Counter  
OCR (bits)  
Control Register  
Reserved  
X:$FF FFFC  
X:$FF FFFD  
X:$FF FFFE  
X:$FF FFFF  
OCLSR (8 bits)  
Core Lock / Unlock Status Register  
Transmit and Receive Status and Control Register  
Transmit Register / Receive Register  
OTXRXSR (8 bits)  
OTX / ORX (32 bits)  
OTX1 / ORX1  
Transmit Register Upper Word  
Receive Register Upper Word  
56F8367 Technical Data, Rev. 3.0  
48  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
4.7 Peripheral Memory Mapped Registers  
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may  
be accessed with the same addressing modes used for ordinary Data memory, except all peripheral  
registers should be read/written using word accesses only.  
Table 4-9 summarizes base addresses for the set of peripherals on the 56F8367 and 56F8167 devices.  
Peripherals are listed in order of the base address.  
The following tables list all of the peripheral registers required to control or access the peripherals.  
Note: Features in italics are NOT available on the 56F8167 device.  
Table 4-9 Data Memory Peripheral Base Address Map Summary  
Peripheral  
Prefix  
Base Address  
Table Number  
External Memory Interface  
Timer A  
EMI  
X:$00 F020  
X:$00 F040  
X:$00 F080  
X:$00 F0C0  
X:$00 F100  
X:$00 F140  
X:$00 F160  
X:$00 F180  
X:$00 F190  
X:$00 F1A0  
X:$00 F200  
X:$00 F240  
X:$00 F270  
X:$00 F280  
X:$00 F290  
X:$00 F2A0  
X:$00 F2B0  
X:$00 F2C0  
X:$00 F2D0  
X:$00 F2E0  
X:$00 F300  
X:$00 F310  
X:$00 F320  
X:$00 F330  
X:$00 F340  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
4-34  
TMRA  
TMRB  
TMRC  
TMRD  
PWMA  
PWMB  
DEC0  
DEC1  
ITCN  
Timer B  
Timer C  
Timer D  
PWM A  
PWM B  
Quadrature Decoder 0  
Quadrature Decoder 1  
ITCN  
ADC A  
ADCA  
ADCB  
ADC B  
Temperature Sensor  
SCI #0  
TSENSOR  
SCI0  
SCI #1  
SCI1  
SPI #0  
SPI0  
SPI #1  
SPI1  
COP  
COP  
PLL, OSC  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
GPIO Port E  
GPIO Port F  
CLKGEN  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
49  
Table 4-9 Data Memory Peripheral Base Address Map Summary (Continued)  
Peripheral  
Prefix  
Base Address  
Table Number  
SIM  
SIM  
LVI  
FM  
X:$00 F350  
X:$00 F360  
X:$00 F400  
X:$00 F800  
X:$00 FA00  
4-35  
4-36  
4-37  
4-38  
4-39  
Power Supervisor  
FM  
FlexCAN  
FC  
FlexCAN2  
FC2  
Table 4-10 External Memory Integration Registers Address Map  
(EMI_BASE = $00 F020)  
Register Acronym Address Offset  
Register Description  
Reset Value  
Chip Select Base Address Register 0  
0x0004 = 64K when EXTBOOT = 0 or  
EMI_MODE = 0  
CSBAR 0  
$0  
0x0008 = 1M when EMI_MODE = 1  
(Selects entire program space for  
SC0)  
Chip Select Base Address Register 1  
0x0004 = 64K when EMI_MODE = 0  
0x0008 = 1M when EMI_MODE = 1  
CSBAR 1  
$1  
(Selects A0 - 19 addressable data  
space for CS1)  
Chip Select Base Address Register 2  
Chip Select Base Address Register 3  
Chip Select Base Address Register 4  
Chip Select Base Address Register 5  
Chip Select Base Address Register 6  
Chip Select Base Address Register 7  
Chip Select Option Register 0  
CSBAR 2  
CSBAR 3  
CSBAR 4  
CSBAR 5  
CSBAR 6  
CSBAR 7  
CSOR 0  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
0x5FCB programmed for chip select  
for program space, word wide, read  
and write, 11 waits  
Chip Select Option Register 1  
0x5FAB programmed for chip select  
for data space, word wide, read and  
write, 11 waits  
CSOR 1  
$9  
Chip Select Option Register 2  
Chip Select Option Register 3  
Chip Select Option Register 4  
Chip Select Option Register 5  
Chip Select Option Register 6  
Chip Select Option Register 7  
CSOR 2  
CSOR 3  
CSOR 4  
CSOR 5  
CSOR 6  
CSOR 7  
$A  
$B  
$C  
$D  
$E  
$F  
56F8367 Technical Data, Rev. 3.0  
50  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-10 External Memory Integration Registers Address Map (Continued)  
(EMI_BASE = $00 F020)  
Register Acronym Address Offset  
Register Description  
Chip Select Timing Control Register 0  
Chip Select Timing Control Register 1  
Chip Select Timing Control Register 2  
Chip Select Timing Control Register 3  
Chip Select Timing Control Register 4  
Chip Select Timing Control Register 5  
Chip Select Timing Control Register 6  
Chip Select Timing Control Register 7  
Bus Control Register  
Reset Value  
CSTC 0  
CSTC 1  
CSTC 2  
CSTC 3  
CSTC 4  
CSTC 5  
CSTC 6  
CSTC 7  
BCR  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
0x016B sets the default number of  
wait states to 11 for both read and  
write accesses  
Table 4-11 Quad Timer A Registers Address Map  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRA0_CMP1  
TMRA0_CMP2  
TMRA0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRA0_LOAD  
TMRA0_HOLD  
TMRA0_CNTR  
TMRA0_CTRL  
TMRA0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA0_CMPLD1  
TMRA0_CMPLD2  
TMRA0_COMSCR  
TMRA1_CMP1  
TMRA1_CMP2  
TMRA1_CAP  
TMRA1_LOAD  
TMRA1_HOLD  
TMRA1_CNTR  
TMRA1_CTRL  
TMRA1_SCR  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
51  
Table 4-11 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Comparator Load Register 1  
TMRA1_CMPLD1  
TMRA1_CMPLD2  
TMRA1_COMSCR  
$18  
$19  
$1A  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA2_CMP1  
TMRA2_CMP2  
TMRA2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA2_LOAD  
TMRA2_HOLD  
TMRA2_CNTR  
TMRA2_CTRL  
TMRA2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA2_CMPLD1  
TMRA2_CMPLD2  
TMRA2_COMSCR  
TMRA3_CMP1  
TMRA3_CMP2  
TMRA3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA3_LOAD  
TMRA3_HOLD  
TMRA3_CNTR  
TMRA3_CTRL  
TMRA3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRA3_CMPLD1  
TMRA3_CMPLD2  
TMRA3_COMSCR  
Table 4-12 Quad Timer B Registers Address Map  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRB0_CMP1  
TMRB0_CMP2  
TMRB0_CAP  
TMRB0_LOAD  
TMRB0_HOLD  
$0  
$1  
$2  
$3  
$4  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
56F8367 Technical Data, Rev. 3.0  
52  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-12 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
TMRB0_CNTR  
TMRB0_CTRL  
$5  
$6  
$7  
$8  
$9  
$A  
Counter Register  
Control Register  
TMRB0_SCR  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB0_CMPLD1  
TMRB0_CMPLD2  
TMRB0_COMSCR  
TMRB1_CMP1  
TMRB1_CMP2  
TMRB1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRB1_LOAD  
TMRB1_HOLD  
TMRB1_CNTR  
TMRB1_CTRL  
TMRB1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB1_CMPLD1  
TMRB1_CMPLD2  
TMRB1_COMSCR  
TMRB2_CMP1  
TMRB2_CMP2  
TMRB2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRB2_LOAD  
TMRB2_HOLD  
TMRB2_CNTR  
TMRB2_CTRL  
TMRB2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB2_CMPLD1  
TMRB2_CMPLD2  
TMRB2_COMSCR  
TMRB3_CMP1  
TMRB3_CMP2  
$30  
$31  
Compare Register 1  
Compare Register 2  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
53  
Table 4-12 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
TMRB3_CAP  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Capture Register  
Load Register  
TMRB3_LOAD  
TMRB3_HOLD  
TMRB3_CNTR  
TMRB3_CTRL  
TMRB3_SCR  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
TMRB3_CMPLD1  
TMRB3_CMPLD2  
TMRB3_COMSCR  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Table 4-13 Quad Timer C Registers Address Map  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRC0_CMP1  
TMRC0_CMP2  
TMRC0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRC0_LOAD  
TMRC0_HOLD  
TMRC0_CNTR  
TMRC0_CTRL  
TMRC0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC0_CMPLD1  
TMRC0_CMPLD2  
TMRC0_COMSCR  
TMRC1_CMP1  
TMRC1_CMP2  
TMRC1_CAP  
TMRC1_LOAD  
TMRC1_HOLD  
TMRC1_CNTR  
TMRC1_CTRL  
TMRC1_SCR  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
56F8367 Technical Data, Rev. 3.0  
54  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-13 Quad Timer C Registers Address Map (Continued)  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
$18  
Register Description  
Comparator Load Register 1  
TMRC1_CMPLD1  
TMRC1_CMPLD2  
TMRC1_COMSCR  
$19  
$1A  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC2_CMP1  
TMRC2_CMP2  
TMRC2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC2_LOAD  
TMRC2_HOLD  
TMRC2_CNTR  
TMRC2_CTRL  
TMRC2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC2_CMPLD1  
TMRC2_CMPLD2  
TMRC2_COMSCR  
TMRC3_CMP1  
TMRC3_CMP2  
TMRC3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC3_LOAD  
TMRC3_HOLD  
TMRC3_CNTR  
TMRC3_CTRL  
TMRC3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRC3_CMPLD1  
TMRC3_CMPLD2  
TMRC3_COMSCR  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
55  
Table 4-14 Quad Timer D Registers Address Map  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRD0_CMP1  
TMRD0_CMP2  
TMRD0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRD0_LOAD  
TMRD0_HOLD  
TMRD0_CNTR  
TMRD0_CTRL  
TMRD0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD0_CMPLD1  
TMRD0_CMPLD2  
TMRD0_COMSCR  
TMRD1_CMP1  
TMRD1_CMP2  
TMRD1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD1_LOAD  
TMRD1_HOLD  
TMRD1_CNTR  
TMRD1_CTRL  
TMRD1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD1_CMPLD1  
TMRD1_CMPLD2  
TMRD1_COMSCR  
TMRD2_CMP1  
TMRD2_CMP2  
TMRD2_CAP  
TMRD2_LOAD  
TMRD2_HOLD  
TMRD2_CNTR  
TMRD2_CTRL  
TMRD2_SCR  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
56F8367 Technical Data, Rev. 3.0  
56  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-14 Quad Timer D Registers Address Map (Continued)  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
Comparator Load Register 1  
TMRD2_CMPLD1  
TMRD2_CMPLD2  
TMRD2_COMSCR  
$28  
$29  
$2A  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD3_CMP1  
TMRD3_CMP2  
TMRD3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD3_LOAD  
TMRD3_HOLD  
TMRD3_CNTR  
TMRD3_CTRL  
TMRD3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRD3_CMPLD1  
TMRD3_CMPLD2  
TMRD3_COMSCR  
Table 4-15 Pulse Width Modulator A Registers Address Map  
(PWMA_BASE = $00 F140)  
PWMA is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
PWMA_PMCTL  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
Control Register  
PWMA_PMFCTL  
PWMA_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
PWMA_PMOUT  
PWMA_PMCNT  
PWMA_PWMCM  
PWMA_PWMVAL0  
PWMA_PWMVAL1  
PWMA_PWMVAL2  
PWMA_PWMVAL3  
PWMA_PWMVAL4  
PWMA_PWMVAL5  
PWMA_PMDEADTM  
Counter Modulo Register  
Value Register 0  
Value Register 1  
Value Register 2  
Value Register 3  
Value Register 4  
Value Register 5  
Dead Time Register  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
57  
Table 4-15 Pulse Width Modulator A Registers Address Map (Continued)  
(PWMA_BASE = $00 F140)  
PWMA is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
Disable Mapping Register 1  
PWMA_PMDISMAP1  
PWMA_PMDISMAP2  
PWMA_PMCFG  
$D  
$E  
Disable Mapping Register 2  
Configure Register  
$F  
PWMA_PMCCR  
$10  
$11  
$12  
Channel Control Register  
PWMA_PMPORT  
PWMA_PMICCR  
Port Register  
PWM Internal Correction Control Register  
Table 4-16 Pulse Width Modulator B Registers Address Map  
(PWMB_BASE = $00 F160)  
Register Acronym  
Address Offset  
Register Description  
PWMB_PMCTL  
$0  
$1  
Control Register  
PWMB_PMFCTL  
PWMB_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
$2  
PWMB_PMOUT  
$3  
PWMB_PMCNT  
$4  
PWMB_PWMCM  
PWMB_PWMVAL0  
PWMB_PWMVAL1  
PWMB_PWMVAL2  
PWMB_PWMVAL3  
PWMB_PWMVAL4  
PWMB_PWMVAL5  
PWMB_PMDEADTM  
PWMB_PMDISMAP1  
PWMB_PMDISMAP2  
PWMB_PMCFG  
$5  
Counter Modulo Register  
Value Register 0  
$6  
$7  
Value Register 1  
$8  
Value Register 2  
$9  
Value Register 3  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Value Register 4  
Value Register 5  
Dead Time Register  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
PWMB_PMCCR  
Channel Control Register  
PWMB_PMPORT  
PWMB_PMICCR  
Port Register  
PWM Internal Correction Control Register  
56F8367 Technical Data, Rev. 3.0  
58  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-17 Quadrature Decoder 0 Registers Address Map  
(DEC0_BASE = $00 F180)  
Register Acronym  
Address Offset  
$0  
Register Description  
Decoder Control Register  
DEC0_DECCR  
DEC0_FIR  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Filter Interval Register  
DEC0_WTR  
DEC0_POSD  
DEC0_POSDH  
DEC0_REV  
DEC0_REVH  
DEC0_UPOS  
DEC0_LPOS  
DEC0_UPOSH  
DEC0_LPOSH  
DEC0_UIR  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC0_LIR  
DEC0_IMR  
Table 4-18 Quadrature Decoder 1 Registers Address Map  
(DEC1_BASE = $00 F190)  
Quadrature Decoder 1 is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC1_DECCR  
DEC1_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Filter Interval Register  
DEC1_WTR  
DEC1_POSD  
DEC1_POSDH  
DEC1_REV  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
DEC1_REVH  
DEC1_UPOS  
DEC1_LPOS  
DEC1_UPOSH  
DEC1_LPOSH  
DEC1_UIR  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC1_LIR  
DEC1_IMR  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
59  
Table 4-19 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F1A0)  
Register Acronym  
IPR 0  
Address Offset  
Register Description  
Interrupt Priority Register 0  
$0  
$1  
IPR 1  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Interrupt Priority Register 5  
Interrupt Priority Register 6  
Interrupt Priority Register 7  
Interrupt Priority Register 8  
Interrupt Priority Register 9  
Vector Base Address Register  
Fast Interrupt Match Register 0  
Fast Interrupt Vector Address Low 0 Register  
Fast Interrupt Vector Address High 0 Register  
Fast Interrupt Match Register 1  
Fast Interrupt Vector Address Low 1 Register  
Fast Interrupt Vector Address High 1 Register  
IRQ Pending Register 0  
IPR 2  
$2  
IPR 3  
$3  
IPR 4  
$4  
IPR 5  
$5  
IPR 6  
$6  
IPR 7  
$7  
IPR 8  
$8  
IPR 9  
$9  
VBA  
$A  
$B  
$C  
$D  
$E  
$F  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
IRQP 0  
IRQP 1  
IRQP 2  
IRQP 3  
IRQP 4  
IRQP 5  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Reserved  
ICTL  
$1D  
$1F  
Interrupt Control Register  
Reserved  
IPR10  
Interrupt Priority Register 10  
56F8367 Technical Data, Rev. 3.0  
60  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-20 Analog-to-Digital Converter Registers Address Map  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
$0  
Register Description  
Control Register 1  
ADCA_CR 1  
ADCA_CR 2  
$1  
$2  
Control Register 2  
ADCA_ZCC  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCA_LST 1  
ADCA_LST 2  
ADCA_SDIS  
$3  
$4  
$5  
ADCA_STAT  
$6  
ADCA_LSTAT  
ADCA_ZCSTAT  
ADCA_RSLT 0  
ADCA_RSLT 1  
ADCA_RSLT 2  
ADCA_RSLT 3  
ADCA_RSLT 4  
ADCA_RSLT 5  
ADCA_RSLT 6  
ADCA_RSLT 7  
ADCA_LLMT 0  
ADCA_LLMT 1  
ADCA_LLMT 2  
ADCA_LLMT 3  
ADCA_LLMT 4  
ADCA_LLMT 5  
ADCA_LLMT 6  
ADCA_LLMT 7  
ADCA_HLMT 0  
ADCA_HLMT 1  
ADCA_HLMT 2  
ADCA_HLMT 3  
ADCA_HLMT 4  
ADCA_HLMT 5  
ADCA_HLMT 6  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
Result Register 1  
$B  
Result Register 2  
$C  
Result Register 3  
$D  
Result Register 4  
$E  
Result Register 5  
$F  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
61  
Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
Register Description  
High Limit Register 7  
ADCA_HLMT 7  
ADCA_OFS 0  
ADCA_OFS 1  
ADCA_OFS 2  
ADCA_OFS 3  
ADCA_OFS 4  
ADCA_OFS 5  
ADCA_OFS 6  
ADCA_OFS 7  
ADCA_POWER  
ADCA_CAL  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
Table 4-21 Analog-to-Digital Converter Registers Address Map  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCB_CR 1  
$0  
$1  
ADCB_CR 2  
Control Register 2  
ADCB_ZCC  
$2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCB_LST 1  
ADCB_LST 2  
ADCB_SDIS  
$3  
$4  
$5  
ADCB_STAT  
ADCB_LSTAT  
ADCB_ZCSTAT  
ADCB_RSLT 0  
ADCB_RSLT 1  
ADCB_RSLT 2  
ADCB_RSLT 3  
ADCB_RSLT 4  
ADCB_RSLT 5  
ADCB_RSLT 6  
ADCB_RSLT 7  
ADCB_LLMT 0  
ADCB_LLMT 1  
$6  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Result Register 1  
Result Register 2  
Result Register 3  
Result Register 4  
Result Register 5  
Result Register 6  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
56F8367 Technical Data, Rev. 3.0  
62  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-21 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
$13  
Register Description  
Low Limit Register 2  
ADCB_LLMT 2  
ADCB_LLMT 3  
ADCB_LLMT 4  
ADCB_LLMT 5  
ADCB_LLMT 6  
ADCB_LLMT 7  
ADCB_HLMT 0  
ADCB_HLMT 1  
ADCB_HLMT 2  
ADCB_HLMT 3  
ADCB_HLMT 4  
ADCB_HLMT 5  
ADCB_HLMT 6  
ADCB_HLMT 7  
ADCB_OFS 0  
ADCB_OFS 1  
ADCB_OFS 2  
ADCB_OFS 3  
ADCB_OFS 4  
ADCB_OFS 5  
ADCB_OFS 6  
ADCB_OFS 7  
ADCB_POWER  
ADCB_CAL  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
Table 4-22 Temperature Sensor Register Address Map  
(TSENSOR_BASE = $00 F270)  
Temperature Sensor is NOT available in the 56F8167 device  
Register Acronym  
Address Offset  
Register Description  
TSENSOR_CNTL  
$0  
Control Register  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
63  
Table 4-23 Serial Communication Interface 0 Registers Address Map  
(SCI0_BASE = $00 F280)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI0_SCIBR  
SCI0_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI0_SCISR  
SCI0_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-24 Serial Communication Interface 1 Registers Address Map  
(SCI1_BASE = $00 F290)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI1_SCIBR  
SCI1_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI1_SCISR  
SCI1_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-25 Serial Peripheral Interface 0 Registers Address Map  
(SPI0_BASE = $00 F2A0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI0_SPSCR  
SPI0_SPDSR  
SPI0_SPDRR  
SPI0_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
Table 4-26 Serial Peripheral Interface 1 Registers Address Map  
(SPI1_BASE = $00 F2B0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI1_SPSCR  
SPI1_SPDSR  
SPI1_SPDRR  
SPI1_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
56F8367 Technical Data, Rev. 3.0  
64  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-27 Computer Operating Properly Registers Address Map  
(COP_BASE = $00 F2C0)  
Register Acronym  
Address Offset  
$0  
Register Description  
COPCTL  
COPTO  
Control Register  
$1  
$2  
Time Out Register  
Counter Register  
COPCTR  
Table 4-28 Clock Generation Module Registers Address Map  
(CLKGEN_BASE = $00 F2D0)  
Register Acronym  
PLLCR  
Address Offset  
Register Description  
$0  
$1  
$2  
Control Register  
PLLDB  
PLLSR  
Divide-By Register  
Status Register  
Reserved  
SHUTDOWN  
OSCTL  
$4  
$5  
Shutdown Register  
Oscillator Control Register  
Table 4-29 GPIOA Registers Address Map  
(GPIOA_BASE = $00 F2E0)  
Address Offset  
Register Description  
Reset Value  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 3FFF  
Register Acronym  
GPIOA_PUR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Pull-up Enable Register  
GPIOA_DR  
Data Register  
GPIOA_DDR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOA_PER  
GPIOA_IAR  
GPIOA_IENR  
GPIOA_IPOLR  
GPIOA_IPR  
GPIOA_IESR  
GPIOA_PPMODE  
GPIOA_RAWDATA  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
65  
Table 4-30 GPIOB Registers Address Map  
(GPIOB_BASE = $00 F300)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOB_PUR  
GPIOB_DR  
GPIOB_DDR  
GPIOB_PER  
$0  
$1  
$2  
$3  
0 x 00FF  
0 x 0000  
0 x 0000  
Data Register  
Data Direction Register  
Peripheral Enable Register  
0 x 000F for 20-bit EMI  
address at reset.  
0 x 0000 for all other cases.  
See Table 4-4 for details.  
0 x 0000  
GPIOB_IAR  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOB_IENR  
GPIOB_IPOLR  
GPIOB_IPR  
0 x 0000  
0 x 0000  
0 x 0000  
GPIOB_IESR  
GPIOB_PPMODE  
GPIOB_RAWDATA  
0 x 0000  
0 x 0000  
Table 4-31 GPIOC Registers Address Map  
(GPIOC_BASE = $00F310)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOC_PUR  
GPIOC_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 07FF  
Data Register  
GPIOC_DDR  
GPIOC_PER  
GPIOC_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOC_IENR  
GPIOC_IPOLR  
GPIOC_IPR  
GPIOC_IESR  
GPIOC_PPMODE  
GPIOC_RAWDATA  
56F8367 Technical Data, Rev. 3.0  
66  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-32 GPIOD Registers Address Map  
(GPIOD_BASE = $00 F320)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOD_PUR  
GPIOD_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 1FFF  
0 x 0000  
0 x 0000  
0 x 1FC0  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
Data Register  
GPIOD_DDR  
GPIOD_PER  
GPIOD_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOD_IENR  
GPIOD_IPOLR  
GPIOD_IPR  
GPIOD_IESR  
GPIOD_PPMODE  
GPIOD_RAWDATA  
Table 4-33 GPIOE Registers Address Map  
(GPIOE_BASE = $00 F330)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOE_PUR  
GPIOE_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 3FFF  
Data Register  
GPIOE_DDR  
GPIOE_PER  
GPIOE_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOE_IENR  
GPIOE_IPOLR  
GPIOE_IPR  
GPIOE_IESR  
GPIOE_PPMODE  
GPIOE_RAWDATA  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
67  
Table 4-34 GPIOF Registers Address Map  
(GPIOF_BASE = $00 F340)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOF_PUR  
GPIOF_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x FFFF  
Data Register  
GPIOF_DDR  
GPIOF_PER  
GPIOF_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOF_IENR  
GPIOF_IPOLR  
GPIOF_IPR  
GPIOF_IESR  
GPIOF_PPMODE  
GPIOF_RAWDATA  
Table 4-35 System Integration Module Registers Address Map  
(SIM_BASE = $00 F350)  
Register Acronym  
Address Offset  
Register Description  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Control Register  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half JTAG ID  
Least Significant Half JTAG ID  
Pull-up Disable Register  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
Reserved  
SIM_CLKOSR  
SIM_GPS  
$A  
$B  
$C  
$D  
$E  
$F  
Clock Out Select Register  
Quad Decoder 1 / Timer B / SPI 1 Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
Peripheral Clock Enable Register 2  
SIM_PCE  
SIM_ISALH  
SIM_ISALL  
SIM_PCE2  
56F8367 Technical Data, Rev. 3.0  
68  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-36 Power Supervisor Registers Address Map  
(LVI_BASE = $00 F360)  
Register Acronym  
Address Offset  
Register Description  
LVI_CONTROL  
LVI_STATUS  
$0  
$1  
Control Register  
Status Register  
Table 4-37 Flash Module Registers Address Map  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Clock Divider Register  
FMCLKD  
FMMCR  
$0  
$1  
Module Control Register  
Reserved  
FMSECH  
FMSECL  
$3  
$4  
Security High Half Register  
Security Low Half Register  
Reserved  
Reserved  
FMPROT  
$10  
$11  
Protection Register (Banked)  
Protection Boot Register (Banked)  
Reserved  
FMPROTB  
FMUSTAT  
FMCMD  
$13  
$14  
User Status Register (Banked)  
Command Register (Banked)  
Reserved  
Reserved  
16-Bit Information Option Register 0  
Hot temperature ADC reading of Temperature Sensor;  
value set during factory test  
FMOPT 0  
$1A  
16-Bit Information Option Register 1  
Not used  
FMOPT 1  
FMOPT 2  
$1B  
$1C  
16-Bit Information Option Register 2  
Room temperature ADC reading of Temperature Sensor;  
value set during factory test  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
69  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8167 device  
Register Acronym  
FCMCR  
Address Offset  
Register Description  
Module Configuration Register  
$0  
Reserved  
FCCTL0  
FCCTL1  
FCTMR  
$3  
$4  
$5  
$6  
Control Register 0 Register  
Control Register 1 Register  
Free-Running Timer Register  
Maximum Message Buffer Configuration Register  
Reserved  
FCMAXMB  
FCRXGMASK_H  
FCRXGMASK_L  
FCRX14MASK_H  
FCRX14MASK_L  
FCRX15MASK_H  
FCRX15MASK_L  
$8  
$9  
$A  
$B  
$C  
$D  
Receive Global Mask High Register  
Receive Global Mask Low Register  
Receive Buffer 14 Mask High Register  
Receive Buffer 14 Mask Low Register  
Receive Buffer 15 Mask High Register  
Receive Buffer 15 Mask Low Register  
Reserved  
FCSTATUS  
$10  
$11  
$12  
$13  
Error and Status Register  
FCIMASK1  
Interrupt Masks 1 Register  
Interrupt Flags 1 Register  
FCIFLAG1  
FCR/T_ERROR_CNTRS  
Receive and Transmit Error Counters Register  
Reserved  
Reserved  
Reserved  
FCMB0_CONTROL  
FCMB0_ID_HIGH  
FCMB0_ID_LOW  
FCMB0_DATA  
$40  
$41  
$42  
$43  
$44  
$45  
$46  
Message Buffer 0 Control / Status Register  
Message Buffer 0 ID High Register  
Message Buffer 0 ID Low Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Reserved  
FCMB0_DATA  
FCMB0_DATA  
FCMB0_DATA  
FCMSB1_CONTROL  
FCMSB1_ID_HIGH  
FCMSB1_ID_LOW  
$48  
$49  
$4A  
Message Buffer 1 Control / Status Register  
Message Buffer 1 ID High Register  
Message Buffer 1 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
70  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8167 device  
Register Acronym  
FCMB1_DATA  
Address Offset  
Register Description  
Message Buffer 1 Data Register  
$4B  
$4C  
$4D  
$4E  
FCMB1_DATA  
FCMB1_DATA  
FCMB1_DATA  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Reserved  
FCMB2_CONTROL  
FCMB2_ID_HIGH  
FCMB2_ID_LOW  
FCMB2_DATA  
$50  
$51  
$52  
$53  
$54  
$55  
$56  
Message Buffer 2 Control / Status Register  
Message Buffer 2 ID High Register  
Message Buffer 2 ID Low Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Reserved  
FCMB2_DATA  
FCMB2_DATA  
FCMB2_DATA  
FCMB3_CONTROL  
FCMB3_ID_HIGH  
FCMB3_ID_LOW  
FCMB3_DATA  
$58  
$59  
$5A  
$5B  
$5C  
$5D  
$5E  
Message Buffer 3 Control / Status Register  
Message Buffer 3 ID High Register  
Message Buffer 3 ID Low Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Reserved  
FCMB3_DATA  
FCMB3_DATA  
FCMB3_DATA  
FCMB4_CONTROL  
FCMB4_ID_HIGH  
FCMB4_ID_LOW  
FCMB4_DATA  
$60  
$61  
$62  
$63  
$64  
$65  
$66  
Message Buffer 4 Control / Status Register  
Message Buffer 4 ID High Register  
Message Buffer 4 ID Low Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Reserved  
FCMB4_DATA  
FCMB4_DATA  
FCMB4_DATA  
FCMB5_CONTROL  
FCMB5_ID_HIGH  
FCMB5_ID_LOW  
$68  
$69  
$6A  
Message Buffer 5 Control / Status Register  
Message Buffer 5 ID High Register  
Message Buffer 5 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
71  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8167 device  
Register Acronym  
FCMB5_DATA  
Address Offset  
Register Description  
Message Buffer 5 Data Register  
$6B  
$6C  
$6D  
$6E  
FCMB5_DATA  
FCMB5_DATA  
FCMB5_DATA  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Reserved  
FCMB6_CONTROL  
FCMB6_ID_HIGH  
FCMB6_ID_LOW  
FCMB6_DATA  
$70  
$71  
$72  
$73  
$74  
$75  
$76  
Message Buffer 6 Control / Status Register  
Message Buffer 6 ID High Register  
Message Buffer 6 ID Low Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Reserved  
FCMB6_DATA  
FCMB6_DATA  
FCMB6_DATA  
FCMB7_CONTROL  
FCMB7_ID_HIGH  
FCMB7_ID_LOW  
FCMB7_DATA  
$78  
$79  
$7A  
$7B  
$7C  
$7D  
$7E  
Message Buffer 7 Control / Status Register  
Message Buffer 7 ID High Register  
Message Buffer 7 ID Low Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Reserved  
FCMB7_DATA  
FCMB7_DATA  
FCMB7_DATA  
FCMB8_CONTROL  
FCMB8_ID_HIGH  
FCMB8_ID_LOW  
FCMB8_DATA  
$80  
$81  
$82  
$83  
$84  
$85  
$86  
Message Buffer 8 Control / Status Register  
Message Buffer 8 ID High Register  
Message Buffer 8 ID Low Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Reserved  
FCMB8_DATA  
FCMB8_DATA  
FCMB8_DATA  
FCMB9_CONTROL  
FCMB9_ID_HIGH  
FCMB9_ID_LOW  
$88  
$89  
$8A  
Message Buffer 9 Control / Status Register  
Message Buffer 9 ID High Register  
Message Buffer 9 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
72  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8167 device  
Register Acronym  
FCMB9_DATA  
Address Offset  
Register Description  
Message Buffer 9 Data Register  
$8B  
$8C  
$8D  
$8E  
FCMB9_DATA  
FCMB9_DATA  
FCMB9_DATA  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Reserved  
FCMB10_CONTROL  
FCMB10_ID_HIGH  
FCMB10_ID_LOW  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
$90  
$91  
$92  
$93  
$94  
$95  
$96  
Message Buffer 10 Control / Status Register  
Message Buffer 10 ID High Register  
Message Buffer 10 ID Low Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Reserved  
FCMB11_CONTROL  
FCMB11_ID_HIGH  
FCMB11_ID_LOW  
FCMB11_DATA  
FCMB11_DATA  
FCMB11_DATA  
FCMB11_DATA  
$98  
$99  
$9A  
$9B  
$9C  
$9D  
$9E  
Message Buffer 11 Control / Status Register  
Message Buffer 11 ID High Register  
Message Buffer 11 ID Low Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Reserved  
FCMB12_CONTROL  
FCMB12_ID_HIGH  
FCMB12_ID_LOW  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
Message Buffer 12 Control / Status Register  
Message Buffer 12 ID High Register  
Message Buffer 12 ID Low Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Reserved  
FCMB13_CONTROL  
FCMB13_ID_HIGH  
FCMB13_ID_LOW  
$A8  
$A9  
$AA  
Message Buffer 13 Control / Status Register  
Message Buffer 13 ID High Register  
Message Buffer 13 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
73  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8167 device  
Register Acronym  
FCMB13_DATA  
Address Offset  
Register Description  
Message Buffer 13 Data Register  
$AB  
$AC  
$AD  
$AE  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Reserved  
FCMB14_CONTROL  
FCMB14_ID_HIGH  
FCMB14_ID_LOW  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
$B0  
$B1  
$B2  
$B3  
$B4  
$B5  
$B6  
Message Buffer 14 Control / Status Register  
Message Buffer 14 ID High Register  
Message Buffer 14 ID Low Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Reserved  
FCMB15_CONTROL  
FCMB15_ID_HIGH  
FCMB15_ID_LOW  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
$B8  
$B9  
$BA  
$BB  
$BC  
$BD  
$BE  
Message Buffer 15 Control / Status Register  
Message Buffer 15 ID High Register  
Message Buffer 15 ID Low Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Reserved  
Table 4-39 FlexCAN2 Registers Address Map  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8167 device  
Register Acronym  
FC2MCR  
Address Offset  
Register Description  
Module Configuration Register  
$0  
Reserved  
FC2CTL0  
$3  
$4  
$5  
$6  
$7  
$8  
Control Register 0 Register  
Control Register 1 Register  
Free-Running Timer Register  
Maximum Message Buffer Configuration Register  
Interrupt Masks 2 Register  
FC2CTL1  
FC2TMR  
FC2MAXMB  
FC2IMASK2  
FC2RXGMASK_H  
Receive Global Mask High Register  
56F8367 Technical Data, Rev. 3.0  
74  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8167 device  
Register Acronym  
FC2RXGMASK_L  
Address Offset  
Register Description  
$9  
$A  
$B  
$C  
$D  
Receive Global Mask Low Register  
Receive Buffer 14 Mask High Register  
Receive Buffer 14 Mask Low Register  
Receive Buffer 15 Mask High Register  
Receive Buffer 15 Mask Low Register  
Reserved  
FC2RX14MASK_H  
FC2RX14MASK_L  
FC2RX15MASK_H  
FC2RX15MASK_L  
FC2STATUS  
$10  
$11  
$12  
$13  
Error and Status Register  
FC2IMASK1  
Interrupt Masks 1 Register  
FC2IFLAG1  
Interrupt Flags 1 Register  
FC2R/T_ERROR_CNTRS  
Receive and Transmit Error Counters Register  
Reserved  
FC2IFLAG 2  
$1B  
Interrupt Flags 2 Register  
Reserved  
FC2MB0_CONTROL  
FC2MB0_ID_HIGH  
FC2MB0_ID_LOW  
FC2MB0_DATA  
FC2MB0_DATA  
FC2MB0_DATA  
FC2MB0_DATA  
$40  
$41  
$42  
$43  
$44  
$45  
$46  
Message Buffer 0 Control / Status Register  
Message Buffer 0 ID High Register  
Message Buffer 0 ID Low Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Reserved  
FC2MSB1_CONTROL  
FC2MSB1_ID_HIGH  
FC2MSB1_ID_LOW  
FC2MB1_DATA  
$48  
$49  
$4A  
$4B  
$4C  
$4D  
$4E  
Message Buffer 1 Control / Status Register  
Message Buffer 1 ID High Register  
Message Buffer 1 ID Low Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Reserved  
FC2MB1_DATA  
FC2MB1_DATA  
FC2MB1_DATA  
FC2MB2_CONTROL  
FC2MB2_ID_HIGH  
FC2MB2_ID_LOW  
$50  
$51  
$52  
Message Buffer 2 Control / Status Register  
Message Buffer 2 ID High Register  
Message Buffer 2 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
75  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8167 device  
Register Acronym  
FC2MB2_DATA  
Address Offset  
Register Description  
Message Buffer 2 Data Register  
$53  
$54  
$55  
$56  
FC2MB2_DATA  
FC2MB2_DATA  
FC2MB2_DATA  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Reserved  
FC2MB3_CONTROL  
FC2MB3_ID_HIGH  
FC2MB3_ID_LOW  
FC2MB3_DATA  
FC2MB3_DATA  
FC2MB3_DATA  
FC2MB3_DATA  
$58  
$59  
$5A  
$5B  
$5C  
$5D  
$5E  
Message Buffer 3 Control / Status Register  
Message Buffer 3 ID High Register  
Message Buffer 3 ID Low Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Reserved  
FC2MB4_CONTROL  
FC2MB4_ID_HIGH  
FC2MB4_ID_LOW  
FC2MB4_DATA  
FC2MB4_DATA  
FC2MB4_DATA  
FC2MB4_DATA  
$60  
$61  
$62  
$63  
$64  
$65  
$66  
Message Buffer 4 Control / Status Register  
Message Buffer 4 ID High Register  
Message Buffer 4 ID Low Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Reserved  
FC2MB5_CONTROL  
FC2MB5_ID_HIGH  
FC2MB5_ID_LOW  
FC2MB5_DATA  
FC2MB5_DATA  
FC2MB5_DATA  
FC2MB5_DATA  
$68  
$69  
$6A  
$6B  
$6C  
$6D  
$6E  
Message Buffer 5 Control / Status Register  
Message Buffer 5 ID High Register  
Message Buffer 5 ID Low Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Reserved  
FC2MB6_CONTROL  
FC2MB6_ID_HIGH  
FC2MB6_ID_LOW  
$70  
$71  
$72  
Message Buffer 6 Control / Status Register  
Message Buffer 6 ID High Register  
Message Buffer 6 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
76  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8167 device  
Register Acronym  
FC2MB6_DATA  
Address Offset  
Register Description  
Message Buffer 6 Data Register  
$73  
$74  
$75  
$76  
FC2MB6_DATA  
FC2MB6_DATA  
FC2MB6_DATA  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Reserved  
FC2MB7_CONTROL  
FC2MB7_ID_HIGH  
FC2MB7_ID_LOW  
FC2MB7_DATA  
FC2MB7_DATA  
FC2MB7_DATA  
FC2MB7_DATA  
$78  
$79  
$7A  
$7B  
$7C  
$7D  
$7E  
Message Buffer 7 Control / Status Register  
Message Buffer 7 ID High Register  
Message Buffer 7 ID Low Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Reserved  
FC2MB8_CONTROL  
FC2MB8_ID_HIGH  
FC2MB8_ID_LOW  
FC2MB8_DATA  
FC2MB8_DATA  
FC2MB8_DATA  
FC2MB8_DATA  
$80  
$81  
$82  
$83  
$84  
$85  
$86  
Message Buffer 8 Contro l /Status Register  
Message Buffer 8 ID High Register  
Message Buffer 8 ID Low Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Reserved  
FC2MB9_CONTROL  
FC2MB9_ID_HIGH  
FC2MB9_ID_LOW  
FC2MB9_DATA  
FC2MB9_DATA  
FC2MB9_DATA  
FC2MB9_DATA  
$88  
$89  
$8A  
$8B  
$8C  
$8D  
$8E  
Message Buffer 9 Control / Status Register  
Message Buffer 9 ID High Register  
Message Buffer 9 ID Low Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Reserved  
FC2MB10_CONTROL  
FC2MB10_ID_HIGH  
FC2MB10_ID_LOW  
$90  
$91  
$92  
Message Buffer 10 Control / Status Register  
Message Buffer 10 ID High Register  
Message Buffer 10 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
77  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8167 device  
Register Acronym  
FC2MB10_DATA  
Address Offset  
Register Description  
Message Buffer 10 Data Register  
$93  
$94  
$95  
$96  
FC2MB10_DATA  
FC2MB10_DATA  
FC2MB10_DATA  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Reserved  
FC2MB11_CONTROL  
FC2MB11_ID_HIGH  
FC2MB11_ID_LOW  
FC2MB11_DATA  
FC2MB11_DATA  
FC2MB11_DATA  
FC2MB11_DATA  
$98  
$99  
$9A  
$9B  
$9C  
$9D  
$9E  
Message Buffer 11 Control / Status Register  
Message Buffer 11 ID High Register  
Message Buffer 11 ID Low Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Reserved  
FC2MB12_CONTROL  
FC2MB12_ID_HIGH  
FC2MB12_ID_LOW  
FC2MB12_DATA  
FC2MB12_DATA  
FC2MB12_DATA  
FC2MB12_DATA  
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
Message Buffer 12 Control / Status Register  
Message Buffer 12 ID High Register  
Message Buffer 12 ID Low Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Reserved  
FC2MB13_CONTROL  
FC2MB13_ID_HIGH  
FC2MB13_ID_LOW  
FC2MB13_DATA  
FC2MB13_DATA  
FC2MB13_DATA  
FC2MB13_DATA  
$A8  
$A9  
$AA  
$AB  
$AC  
$AD  
$AE  
Message Buffer 13 Control / Status Register  
Message Buffer 13 ID High Register  
Message Buffer 13 ID Low Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Reserved  
FC2MB14_CONTROL  
FC2MB14_ID_HIGH  
FC2MB14_ID_LOW  
$B0  
$B1  
$B2  
Message Buffer 14 Control / Status Register  
Message Buffer 14 ID High Register  
Message Buffer 14 ID Low Register  
56F8367 Technical Data, Rev. 3.0  
78  
Freescale Semiconductor  
Preliminary  
Factory Programmed Memory  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8167 device  
Register Acronym  
FC2MB14_DATA  
Address Offset  
Register Description  
Message Buffer 14 Data Register  
$B3  
$B4  
$B5  
$B6  
FC2MB14_DATA  
FC2MB14_DATA  
FC2MB14_DATA  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Reserved  
FC2MB15_CONTROL  
FC2MB15_ID_HIGH  
FC2MB15_ID_LOW  
FC2MB15_DATA  
FC2MB15_DATA  
FC2MB15_DATA  
FC2MB15_DATA  
$B8  
$B9  
$BA  
$BB  
$BC  
$BD  
$BE  
Message Buffer 15 Control / Status Register  
Message Buffer 15 ID High Register  
Message Buffer 15 ID Low Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Reserved  
4.8 Factory Programmed Memory  
The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader  
program. The Serial Bootloader application can be used to load a user application into the Program and  
Data Flash (NOT available in the 56F8167 device) memories of the device. The 56F83xx SCI/CAN  
Bootloader User Manual (MC56F83xxBLUM) provides detailed information on this firmware. An  
application note, Production Flash Programming (AN1973), details how the Serial Bootloader program  
can be used to perform production Flash programming of the on-board Flash memories as well as other  
potential methods.  
Like all the Flash memory blocks, the Boot Flash can be erased and programmed by the user. The Serial  
Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained  
in the Boot Flash memory.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
79  
Part 5 Interrupt Controller (ITCN)  
5.1 Introduction  
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to  
signal to the 56800E core when an interrupt of sufficient priority exists, and what address to jump in order  
to service this interrupt.  
5.2 Features  
The ITCN module design includes these distinctive features:  
Programmable priority levels for each IRQ  
Two programmable Fast Interrupts  
Notification to SIM module to restart clocks out of Wait and Stop modes  
Drives initial address on the address bus after reset  
For further information, see Table 4-5, Interrupt Vector Table Contents.  
5.3 Functional Description  
The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 86 interrupt  
sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of  
the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the  
active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number  
85 is the lowest.  
5.3.1  
Normal Interrupt Handling  
Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest  
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the  
vector number to determine the vector address. In this way, an offset is generated into the vector table for  
each interrupt.  
5.3.2  
Interrupt Nesting  
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be  
serviced. The following tables define the nesting requirements for each priority level.  
Table 5-1 Interrupt Mask Bit Definition  
SR[9]1  
SR[8]1  
Permitted Exceptions  
Masked Exceptions  
None  
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 0  
Priorities 0, 1  
Priorities 0, 1, 2  
1. Core status register bits indicating current interrupt mask within the core.  
56F8367 Technical Data, Rev. 3.0  
80  
Freescale Semiconductor  
Preliminary  
Functional Description  
Table 5-2. Interrupt Priority Encoding  
Current Interrupt Priority  
Level  
Required Nested  
Exception Priority  
IPIC_LEVEL[1:0]1  
00  
01  
01  
11  
No Interrupt or SWILP  
Priority 0  
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 1  
Priorities 2 or 3  
1. See IPIC field definition in Part 5.6.30.2  
5.3.3  
Fast Interrupt Handling  
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes  
fast interrupts before the core does.  
A fast interrupt is defined (to the ITCN) by:  
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers  
2. Setting the FIMn register to the appropriate vector number  
3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt  
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a  
match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector  
address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an  
offset from the VBA.  
The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts  
its fast interrupt handling.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
81  
5.4 Block Diagram  
any0  
Priority  
Level  
Level 0  
82->7  
Priority  
Encoder  
7
2->4  
INT1  
Decode  
INT  
VAB  
IPIC  
CONTROL  
any3  
Level 3  
Priority  
Level  
IACK  
SR[9:8]  
82->7  
Priority  
Encoder  
7
PIC_EN  
2->4  
INT82  
Decode  
Figure 5-1 Interrupt Controller Block Diagram  
5.5 Operating Modes  
The ITCN module design contains two major modes of operation:  
Functional Mode  
The ITCN is in this mode by default.  
Wait and Stop Modes  
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal  
a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ  
can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA  
and IRQB signals automatically become low-level sensitive in these modes even if the control register bits  
are set to make them falling-edge sensitive. This is because there is no clock available to detect the falling  
edge.  
A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during Stop  
mode. The FlexCAN module can wake the device from Stop mode, and a reset will do just that, or IRQA  
and IRQB can wake it up.  
56F8367 Technical Data, Rev. 3.0  
82  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6 Register Descriptions  
A register address is the sum of a base address and an address offset. The base address is defined at the  
system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00F1A0)  
Register  
Acronym  
Base Address +  
Register Name  
Interrupt Priority Register 0  
Section Location  
IPR0  
$0  
$1  
5.6.1  
5.6.2  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Interrupt Priority Register 5  
Interrupt Priority Register 6  
Interrupt Priority Register 7  
Interrupt Priority Register 8  
Interrupt Priority Register 9  
Vector Base Address Register  
Fast Interrupt 0 Match Register  
Fast Interrupt 0 Vector Address Low Register  
Fast Interrupt 0 Vector Address High Register  
Fast Interrupt 1 Match Register  
Fast Interrupt 1 Vector Address Low Register  
Fast Interrupt 1 Vector Address High Register  
IRQ Pending Register 0  
IPR1  
IPR2  
$2  
5.6.3  
IPR3  
$3  
5.6.4  
IPR4  
$4  
5.6.5  
IPR5  
$5  
5.6.6  
IPR6  
$6  
5.6.7  
IPR7  
$7  
5.6.8  
IPR8  
$8  
5.6.9  
IPR9  
$9  
5.6.10  
5.6.11  
5.6.12  
5.6.13  
5.6.14  
5.6.15  
5.6.16  
5.6.17  
5.6.18  
5.6.19  
5.6.20  
5.6.21  
5.6.22  
5.6.23  
VBA  
$A  
$B  
$C  
$D  
$E  
$F  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
IRQP5  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Reserved  
Interrupt Control Register  
ICTL  
$1D  
$1F  
5.6.30  
5.6.32  
Reserved  
IPR10  
Interrupt Priority Register 10  
Note: The IPR10 is NOT available in the 56F8167 device.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
83  
Add. Register  
Offset Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
IPR0  
IPR1  
BKPT_U0 IPL  
STPCNT IPL  
0
0
0
0
0
0
0
0
0
0
RX_REG IPL  
TX_REG IPL  
IRQB IPL  
TRBUF IPL  
IRQA IPL  
W
R
0
0
IPR2  
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
W
R
0
0
GPIOD  
IPL  
GPIOE  
IPL  
GPIOF  
IPL  
IPR3  
FCMSGBUF IPL FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
W
R
0
0
0
0
0
0
SPI1_RCV  
IPL  
GPIOA  
IPL  
GPIOB  
IPL  
GPIOC  
IPL  
IPR4  
SPI0_RCV IPL SPI1_XMIT IPL  
DEC1_XIRQ IPL DEC1_HIRQ IPL  
W
R
SCI1_RCV  
IPL  
IPR5  
SCI1_RERR IPL  
TMRD1 IPL  
SCI1_TIDL IPL SCI1_XMIT IPL SPI0_XMIT IPL  
W
R
0
0
IPR6  
TMRC0 IPL  
TMRA0 IPL  
TMRD3 IPL  
TMRB3 IPL  
TMRD2 IPL  
TMRB2 IPL  
TMRD0 IPL  
TMRB0 IPL  
DEC0_XIRQ IPL DEC0_HIRQ IPL  
W
R
IPR7  
TMRB1 IPL  
TMRC3 IPL  
TMRA3 IPL  
TMRC2 IPL  
TMRA2 IPL  
TMRC1 IPL  
TMRA1 IPL  
W
R
0
0
IPR8  
SCI0_RCV IPL SCI0_RERR IPL  
SCI0_TIDL IPL SCI0_XMIT IPL  
PWMB_RL IPL ADCA_ZC IPL  
W
R
PWMA_RL  
IPL  
IPR9  
PWMA F IPL  
PWMB F IPL  
0
ABCB_ZC IPL  
ADCA_CC IPL  
ADCB_CC IPL  
W
R
0
0
0
0
VBA  
VECTOR BASE ADDRESS  
W
R
0
0
0
0
0
0
0
VBA0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FAST INTERRUPT 0  
W
R
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 0 VECTOR  
ADDRESS HIGH  
W
R
FAST INTERRUPT 1  
W
R
FAST INTERRUPT 1 VECTOR  
ADDRESS LOW  
W
Figure 5-2 ITCN Register Map Summary  
56F8367 Technical Data, Rev. 3.0  
84  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
Add. Register  
Offset Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1 VECTOR  
ADDRESS HIGH  
$10  
$11  
$12  
$13  
$14  
$15  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
PENDING [16:2]  
1
W
R
PENDING [32:17]  
W
R
PENDING [48:33]  
PENDING [64:49]  
PENDING [80:65]  
W
R
W
R
W
PEND-  
ING  
[81]  
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
$16  
IRQP5  
W
Reserved  
ICTL  
IRQB  
STATE STATE  
IRQA  
R
INT  
0
IPIC  
VAB  
0
IRQB  
EDG  
IRQA  
EDG  
$1D  
$1F  
INT_DIS  
W
Reserved  
IPR10  
R
0
0
0
0
0
0
FLEXCAN2  
MSGBUG IPL  
FLEXCAN2  
WKUP IPL  
FLEXCAN2 ERR  
IPL  
FLEXCAN2  
BOFF IPL  
W
= Reserved  
Figure 5-2 ITCN Register Map Summary  
5.6.1  
Interrupt Priority Register 0 (IPR0)  
Base + $0  
Read  
15  
0
14  
0
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
BKPT_U0IPL  
STPCNT IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-3 Interrupt Priority Register 0 (IPR0)  
5.6.1.1  
Reserved—Bits 15–14  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.1.2  
EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)—  
Bits13–12  
This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
85  
11 = IRQ is priority level 3  
5.6.1.3  
EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)— Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.4  
Reserved—Bits 9–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2  
Interrupt Priority Register 1 (IPR1)  
Base + $1  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
RX_REG IPL TX_REG IPL  
TRBUF IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-4 Interrupt Priority Register 1 (IPR1)  
5.6.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2.2  
EOnCE Receive Register Full Interrupt Priority Level  
(RX_REG IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.3  
EOnCE Transmit Register Empty Interrupt Priority Level  
(TX_REG IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
56F8367 Technical Data, Rev. 3.0  
86  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.2.4  
EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.3  
Interrupt Priority Register 2 (IPR2)  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
0
4
0
3
2
1
0
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
IRQB IPL  
IRQA IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-5 Interrupt Priority Register 2 (IPR2)  
5.6.3.1  
Flash Memory Command, Data, Address Buffers Empty Interrupt  
Priority Level (FMCBE IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.2  
Flash Memory Command Complete Priority Level (FMCC IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.3  
Flash Memory Error Interrupt Priority Level (FMERR IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
87  
5.6.3.4  
PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.5  
Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.3.7  
External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.8  
External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4  
Interrupt Priority Register 3 (IPR3)  
Base + $3  
Read  
15 14 13 12 11 10  
GPIOD IPL GPIOE IPL GPIOFIPL  
9
8
7
6
5
4
3
2
1
0
0
0
FCMSGBUF IPL  
FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-6 Interrupt Priority Register 3 (IPR3)  
56F8367 Technical Data, Rev. 3.0  
88  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.4.1  
GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.2  
GPIOE Interrupt Priority Level (GPIOE IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.3  
GPIOF Interrupt Priority Level (GPIOF IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.4  
FlexCAN Message Buffer Interrupt Priority Level (FCMSGBUF IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.5  
FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
89  
5.6.4.6  
FlexCAN Error Interrupt Priority Level (FCERR IPL)— Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.7  
FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)— Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.8  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5  
Interrupt Priority Register 4 (IPR4)  
Base + $4  
Read  
15  
14  
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
4
3
2
1
0
SPI0_RCV  
IPL  
SPI1_XMIT  
IPL  
SPI1_RCV  
IPL  
GPIOA IPL  
GPIOB IPL  
GPIOC IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-7 Interrupt Priority Register 4 (IPR4)  
SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)—Bits 15–14  
5.6.5.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.2  
SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8367 Technical Data, Rev. 3.0  
90  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.3  
SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.4  
Reserved—Bits 9–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5.5  
GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.6  
GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.7  
GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
91  
5.6.6  
Interrupt Priority Register 5 (IPR5)  
Base + $5  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
3
2
1
0
DEC1_XIRQ DEC1_HIRQ  
IPL IPL  
SCI1_RCV  
IPL  
SCI1_RERR  
IPL  
SCI1_TIDL  
IPL  
SCI1_XMIT  
IPL  
SPI0_XMIT  
IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-8 Interrupt Priority Register 5 (IPR5)  
5.6.6.1  
Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level (DEC1_XIRQ  
IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.2  
Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.3  
SCI1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.4  
SCI1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
92  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.6.5  
Reserved—Bits 7–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.6.6  
SCI1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.7  
SCI1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)—  
Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.8  
SPI0 Transmitter Empty Interrupt Priority Level (SPI_XMIT IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7  
Interrupt Priority Register 6 (IPR6)  
Base + $6  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
2
1
0
DEC0_XIRQ  
IPL  
DEC0_HIRQ  
IPL  
TMRC0 IPL  
TMRD3 IPL  
TMRD2 IPL  
TMRD1 IPL  
TMRD0 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-9 Interrupt Priority Register 6 (IPR6)  
Timer C, Channel 0 Interrupt Priority Level (TMRC0 IPL)—Bits 15–14  
5.6.7.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
93  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.2  
Timer D, Channel 3 Interrupt Priority Level (TMRD3 IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.3  
Timer D, Channel 2 Interrupt Priority Level (TMRD2 IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.4  
Timer D, Channel 1 Interrupt Priority Level (TMRD1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.5  
Timer D, Channel 0 Interrupt Priority Level (TMRD0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.7.7  
Quadrature Decoder 0, INDEX Pulse Interrupt Priority Level  
(DEC0_XIRQ IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
56F8367 Technical Data, Rev. 3.0  
94  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.8  
Quadrature Decoder 0, HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8  
Interrupt Priority Register 7 (IPR7)  
Base + $7  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMRA0 IPL  
TMRB3 IPL  
TMRB2 IPL  
TMRB1 IPL  
TMRB0 IPL  
TMRC3 IPL  
TMRC2 IPL  
TMRC1 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-10 Interrupt Priority Register (IPR7)  
Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)—Bits 15–14  
5.6.8.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.2  
Timer B, Channel 3 Interrupt Priority Level (TMRB3 IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
95  
5.6.8.3  
Timer B, Channel 2 Interrupt Priority Level (TMRB2 IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.4  
Timer B, Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.5  
Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.6  
Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.7  
Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
96  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.8.8  
Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9  
Interrupt Priority Register 8 (IPR8)  
Base + $8  
Read  
15  
14  
13  
12  
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
SCI0_RCV  
IPL  
SCI0_RERR  
IPL  
SCI0_TIDL  
IPL  
SCI0_XMIT  
IPL  
TMRA3 IPL  
TMRA2 IPL  
TMRA1 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-11 Interrupt Priority Register 8 (IPR8)  
SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)—Bits 15–14  
5.6.9.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.2  
SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.3  
Reserved—Bits 11–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.9.4  
SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
97  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.5  
SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.6  
Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.7  
Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.8  
Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
98  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.10 Interrupt Priority Register 9 (IPR9)  
Base + $9  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWMA_RL  
IPL  
ADCA_CC  
IPL  
ADCB_CC  
IPL  
PWMA_F IPL PWMB_F IPL  
PWM_RL IPL ADCA_ZC IPL ABCB_ZC IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-12 Interrupt Priority Register 9 (IPR9)  
5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
99  
5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level  
(ADCA_ZC IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 0.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.6 ADC B Zero Crossing or Limit Error Interrupt Priority Level  
(ADCB_ZC IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.7 ADC A Conversion Complete Interrupt Priority Level  
(ADCA_CC IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.8 ADC B Conversion Complete Interrupt Priority Level  
(ADCB_CC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8367 Technical Data, Rev. 3.0  
100  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.11 Vector Base Address Register (VBA)  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR BASE ADDRESS  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
Figure 5-13 Vector Base Address Register (VBA)  
5.6.11.1 Reserved—Bits 15–13  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)—  
Bits 12–0  
The contents of this register determine the location of the Vector Address Table. The value in this register  
is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are  
determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting  
the full VAB to the 56800E core; see Part 5.3.1 for details.  
5.6.12 Fast Interrupt 0 Match Register (FIM0)  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 0  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-14 Fast Interrupt 0 Match Register (FIM0)  
5.6.12.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
101  
5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0  
The lower 16 bits of the vector address are used for Fast Interrupt 0. This register is combined with  
FIVAH0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0 VECTOR  
ADDRESS HIGH  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
5.6.14.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0  
The upper five bits of the vector address are used for Fast Interrupt 0. This register is combined with  
FIVAL0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.15 Fast Interrupt 1 Match Register (FIM1)  
Base + $E  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-17 Fast Interrupt 1 Match Register (FIM1)  
5.6.15.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.  
5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
56F8367 Technical Data, Rev. 3.0  
102  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
Base + $F  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1 VECTOR  
ADDRESS LOW  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0  
The lower 16 bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAH1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
Base + $10  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 1 VECTOR  
ADDRESS HIGH  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
5.6.17.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0  
The upper five bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAL1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
103  
5.6.18 IRQ Pending 0 Register (IRQP0)  
Base + $11  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [16:2]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
1
Figure 5-20 IRQ Pending 0 Register (IRQP0)  
5.6.18.1 IRQ Pending (PENDING)—Bits 16–2  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.18.2 Reserved—Bit 0  
This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.19 IRQ Pending 1 Register (IRQP1)  
$Base + $12  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [32:17]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-21 IRQ Pending 1 Register (IRQP1)  
5.6.19.1 IRQ Pending (PENDING)—Bits 32–17  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.20 IRQ Pending 2 Register (IRQP2)  
Base + $13  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [48:33]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-22 IRQ Pending 2 Register (IRQP2)  
5.6.20.1 IRQ Pending (PENDING)—Bits 48–33  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
56F8367 Technical Data, Rev. 3.0  
104  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.21 IRQ Pending 3 Register (IRQP3)  
Base + $14  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [64:49]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
Figure 5-23 IRQ Pending 3 Register (IRQP3)  
5.6.21.1 IRQ Pending (PENDING)—Bits 64–49  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.22 IRQ Pending 4 Register (IRQP4)  
Base + $15  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [80:65]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
Figure 5-24 IRQ Pending 4 Register (IRQP4)  
5.6.22.1 IRQ Pending (PENDING)—Bits 80–65  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.23 IRQ Pending 5 Register (IRQP5)  
Base + $16  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
0
1
PENDING[85:81]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-25 IRQ Pending Register 5 (IRQP5)  
5.6.23.1 Reserved—Bits 96–86  
This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
105  
5.6.23.2 IRQ Pending (PENDING)—Bits 81–85  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 85.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.24 Reserved—Base + 17  
5.6.25 Reserved—Base + 18  
5.6.26 Reserved—Base + 19  
5.6.27 Reserved—Base + 1A  
5.6.28 Reserved—Base + 1B  
5.6.29 Reserved—Base + 1C  
5.6.30 ITCN Control Register (ICTL)  
Base + $1D  
Read  
15  
14  
13  
12 11 10  
9
8
7
6
0
5
INT_DIS  
0
4
1
3
2
1
0
INT  
IPIC  
VAB  
IRQB STATE IRQA STATE  
IRQB IRQA  
EDG  
EDG  
Write  
0
0
0
1
0
0
0
0
0
1
1
1
0
0
RESET  
Figure 5-26 ITCN Control Register (ICTL)  
5.6.30.1 Interrupt (INT)—Bit 15  
This read-only bit reflects the state of the interrupt to the 56800E core.  
0 = No interrupt is being sent to the 56800E core  
1 = An interrupt is being sent to the 56800E core  
5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13  
These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E  
core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new  
interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
00 = Required nested exception priority levels are 0, 1, 2, or 3  
01 = Required nested exception priority levels are 1, 2, or 3  
10 = Required nested exception priority levels are 2 or 3  
11 = Required nested exception priority level is 3  
56F8367 Technical Data, Rev. 3.0  
106  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6  
This read-only field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This  
field is only updated when the 56800E core jumps to a new interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5  
This bit allows all interrupts to be disabled.  
0 = Normal operation (default)  
1 = All interrupts disabled  
5.6.30.5 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3  
This read-only bit reflects the state of the external IRQB pin.  
5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2  
This read-only bit reflects the state of the external IRQA pin.  
5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1  
This bit controls whether the external IRQB interrupt is edge- or level-sensitive. During Stop and Wait  
modes, it is automatically level-sensitive.  
0 = IRQB interrupt is a low-level sensitive (default)  
1 = IRQB interrupt is falling-edge sensitive  
5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0  
This bit controls whether the external IRQA interrupt is edge- or level-sensitive. During Stop and Wait  
modes, it is automatically level-sensitive.  
0 = IRQA interrupt is a low-level sensitive (default)  
1 = IRQA interrupt is falling-edge sensitive  
5.6.31 Reserved—Base + $1E  
5.6.32 Interrupt Priority Register 10 (IPR10)  
Base + $1F  
Read  
15  
0
14  
0
13  
0
12 11 10  
9
0
8
0
7
6
5
4
3
2
1
0
0
0
0
FLEXCAN2_  
MSGBUF IPL  
FLEXCAN2_  
WKUP IPL  
FLEXCAN2_  
BOFF IPL  
FLEXCAN2_  
ERR IPL  
Write  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Note: This register is NOT available in the 56F8167 device.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
107  
5.6.32.1 Reserved—Bits 15 - 8  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.32.2 FlexCAN2 Message Buffer Interrupt Priority Level  
(FlexCAN2_MSGBUF IPL)—Bits 7 - 6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.32.3 FlexCAN2 Wake Up Interrupt Priority Level (FlexCAN2_WKUP IPL)—  
Bits 5 - 4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.32.4 FlexCAN2 Error Interrupt Priority Level (FlexCAN2_ERR IPL)—Bits 3 - 2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.32.5 FlexCAN2 Bus-Off Interrupt Priority Level (FlexCAN2_BOFF IPL)—  
Bits 1 - 0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.7 Resets  
5.7.1  
Reset Handshake Timing  
The ITCN provides the 56800E core with a reset vector address whenever RESET is asserted. The reset  
56F8367 Technical Data, Rev. 3.0  
108  
Freescale Semiconductor  
Preliminary  
Resets  
vector will be presented until the second rising clock edge after RESET is released.  
5.7.2  
ITCN After Reset  
After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled,  
except the core IRQs with fixed priorities:  
Illegal Instruction  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0  
SW Interrupt LP  
These interrupts are enabled at their fixed priority levels.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
109  
Part 6 System Integration Module (SIM)  
6.1 Overview  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls  
distribution of resets and clocks and provides a number of control features. The system integration module  
is responsible for the following functions:  
Reset sequencing  
Clock generation & distribution  
Stop/Wait control  
Pull-up Enables for Selected Peripherals  
System status registers  
Registers for software access to the JTAG ID of the chip  
Enforcing Flash security  
These are discussed in more detail in the sections that follow.  
6.2 Features  
The SIM has the following features:  
Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory  
Power-saving clock gating for peripheral  
Three power modes (Run, Wait, Stop) to control power utilization  
— Stop mode shuts down 56800E core, system clock, peripheral clock, and PLL operation  
— Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be done  
explicitly  
— Wait mode shuts down the 56800E core, and unnecessary system clock operation  
— Run mode supports full part operation  
Controls to enable/disable the 56800E core WAIT and STOP instructions  
Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be either  
3 x 32 clocks for reset, except for POR, which is 2 clock cycles.  
21  
Controls reset sequencing after reset  
Software-initiated reset  
Four 16-bit registers reset only by a Power-On Reset usable for general purpose software control  
System Control Register  
Registers for software access to the JTAG ID of the chip  
56F8367 Technical Data, Rev. 3.0  
110  
Freescale Semiconductor  
Preliminary  
Operating Modes  
6.3 Operating Modes  
Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the  
various chip operating modes and take appropriate action. These are:  
Reset Mode, which has two submodes:  
— POR and RESET operation  
The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or the  
RESET pin is asserted.  
— COP reset and software reset operation  
The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This allows  
the software to determine the boot mode (internal or external boot) to be used on the next reset.  
Run Mode  
This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation  
Debug Mode  
The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and  
PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor  
from being driven; see the PWM chapter in the 56F8300 Peripheral User Manual for details.  
Wait Mode  
In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped.  
Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other  
peripherals continue to run.  
Stop Mode  
When in Stop mode, the 56800E core, memory, and most peripheral clocks are shut down. Optionally, the  
COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down.  
This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The  
CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode, but is not fully  
functional in Stop mode.  
6.4 Operating Mode Register  
Bit  
15  
NL  
R/W  
0
14  
13  
12  
11  
10  
9
0
8
CM  
R/W  
0
7
XP  
R/W  
0
6
SD  
R/W  
0
5
R
4
SA  
R/W  
0
3
EX  
R/W  
0
2
0
1
MB  
R/W  
X
0
MA  
R/W  
X
Type  
R/W  
0
RESET  
0
0
0
0
0
0
Figure 6-1 OMR  
The reset state for MB and MA will depend on the Flash secured state. See Part 4.2 and Part 7 for detailed  
information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. For all  
other bits, see the DSP56800E Reference Manual.  
Note:  
The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
111  
6.5 Register Descriptions  
Table 6-1 SIM Registers  
(SIM_BASE = $00 F350)  
Address Offset  
Address Acronym  
Register Name  
Section Location  
Base + $0  
Base + $1  
Base + $2  
Base + $3  
Base + $4  
Base + $5  
Base + $6  
Base + $7  
Base + $8  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
Control Register  
6.5.1  
6.5.2  
6.5.3  
6.5.3  
6.5.3  
6.5.3  
6.5.4  
6.5.5  
6.5.6  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half of JTAG ID  
Least Significant Half of JTAG ID  
Pull-up Disable Register  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
Reserved  
Base + $A  
Base + $B  
Base + $C  
Base + $D  
Base + $E  
Base + $F  
SIM_CLKOSR  
SIM_GPS  
CLKO Select Register  
6.5.7  
6.5.8  
GPIO Peripheral Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
Peripheral Clock Enable Register 2  
SIM_PCE  
6.5.9  
SIM_ISALH  
SIM_ISALL  
SIM_PCE2  
6.5.10  
6.5.10  
6.5.11  
56F8367 Technical Data, Rev. 3.0  
112  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
Add.  
Offset  
Register  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
SIM_  
CONTROL  
EMI_ ONCE  
MODE EBL0  
SW  
RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
RSTSTS  
SWR COPR EXTR POR  
W
R
SIM_SCR0  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
FIELD  
FIELD  
FIELD  
FIELD  
W
R
W
R
W
R
W
R
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
1
1
0
1
0
0
0
1
0
SIM_MSH_  
ID  
W
R
SIM_LSH_ID  
W
R
PWMA  
1
EMI_  
MODE  
PWMA  
0
SIM_PUDR  
Reserved  
CAN  
RESET IRQ XBOOT PWMB  
CTRL  
JTAG  
W
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
CLKOSR  
$A  
$B  
$C  
$D  
$E  
$F  
A23  
0
A22  
0
A21  
0
A20 CLKDIS  
CLKOSEL  
C2  
0
SIM_GPS  
SIM_PCE  
D1  
D0  
C3  
C1  
C0  
W
R
PWM PWM  
B
EMI  
1
ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI1  
SCI0 SPI1  
SPI0  
1
A
W
R
1
1
1
1
1
1
1
1
1
1
0
1
0
1
0
SIM_ISALH  
SIM_ISALL  
SIM_PCE2  
ISAL[23:22]  
W
R
ISAL[21:6]  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
CAN2  
W
= Reserved  
Figure 6-2 SIM Register Map Summary  
6.5.1  
SIM Control Register (SIM_CONTROL)  
Base + $0  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
Read  
Write  
EMI_ ONCE SW  
MODE EBL  
STOP_  
DISABLE  
WAIT_  
DISABLE  
RST  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-3 SIM Control Register (SIM_CONTROL)  
Reserved—Bits 15–7  
6.5.1.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
113  
6.5.1.2  
EMI_MODE (EMI_MODE)—Bit 6  
This bit reflects the current (non-clocked) state of the EMI_MODE pin. During reset, this bit, coupled with  
the EXTBOOT signal, is used to initialize address bits [19:16] either as GPIO or as address. These settings  
can be explicitly overwritten using the appropriate GPIO peripheral enable register at any time after reset.  
In addition, this pin can be used as a general purpose input pin after reset.  
0 = External address bits [19:16] are initially programmed as GPIO  
1 = When booted with EXTBOOT = 1, A[19:16] are initially programmed as address. If EXTBOOT is 0,  
they are initialized as GPIO.  
6.5.1.3  
OnCE Enable (OnCE EBL)—Bit 5  
0 = OnCE clock to 56800E core enabled when core TAP is enabled  
1 = OnCE clock to 56800E core is always enabled  
6.5.1.4  
Software Reset (SW RST)—Bit 4  
This bit is always read as 0. Writing a 1 to this bit will cause the part to reset.  
6.5.1.5  
Stop Disable (STOP_DISABLE)—Bits 3–2  
00 - Stop mode will be entered when the 56800E core executes a STOP instruction  
01 - The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can be  
reprogrammed in the future  
10 - The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can then only be  
changed by resetting the device  
11 - Same operation as 10  
6.5.1.6  
Wait Disable (WAIT_DISABLE)—Bits 1–0  
00 - Wait mode will be entered when the 56800E core executes a WAIT instruction  
01 - The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can be  
reprogrammed in the future  
10 - The HawkV2 WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can then only  
be changed by resetting the device  
11 - Same operation as 10  
6.5.2  
SIM Reset Status Register (SIM_RSTSTS)  
Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A  
reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this  
register.  
Base + $1  
Read  
15  
0
14  
0
13  
O
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
0
0
SWR COPR  
EXTR POR  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)  
56F8367 Technical Data, Rev. 3.0  
114  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.2.2  
Software Reset (SWR)—Bit 5  
When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST  
bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing  
a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.  
6.5.2.3  
COP Reset (COPR)—Bit 4  
When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has  
occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will  
set the bit, while writing a 1 to the bit will clear it.  
6.5.2.4  
External Reset (EXTR)—Bit 3  
If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On  
Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit position  
will clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external  
RESET pin being asserted low.  
6.5.2.5  
Power-On Reset (POR)—Bit 2  
When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can only be  
cleared by software or by another type of reset. Writing a 0 to this bit will set the bit while writing a 1 to  
the bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a  
Power-On Reset.  
6.5.2.6  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.3  
SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2,  
and SIM_SCR3)  
Only SIM_SCR0 is shown below. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in functionality.  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FIELD  
0
Write  
0
0
0
0
0
0
0
0
0
0
0
0
POR  
Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
115  
6.5.3.1  
Software Control Data 1 (FIELD)—Bits 15–0  
This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is  
intended for use by a software developer to contain data that will be unaffected by the other reset sources  
(RESET pin, software reset, and COP reset).  
6.5.4  
Most Significant Half of JTAG ID (SIM_MSH_ID)  
This read-only register displays the most significant half of the JTAG ID for the chip. This register reads  
$01D6.  
Base + $6  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
1
6
1
5
0
4
1
3
0
2
1
1
1
0
0
Write  
RESET  
0
0
0
0
0
0
0
1
1
1
0
1
0
1
1
0
Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)  
6.5.5  
Least Significant Half of JTAG ID (SIM_LSH_ID)  
This read-only register displays the least significant half of the JTAG ID for the chip. This register reads  
$D01D.  
Base + $7  
Read  
15  
1
14  
1
13  
0
12  
1
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
Write  
RESET  
1
1
0
1
0
0
0
0
0
0
0
1
1
1
0
1
Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)  
6.5.6  
SIM Pull-up Disable Register (SIM_PUDR)  
Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can have these  
resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups disabled by setting the  
appropriate bit in this register. Disabling pull-ups is done on a peripheral-by-peripheral basis (for pins not  
muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See  
Table 2-2 to identify which pins can deactivate the internal pull-up resistor.  
Base + $8 15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
CTRL  
0
4
0
3
JTAG  
0
2
0
1
0
0
0
Read  
Write  
0
EMI_  
MODE  
PWMA1 CAN  
RESET IRQ XBOOT PWMB PWMA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR)  
56F8367 Technical Data, Rev. 3.0  
116  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.6.1  
Reserved —Bit 15  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.2  
PWMA1—Bit 14  
This bit controls the pull-up resistors on the FAULTA3 pin.  
6.5.6.3  
CAN—Bit 13  
This bit controls the pull-up resistors on the CAN_RX pin.  
6.5.6.4  
EMI_MODE—Bit 12  
This bit controls the pull-up resistors on the EMI_MODE pin.  
6.5.6.5  
RESET—Bit 11  
This bit controls the pull-up resistors on the RESET pin.  
6.5.6.6  
IRQ—Bit 10  
This bit controls the pull-up resistors on the IRQA and IRQB pins.  
6.5.6.7  
XBOOT—Bit 9  
This bit controls the pull-up resistors on the EXTBOOT pin.  
Note:  
In this package, this input pin is double-bonded with the adjacent V pin and this bit should be  
SS  
changed to a 1 in order to reduce power consumption.  
6.5.6.8  
PWMB—Bit 8  
This bit controls the pull-up resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins.  
6.5.6.9 PWMA0—Bit 7  
This bit controls the pull-up resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.  
6.5.6.10 Reserved—Bit 6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.11 CTRL—Bit 5  
This bit controls the pull-up resistors on the WR and RD pins.  
6.5.6.12 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
117  
6.5.6.13 JTAG—Bit 3  
This bit controls the pull-up resistors on the TRST, TMS and TDI pins.  
6.5.6.14 Reserved—Bit 2–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.7  
CLKO Select Register (SIM_CLKOSR)  
The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock  
generation and SIM modules. The default value is SYS_CLK. All other clocks primarily muxed out are  
for test purposes only, and are subject to significant phase shift at high frequencies.  
The upper four bits of the GPIOB register can function as GPIO, [A23:20], or as additional clock output  
signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are programmed  
to operate as peripheral outputs, then the choice between [A23:20] and additional clock outputs is done  
here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4] to be programmed as  
[A23:20]. This can be changed by altering [A23:20] as shown in Figure 6-9.  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
A23  
0
8
A22  
0
7
A21  
0
6
A20  
0
5
4
3
0
2
CLKOSEL  
0
1
0
0
0
CLK  
DIS  
Write  
RESET  
0
0
0
0
0
0
1
0
Figure 6-9 CLKO Select Register (SIM_CLKOSR)  
6.5.7.1  
Reserved—Bits 15–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.7.2  
Alternate GPIOB Peripheral Function for A23 (A23)—Bit 9  
0 = Peripheral output function of GPIOB7 is defined to be A23  
1 = Peripheral output function of GPIOB7 is defined to be the oscillator_clock (MSTR_OSC in Figure 3-4)  
6.5.7.3  
Alternate GPIOB Peripheral Function for A22 (A22)—Bit 8  
0 = Peripheral output function of GPIOB6 is defined to be A22  
1 = Peripheral output function of GPIOB6 is defined to be SYS_CLK2  
6.5.7.4  
Alternate GPIOB Peripheral Function for A21 (A21)—Bit 7  
0 = Peripheral output function of GPIOB5 is defined to be A21  
1 = Peripheral output function of GPIOB5 is defined to be SYS_CLK  
6.5.7.5  
Alternate GPIOB Peripheral Function fpr A20 (A20)—Bit 6  
0 = Peripheral output function of GPIOB4 is defined to be A20  
1 = Peripheral output function of GPIOB4 is defined to be the prescaler_clock (FREF in Figure 3-4)  
56F8367 Technical Data, Rev. 3.0  
118  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.7.6  
Clockout Disable (CLKDIS)—Bit 5  
0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL  
1 = CLKOUT is tri-stated  
6.5.7.7  
CLockout Select (CLKOSEL)—Bits 4–0  
Selects clock to be muxed out on the CLKO pin.  
00000 = SYS_CLK (from OCCS - DEFAULT)  
00001 = Reserved for factory test—56800E clock  
00010 = Reserved for factory test—XRAM clock  
00011 = Reserved for factory test—PFLASH odd clock  
00100 = Reserved for factory test—PFLASH even clock  
00101 = Reserved for factory test—BFLASH clock  
00110 = Reserved for factory test—DFLASH clock  
00111 = Oscillator output  
01000 = F (from OCCS)  
out  
01001 = Reserved for factory test—IPB clock  
01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)  
01011 = Reserved for factory test—Prescaler clock (from OCCS)  
01100 = Reserved for factory test—Postscaler clock (from OCCS)  
01101 = Reserved for factory test—SYS_CLK2 (from OCCS)  
01110 = Reserved for factory test—SYS_CLK_DIV2  
01111 = Reserved for factory test—SYS_CLK_D  
10000 = ADCA clock  
10001 = ADCB clock  
6.5.8  
GPIO Peripheral Select Register (SIM_GPS)  
Some GPIO pads can have more than one peripheral selected as the alternate function instead of GPIO.  
For these pads, this register selects which of the alternate peripherals are actually selected for the GPIO  
peripheral function. This applies to GPIOC, pins 0-3, and to GPIOD, pins 0 and 1.  
The GPIOC Peripheral Select register can be used to multiplex out any one of the three alternate  
peripherals for GPIOC. The default peripheral is Quad Decoder 1 and Quad Timer B (NOT available in  
the 56F8167 device); these peripherals work together.  
The four I/O pins associated with GPIOC can function as GPIO, Quad Decoder 1/Quad TimerB , or as  
SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown in  
Figure 6-10 and Table 6-2. When GPIOC[3:0] are programmed to operate as peripheral I/O, then the  
choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS register and in conjunction  
with the Quad Timer Status and Control Registers (SCR). The default state is for the peripheral function  
of GPIOC[3:0] to be programmed as decoder functions. This can be changed by altering the appropriate  
controls in the indicated registers.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
119  
GPIOC_PER Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_ GPS Register  
0
1
Quad Timer Controlled  
SPI Controlled  
Figure 6-10 Overall Control of GPIOC Pads Using SIM_GPS Control  
1
Table 6-2 Control of GPIOC Pads Using SIM_GPS Control  
Control Registers  
Pin Function  
Comments  
GPIO Input  
0
0
1
0
1
0
0
GPIO Output  
Quad Timer Input / Quad  
Decoder Input 2  
See the “Switch Matrix for Inputs to the Timer”  
table in the 56F8300 Peripheral User Manual  
for the definition of timer inputs based on the  
Quad Decoder mode configuration.  
Quad Timer Output / Quad  
Decoder Input 3  
1
0
1
SPI input  
1
1
1
1
See SPI controls for determining the direction  
of each of the SPI pins.  
SPI output  
1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control bits is  
used for each pin.  
2. Reset configuration  
3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins.  
Two Input/Output pins associated with GPIOD can function as GPIO, EMI (default peripheral) or CAN2  
(NOT available on the 56F8167 device) signals. GPIO is the default and is enabled/disabled via the  
GPIOD_PER, as shown in Figure 6-11 and Table 6-3. When GPIOD[1:0] are programmed to operate as  
peripheral input/output, then the choice between EMI and CAN2 inputs/outputs is made here in the GPS.  
56F8367 Technical Data, Rev. 3.0  
120  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
GPIOD_PER Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_ GPS Register  
0
1
EMI Controlled  
CAN2 Controlled  
Figure 6-11 Overall Control of GPIOD Pads Using SIM_GPS Control  
1
Table 6-3 Control of GPIOD Pads Using SIM_GPS Control  
Control Registers  
Pin Function  
Comments  
GPIO Input  
0
0
1
1
0
1
0
GPIO Output  
EMI I/O  
EMI CSn pins are always outputs  
CAN2  
1
CAN2_TX is always an output  
CAN2_RX is always an input  
1. This applies to the two pins that serve as EMI CSn / CAN2 / GPIOD functions. A separate set of control bits is used for  
each pin.  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
D1  
0
4
D0  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Write  
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-12 GPIO Peripheral Select Register (SIM_GPS)  
Reserved—Bits 15–6  
6.5.8.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
121  
6.5.8.2  
GPIOD1 (D1)—Bit 5  
This bit selects the alternate function for GPIOD1.  
0 = CS3  
1 = CAN2_RX  
6.5.8.3  
GPIOD0 (D0)—Bit 4  
0 = CS2  
1 = CAN2_TX  
6.5.8.4  
GPIOC3 (C3)—Bit 3  
This bit selects the alternate function for GPIOC3.  
0 = HOME1/TB3 (default - see “Switch Matrix Mode” bits of the Quad Decoder DECCR register in the  
56F8300 Peripheral User Manual)  
1 = SS1  
6.5.8.5  
GPIOC2 (C2)—Bit 2  
This bit selects the alternate function for GPIOC2.  
0 = INDEX1/TB2 (default)  
1 = MISO1  
6.5.8.6  
GPIOC1 (C1)—Bit 1  
This bit selects the alternate function for GPIOC1.  
0 = PHASEB1/TB1 (default)  
1 = MOSI1  
6.5.8.7  
GPIOC0 (C0)—Bit 0  
This bit selects the alternate function for GPIOC0.  
0 = PHASEA1/TB0 (default)  
1 = SCLK1  
6.5.9  
Peripheral Clock Enable Register (SIM_PCE)  
The Peripheral Clock Enable register is used enable or disable clocks to the peripherals as a power savings  
feature. The clocks can be individually controlled for each peripheral on the chip.  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EMI ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI 1 SCI 0 SPI 1 SPI 0 PWMB PWMA  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-13 Peripheral Clock Enable Register (SIM_PCE)  
56F8367 Technical Data, Rev. 3.0  
122  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.9.1  
External Memory Interface Enable (EMI)—Bit 15  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.2  
Analog-to-Digital Converter B Enable (ADCB)—Bit 14  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.3  
Analog-to-Digital Converter A Enable (ADCA)—Bit 13  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.4  
FlexCAN Enable (CAN)—Bit 12  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.5  
Decoder 1 Enable (DEC1)—Bit 11  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.6  
Decoder 0 Enable (DEC0)—Bit 10  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.7  
Quad Timer D Enable (TMRD)—Bit 9  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.8  
Quad Timer C Enable (TMRC)—Bit 8  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
123  
6.5.9.9  
Quad Timer B Enable (TMRB)—Bit 7  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.15 Pulse Width Modulator B Enable (PWMB)—1  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.16 Pulse Width Modulator A Enable (PWMA)—0  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
56F8367 Technical Data, Rev. 3.0  
124  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL)  
The I/O Short Address Location registers are used to specify the memory referenced via the I/O short  
address mode. The I/O short address mode allows the instruction to specify the lower six bits of address;  
the upper address bits are not directly controllable. This register set allows limited control of the full  
address, as shown in Figure 6-14.  
Note:  
If this register is set to something other than the top of memory (EOnCE register space) and the EX bit  
in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions  
will be affected.  
Instruction Portion  
Hard Coded” Address Portion  
6 Bits from I/O Short Address Mode Instruction  
16 Bits from SIM_ISALL Register  
2 bits from SIM_ISALH Register  
Full 24-Bit for Short I/O Address  
Figure 6-14 I/O Short Address Determination  
With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral  
registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register  
to its previous contents prior to returning from interrupt.  
Note:  
Note:  
The default value of this register set points to the EOnCE registers.  
The pipeline delay between setting this register set and using short I/O addressing with the new value  
is three cycles.  
Base + $D  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
0
ISAL[23:22]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-15 I/O Short Address Location High Register (SIM_ISALH)  
6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0  
This field represents the upper two address bits of the “hard coded” I/O short address.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
125  
Base + $E  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
ISAL[21:6]  
Write  
1
1
RESET  
Figure 6-16 I/O Short Address Location Low Register (SIM_ISAL)  
6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0  
This field represents the lower 16 address bits of the “hard coded” I/O short address.  
6.5.11 Peripheral Clock Enable Register 2 (SIM_PCE2)  
The Peripheral Clock Enable Register 2 is used to enable or disable clocks to the peripherals as a  
power-saving feaure. The clocks can be individually controller for each peripheral on the chip.  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CAN  
2
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
RESET  
6.5.11.1 Reserved—Bits 15–1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.11.2 CAN2 Enable—Bit 0  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.6 Clock Generation Overview  
The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and  
system (core and memory) clocks. The maximum master clock frequency is 120MHz. Peripheral and  
system clocks are generated at half the master clock frequency and therefore at a maximum 60MHz. The  
SIM provides power modes (Stop, Wait) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL)  
to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible  
means to manage power consumption.  
56F8367 Technical Data, Rev. 3.0  
126  
Freescale Semiconductor  
Preliminary  
Power Down Modes Overview  
Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may be shut  
down when not in use. When the PLL is in use, its prescaler and postscaler can be used to limit PLL and  
master clock frequency. Power modes permit system and/or peripheral clocks to be disabled when unused.  
Clock enables provide the means to disable individual clocks. Some peripherals provide further controls  
to disable unused sub-functions. Refer to Part 3 On-Chip Clock Synthesis (OCCS), and the 56F8300  
Peripheral User Manual for further details.  
6.7 Power Down Modes Overview  
The 56F8367/56F8167 operate in one of three power-down modes as shown in Table 6-3  
.
Table 6-4 Clock Operation in Power Down Modes  
Mode  
Run  
Core Clocks  
Active  
Peripheral Clocks  
Description  
Device is fully functional  
Active  
Active  
Peripherals are active and can produce interrupts if they  
have not been masked off.  
Wait  
Core and memory  
clocks disabled  
Interrupts will cause the core to come out of its  
suspended state and resume normal operation.  
Typically used for power-conscious applications.  
The only possible recoveries from Stop mode are:  
1. CAN traffic (1st message will be lost)  
2. Non-clocked interrupts  
3. COP reset  
Stop  
System clocks continue to be generated in  
the SIM, but most are gated prior to  
reaching memory, core and peripherals.  
4. External reset  
5. Power-on reset  
All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the same as  
the main processor frequency in this architecture. The maximum frequency of operation is  
SYS_CLK = 60MHz.  
Refer to the PCE register in Part 6.5.9 and ADC power modes. Power is a function of the system  
frequency which can be controlled through the OCCS.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
127  
6.8 Stop and Wait Mode Disable Function  
Permanent  
Disable  
D
Q
D-FLOP  
C
56800E  
Reprogrammable  
Disable  
STOP_DIS  
D
Q
D-FLOP  
Clock  
C
R
Select  
Note: Wait disable circuit is similar  
Reset  
Figure 6-17 Stop Disable Circuit  
The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest  
power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering  
Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E  
system clock must be set equal to the oscillator output.  
Some applications require the 56800E STOP/WAIT instructions be disabled. To disable those  
instructions, write to the SIM control register (SIM_CONTROL) described in Part 6.5.1. This procedure  
can be on either a permanent or temporary basis. Permanently assigned applications last only until their  
next reset.  
6.9 Resets  
The SIM supports four sources of reset. The two asynchronous sources are the external reset pin and the  
Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within  
the SIM itself by writting to the SIM_CONTROL register, and the COP reset.  
Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced  
21  
to permit proper operation of the device. A POR reset is first extended for 2 clock cycles to permit  
stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is  
then followed by a 32 clock window in which peripherals are released to implement Flash security, and,  
finally, followed by a 32 clock window in which the core is initialized. After completion of the described  
reset sequence, application code will begin execution.  
Resets may be asserted asynchronously, but are always released internally on a rising edge of the system  
clock.  
56F8367 Technical Data, Rev. 3.0  
128  
Freescale Semiconductor  
Preliminary  
Operation with Security Enabled  
Part 7 Security Features  
The 56F8367/56F8167 offer security features intended to prevent unauthorized users from reading the  
contents of the Flash Memory (FM) array. The Flash security consists of several hardware interlocks that  
block the means by which an unauthorized user could gain access to the Flash array.  
However, part of the security must lie with the user’s code. An extreme example would be user’s code that  
dumps the contents of the internal program, as this code would defeat the purpose of security. At the same  
time, the user may also wish to put a “backdoor” in his program. As an example, the user downloads a  
security key through the SCI, allowing access to a programming routine that updates parameters stored in  
another section of the Flash.  
7.1 Operation with Security Enabled  
Once the user has programmed the Flash with his application code, the device can be secured by  
programming the security bytes located in the FM configuration field, which occupies a portion of the FM  
array. These non-volatile bytes will keep the part secured through reset and through power-down of the  
device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory  
section in the 56F8300 Peripheral User Manual for the state of the security bytes and the resulting state  
of security. When Flash security mode is enabled in accordance with the method described in the Flash  
Memory module specification, the device will disable external P-space accesses restricting code execution  
to internal memory, disable EXTBOOT=1 mode, and disable the core EOnCE debug capabilities. Normal  
program execution is otherwise unaffected.  
7.2 Flash Access Blocking Mechanisms  
The 56F8367/56F8167 have several operating functional and test modes. Effective Flash security must  
address operating mode selection and anticipate modes in which the on-chip Flash can be compromised  
and read without explicit user permission. Methods to block these are outlined in the next subsections.  
7.2.1  
Forced Operating Mode Selection  
At boot time, the SIM determines in which functional modes the device will operate. These are:  
Internal Boot Mode  
External Boot Mode  
Secure Mode  
When Flash security is enabled as described in the Flash Memory module specification, the device will  
boot in internal boot mode, disable all access to external P-space, and start executing code from the Boot  
Flash at address 0x02_0000.  
This security affords protection only to applications in which the device operates in internal Flash security  
mode. Therefore, the security feature cannot be used unless all executing code resides on-chip.  
When security is enabled, any attempt to override the default internal operating mode by asserting the  
EXTBOOT pin in conjunction with reset will be ignored.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
129  
7.2.2  
Disabling EOnCE Access  
On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for  
the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the  
EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port)  
is active and provides the chip’s boundary scan capability and access to the ID register.  
Proper implementation of Flash security requires that no access to the EOnCE port is provided when  
security is enabled. The 56800E core has an input which disables reading of internal memory via the  
JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security  
bytes.  
7.2.3  
Flash Lockout Recovery  
If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be  
used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling  
Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory  
configuration (.cfg) files. Add, or uncomment the following configuration command:  
unlock_flash_on_connect 1  
For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual.  
The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to  
control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control  
the period of the clock used for timed events in the FM erase algorithm. This register must be set with  
appropriate values before the lockout sequence can begin. Refer to the JTAG section of the 56F8300  
Peripheral User Manual for more details on setting this register value.  
The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides  
down the system clock for timed events, as illustrated in Figure 7-1. FM_CLKDIV[6] will map to the  
PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV  
must divide the FM input clock down to a frequency of 150kHz-200kHz. The “Writing the FMCLKD  
Register” section in the Flash Memory chapter of the 56F8300 Peripheral User Manual gives specific  
equations for calculating the correct values.  
56F8367 Technical Data, Rev. 3.0  
130  
Freescale Semiconductor  
Preliminary  
Flash Access Blocking Mechanisms  
Flash Memory  
SYS_CLK  
2
input  
clock  
DIVIDER  
7
FMCLKD  
7
7
FM_CLKDIV  
FM_ERASE  
JTAG  
Figure 7-1 JTAG to FM Connection for Lockout Recovery  
Two examples of FM_CLKDIV calculations follow.  
EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up,  
the input clock will be below 12.8MHz, so PRDIV8 = FM_CLKDIV[6] = 0. Using the following equation  
yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This  
translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively.  
SYS_CLK  
( )  
(2)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM  
input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] = 1. Using the  
following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of  
181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A, respectively.  
SYS_CLK  
( )  
(2)(8)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock  
divider value must be shifted into the corresponding 7-bit data register. After the data register has been  
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout  
sequence to commence. The controller must remain in this state until the erase sequence has completed.  
For details, see the JTAG Section in the 56F8300 Peripheral User Manual.  
Note:  
Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller  
(by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured  
operation.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
131  
7.2.4  
Product Analysis  
The recommended method of unsecuring a programmed device for product analysis of field failures is via  
the backdoor key access. The customer would need to supply Technical Support with the backdoor key  
and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows  
backdoor key access must be set.  
An alternative method for performing analysis on a secured microcontroller would be to mass-erase and  
reprogram the Flash with the original code, but modify the security bytes.  
To insure that a customer does not inadvertently lock himself out of the device during programming, it is  
recommended that he program the backdoor access key first, his application code second, and the security  
bytes within the FM configuration field last.  
Part 8 General Purpose Input/Output (GPIO)  
8.1 Introduction  
This section is intended to supplement the GPIO information found in the 56F8300 Peripheral User  
Manual and contains only chip-specific information. This information supercedes the generic information  
in the 56F8300 Peripheral User Manual.  
8.2 Memory Maps  
The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based  
on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and  
GPIOx_PER registers will change from port to port. Table 8-3 defines the actual reset values of these  
registers.  
8.3 Configuration  
There are six GPIO ports defined on the 56F8367/56F8167. The width of each port and the associated  
peripheral function is shown in Table 8-1 and Table 8-2. The specific mapping of GPIO port pins is  
shown in Table 8-3.  
Table 8-1 56F8367 GPIO Ports Configuration  
Available  
Pins in  
56F8367  
GPIO  
Port  
Port  
Width  
Peripheral Function  
Reset Function  
A
B
C
14  
8
14  
8
14 pins - EMI Address pins  
EMI Address  
EMI Address  
8 pins - EMI Address pins  
11  
11  
4 pins -DEC1 / TMRB / SPI1  
4 pins -DEC0 / TMRA  
DEC1 / TMRB  
DEC0 / TMRA  
3 pins -PWMA current sense  
PWMA current sense  
56F8367 Technical Data, Rev. 3.0  
132  
Freescale Semiconductor  
Preliminary  
Configuration  
Table 8-1 56F8367 GPIO Ports Configuration (Continued)  
Available  
Pins in  
56F8367  
GPIO  
Port  
Port  
Width  
Peripheral Function  
Reset Function  
D
13  
14  
13  
14  
6 pins - EMI CSn  
2 pins - SCI1  
2 pins - EMI CSn  
EMI Chip Selects  
SCI1  
EMI Chip Selects  
PWMB current sense  
3 pins -PWMB current sense  
E
SCI0  
2 pins - SCI0  
EMI Address  
SPI0  
2 pins - EMI Address pins  
4 pins - SPI0  
TMRC  
2 pins - TMRC  
TMRD  
4 pins - TMRD  
F
16  
16  
16 pins - EMI Data  
EMI Data  
Table 8-2 56F8167 GPIO Ports Configuration  
Available  
Pins in  
56F8167  
GPIO  
Port  
Port  
Width  
Peripheral Function  
Reset Function  
14 pins - EMI Address pins  
A
B
C
14  
8
14  
8
EMI Address  
EMI Address  
8 pins - EMI Address pins  
4 pins - SPI1  
11  
11  
SPI1  
4 pins - DEC0 / TMRA  
3 pins - Dedicated GPIO  
DEC0 / TMRA  
GPIO  
6 pins - EMI CSn  
2 pins - SCI1  
2 pins - EMI CSn  
3 pins -PWMB current sense  
D
E
13  
14  
13  
14  
EMI Chip Selects  
SCI1  
EMI Chip Selects  
PWMB current sense  
SCI0  
2 pins - SCI0  
EMI Address  
SPI0  
2 pins - EMI Address pins  
4 pins - SPI0  
TMRC  
GPIO  
2 pins - TMRC  
4 pins - Dedicated GPIO  
16 pins - EMI Data  
F
16  
16  
EMI Data  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
133  
Table 8-3 GPIO External Signals Map  
Pins in italics are NOT available in the 56F8167 device  
Reset  
Function  
Functional Signal  
Package Pin  
GPIO Port  
GPIO Bit  
0
1
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
A8  
A9  
19  
20  
21  
22  
23  
24  
25  
26  
154  
10  
11  
12  
13  
14  
33  
2
A10  
A11  
A12  
A13  
A14  
A15  
A0  
3
4
5
6
GPIOA  
7
8
9
A1  
10  
11  
12  
13  
0
A2  
A3  
A4  
A5  
GPIO1  
GPIO1  
GPIO1  
A16  
1
2
3
A17  
A18  
A19  
34  
35  
36  
GPIO1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIOB  
4
5
6
7
A20 / Prescaler_clock  
A21 / SYS_CLK  
37  
46  
47  
48  
A22 / SYS_CLK2  
A23 / Oscillator_Clock  
1This is a function of the EMI_MODE, EXTBOOT, and Flash security settings at reset.  
56F8367 Technical Data, Rev. 3.0  
134  
Freescale Semiconductor  
Preliminary  
Configuration  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in italics are NOT available in the 56F8167 device  
Reset  
GPIO Port  
GPIO Bit  
Functional Signal  
Package Pin  
Function  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
PhaseA1 / TB0 / SCLK11  
PhaseB1 / TB1 / MOSI11  
Index1 / TB2 / MISO11  
0
1
2
3
6
7
8
9
Home1 / TB3 / SSI11  
PHASEA0 / TA0  
PHASEB0 / TA1  
Index0 / TA2  
Home0 / TA3  
ISA0  
4
5
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
GPIO  
155  
156  
157  
158  
126  
127  
128  
55  
GPIOC  
6
7
8
9
ISA1  
10  
0
ISA2  
CS2 / CAN2_TX  
CS3 / CAN2_RX  
CS4  
1
GPIO  
56  
2
GPIO  
57  
3
GPIO  
CS5  
58  
4
GPIO  
CS6  
59  
5
GPIO  
CS7  
60  
GPIOD  
6
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
TXD1  
49  
7
RXD1  
50  
8
PS / CS0  
DS / CS1  
ISB0  
53  
9
54  
10  
11  
12  
61  
ISB1  
63  
ISB2  
64  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
135  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in italics are NOT available in the 56F8167 device  
Reset  
Function  
GPIO Port  
GPIO Bit  
Functional Signal  
Package Pin  
0
1
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
TXD0  
RXD0  
A6  
4
5
2
17  
3
A7  
18  
4
SCLK0  
MOSI0  
MISO0  
SS0  
TC0  
TC1  
TD0  
TD1  
TD2  
TD3  
D7  
146  
148  
147  
145  
133  
135  
129  
130  
131  
132  
28  
5
6
GPIOE  
7
8
9
10  
11  
12  
13  
0
1
D8  
29  
2
D9  
30  
3
D10  
D11  
D12  
D13  
D14  
D15  
D0  
32  
4
149  
150  
151  
152  
153  
70  
5
6
7
GPIOF  
8
9
10  
11  
12  
13  
14  
15  
D1  
71  
D2  
83  
D3  
86  
D4  
88  
D5  
89  
D6  
90  
1. See Part 6.5.8 to determine how to select peripherals from this set  
56F8367 Technical Data, Rev. 3.0  
136  
Freescale Semiconductor  
Preliminary  
56F8367 Information  
Part 9 Joint Test Action Group (JTAG)  
9.1 56F8367 Information  
Please contact your Freescale marketing representative or authorized distributor for  
device/package-specific BSDL information.  
Part 10 Specifications  
10.1 General Characteristics  
The 56F8367/56F8167 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital  
inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture  
of devices designed for 3.3V and 5V power supplies. In such sytems, a bus may carry both 3.3V- and  
5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V  
± 10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the  
power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage.  
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum  
is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to  
the device.  
Note: All specifications meet both Automotive and Industrial requirements unless individual  
specifications are listed.  
Note: The 56F8167 device is guaranteed to 40HMz and specified to meet Industrial requirements only.  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
137  
Note: The 56F8167 device is specified to meet Industrial requirements only; CAN is NOT available on the  
56F8167 device.  
Table 10-1 Absolute Maximum Ratings  
(VSS = VSSA_ADC = 0)  
Characteristic  
Supply Voltage  
Symbol  
Notes  
Min  
-0.3  
-0.3  
Max  
4.0  
Unit  
V
VDD_IO  
VDDA_ADC,  
VREFH  
VREFH must be less than or  
equal to VDDA_ADC  
4.0  
V
ADC Supply Voltage  
VDDA_OSC_PLL  
VDD_CORE  
VIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
4.0  
3.0  
6.0  
4.0  
V
V
V
V
V
Oscillator / PLL Supply Voltage  
Internal Logic Core Supply Voltage  
Input Voltage (digital)  
OCR_DIS is High  
Pin Groups 1, 2, 5, 6, 9, 10  
Pin Groups 11, 12, 13  
VINA  
Input Voltage (analog)  
Pin Groups 1, 2, 3, 5, 6, 7, 8  
VOUT  
4.0  
6.01  
Output Voltage  
Pin Group 4  
VOD  
TA  
-0.3  
-40  
-40  
-40  
-40  
-55  
-55  
6.0  
125  
105  
150  
125  
150  
150  
V
Output Voltage (open drain)  
°C  
°C  
°C  
°C  
°C  
°C  
Ambient Temperature (Automotive)  
Ambient Temperature (Industrial)  
Junction Temperature (Automotive)  
Junction Temperature (Industrial)  
TA  
TJ  
TJ  
TSTG  
TSTG  
Storage Temperature (Automotive)  
Storage Temperature (Industrial)  
1. If corresponding GPIO pin is configured as open drain.  
Note: Pins in italics are NOT available in the 56F8167 device.  
Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0  
Pin Group 2: PHASEA0, PHASEA1, PHASEB0, PHASEB1, INDEX0, INDEX1, HOME0, HOME1, ISB0-2, ISA0-2, TD2-3, TC0-1, SCLK0  
Pin Group 3: RSTO, TDO  
Pin Group 4: CAN_TX  
Pin Group 5: A0-5, D0-15, GPIOD0-5, PS, DS  
Pin Group 6: A6-15, GPIOB0-7, TD0-1  
Pin Group 7: CLKO, WR, RD  
Pin Group 8: PWMA0-5, PWMB0-5  
Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3  
Pin Group 10: TCK  
Pin Group 11: XTAL, EXTAL  
Pin Group 12: ANA0-7, ANB0-7  
Pin Group 13: OCR_DIS, CLKMODE  
56F8367 Technical Data, Rev. 3.0  
138  
Freescale Semiconductor  
Preliminary  
General Characteristics  
Table 10-2 56F8367/56F8167 ElectroStatic Discharge (ESD) Protection  
Characteristic  
Min  
2000  
200  
Typ  
Max  
Unit  
V
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
V
500  
V
ESD for Charge Device Model (CDM)  
6
Table 10-3 Thermal Characteristics  
Value  
Value  
Characteristic  
Comments  
Symbol  
Unit  
Notes  
160-pin LQFP  
160MAPBGA  
Junction to ambient  
RθJA  
38.5  
39.90  
°C/W  
2
Natural convection  
RθJMA  
Junction to ambient (@1m/sec)  
35.4  
33  
46.8  
TBD  
°C/W  
°C/W  
2
RθJMA  
(2s2p)  
Junction to ambient  
Natural convection  
Four layer board (2s2p)  
Four layer board (2s2p)  
1, 2  
RθJMA  
(2s2p)  
Junction to ambient (@1m/sec)  
31.5  
TBD  
°C/W  
1, 2  
RθJC  
ΨJT  
Junction to case  
8.6  
0.8  
TBD  
TBD  
°C/W  
°C/W  
W
3
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
4, 5  
P I/O  
P D  
User-determined  
P D = (IDD x VDD + P I/O  
(TJ - TA) / R  
JA7  
)
W
PDMAX  
Maximum allowed PD  
W
θ
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p ther-  
mal test board.  
2. Junction to ambient thermal resistance, Theta-JA (RθJA) was simulated to be equivalent to the JEDEC specification JESD51-2  
in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes  
(2s2p, where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6 and JESD51-7. The correct name  
for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (RθJC ), was simulated to be equivalent to the measured values using the cold  
plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is  
described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when  
the package is being used with a heat sink.  
4. Thermal Characterization Parameter, Psi-JT (ΨJT ), is the "resistance" from junction to reference point thermocouple on top cen-  
ter of case as defined in JESD51-2. ΨJT is a useful value to use to estimate junction temperature in steady-state customer en-  
vironments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
6. See Part 12.1 for more details on thermal design considerations.  
7. TJ = Junction temperature  
TA = Ambient temperature  
TBD = numbers will be available late Q4 2005  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
139  
Note: The 56F8167 device is guaranteed to 40HMz and specified to meet Industrial requirements only;  
CAN is NOT available on the 56F8167 device.  
Table 10-4 Recommended Operating Conditions  
(VREFLO = 0V, VSS = VSSA_ADC = 0V, VDDA = VDDA_ADC = VDDA_OSC_PLL  
)
Characteristic  
Supply voltage  
Symbol  
Notes  
Min  
3
Typ  
3.3  
3.3  
Max  
3.6  
Unit  
V
VDD_IO  
V
VDDA_ADC,  
VREFH  
VREFH must be less than or  
3
3.6  
ADC Supply Voltage  
equal to V  
DDA_ADC  
V
V
VDDA_OSC  
3
3.3  
2.5  
3.6  
Oscillator / PLL Supply Voltage  
_PLL  
OCR_DIS is High  
VDD_CORE  
2.25  
2.75  
Internal Logic Core Supply  
Voltage  
MHz  
V
FSYSCLK  
VIH  
0
60  
Device Clock Frequency  
Input High Voltage (digital)  
Input High Voltage (analog)  
Pin Groups 1, 2, 5, 6, 9, 10  
Pin Group 13  
2
2
5.5  
V
VIHA  
VDDA+0.3  
VDDA+0.3  
Pin Group 11  
V
VIHC  
VDDA-0.8  
Input High Voltage (XTAL/EXTAL,  
XTAL is not driven by an external  
clock)  
Pin Group 11  
V
VIHC  
2
VDDA+0.3  
0.8  
Input high voltage (XTAL/EXTAL,  
XTAL is driven by an external clock)  
Pin Groups  
1, 2, 5, 6, 9, 10, 11, 13  
V
VIL  
-0.3  
Input Low Voltage  
Pin Groups 1, 2, 3  
Pin Groups 5, 6, 7  
Pin Group 8  
mA  
IOH  
-40  
-4  
-8  
-12  
4
Output High Source Current  
VOH = 2.4V (VOH min.)  
Pin Groups 1, 2, 3, 4  
Pin Groups 5, 6, 7  
Pin Group 8  
mA  
IOL  
Output Low Sink Current  
VOL = 0.4V (VOL max)  
8
12  
°C  
°C  
TA  
TA  
Ambient Operating Temperature  
(Automotive)  
125 = 150  
-
(R X P )  
θJA  
D
-40  
Ambient Operating Temperature  
(Industrial)  
105 = 125  
-
(R X P )  
θJA  
D
T
T
= -40°C to 125°C  
= -40°C to 105°C  
Cycles  
Cycles  
Years  
NF  
NF  
TR  
1000  
1000  
15  
Flash Endurance (Automotive)  
(Program Erase Cycles)  
A
A
Flash Endurance (Industrial)  
(Program Erase Cycles)  
T <= 85°C avg  
Flash Data Retention  
J
Note: Total chip source or sink current cannot exceed 200mA  
See Pin Groups in Table 10-1.  
56F8367 Technical Data, Rev. 3.0  
140  
Freescale Semiconductor  
Preliminary  
DC Electrical Characteristics  
10.2 DC Electrical Characteristics  
Note: The 56F8167 device is specified to meet Industrial requirements only; CAN is NOT available on the  
56F8167 device.  
Table 10-5 DC Electrical Characteristics  
At Recommended Operating Conditions;see Table 10-4  
Test  
Conditions  
Characteristic  
Symbol  
Notes  
Min  
Typ  
Max  
Unit  
V
V
I
= I  
VOH  
VOL  
IIH  
2.4  
0
0.4  
Output High Voltage  
Output Low Voltage  
OH  
OHmax  
OLmax  
I
= I  
OL  
Pin Groups 1, 2, 5, 6, 9  
Pin Group 10  
µA  
V
V
= 3.0V to 5.5V  
= 3.0V to 5.5V  
+/- 2.5  
Digital Input Current High  
pull-up enabled or disabled  
IN  
µA  
IIH  
40  
80  
160  
Digital Input Current High  
with pull-down  
IN  
Pin Group 13  
Pin Group 12  
µA  
µA  
µA  
V
= V  
= V  
IIHA  
IIHADC  
IIL  
0
0
+/- 2.5  
+/- 10  
-500  
Analog Input Current High  
ADC Input Current High  
IN  
IN  
DDA  
DDA  
V
Pin Groups 1, 2, 5, 6, 9  
V
V
V
= 0V  
-200  
-100  
Digital Input Current Low  
pull-up enabled  
IN  
IN  
IN  
Pin Groups 1, 2, 5, 6, 9  
Pin Group 10  
µA  
µA  
= 0V  
= 0V  
IIL  
0
0
+/- 2.5  
+/- 2.5  
Digital Input Current Low  
pull-up disabled  
IIL  
Digital Input Current Low  
with pull-down  
Pin Group 13  
Pin Group 12  
µA  
µA  
µA  
V
V
= 0V  
= 0V  
IILA  
0
0
0
+/- 2.5  
+/- 10  
+/- 2.5  
Analog Input Current Low  
ADC Input Current Low  
IN  
IN  
IILADC  
IEXTAL  
V
= V  
or 0V  
DDA  
EXTAL Input Current Low  
clock input  
IN  
CLKMODE = High  
CLKMODE = Low  
µA  
µA  
µA  
V
V
= V  
= V  
or 0V  
or 0V  
IXTAL  
0
0
+/- 2.5  
200  
XTAL Input Current Low  
clock input  
IN  
IN  
DDA  
DDA  
Pin Groups  
1, 2, 3, 4, 5, 6, 7, 8,14  
V
= 3.0V to  
OUT  
IOZ  
VHYS  
CINC  
+/- 2.5  
Output Current  
High Impedance State  
5.5V or 0V  
Pin Groups  
2, 6, 9, 10  
V
0.3  
4.5  
5.5  
Schmitt Trigger Input  
Hysteresis  
pF  
pF  
Input Capacitance  
(EXTAL/XTAL)  
COUTC  
Output Capacitance  
(EXTAL/XTAL)  
pF  
pF  
CIN  
6
6
Input Capacitance  
Output Capacitance  
COUT  
See Pin Groups in Table 10-1.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
141  
Table 10-6 Power-On Reset Low Voltage Parameters  
Characteristic  
POR Trip Point  
Symbol  
Min  
1.75  
Typ  
1.8  
Max  
1.9  
Units  
V
V
POR  
VEI2.5  
VEI3.3  
LVI, 2.5 volt Supply, trip point1  
2.14  
LVI, 3.3 volt supply, trip point2  
Bias Current  
2.7  
V
I bias  
110  
130  
µA  
1. When VDD_CORE drops below VEI2.5, an interrupt is generated.  
2. When VDD_CORE drops below VEI3.3, an interrupt is generated.  
Table 10-7 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Enabled (OCR_DIS = Low)  
1
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
• 60MHz Device Clock  
IDD_IO  
RUN1_MAC  
155mA  
50mA  
2.5mA  
• All peripheral clocks are enabled  
• All peripherals running  
• Continuous MAC instructions with fetches from  
Data RAM  
• ADC powered on and clocked  
• 60MHz Device Clock  
Wait3  
Stop1  
91mA  
6mA  
70µA  
0µA  
2.5mA  
• All peripheral clocks are enabled  
• ADC powered off  
• 8MHz Device Clock  
• All peripheral clocks are off  
• ADC powered off  
165µA  
• PLL powered off  
• External Clock is off  
• All peripheral clocks are off  
• ADC powered off  
Stop2  
5.1mA  
0µA  
155µA  
• PLL powered off  
1. No Output Switching  
2. Includes Processor Core current supplied by internal voltage regulator  
56F8367 Technical Data, Rev. 3.0  
142  
Freescale Semiconductor  
Preliminary  
DC Electrical Characteristics  
Table 10-8 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Disabled (OCR_DIS = High)  
1
IDD_Core  
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
• 60MHz Device Clock  
IDD_IO  
RUN1_MAC  
150mA  
13µA  
50mA  
2.5mA  
• All peripheral clocks are enabled  
• All peripherals running  
• Continuous MAC instructions with  
fetches from Data RAM  
• ADC powered on and clocked  
• 60MHz Device Clock  
Wait3  
Stop1  
86mA  
13µA  
13µA  
70µA  
0µA  
2.5mA  
• All peripheral clocks are enabled  
• ADC powered off  
• 8MHz Device Clock  
• All peripheral clocks are off  
• ADC powered off  
950µA  
165µA  
• PLL powered off  
• External Clock is off  
• All peripheral clocks are off  
• ADC powered off  
Stop2  
100µA  
13µA  
0µA  
155µA  
• PLL powered off  
1. No Output Switching  
Table 10-9. Regulator Parameters  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Unloaded Output Voltage  
(0mA Load)  
VRNL  
2.25  
2.75  
V
Loaded Output Voltage  
(200 mA load)  
VRL  
VR  
2.25  
2.25  
2.75  
2.75  
V
V
Line Regulation @ 250 mA load  
(VDD33 ranges from 3.0 to 3.6)  
Short Circuit Current  
Iss  
700  
mA  
( output shorted to ground)  
Bias Current  
I bias  
Ipd  
5.8  
0
7
2
mA  
µA  
Power-down Current  
Short-Circuit Tolerance  
TRSC  
30  
minutes  
(output shorted to ground)  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
143  
Table 10-10. PLL Parameters  
Characteristics  
PLL Start-up time  
Symbol  
TPS  
Min  
0.3  
0.1  
120  
Typical  
0.5  
Max  
10  
Unit  
ms  
ms  
ps  
Resonator Start-up time  
Min-Max Period Variation  
Peak-to-Peak Jitter  
TRS  
0.18  
1
TPV  
200  
175  
2
TPJ  
ps  
Bias Current  
IBIAS  
IPD  
1.5  
mA  
µA  
Quiescent Current, power-down mode  
100  
150  
10.2.1 Temperature Sense  
Note: Temperature Sensor is NOT available in the 56F8167 device.  
Table 10-11 Temperature Sense Parametrics  
Characteristics  
Slope (Gain)1  
Symbol  
m
Min  
Typical  
7.762  
26  
Max  
Unit  
mV/°C  
°C  
Room Trim Temp. 1, 2  
TRT  
24  
28  
Hot Trim Temp. (Industrial)1,2  
Hot Trim Temp. (Automotive)1,2  
THT  
122  
147  
125  
128  
153  
°C  
THT  
150  
°C  
Output Voltage @  
VDDA_ADC = 3.3V, TJ =0°C1  
VTS0  
1.370  
V
Supply Voltage  
VDDA_ADC  
IDD-OFF  
IDD-ON  
3.0  
3.3  
0
3.6  
10  
V
Supply Current - OFF  
Supply Current - ON  
µA  
µA  
°C  
250  
6.7  
Accuracy3,1 from -40°C to 150°C  
Using VTS = mT + VTS0  
TACC  
-6.7  
Resolution4, 5,1  
RES  
0.104  
°C / bit  
1. Includes the ADC conversion of the analog Temperature Sense voltage.  
2. The ADC is not calibrated for the conversion of the Temperature Sensor trim value stored in the Flash Memory at  
FMOPT0 and FMOPT1.  
3. See Application Note, AN1980, for methods to increase accuracy.  
4. Assuming a 12-bit range from 0V to 3.3V.  
(V  
=
- V  
) X 1  
m
5. Typical resolution calculated using equation, R  
REFH  
12  
REFLO  
ES  
2
56F8367 Technical Data, Rev. 3.0  
144  
Freescale Semiconductor  
Preliminary  
AC Electrical Characteristics  
10.3 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified,  
propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured  
between the 10% and 90% points, as shown in Figure 10-1.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 10-1 Input Signal Measurement References  
Figure 10-2 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached V or V  
OL  
OH  
Data Invalid state, when a signal level is in transition between V and V  
OL OH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 10-2 Signal States  
10.4 Flash Memory Characteristics  
Table 10-12 Flash Timing Parameters  
Characteristic  
Symbol  
prog  
erase  
me  
Min  
Typ  
Max  
Unit  
µs  
20  
Program time1  
T
20  
Erase time2  
ms  
ms  
T
100  
Mass erase time  
T
1. There is additional overhead which is part of the programming sequence. See the 56F8300 Peripheral User Manual  
for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Pro-  
gram Flash Module, as it contains two interleaved memories.  
2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash  
Module uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
145  
10.5 External Clock Operation Timing  
1
Table 10-13 External Clock Operation Timing Requirements  
Characteristic  
Symbol  
fosc  
Min  
Typ  
Max  
Unit  
Frequency of operation (external clock driver)2  
Clock Pulse Width3  
0
120  
MHz  
ns  
tPW  
3.0  
External clock input rise time4  
trise  
10  
ns  
External clock input fall time5  
tfall  
10  
ns  
1. Parameters listed are guaranteed by design.  
2. See Figure 10-3 for details on using the recommended connection of an external clock driver.  
3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.  
4. External clock input rise time is measured from 10% to 90%.  
5. External clock input fall time is measured from 90% to 10%.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tfall  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 10-3 External Clock Timing  
10.6 Phase Locked Loop Timing  
Table 10-14 PLL Timing  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
8
Unit  
MHz  
MHz  
External reference crystal frequency for the PLL1  
PLL output frequency2 (fOUT  
)
fop  
160  
260  
PLL stabilization time3 -40° to +125°C  
tplls  
1
10  
ms  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.  
2. ZCLK may not exceed 60MHz. For additional information on ZCLK and (fOUT/2), please refer to the OCCS chapter in  
the 56F8300 Peripheral User Manual.  
3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.  
56F8367 Technical Data, Rev. 3.0  
146  
Freescale Semiconductor  
Preliminary  
Crystal Oscillator Timing  
10.7 Crystal Oscillator Timing  
Table 10-15 Crystal Oscillator Parameters  
Characteristic  
Crystal Start-up time  
Symbol  
TCS  
Min  
4
Typ  
5
Max  
10  
Unit  
ms  
ms  
ohms  
ps  
Resonator Start-up time  
TRS  
0.1  
0.18  
1
Crystal ESR  
RESR  
TD  
120  
250  
1.5  
300  
300  
290  
110  
1
Crystal Peak-to-Peak Jitter  
Crystal Min-Max Period Variation  
Resonator Peak-to-Peak Jitter  
Resonator Min-Max Period Variation  
Bias Current, high-drive mode  
Bias Current, low-drive mode  
Quiescent Current, power-down mode  
70  
0.12  
TPV  
ns  
TRJ  
ps  
TRP  
ps  
IBIASH  
IBIASL  
IPD  
250  
80  
0
µA  
µA  
µA  
10.8 External Memory Interface Timing  
The External Memory Interface is designed to access static memory and peripheral devices. Figure 10-4  
shows sample timing and parameters that are detailed in Table 10-16.  
The timing of each parameter consists of both a fixed delay portion and a clock related portion, as well as  
user controlled wait states. The equation:  
t = D + P * (M + W)  
should be used to determine the actual time of each parameter. The terms in this equation are defined as:  
t
= Parameter delay time  
D
P
= Fixed portion of the delay, due to on-chip path delays  
= Period of the system clock, which determines the execution rate of the part  
(i.e., when the device is operating at 60MHz, P = 16.67 ns)  
M
W
= Fixed portion of a clock period inherent in the design; this number is adjusted to account  
for possible derating of clock duty cycle  
= Sum of the applicable wait state controls. The “Wait State Controls” column of  
Table 10-16 shows the applicable controls for each parameter and the EMI chapter of  
the 56F8300 Peripheral User Manual details what each wait state field controls.  
When using the XTAL clock input directly as the chip clock without prescaling (ZSRC selects prescaler  
clock and prescaler set to 1), the EMI quadrature clock is generated using both edges of the EXTAL clock  
÷
input. In this situation only, parameter values must be adjusted for the duty cycle at XTAL. DCAOE and  
DCAEO are used to make this duty cycle adjustment where needed.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
147  
DCAOE and DCAEO are calculated as follows:  
DCAOE = 0.5 - MAX XTAL duty cycle, if ZSRC selects prescaler clock and the prescaler is set to  
= 0.0 all other cases  
÷
÷
1
1
DCAEO = MIN XTAL duty cycle - 0.5, if ZSRC selects prescaler clock and the prescaler is set to  
= 0.0 all other cases  
Example of DCAOE and DCAEO calculation:  
Assuming prescaler is set for  
÷ 1 and prescaler clock is selected by ZSRC, if XTAL duty cycle  
ranges between 45% and 60% high;  
DCAOE = .50 - .60 = - 0.1  
DCAEO = .45 - .50 = - 0.05  
The timing of write cycles is different when WWS = 0 than when WWS > 0. Therefore, some parameters  
contain two sets of numbers to account for this difference. Use the “Wait States Configuration” column  
of Table 10-16 to make the appropriate selection.  
A0-Axx,CS  
tRD  
tARDD  
tRDA  
tRDRD  
tARDA  
RD  
tWAC  
tWRRD  
tAWR  
tWRWR  
tWR  
tRDWR  
WR  
tDWR  
tDOH  
tRDD  
tDOS  
Data Out  
tAD  
tDRD  
Data In  
D0-D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 10-4 External Memory Interface Timing  
Note:  
When multiple lines are given for the same wait state configuration, calculate each and then select the  
smallest or most negative.  
56F8367 Technical Data, Rev. 3.0  
148  
Freescale Semiconductor  
Preliminary  
External Memory Interface Timing  
Table 10-16 External Memory Interface Timing  
Wait States  
Configuration  
Wait States  
Unit  
Symbol  
tAWR  
D
M
Characteristic  
Controls  
WWS=0  
WWS>0  
WWS=0  
WWS>0  
WWS=0  
WWS=0  
WWS>0  
WWS>0  
-2.076  
0.50  
Address Valid to WR Asserted  
WWSS  
WWS  
ns  
ns  
-1.795 0.75 + DCAOE  
-0.094 0.25 + DCAOE  
WR Width Asserted to WR  
Deasserted  
tWR  
-0.012  
0
-9.321 0.25 + DCAEO  
Data Out Valid to WR Asserted  
-1.160  
-8.631  
0.00  
0.50  
tDWR  
WWSS  
ns  
-0.879 0.25 + DCAOE  
-2.086 0.25 + DCAEO  
-0.563 0.25 + DCAOE  
Valid Data Out Hold Time after WR  
Deasserted  
tDOH  
WWSH  
ns  
ns  
Valid Data Out Set-Up Time to WR  
Deasserted  
tDOS  
WWS,WWSS  
-8.315  
0.50  
tWAC  
tRDA  
-3.432 0.25 + DCAEO  
WWSH  
RWSH  
ns  
ns  
ns  
Valid Address after WR Deasserted  
RD Deasserted to Address Invalid  
Address Valid to RD Deasserted  
-1.780  
-2.120  
0.00  
1.00  
tARDD  
RWSS,RWS  
Valid Input Data Hold after RD  
Deasserted  
N/A1  
tDRD  
tRD  
0.00  
RWS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.279  
1.00  
1.00  
RD Assertion Width  
-15.723  
Address Valid to Input Data Valid  
tAD  
RWSS,RWS  
RWSS  
-20.642 1.25 + DCAOE  
tARDA  
tRDD  
tWRRD  
tRDRD  
-2.603  
0.00  
1.00  
Address Valid to RD Asserted  
-13.120  
RD Asserted to Input Data Valid  
RWSS,RWS  
-18.039 1.25 + DCAOE  
-2.135 0.25 + DCAEO  
WWSH,RWSS  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
RWSS,RWSH  
MDAR3, 4  
-0.4832  
0.00  
WWS=0  
WWS>0  
WWS=0  
WWS>0  
-1.608 0.75 + DCAEO  
WR Deasserted to WR Asserted  
RD Deasserted to WR Asserted  
tWRWR  
WWSS, WWSH  
ns  
ns  
-0.918  
-0.096  
1.00  
0.50  
RWSH, WWSS,  
MDAR3  
tRDWR  
0.084 0.75 + DCAOE  
1. N/A since device captures data before it deasserts RD  
2. If RWSS = RWSH = 0, and the chip select does not change, then RD does not deassert during back-to-back reads.  
3. Substitute BMDAR for MDAR if there is no chip select  
4. MDAR is active in this calculation only when the chip select changes.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
149  
10.9 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1,2  
Table 10-17 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Typical  
Min  
Typical  
Max  
Characteristic  
Symbol  
Unit  
See Figure  
10-5  
RESET Assertion to Address, Data and Control  
Signals High Impedance  
tRAZ  
21  
ns  
Minimum RESET Assertion Duration  
tRA  
16T  
63T  
ns  
ns  
10-5  
10-5  
RESET Deassertion to First External Address  
Output3  
tRDA  
64T  
Edge-sensitive Interrupt Request Width  
tIRW  
tIDM  
1.5T  
18T  
14T  
18T  
14T  
22T  
18T  
22T  
18T  
1.5T  
ns  
ns  
10-6  
10-7  
IRQA, IRQB Assertion to External Data Memory  
Access Out Valid, caused by first instruction  
execution in the interrupt service routine  
tIDM - FAST  
tIG  
IRQA, IRQB Assertion to General Purpose  
Output Valid, caused by first instruction  
execution in the interrupt service routine  
ns  
ns  
ns  
ns  
10-7  
10-8  
10-9  
10-9  
tIG - FAST  
tIRI  
Delay from IRQA Assertion (exiting Wait) to  
External Data Memory Access4  
tIRI -FAST  
tIF  
Delay from IRQA Assertion to External Data  
Memory Access (exiting Stop)  
tIF - FAST  
tIW  
IRQA Width Assertion to Recover from Stop  
State5  
1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and  
Stop modes), T = 125ns.  
2. Parameters listed are guaranteed by design.  
3. During Power-On Reset, it is possible to use the device’s internal reset stretching circuitry to extend this period to 221T.  
4. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This  
is not the minimum required so that the IRQA interrupt is accepted.  
5. The interrupt instruction fetch is visible on the pins only in Mode 3.  
56F8367 Technical Data, Rev. 3.0  
150  
Freescale Semiconductor  
Preliminary  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
RESET  
tRA  
tRAZ  
tRDA  
A0–A15,  
D0–D15  
First Fetch  
PS, DS,  
RD, WR  
First Fetch  
Figure 10-5 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 10-6 External Interrupt Timing (Negative Edge-Sensitive)  
A0–A15,  
PS  
RD  
,
,
DS  
WR  
,
First Interrupt Instruction Execution  
tIDM  
IRQA  
,
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA  
,
IRQB  
b) General Purpose I/O  
Figure 10-7 External Level-Sensitive Interrupt Timing  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
151  
IRQA,  
IRQB  
tIRI  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 10-8 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15,  
PS, DS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 10-9 Recovery from Stop State Using Asynchronous Interrupt Timing  
10.10 Serial Peripheral Interface (SPI) Timing  
1
Table 10-18 SPI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
10-10, 10-11,  
10-12, 10-13  
50  
50  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
10-13  
10-13  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
17.6  
25  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
tCL  
10-13  
24.1  
25  
ns  
ns  
56F8367 Technical Data, Rev. 3.0  
152  
Freescale Semiconductor  
Preliminary  
Serial Peripheral Interface (SPI) Timing  
1
Table 10-18 SPI Timing (Continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Data set-up time required for inputs  
Master  
Slave  
tDS  
10-10, 10-11,  
10-12, 10-13  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
tDH  
10-10, 10-11,  
10-12, 10-13  
0
2
ns  
ns  
Access time (time to data active from  
high-impedance state)  
Slave  
tA  
10-13  
10-13  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
10-10, 10-11,  
10-12, 10-13  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
10-10, 10-11,  
0
0
ns  
ns  
10-12  
Rise time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
153  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
MSB in  
tDI  
Bits 14–1  
tDV  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-10 SPI Master Timing (CPHA = 0)  
SS  
(Input)  
SS is held High on master  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV(ref)  
tDV  
Bits 14– 1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-11 SPI Master Timing (CPHA = 1)  
56F8367 Technical Data, Rev. 3.0  
154  
Freescale Semiconductor  
Preliminary  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 10-12 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
Slave LSB out  
tDI  
tA  
tF  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
tDS  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 10-13 SPI Slave Timing (CPHA = 1)  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
155  
10.11 Quad Timer Timing  
1, 2  
Table 10-19 Timer Timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
See Figure  
10-14  
2T + 6  
1T + 3  
1T - 3  
Timer input high / low period  
Timer output period  
PINHL  
POUT  
ns  
10-14  
ns  
10-14  
Timer output high / low period  
POUTHL  
0.5T - 3  
ns  
10-14  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 10-14 Timer Timing  
10.12 Quadrature Decoder Timing  
1, 2  
Table 10-20 Quadrature Decoder Timing  
Characteristic  
Symbol  
PIN  
Min  
Max  
Unit  
See Figure  
10-15  
Quadrature input period  
4T + 12  
2T + 6  
1T + 3  
ns  
ns  
ns  
Quadrature input high / low period  
Quadrature phase period  
PHL  
10-15  
PPH  
10-15  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns.  
2. Parameters listed are guaranteed by design.  
56F8367 Technical Data, Rev. 3.0  
156  
Freescale Semiconductor  
Preliminary  
Serial Communication Interface (SCI) Timing  
PPH PPH PPH PPH  
Phase A  
(Input)  
PHL  
PIN  
PHL  
Phase B  
(Input)  
PHL  
PIN  
PHL  
Figure 10-15 Quadrature Decoder Timing  
10.13 Serial Communication Interface (SCI) Timing  
1
Table 10-21 SCI Timing  
Characteristic  
Baud Rate2  
Symbol  
BR  
Min  
Max  
Unit  
Mbps  
ns  
See Figure  
(fMAX/16)  
1.04/BR  
1.04/BR  
RXD3 Pulse Width  
TXD4 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
10-16  
10-17  
ns  
1. Parameters listed are guaranteed by design.  
2. fMAX is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8367 device , and  
40MHz for the 56F8167 device.  
3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 10-16 RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 10-17 TXD Pulse Width  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
157  
10.14 Controller Area Network (CAN) Timing  
Note: CAN is not available in the 56F8167 device.  
1
Table 10-22 CAN Timing  
Characteristic  
Baud Rate  
Bus Wake Up detection  
Symbol  
BRCAN  
Min  
Max  
1
Unit  
Mbps  
µs  
See Figure  
5
T WAKEUP  
10-18  
1. Parameters listed are guaranteed by design  
CAN_RX  
CAN receive  
data pin  
T WAKEUP  
(Input)  
Figure 10-18 Bus Wakeup Detection  
10.15 JTAG Timing  
Table 10-23 JTAG Timing  
Characteristic  
Symbol  
fOP  
Min  
DC  
DC  
50  
5
Max  
Unit  
See Figure  
10-19  
TCK frequency of operation using EOnCE1  
SYS_CLK/8  
MHz  
MHz  
ns  
TCK frequency of operation not using EOnCE1  
TCK clock pulse width  
fOP  
SYS_CLK/4  
10-19  
tPW  
30  
30  
10-19  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
tDS  
ns  
10-20  
tDH  
5
ns  
10-20  
tDV  
ns  
10-20  
tTS  
ns  
10-20  
2T2  
tTRST  
ns  
10-21  
1. TCK frequency of operation must be less than 1/8 the processor rate.  
2. T = processor clock period (nominally 1/60MHz)  
56F8367 Technical Data, Rev. 3.0  
158  
Freescale Semiconductor  
Preliminary  
JTAG Timing  
1/fOP  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 10-19 Test Clock Input Timing Diagram  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output  
)
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 10-20 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 10-21 TRST Timing Diagram  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
159  
10.16 Analog-to-Digital Converter (ADC) Parameters  
Table 10-24 ADC Parameters  
Characteristic  
Input voltages  
Symbol  
VADIN  
RES  
Min  
VREFL  
12  
Typ  
Max  
VREFH  
12  
Unit  
V
Resolution  
Bits  
Integral Non-Linearity1  
LSB2  
LSB2  
INL  
+/- 2.4  
+/- 0.7  
+/- 3.2  
< +1  
Differential Non-Linearity  
DNL  
Monotonicity  
GUARANTEED  
ADC internal clock  
fADIC  
RAD  
0.5  
VREFL  
5
5
MHz  
V
Conversion range  
6
VREFH  
16  
tAIC cycles3  
ms  
ADC channel power-up time  
tADPU  
ADC reference circuit power-up time4  
Conversion time  
tVREF  
tADC  
6
25  
tAIC cycles3  
tAIC cycles3  
Sample time  
tADS  
1
Input capacitance  
CADI  
IADI  
5
3
pF  
mA  
mA  
mA  
mA  
Input injection current5, per pin  
Input injection current, total  
IADIT  
20  
VREFH current  
IVREFH  
IADCA  
IADCB  
IADCQ  
EGAIN  
VOFFSET  
AECAL  
CF1  
1.2  
3
ADC A current  
25  
ADC B current  
25  
0
mA  
µA  
Quiescent current  
10  
Uncalibrated Gain Error (ideal = 1)  
Uncalibrated Offset Voltage  
.+/- .004  
+/- 27  
+/- .01  
+/- 40  
mV  
LSBs  
Calibrated Absolute Error6  
See Figure 10-22  
0.002289  
Calibration Factor 17  
Calibration Factor 2  
CF2  
-25.6  
-60  
dB  
V
Crosstalk between channels  
Common Mode Voltage  
Vcommon  
(VREFH - VREFLO) / 2  
Signal-to-noise ratio  
SNR  
64.6  
db  
56F8367 Technical Data, Rev. 3.0  
160  
Freescale Semiconductor  
Preliminary  
Analog-to-Digital Converter (ADC) Parameters  
Table 10-24 ADC Parameters (Continued)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Signal-to-noise plus distortion ratio  
Total Harmonic Distortion  
SINAD  
THD  
59.1  
60.6  
61.1  
9.6  
db  
db  
Spurious Free Dynamic Range  
SFDR  
ENOB  
db  
Effective Number Of Bits8  
Bits  
1. INL measured from Vin = .1VREFH to Vin = .9VREFH  
10% to 90% Input Signal Range  
2. LSB = Least Significant Bit  
3. ADC clock cycles  
4. Assumes each voltage reference pin is bypassed with 0.1µF ceramic capacitors to ground  
5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of  
the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.  
6. Absolute error includes the effects of both gain error and offset error.  
7. Please see the 56F8300Peripheral User’s Manual for additional information on ADC calibration.  
8. ENOB = (SINAD - 1.76)/6.02  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
161  
Figure 10-22 ADC Absolute Error Over Processing and Temperature Extremes Before  
and After Calibration for VDC = 0.60V and 2.70V  
in  
Note: The absolute error data shown in the graphs above reflects the effects of both gain error and offset  
error. The data was taken on 25 parts: three each from four processing corner lots as well as five from one  
nominally processed lot, each at three temperatures: -40°C, 27°C, and 150°C (giving the 75 data points  
shown above), for two input DC voltages: 0.60V and 2.70V. The data indicates that for the given  
population of parts, calibration significantly reduced (by as much as 24%) the collective variation (spread)  
of the absolute error of the population. It also significantly reduced (by as much as 38%) the mean  
(average) of the absolute error and thereby brought it significantly closer to the ideal value of zero.  
Although not guaranteed, it is believed that calibration will produce results similar to those shown above  
for any population of parts including those which represent processing and temperature extremes.  
56F8367 Technical Data, Rev. 3.0  
162  
Freescale Semiconductor  
Preliminary  
Equivalent Circuit for ADC Inputs  
10.17 Equivalent Circuit for ADC Inputs  
Figure 10-23 illustrates the ADC input circuit during sample & hold. S1 and S2 are always open/closed  
at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and  
hold circuit moves to V  
- V  
/ 2, while the other charges to the analog input voltage. When the  
REFH  
REFH  
switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended  
analog input is switched to a differential voltage centered about V - V / 2. The switches switch  
REFH  
REFH  
on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there  
are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into  
the S/H output voltage, as S1 provides isolation during the charge-sharing phase.  
One aspect of this circuit is that there is an on-going input current, which is a function of the analog input  
voltage, V  
and the ADC clock frequency.  
REF  
3
Analog Input  
4
S1  
C1  
C2  
S/H  
S3  
VREFH - VREFH / 2  
S2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only  
connected to it at sampling time; 1pf  
Figure 10-23 Equivalent Circuit for A/D Loading  
10.18 Power Consumption  
This section provides additional detail which can be used to optimize power consumption for a given  
application.  
Power consumption is given by the following equation:  
Total power =  
A: internal [static component]  
+B: internal [state-dependent component]  
+C: internal [dynamic component]  
+D: external [dynamic component]  
+E: external [static]  
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage current,  
PLL, and voltage references. These sources operate independently of processor state or operating  
frequency.  
B, the internal [state-dependent component], reflects the supply current required by certain on-chip  
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
163  
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding to the  
56800E core and standard cell logic.  
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading  
2
on the external pins of the chip. This is also commonly described as C*V *F, although simulations on two  
of the IO cell types used on the device reveal that the power-versus-load curve does have a non-zero  
Y-intercept.  
Table 10-25 I/O Loading Coefficients at 10MHz  
Intercept  
Slope  
PDU08DGZ_ME  
PDU04DGZ_ME  
1.3  
0.11mW / pF  
0.11mW / pF  
1.15mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and  
frequency at which the outputs change. Table 10-20 provides coefficients for calculating power dissipated  
in the IO cells as a function of capacitive load. In these cases:  
TotalPower = Σ((Intercept +Slope*Cload)*frequency/10MHz)  
where:  
Summation is performed over all output pins with capacitive loads  
TotalPower is expressed in mW  
Cload is expressed in pF  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found  
to be fairly low when averaged over a period of time. The one possible exception to this is if the chip is  
using the external address and data buses at a rate approaching the maximum system rate. In this case,  
power from these buses can be significant.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the  
2
device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power. Assume V =  
0.5 for the purposes of these rough calculations. For instance, if there is a total of 8 PWM outputs driving  
10mA into LEDs, then P = 8*.5*.01 = 40mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored,  
as it is assumed to be negligible.  
56F8367 Technical Data, Rev. 3.0  
164  
Freescale Semiconductor  
Preliminary  
56F8367 Package and Pin-Out Information  
Part 11 Packaging  
Note: The 160 Map Ball Grid Array is not available in the 56F8167 device.  
11.1 56F8367 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8367. This device comes in a 160-pin  
Low-profile Quad Flat Pack (LQFP) and 160 Map Ball Grid Array. Figure 11-1 shows the package  
lay-out for the 160-pin LQFP, and Figure 11-2 for the160 Map Ball Grid Array. Figure 11-5 shows the  
mechanical parameters for the LQFP package and Figure 11-3 for the MAPBGA, Table 11-1 lists the  
pin-out for the 160-pin LQFP and Table 11-2 lists the pin-out for the 160 MAPBGA.  
Orientation Mark  
V
ANB4  
DD_IO  
V
2
ANB3  
ANB2  
ANB1  
ANB0  
PP  
CLKO  
TXD0  
RXD0  
121  
Pin 1  
PHASEA1  
V
SSA_ADC  
PHASEB1  
INDEX1  
V
V
DDA_ADC  
REFH  
HOME1  
A1  
V
V
V
V
REFP  
REFMID  
REFN  
A2  
A3  
A4  
A5  
REFLO  
TEMP_SENSE  
ANA7  
V
4
ANA6  
CAP  
V
ANA5  
DD_IO  
A6  
ANA4  
A7  
A8  
ANA3  
ANA2  
A9  
ANA1  
A10  
A11  
A12  
A13  
ANA0  
CLKMODE  
RESET  
RSTO  
V
V
A14  
A15  
DD_IO  
3
CAP  
V
EXTAL  
SS  
D7  
D8  
D9  
XTAL  
VDDA_OSC_PLL  
OCR_DIS  
D6  
V
DD_IO  
D10  
D5  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
D4  
FAULTA3  
D3  
FAULTA2  
FAULTA1  
PWMB0  
PWMB1  
PWMB2  
D2  
81  
41  
FAULTA0  
PWMA5  
* When the on-chip regulator is disabled, these four pins become 2.5V VDD_CORE  
.
Figure 11-1 Top View, 56F8367 160-Pin LQFP Package  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
165  
Table 11-1 56F8367 160-Pin LQFP Package Identification by Pin Number  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
VDD_IO  
41  
42  
VSS  
81  
82  
PWMA5  
121  
122  
ANB5  
ANB6  
VPP  
2
VDD_IO  
FAULTA0  
3
4
5
CLKO  
TXD0  
RXD0  
43  
44  
45  
PWMB3  
PWMB4  
PWMB5  
83  
84  
85  
D2  
123  
124  
125  
ANB7  
EXTBOOT  
VSS  
FAULTA1  
FAULTA2  
6
7
PHASEA1  
PHASEB1  
INDEX1  
HOME1  
A1  
46  
47  
48  
49  
50  
51  
52  
GPIOB5  
GPIOB6  
GPIOB7  
TXD1  
RXD1  
WR  
86  
87  
88  
89  
90  
91  
92  
D3  
FAULTA3  
D4  
126  
127  
128  
129  
130  
131  
132  
ISA0  
ISA1  
ISA2  
TD0  
TD1  
TD2  
TD3  
8
9
D5  
10  
11  
12  
D6  
A2  
OCR_DIS  
VDDA_OSC_PLL  
A3  
RD  
13  
14  
A4  
A5  
53  
54  
PS  
DS  
93  
94  
XTAL  
133  
134  
TC0  
EXTAL  
VDD_IO  
15  
16  
VCAP4*  
VDD_IO  
55  
56  
GPIOD0  
GPIOD1  
95  
96  
VCAP3*  
VDD_IO  
135  
136  
TC1  
TRST  
17  
18  
19  
20  
21  
A6  
A7  
57  
58  
59  
60  
61  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
97  
98  
RSTO  
RESET  
CLKMODE  
ANA0  
137  
138  
139  
140  
141  
TCK  
TMS  
TDI  
A8  
99  
A9  
100  
101  
TDO  
A10  
ANA1  
VPP1  
22  
A11  
62  
VCAP1*  
102  
ANA2  
142  
CAN_TX  
23  
24  
A12  
A13  
63  
64  
ISB1  
ISB2  
103  
104  
ANA3  
ANA4  
143  
144  
CAN_RX  
VCAP2*  
25  
A14  
65  
IRQA  
105  
ANA5  
145  
SS0  
* When the on-chip regulator is disabled, these four pins become 2.5V VDD_CORE  
.
56F8367 Technical Data, Rev. 3.0  
166  
Freescale Semiconductor  
Preliminary  
56F8367 Package and Pin-Out Information  
Table 11-1 56F8367 160-Pin LQFP Package Identification by Pin Number (Continued)  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
26  
27  
A15  
VSS  
66  
67  
IRQB  
106  
107  
ANA6  
ANA7  
146  
147  
SCLK0  
MISO0  
FAULTB0  
28  
29  
D7  
D8  
68  
69  
FAULTB1  
FAULTB2  
108  
109  
TEMP_SENSE  
VREFLO  
148  
149  
MOSI0  
D11  
30  
31  
32  
33  
34  
35  
D9  
70  
71  
72  
73  
74  
75  
D0  
D1  
110  
111  
112  
113  
114  
115  
VREFN  
VREFMID  
VREFP  
150  
151  
152  
153  
154  
155  
D12  
D13  
VDD_IO  
D10  
FAULTB3  
PWMA0  
VSS  
D14  
GPIOB0  
GPIOB1  
GPIOB2  
VREFH  
D15  
VDDA_ADC  
VSSA_ADC  
A0  
PWMA1  
PHASEA0  
36  
37  
GPIOB3  
GPIOB4  
76  
77  
PWMA2  
VDD_IO  
116  
117  
ANB0  
ANB1  
156  
157  
PHASEB0  
INDEX0  
38  
39  
40  
PWMB0  
PWMB1  
PWMB2  
78  
79  
80  
PWMA3  
PWMA4  
VSS  
118  
119  
120  
ANB2  
ANB3  
ANB4  
158  
159  
160  
HOME0  
EMI_MODE  
VSS  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
167  
1
2
3
4
5
6
7
8
9
10  
11 12 13 14  
A
ISA0  
INDEX0  
TXD0  
D15  
VPP  
1
TC0  
TC1  
ANB4  
D12  
TD1  
TD0  
ANB7  
PHASEA0  
D11  
D13  
ANB5  
ANB3  
SCLK0  
MOSI0  
TMS  
TDI  
B
C
D
E
F
EMI_  
MODE  
PHASEB0  
HOME0  
CAN_RX  
EXTBOOT  
ISA1  
ANB1  
ANB6  
ANB2  
VDDA_ADC  
VPP  
2
A0  
D14  
PHASEA1  
PHASEB1  
ANB0  
VREFP  
VREFH  
ISA2 VSSA_ADC  
RXD0  
MISO0  
TD2  
TD3  
CAN_TX TDO  
TCK  
HOME1  
SS0  
TRST  
TEMP_  
SENSE  
VCAP  
2
VREFLO  
VREFMID  
HOME1 INDEX1  
A1  
A2  
VDD_IO  
VSS  
VSS  
VDD_IO  
ANA7  
VREFN  
ANA6  
A3  
A8  
VDD_IO  
VDD_IO  
A4  
A6  
ANA4  
ANA2  
A5  
A7  
ANA3  
ANA0  
ANA1  
G
H
VCAP  
A11  
4
VSS  
CLKO  
MODE  
V
CAP3  
A12  
A15  
ANA5  
A9  
A10  
A14  
J
K
L
EXTAL  
RESET  
A13  
RSTO  
VDDA_  
VSS  
D10  
VSS  
OSC_PLL OCR_DIS  
V
CAP1  
D7  
D9  
D8  
VDD_IO GPIOD2 VDD_IO  
IRQA  
VDD_IO  
VSS  
D6  
XTAL  
D5  
FAULTB2  
GPIOB0 GPIOB2 GPIOB1  
ISB1 FAULTB1  
D4  
D3  
GPIOD1  
WR  
DS  
GPIOD5  
M
GPIOB3 GPIOB4  
PWMB5  
GPIOB7  
GPIOB5  
TXD1  
PWMA0  
FAULTA2 FAULTA3  
FAULTA0 FAULTA1  
PWMA3  
PWMA5  
N
P
PWMB0  
PWMB2  
D1  
D0  
PWMB3  
RXD1  
RD  
PWMA2  
PS  
ISB0 FAULTB0  
GPIOD3  
GPIOD4  
GPIOD0  
PWMB1 PWMB4 GPIOB6  
ISB2  
IRQB  
PWMA1 PWMA4  
D2  
FAULTB3  
Figure 11-2 Top View, 56F8367 160-Pin MAPBGA Package  
56F8367 Technical Data, Rev. 3.0  
168  
Freescale Semiconductor  
Preliminary  
56F8367 Package and Pin-Out Information  
Table 11-2 56F8367 -160 MAPBGA Package Identification by Pin Number  
Ball  
No.  
Ball  
No.  
Ball  
No.  
Ball  
No.  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
F4  
VDD_IO  
K11  
K7  
VSS  
N12  
N13  
PWMA5  
A13  
B12  
ANB5  
ANB6  
C2  
VPP  
2
VDD_IO  
FAULTA0  
D3  
B1  
D2  
CLKO  
TXD0  
RXD0  
N3  
P2  
M3  
PWMB3  
PWMB4  
PWMB5  
P14  
N14  
M13  
D2  
A12  
B11  
J11  
ANB7  
FAULTA1  
FAULTA2  
EXTBOOT  
VSS  
C1  
D1  
E2  
D3  
E3  
E4  
F2  
PHASEA1  
PHASEB1  
INDEX1  
HOME1  
A1  
N4  
P3  
M4  
P4  
N5  
L4  
GPIOB5  
GPIOB6  
GPIOB7  
TXD1  
RXD1  
WR  
L13  
M14  
L14  
L12  
L11  
K14  
K13  
D3  
A11  
C11  
D11  
B10  
A10  
D10  
E10  
ISA0  
ISA1  
ISA2  
TD0  
TD1  
TD2  
TD3  
FAULTA3  
D4  
D5  
D6  
A2  
OCR_DIS  
VDDA_OSC_PLL  
A3  
P5  
RD  
F1  
F3  
A4  
A5  
N6  
L5  
PS  
DS  
K12  
J12  
XTAL  
A9  
TC0  
EXTAL  
F11  
VDD_IO  
G4  
K5  
VCAP4*  
VDD_IO  
P6  
L6  
GPIOD0  
GPIOD1  
H11  
K10  
VCAP3*  
VDD_IO  
B9  
D9  
TC1  
TRST  
G1  
G3  
G2  
H1  
H2  
A6  
A7  
A8  
A9  
A10  
K6  
N7  
P7  
L7  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
J13  
J14  
H12  
G13  
H13  
RSTO  
D8  
A8  
B8  
D7  
A7  
TCK  
TMS  
TDI  
RESET  
CLKMODE  
ANA0  
TDO  
N8  
ANA1  
VPP1  
H4  
A11  
K8  
VCAP1*  
G12  
ANA2  
D6  
CAN_TX  
H3  
J1  
A12  
A13  
L8  
ISB1  
ISB2  
F13  
F12  
ANA3  
ANA4  
B7  
E8  
CAN_RX  
VCAP2*  
P8  
J2  
A14  
K9  
IRQA  
H14  
ANA5  
D5  
SS0  
* When the on-chip regulator is disabled, these four pins become 2.5V VDD_CORE  
.
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
169  
Table 11-2 56F8367 -160 MAPBGA Package Identification by Pin Number (Continued)  
Ball  
No.  
Ball  
No.  
Ball  
No.  
Ball  
No.  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
J3  
A15  
VSS  
P9  
N9  
IRQB  
G14  
E13  
ANA6  
ANA7  
A6  
SCLK0  
MISO0  
J4  
FAULTB0  
D4  
K1  
K3  
D7  
D8  
L9  
FAULTB1  
FAULTB2  
E11  
E12  
TEMP_SENSE  
VREFLO  
B6  
A5  
MOSI0  
D11  
L10  
K2  
E5  
K4  
L1  
L3  
L2  
D9  
P10  
N10  
P11  
M11  
G11  
P12  
D0  
F14  
E14  
D13  
D14  
C14  
D12  
VREFN  
A4  
B5  
C4  
A3  
C3  
A2  
D12  
VDD_IO  
D10  
D1  
VREFMID  
VREFP  
D13  
FAULTB3  
PWMA0  
VSS  
D14  
GPIOB0  
GPIOB1  
GPIOB2  
VREFH  
D15  
VDDA_ADC  
VSSA_ADC  
A0  
PWMA1  
PHASEA0  
M1  
M2  
GPIOB3  
GPIOB4  
N11  
E9  
PWMA2  
VDD_IO  
C13  
B14  
ANB0  
ANB1  
B4  
A1  
PHASEB0  
INDEX0  
N1  
P1  
N2  
PWMB0  
PWMB1  
PWMB2  
M12  
P13  
E7  
PWMA3  
PWMA4  
VSS  
C12  
B13  
A14  
ANB2  
ANB3  
ANB4  
B3  
B2  
E6  
HOME0  
EMI_MODE  
VSS  
56F8367 Technical Data, Rev. 3.0  
170  
Freescale Semiconductor  
Preliminary  
56F8367 Package and Pin-Out Information  
D
X
LASER MARK FOR PIN 1  
IDENTIFICATION IN  
THIS AREA  
Y
M
K
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND  
TOLERANCES PER ASME Y14.5M, 1994.  
3. DIMENSION b IS MEASURED AT THE  
MAXIMUM SOLDER BALL DIAMETER,  
PARALLEL TO DATUM PLANE Z.  
4. DATUM Z (SEATING PLANE) IS DEFINED BY  
THE SPHERICAL CROWNS OF THE SOLDER  
BALLS.  
E
5. PARALLELISM MEASUREMENT SHALL  
EXCLUDE ANY EFFECT OF MARK ON TOP  
SURFACE OF PACKAGE.  
MILLIMETERS  
DIM MIN MAX  
0.20  
A
A1  
A2  
b
1.32  
0.27  
1.18 REF  
1.75  
0.47  
0.35  
0.65  
13X  
e
D
E
e
15.00 BSC  
15.00 BSC  
1.00 BSC  
0.50 BSC  
S
METALIZED MARK FOR  
PIN 1 IDENTIFICATION  
IN THIS AREA  
S
14 13 12 11 10  
9
6
5
4
3
2
1
A
B
C
D
E
F
5
S
0.30 Z  
A2  
13X  
e
A
G
H
J
160X  
A1  
0.15 Z  
4
Z
K
L
M
DETAIL K  
ROTATED 90 CLOCKWISE  
°
N
P
3
160X  
b
0.30 Z X Y  
0.10 Z  
VIEW M-M  
CASE 1268-01  
ISSUE O  
DATE 04/06/98  
Please see http://www.freescale.com for the most current mechanical drawing.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
171  
Figure 11-3 160 MAPBGA Mechanical Information  
11.2 56F8167 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8167. This device comes in a 160-pin  
Low-profile Quad Flat Pack (LQFP). Figure 11-4 shows the package outline for the 160-pin LQFP,  
Figure 11-5 shows the mechanical parameters for this package, and Table 11-3 lists the pin-out for the  
160-pin LQFP.  
Orientation Mark  
V
ANB4  
DD_IO  
V
2
ANB3  
ANB2  
ANB1  
ANB0  
PP  
CLKO  
TXD0  
RXD0  
121  
Pin 1  
SCLK1  
MOSI1  
MISO1  
V
V
V
SSA_ADC  
DDA_ADC  
REFH  
SS1  
A1  
V
V
V
V
REFP  
REFMID  
REFN  
A2  
A3  
REFLO  
A4  
A5  
NC  
ANA7  
V
V
4*  
ANA6  
ANA5  
CAP  
DD_IO  
A6  
ANA4  
A7  
A8  
ANA3  
ANA2  
A9  
ANA1  
A10  
A11  
A12  
A13  
ANA0  
CLKMODE  
RESET  
RSTO  
A14  
A15  
V
V
DD_IO  
3*  
CAP  
V
EXTAL  
SS  
D7  
D8  
D9  
XTAL  
VDDA_OSC_PLL  
OCR_DIS  
D6  
D5  
V
DD_IO  
D10  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
D4  
NC  
D3  
NC  
NC  
PWMB0  
PWMB1  
PWMB2  
81  
D2  
NC  
NC  
41  
* When the on-chip regulator is disabled, these four pins become 2.5V VDD_CORE  
.
Figure 11-4 Top View, 56F8167 160-Pin LQFP Package  
56F8367 Technical Data, Rev. 3.0  
172  
Freescale Semiconductor  
Preliminary  
56F8167 Package and Pin-Out Information  
Table 11-3 56F8167 160-Pin LQFP Package Identification by Pin Number  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
VDD_IO  
41  
42  
VSS  
81  
82  
NC  
NC  
121  
122  
ANB5  
ANB6  
VPP  
2
VDD_IO  
3
4
5
CLKO  
TXD0  
RXD0  
43  
44  
45  
PWMB3  
PWMB4  
PWMB5  
83  
84  
85  
D2  
NC  
NC  
123  
124  
125  
ANB7  
EXTBOOT  
VSS  
6
7
SCLK1  
MOSI1  
MISO1  
SS1  
46  
47  
48  
49  
50  
51  
52  
GPIOB5  
GPIOB6  
GPIOB7  
TXD1  
RXD1  
WR  
86  
87  
88  
89  
90  
91  
92  
D3  
126  
127  
128  
129  
130  
131  
132  
GPIOC8  
GPIOC9  
NC  
D4  
8
GPIOC10  
GPIOE10  
GPIOE11  
GPIOE12  
GPIOE13  
9
D5  
10  
11  
12  
A1  
D6  
A2  
OCR_DIS  
VDDA_OSC_PLL  
A3  
RD  
13  
14  
A4  
A5  
53  
54  
PS  
DS  
93  
94  
XTAL  
133  
134  
TC0  
EXTAL  
VDD_IO  
15  
16  
VCAP4*  
VDD_IO  
55  
56  
GPIOD0  
GPIOD1  
95  
96  
VCAP3*  
VDD_IO  
135  
136  
TC1  
TRST  
17  
18  
19  
20  
21  
A6  
A7  
57  
58  
59  
60  
61  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
97  
98  
RSTO  
RESET  
CLKMODE  
ANA0  
137  
138  
139  
140  
141  
TCK  
TMS  
TDI  
A8  
99  
A9  
100  
101  
TDO  
A10  
ANA1  
VPP1  
22  
A11  
62  
VCAP1*  
102  
ANA2  
142  
NC  
23  
24  
A12  
A13  
63  
64  
ISB1  
ISB2  
103  
104  
ANA3  
ANA4  
143  
144  
NC  
VCAP2*  
25  
A14  
65  
IRQA  
105  
ANA5  
145  
SS0  
* When the on-chip regulator is disabled, these four pins become 2.5V VDD_CORE  
Please see http://www.freescale.com for the most current mechanical drawing.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
173  
Table 11-3 56F8167 160-Pin LQFP Package Identification by Pin Number (Continued)  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
26  
27  
A15  
VSS  
66  
67  
IRQB  
106  
107  
ANA6  
ANA7  
146  
147  
SCLK0  
MISO0  
FAULTB0  
28  
29  
D7  
D8  
68  
69  
FAULTB1  
FAULTB2  
108  
109  
NC  
148  
149  
MOSI0  
D11  
VREFLO  
30  
31  
32  
33  
34  
35  
D9  
70  
71  
72  
73  
74  
75  
D0  
D1  
110  
111  
112  
113  
114  
115  
VREFN  
VREFMID  
VREFP  
150  
151  
152  
153  
154  
155  
D12  
D13  
VDD_IO  
D10  
FAULTB3  
NC  
D14  
GPIOB0  
GPIOB1  
GPIOB2  
VREFH  
D15  
VSS  
VDDA_ADC  
VSSA_ADC  
A0  
NC  
PHASEA0  
36  
37  
GPIOB3  
GPIOB4  
76  
77  
NC  
116  
117  
ANB0  
ANB1  
156  
157  
PHASEB0  
INDEX0  
VDD_IO  
38  
39  
40  
PWMB0  
PWMB1  
PWMB2  
78  
79  
80  
NC  
NC  
118  
119  
120  
ANB2  
ANB3  
ANB4  
158  
159  
160  
HOME0  
EMI_MODE  
VSS  
VSS  
56F8367 Technical Data, Rev. 3.0  
174  
Freescale Semiconductor  
Preliminary  
56F8167 Package and Pin-Out Information  
160X  
0.20 C A-B D  
D
b
GG  
D
2
6
D
(b)  
SECTION G-G  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DATUMS A, B, AND D TO BE DETERMINED  
WHERE THELEADS EXIT THE PLASTIC BODY  
AT DATUM PLANE H.  
4. DIMENSIONS D1 AND E1 DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25mm PER SIDE.  
DIMENSIONS D1 AND E1 ARE MAXIMUM  
PLASTIC BODY SIZE DIMENSIONS  
INCLUDING MOLD MISMATCH.  
D1  
2
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE LEAD  
WIDTH TO EXCEED THE MAXIMUM b  
DIMENSION BY MORE THAN 0.08mm.  
DAMBAR CAN NOT BE LOCATED ON THE  
LOWER RADIUS OR THE FOOT. MINIMUM  
SPACE BETWEEN A PROTRUSION AND AN  
ADJACENT LEAD IS 0.07mm.  
D1  
4X  
0.20 H A-B D  
DETAIL F  
6. EXACT SHAPE OF CORNERS MAY VARY.  
0.08 C  
156X  
e
C
MILLIMETERS  
DIM MIN MAX  
4X e/2  
SEATING  
PLANE  
160X  
e
A
A1  
A2  
b
b1  
c
c1  
D
D1  
e
---  
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
M
0.08  
C A-B D  
θ2  
θ1  
H
26.00 BSC  
24.00 BSC  
0.50 BSC  
R1  
R2  
E
E1  
L
26.00 BSC  
24.00 BSC  
0.45  
0.75  
L1  
R1  
R2  
S
1.00 REF  
θ3  
0.25  
0.08  
0.08  
0.20  
---  
0.20  
---  
θ
GAGE  
PLANE  
S
L
(L1)  
θ
0
0
11  
11  
7
---  
13  
13  
°
°
°
°
°
θ 1  
θ 2  
θ 3  
°
°
DETAIL F  
Figure 11-5 160-pin LQFP Mechanical Information  
Please see http://www.freescale.com for the most current mechanical drawing.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
175  
Part 12 Design Considerations  
12.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
PD)  
θJΑ x  
J
A
where:  
o
T
R
= Ambient temperature for the package ( C)  
A
o
= Junction-to-ambient thermal resistance ( C/W)  
θJΑ  
P
= Power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Unfortunately, there are two values in common usage: the value  
determined on a single-layer board and the value obtained on a board with two planes. For packages such  
as the PBGA, these values can be different by a factor of two. Which value is closer to the application  
depends on the power dissipated by other components on the board. The value obtained on a single-layer  
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the  
internal planes is usually appropriate if the board has low-power dissipation and the components are well  
separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
R
R
θJΑ = θJC + θCΑ  
where:  
R
R
R
= Package junction-to-ambient thermal resistance °C/W  
= Package junction-to-case thermal resistance °C/W  
= Package case-to-ambient thermal resistance °C/W  
θJA  
θJC  
θCA  
R
θJC is device-related and cannot be influenced by the user. The user controls the thermal environment to  
change the case-to-ambient thermal resistance, R θCA . For instance, the user can change the size of the heat  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the  
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ x P )  
J
T
JT  
D
where:  
o
T
Ψ
= Thermocouple temperature on top of package ( C)  
= Thermal characterization parameter ( C)/W  
T
o
JT  
P
= Power dissipation in package (W)  
D
56F8367 Technical Data, Rev. 3.0  
176  
Freescale Semiconductor  
Preliminary  
Electrical Design Considerations  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
12.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each V pin on the hybrid controller, and  
DD  
from the board ground to each V (GND) pin  
SS  
The minimum bypass requirement is to place six 0.01–0.1µF capacitors positioned as close as possible to  
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each  
of the V /V pairs, including V  
/V  
Ceramic and tantalum capacitors tend to provide better  
DD SS  
DDA SSA.  
performance tolerances.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V and V (GND)  
DD SS  
pins are less than 0.5 inch per capacitor lead  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V and V  
DD  
SS  
Bypass the V and V layers of the PCB with approximately 100µF, preferably with a high-grade  
DD  
SS  
capacitor such as a tantalum capacitor  
Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
177  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the V and V circuits.  
DD  
SS  
Take special care to minimize noise levels on the V , V  
and V  
pins  
SSA  
REF DDA  
Designs that utilize the TRST pin for JTAG port or EOnCE module functionality (such as development or  
debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means  
to assert TRST independently of RESET. Designs that do not require debugging functionality, such as  
consumer products, should tie these pins together.  
Because the Flash memory is programmed through the JTAG/EOnCE port, the designer should provide an  
interface to this port to allow in-circuit Flash programming  
12.3 Power Distribution and I/O Ring Implementation  
Figure 12-1 illustrates the general power control incorporated in the 56F8367/56F8167. This chip  
contains two internal power regulators. One of them is powered from the V  
pin and cannot  
DDA_OSC_PLL  
be turned off. This regulator controls power to the internal clock generation circuitry. The other regulator  
is powered from the V pins and provides power to all of the internal digital logic of the core, all  
DD_IO  
peripherals and the internal memories. This regulator can be turned off, if an external V  
voltage  
DD_CORE  
is externally applied to the V  
pins.  
CAP  
In summary, the entire chip can be supplied from a single 3.3 volt supply if the large core regulator is  
enabled. If the regulator is not enabled, a dual supply 3.3V/2.5V configuration can also be used.  
Notes:  
Flash, RAM and internal logic are powered from the core regulator output  
V 1 and V 2 are not connected in the customer system  
PP  
PP  
All circuitry, analog and digital, shares a common V bus  
SS  
VDDA_OSC_PLL  
VDD  
VDDA_ADC  
VREFH  
VREFP  
VREFMID  
VREFN  
VREFLO  
VCAP  
REG  
REG  
I/O  
ADC  
CORE  
OSC  
VSS  
VSSA_ADC  
Figure 12-1 Power Management  
56F8367 Technical Data, Rev. 3.0  
178  
Freescale Semiconductor  
Preliminary  
Power Distribution and I/O Ring Implementation  
Part 13 Ordering Information  
Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 13-1 Ordering Information  
Ambient  
Temperature  
Range  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
MC56F8367  
MC56F8167  
3.0–3.6 V  
3.0–3.6 V  
160  
160  
60  
40  
-40° to + 105° C  
-40° to + 105° C  
MC56F8367VPY60  
MC56F8167VPY  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
MC56F8367  
MC56F8367  
3.0–3.6 V  
3.0–3.6 V  
160  
160  
60  
60  
-40° to + 105° C  
-40° to + 125° C  
MC56F8367VPYE*  
MC56F8367MPYE*  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
MC56F8167  
MC56F8367  
3.0–3.6 V  
3.0–3.6 V  
160  
160  
40  
60  
-40° to + 105° C  
-40° to + 105° C  
MC56F8167VPYE*  
MC56F8367VVF*  
Mold Array Process Ball Grid Array  
(MAPBGA)  
*This package is RoHS compliant.  
56F8367 Technical Data, Rev. 3.0  
Freescale Semiconductor  
Preliminary  
179  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
MC56F8367  
Rev. 3.0  
09/2005  

相关型号:

MC56F8367VPY60

16-bit Digital Signal Controllers
FREESCALE

MC56F8367VPYE

16-bit Digital Signal Controllers
FREESCALE

MC56F8367VVF

16-bit Digital Signal Controllers
FREESCALE

MC56F8367VVFEJ

IC,MICROCONTROLLER,16-BIT,56800E CPU,CMOS,BGA,160PIN,PLASTIC
NXP

MC56F83683VLH

Digital Signal Processor
NXP

MC56F83686VLK

Digital Signal Processor
NXP

MC56F83689VLL

Digital Signal Processor
NXP

MC56F83763AMLHA

MC56F83xxx DSC FAMILY
NXP

MC56F83763AVLHA

MC56F83xxx DSC FAMILY
NXP

MC56F83763VLH

MC56F83xxx DSC FAMILY
NXP

MC56F83766VLK

MC56F83xxx DSC FAMILY
NXP

MC56F83769AMLLA

MC56F83xxx DSC FAMILY
NXP