MC9S08MP16E2MLF [FREESCALE]

8-Bit HCS08 Central Processor Unit (CPU); 8位HCS08中央处理单元(CPU)的
MC9S08MP16E2MLF
型号: MC9S08MP16E2MLF
厂家: Freescale    Freescale
描述:

8-Bit HCS08 Central Processor Unit (CPU)
8位HCS08中央处理单元(CPU)的

文件: 总36页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08MP16  
Rev. 1, 10/2009  
48-LQFP  
Case 932-03  
32-LQFP  
Case 873A-03  
MC9S08MP16 Series Data  
Sheet  
28-SOIC  
Case 751F-05  
Features  
8-Bit HCS08 Central Processor Unit (CPU)  
– Up to 51.34 MHz CPU at 2.7V to 5.5V across temperature  
range of –40°C to 105°C  
PGA — Differential programmable gain amplifier with  
programmable gain (x1, x2, x4, x8, x16, or x32)  
HSCMP — Three fast analog comparators with positive and  
negative inputs; separately selectable interrupt on rising and  
falling comparator output; filtering; windowing; HSCMP1 and  
HSCMP2 outputs can be optionally routed to FTM1 module;  
runs in stop3  
– Up to 40 MHz CPU at 2.7V to 5.5V across temperature range  
of –40°C to 125°C  
– HC08 instruction set with added BGND instruction and  
additional addressing modes for LDHX and STHX  
– Support for up to 48 interrupt/reset sources  
On-Chip Memory  
– Up to 16 KB flash memory; read/program/erase over full  
operating voltage and temperature  
DAC — Three 5-bit digital to analog convertor used as a  
32-tap voltage reference for each comparator  
– Up to 1 KB random-access memory (RAM)  
– Security circuitry to prevent unauthorized access to RAM and  
flash memory contents  
PDB — Two programmable delay blocks: PDB1 synchronizes  
PWM with samples of ADC; PDB2 synchronizes PWM with  
comparing window of analog comparators  
SCI — Full duplex non-return to zero (NRZ); LIN master  
extended break generation; LIN slave extended break  
detection; wake up on active edge  
SPI — Full-duplex or single-wire bidirectional;  
Double-buffered transmit and receive; Master or Slave mode;  
MSB-first or LSB-first shifting  
IIC/SMBus — Up to 400 kbps; Multi-master operation;  
Programmable slave address; Interrupt driven byte-by-byte  
data transfer; supports broadcast mode and 10-bit addressing;  
SMBus compatible  
FTM — Two Flextimers with total of 8 channels; One  
2-channel (FTM1) and one 6-channel (FTM2); supports  
operation up to 2x bus clock; selectable input capture, output  
compare, edge- or center-aligned PWM; dead time insertion;  
fault inputs  
MTIM — 8-bit modulo counter with 8-bit prescaler  
RTC — (Real-time counter) 8-bit modulus counter with  
binary or decimal based prescaler; External clock source for  
precise time base, time-of-day, calendar or task scheduling;  
Free running on-chip low power oscillator (1 kHz) for cyclic  
wake-up without external components, runs in all MCU modes  
CRC — Cyclic redundancy check generator  
KBI — Three 8 channel keyboard interrupt module with  
software selectable polarity on edge or edge/level modes  
Input/Output  
Power-Saving Modes  
– Two low power stop modes; reduced power wait mode  
– Peripheral clock gating can disable clocks to unused modules  
Clock Source Options  
– Oscillator (XOSC) — Loop-control Pierce oscillator; Crystal  
or ceramic resonator range of 31.25–38.4 kHz or 1–16 MHz  
– Internal Clock Source (ICS) — Containing a  
frequency-locked-loop (FLL) controlled by internal or  
external reference; precision trimming of internal reference  
allows 0.2% resolutions and 2% deviation over temperature  
and voltage; supports CPU frequencies up to 51.34 MHz  
System Protection  
– Watchdog computer operating properly (COP) reset running  
from dedicated 1-kHz internal clock source or bus clock  
– Low-voltage detection with reset or interrupt; selectable trip  
points  
– Illegal opcode and illegal address detection with reset  
– Flash memory block protection  
Development Support  
– Single-wire background debug interface  
– Breakpoint capability to allow single breakpoint setting during  
in-circuit debugging (plus three more breakpoints in on-chip  
debug module)  
– On-chip in-circuit emulator (ICE) debug module containing  
three comparators and nine trigger modes. Eight deep FIFO for  
storing change-of-flow addresses and event-only data. Debug  
module supports both tag and force breakpoints  
Peripherals  
IPC — Interrupt Priority Controller with 4 programmable  
interrupt priority levels  
ADC — 13-channel, 12-bit resolution; 2.5 μs conversion time;  
automatic compare function; 1.7 mV/°C temperature sensor;  
internal bandgap reference channel; operation in stop3  
– 40 GPIOs, 2 output-only pins.  
– Hysteresis and configurable pull up device on input pins;  
Configurable slew rate and drive strength on output pins;  
Sink/Source current up to 20mA  
Package Options  
– 48-LQFP, 32-LQFP, 28-SOIC  
– 48-LQFP qualified for automotive usage  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
Table of Contents  
1
2
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.13 Programmable Gain Amplifier (PGA) Characteristics . 26  
2.14 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.14.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.14.2 FTM Module Timing . . . . . . . . . . . . . . . . . . . . . 28  
2.14.3 MTIM Module Timing . . . . . . . . . . . . . . . . . . . . 29  
2.14.4 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.15 Flash Memory Specifications. . . . . . . . . . . . . . . . . . . . 33  
2.16 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2.16.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . 33  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.1 Device Numbering Scheme. . . . . . . . . . . . . . . . . . . . . 35  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Related Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . .9  
2.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .10  
2.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .11  
2.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .15  
2.8 External Oscillator (XOSC) Characteristics . . . . . . . . .20  
2.9 Internal Clock Source (ICS) Characteristics . . . . . . . . .21  
2.10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.11 Digital to Analog (DAC) Characteristics . . . . . . . . . . . .26  
2.12 High Speed Comparator (HSCMP) Characteristics . . .26  
3
4
5
6
MC9S08MP16 Series Data Sheet, Rev. 1  
2
Freescale Semiconductor  
ON-CHIP ICE  
DEBUG MODULE (DBG)  
Interrupt Priority Controller  
(IPC)  
CYCLIC REDUNDANCY  
HCS08 CORE  
CHECK (CRC)  
CPU  
INT  
KBI1P[7:0]  
KBI2P[7:0]  
KBI3P[7:0]  
8-BIT KEYBOARD  
PTA7/SPSCK  
PTA6/MOSI  
INTERRUPT (KBI1)  
BKGD  
BKP  
PTA5/SCL/MISO  
PTA4/TCLK/SDA/SS  
PTA3/SCL/FTM1CH1  
PTA2/SDA/FTM1CH0  
PTA1/SCL/RxD  
8-BIT KEYBOARD  
HCS08 SYSTEM CONTROL  
INTERRUPT (KBI2)  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
BKGD/MS  
RESET  
8-BIT KEYBOARD  
INTERRUPT (KBI3)  
PTA0/SDA/TxD  
COP  
LVD  
SCL  
SDA  
IIC MODULE (IIC)  
PTB7/KBI1P7/ADP7/C3IN4  
(Only on MC9S08MP16)  
PTB6/KBI1P6/CMP3OUT/ADP6/C3IN3  
PTB5/KBI1P5/CMP2OUT/ADP5/C2IN4  
PTB4/KBI1P4/ADP4/C2IN3  
PTB3/KBI1P3/ADP3/C3IN2/PGA-  
PTB2/KBI1P2/ADP2/C1IN2/PGA+  
PTB1/KBI1P1/ADP1/C2IN2  
FTM1CH[1:0]  
2-CHANNEL FLEXTIMER  
USER FLASH  
TCLK  
FTM1FAULT  
(FTM1)  
(MC9S08MP16 = 16384 BYTES)  
(MC9S08MP12 = 12288 BYTES)  
FTM2CH[5:0]  
PTB0/KBI1P0/ADP0/CIN1  
6-CHANNEL FLEXTIMER  
TCLK  
FTM2FAULT  
USER RAM  
(FTM2)  
PTC7/KBI2P7/TCLK  
PTC6/KBI2P6/FTM2FAULT  
PTC5/KBI2P5/FTM2CH5  
PTC4/KBI2P4/FTM2CH4  
PTC3/KBI2P3/FTM2CH3  
PTC2/KBI2P2/FTM2CH2  
PTC1/KBI2P1/FTM2CH1  
PTC0/KBI2P0/FTM2CH0  
(MC9S08MP16 = 1024 BYTES)  
(MC9S08MP12 = 512 BYTES)  
8-BIT MODULO TIMER  
TCLK  
(MTIM)  
50.33 MHz INTERNAL CLOCK  
TxD  
RxD  
SERIAL COMMUNICATIONS  
SOURCE (ICS)  
INTERFACE (SCI)  
XTAL  
LOW-POWER OSCILLATOR  
31.25 kHz to 38.4 kHz  
1 MHz to 16 MHz  
SS  
PTD7/KBI3P7/CMP3OUT  
PTD6/KBI3P6/CMP2OUT  
PTD5/KBI3P5/CMP1OUT  
PTD4/KBI3P4/PDB2OUT  
PTD3/KBI3P3/FTM1FAULT  
PTD2/KBI3P2/PDB1OUT  
PTD1/KBI3P1/SCL  
EXTAL  
SPSCK  
MISO  
MOSI  
SERIAL PERIPHERAL  
(XOSC)  
INTERFACE (SPI)  
REAL TIME  
PROGRAMMABLE DELAY  
PDB1OUT  
PDB2OUT  
COUNTER (RTC)  
BLOCK (PDB1)  
PROGRAMMABLE DELAY  
PTD0/KBI3P0/SDA  
BLOCK (PDB2)  
VREFH  
VREFL  
PTE6/EXTAL  
PTE5/XTAL  
PTE4/ADP12/C1IN4  
PTE3/ADP11/C1IN3  
PTE2/ADP10  
12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
ADP12–ADP0  
VDDA/VREFH  
VSSA/VREFL  
VDD1  
PGA+  
PGA–  
VOLTAGE  
VSS1  
VDD2  
VSS2  
PTE1/ADP9  
PTE0/ADP8  
PROGRAMMABLE  
GAIN AMPLIFIER (PGA  
REGULATOR  
)
(Only on MC9S08MP16)  
CIN1  
C1IN2  
PTF2  
PTF1/RESET  
PTF0/BKGD/MS  
DIGITAL-TO-ANALOG  
HIGH SPEED ANALOG  
C1IN3  
C1IN4  
CMP1OUT  
CONVERTER (DAC1)  
COMPARATOR (HSCMP1  
)
)
)
C2IN2  
C2IN3  
C2IN4  
DIGITAL-TO-ANALOG  
HIGH SPEED ANALOG  
CONVERTER (DAC2)  
pins not available on 28-pin packages  
pins not available on 32-pin or 28-pin packages  
COMPARATOR (HSCMP2  
CMP2OUT  
C3IN2  
C3IN3  
C3IN4  
DIGITAL-TO-ANALOG  
HIGH SPEED ANALOG  
CONVERTER (DAC3)  
COMPARATOR (HSCMP3  
CMP3OUT  
Notes: When PTF1 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pull-up device.  
When PTF0 is configured as BKGD, pin becomes bi-directional.  
VDD2 pad is tied internally on 32-pin and 28-pin packages,  
VSS2 pad is tied internally on 28-pin packages  
Figure 1. MC9S08MP16 Series Block Diagram  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
3
Pin Assignments  
1
Pin Assignments  
This section shows the pin assignments for the MC9S08MP16 Series devices.  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTC4/KBI2P4/FTM2CH4  
PTC5/KBI2P5/FTM2CH5  
PTC6/KBI2P6/FTM2FAULT  
PTC7/KBI2P7/TCLK  
PTD0/KBI3P0/SDA  
PTD1/KBI3P1/SCL  
PTD2/KBI3P2/PDB1OUT  
PTD3/KBI3P3/FTM1FAULT  
VSS1  
PTB4/KBI1P4/ADP4/C2IN3  
PTE4/ADP12/C1IN4  
2
3
PTE3/ADP11/C1IN3  
4
V
SSA/VREFL  
5
VDDA/VREFH  
6
PTB3/KBI1P3/ADP3/C3IN2/PGA–  
PTB2/KBI1P2/ADP2/C1IN2/PGA+  
PTB1/KBI1P1/ADP1/C2IN2  
PTB0/KBI1P0/ADP0/CIN1  
PTE2/ADP10  
7
8
9
VDD1  
10  
11  
12  
PTA0/SDA/TxD  
PTE1/ADP9  
PTE0/ADP8  
PTA1/SCL/RxD  
Note: Pins in bold are lost in the next  
lower pin count package.  
Figure 2. MC9S08MP16 Series in 48-LQFP  
MC9S08MP16 Series Data Sheet, Rev. 1  
4
Freescale Semiconductor  
Pin Assignments  
32 31 30 29 28 27 26 25  
PTC2/KBI2P2/FTM2CH2  
PTC3/KBI2P3/FTM2CH3  
PTC4/KBI2P4/FTM2CH4  
PTB5/KBI1P5/CMP2OUT/ADP5/C2IN4  
PTB4/KBI1P4/ADP4/C2IN3  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VSSA/VREFL  
VDDA/VREFH  
PTC5/KBI2P5/FTM2CH5  
PTC6/KBI2P6/FTM2FAULT  
VSS1  
PTB3/KBI1P3/ADP3/C3IN2/PGA–  
PTB2/KBI1P2/ADP2/C1IN2/PGA+  
PTB1/KBI1P1/ADP1/C2IN2  
PTB0/KBI1P0/ADP0/CIN1  
VDD1  
PTA0/SDA/TxD  
9
10 11 12 13 14 15 16  
Note: Pins in bold are lost in the next  
lower pin count package.  
Figure 3. MC9S08MP16 Series in 32-Pin LQFP Package  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
5
Pin Assignments  
PTC0/KBI2P0/FTM2CH0  
PTC1/KBI2P1/FTM2CH1  
PTC2/KBI2P2/FTM2CH2  
PTC3/KBI2P3/FTM2CH3  
PTC4/KBI2P4/FTM2CH4  
PTC5/KBI2P5/FTM2CH5  
PTC6/KBI2P6/FTM2FAULT  
VSS1  
PTF0/BKGD/MS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PTB6/KBI1P6/CMP3OUT/ADP6/C3IN3  
PTB5/KBI1P5/CMP2OUT/ADP5/C2IN4  
PTB4/KBI1P4/ADP4/C2IN3  
2
3
4
V
SSA/VREFL  
5
VDDA/VREFH  
6
PTB3/KBI1P3/ADP3/C3IN2/PGA–  
PTB2/KBI1P2/ADP2/C1IN2/PGA+  
PTB1/KBI1P1/ADP1/C2IN2  
PTB0/KBI1P0/ADP0/CIN1  
PTA7/SPSCK  
7
8
VDD1  
9
PTA0/SDA/TxD  
10  
11  
12  
13  
14  
PTA1/SCL/RxD  
PTA2/SDA/FTM1CH0  
PTA3/SCL/FTM1CH1  
PTA6/MOSI  
PTA5/SCL/MISO  
PTA4/TCLK/SDA/SS  
PTF1/RESET  
Figure 4. MC9S08MP16 Series in 28-Pin SOIC Package  
MC9S08MP16 Series Data Sheet, Rev. 1  
6
Freescale Semiconductor  
Pin Assignments  
Table 1. Pin Availability by Package Pin-Count  
Pin Number <-- Lowest Priority --> Highest  
32  
LQFP  
48  
28  
Port Pin  
Alt 1  
Alt 2  
Alt3  
Alt4  
1
2
3
5
PTC4  
KBI2P4  
FTM2CH4  
FTM2CH5  
FTM2FAULT  
TCLK1  
4
6
PTC5  
PTC6  
PTC7  
PTD0  
PTD1  
PTD2  
PTD3  
KBI2P5  
KBI2P6  
KBI2P7  
KBI3P0  
KBI3P1  
KBI3P2  
KBI3P3  
3
5
7
4
6
8
5
SDA5  
6
SCL5  
7
PDB1OUT  
FTM1FAULT  
8
9
VSS1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
7
9
VDD1  
8
10  
11  
12  
13  
14  
PTA0  
PTA1  
PTA2  
PTA3  
PTD4  
PTD5  
PTD6  
PTD7  
PTF1  
PTF2  
PTA4  
PTA5  
PTA6  
PTA7  
PTE0  
PTE1  
PTE2  
PTB0  
PTB1  
PTB2  
PTB3  
SDA5  
TxD  
9
SCL5  
RxD  
10  
11  
12  
SDA5  
FTM1CH0  
FTM1CH1  
PDB2OUT  
CMP1OUT  
CMP2OUT2  
CMP3OUT3  
SCL5  
KBI3P4  
KBI3P5  
KBI3P6  
KBI3P7  
4
19  
20  
21  
22  
23  
24  
25  
26  
RESET  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
TCLK1  
SDA5  
SCL5  
SS  
MISO  
MOSI  
SPSCK  
ADP8  
ADP9  
ADP10  
ADP06  
ADP16  
ADP26  
ADP36  
27  
28  
29  
30  
31  
32  
33  
34  
KBI1P0  
KBI1P1  
KBI1P2  
KBI1P3  
CIN16  
C2IN26  
C1IN26  
C3IN26  
PGA+6  
PGA–6  
VDDA/VREFH  
VSSA/VREFL  
PTE3  
ADP116  
C1IN36  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
7
Electrical Characteristics  
Table 1. Pin Availability by Package Pin-Count (continued)  
Pin Number <-- Lowest Priority --> Highest  
32  
LQFP  
48  
28  
Port Pin  
Alt 1  
Alt 2  
Alt3  
Alt4  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
PTE4  
ADP126  
C1IN46  
ADP46  
23  
24  
25  
26  
27  
28  
29  
25  
26  
27  
28  
1
PTB4  
PTB5  
PTB6  
PTB7  
PTE5  
PTE6  
KBI1P4  
C2IN36  
KBI1P5  
KBI1P6  
KBI1P7  
XTAL  
CMP2OUT2 ADP56  
CMP3OUT3 ADP66  
ADP76  
C2IN46  
C3IN36  
C3IN46  
EXTAL  
VSS2  
VDD2  
30  
31  
32  
1
PTF0  
PTC0  
PTC1  
PTC2  
PTC3  
BKGD  
MS  
KBI2P0  
KBI2P1  
KBI2P2  
KBI2P3  
FTM2CH0  
FTM2CH1  
FTM2CH2  
FTM2CH3  
2
3
48  
1
2
4
TCLK pin can be repositioned using TCLKPS in SOPT2. Default reset location is PTC7.  
2
3
4
HSCMP2 output CMP2OUT can be repositioned using the CMP2OPS in the SOPT2 register.  
Default reset location is PTD6.  
HSCMP3 output CMP3OUT can be repositioned using the CMP3OPS in the SOPT2 register.  
Default reset location is PTD7.  
Pin is open drain with an internal pullup that is always enabled. Pin does not contain a clamp  
diode to VDD and should not be driven above VDD. The voltage measured on the internally  
pulled up RESET will not be pulled to VDD. The internal gates connected to this pin are pulled  
to VDD  
.
5
6
IIC pins SDA and SCL can be repositioned using IICPS in SOPT2. Default reset locations are  
PTD0 and PTD1.  
If ADC, HSCMP, or PGA is enabling a shared analog input pin, each has access to the pin.  
2
Electrical Characteristics  
2.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08MP16 Series of microcontrollers available at the time  
of publication.  
MC9S08MP16 Series Data Sheet, Rev. 1  
8
Freescale Semiconductor  
Electrical Characteristics  
2.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
P
C
Those parameters that are guaranteed during production testing on each individual device.  
Those parameters that are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters that are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column are within  
this category.  
T
D
Those parameters that are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
2.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pull-up resistor associated with the pin is enabled.  
SS  
DD  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +5.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
± 25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTF1/RESET are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
I
DD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
9
Electrical Characteristics  
2.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 4. Thermal Characteristics  
Consumer &  
Industrial  
Num  
C
Rating  
Symbol  
Automotive  
Unit  
1
2
3
D
Operating temperature range (packaged)  
Maximum junction temperature  
Thermal resistance 1,2  
single-layer board  
TA  
TJ  
–40 to 105  
115  
–40 to 125  
135  
°C  
°C  
D
48-pin LQFP  
32-pin LQFP  
28-pin SOIC  
80  
85  
71  
80  
θJA  
°C/W  
4
D
Thermal resistance 1,2  
four-layer board  
48-pin LQFP  
32-pin LQFP  
28-pin SOIC  
56  
57  
48  
56  
θJA  
°C/W  
1
2
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
Junction-to-ambient natural convection  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273°C)  
Eqn. 2  
Eqn. 3  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
D
A
JA  
D
MC9S08MP16 Series Data Sheet, Rev. 1  
10  
Freescale Semiconductor  
Electrical Characteristics  
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
2.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification, ESD stresses were performed for the human body model (HBM) and the charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless instructed otherwise in the device specification.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
Human  
Body  
R1  
C
1500  
100  
3
Ω
Storage capacitance  
pF  
Number of pulses per pin  
Latch-up Minimum input voltage limit  
Maximum input voltage limit  
– 2.5  
7.5  
V
V
Table 6. ESD and Latch-Up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
Unit  
1
2
3
Human body model (HBM)  
Charge device model (CDM)  
Latch-up current at TA = 105°C  
VHBM  
VCDM  
ILAT  
± 2000  
± 500  
± 100  
V
V
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
2.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 7. DC Characteristics  
Num C  
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
1
2
3
— Operating Voltage  
VDD  
2.7  
0
5.5  
V
(2)  
(2)  
— Analog Supply voltage delta to VDD (VDD – VDDA  
)
ΔVDDA  
ΔVSSA  
±100  
±100  
mV  
mV  
— Analog Ground voltage delta to VSS (VSS – VSSA  
)
0
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
11  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num C  
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
C
All I/O pins (except PTF1/RESET)  
low-drive strength  
5 V, ILoad = –4 mA VDD – 1.5  
5 V, ILoad = –2 mA VDD – 0.8  
3 V, ILoad = –1 mA VDD – 0.8  
5 V, ILoad = –20 mA VDD – 1.5  
5 V, ILoad = –10 mA VDD – 0.8  
3 V, ILoad = –5 mA VDD – 0.8  
P
C Output high  
VOH  
V
4
5
6
C voltage  
P
high-drive strength  
C
D Output high current  
Max total IOH for all ports IOHT  
All I/O pins  
VOUT < VDD  
5 V, ILoad = 4 mA  
5 V, ILoad = 2 mA  
3 V, ILoad = 1 mA  
5 V, ILoad = 20 mA  
5 V, ILoad = 10 mA  
3 V, ILoad = 5 mA  
5 V, ILoad = 3.2 mA  
5 V, ILoad = 1.6 mA  
3 V, ILoad = 0.8 mA  
VOUT > VSS  
0
–100  
1.5  
mA  
V
C
P
(except PTF1/RESET)  
0.8  
C
low-drive strength  
All I/O pins  
VOL  
0.8  
C
1.5  
P Output low  
(Except PTF1/RESET)  
high-drive strength  
PTF1/RESET  
0.8  
C voltage  
0.8  
7
8
9
C
P
C
1.5  
0.8  
0.8  
10 D Output low current  
Max total IOL for all ports  
IOLT  
VIH  
0
0.65 x VDD  
0.7 x VDD  
100  
mA  
V
P Input high voltage; all digital inputs  
5V  
11  
12  
C
3V  
P Input low voltage; all digital inputs  
C
VIL  
5V  
0.35 x VDD  
0.35 x VDD  
V
3V  
13 C Input hysteresis  
Vhys  
0.06 x VDD  
V
14 P Input leakage current (per pin)  
|IIn|  
VIn = VDD or VSS  
1
μA  
P
Hi-Z (off-state) leakage current (per pin)  
input/output port pins |IOZ|  
VIn = VDD or VSS  
VIn = VDD or VSS  
1
2
μA  
μA  
15  
16  
PTF1/RESET,  
PTE5/XTAL pins  
Pullup or Pulldown3 resistors; when enabled  
P
I/O pins RPU,RPD  
PTF1/RESET4  
RPU  
17  
17  
37  
37  
52  
52  
kΩ  
kΩ  
C
D DC injection current 5, 6, 7, 8  
Single pin limit  
VIN > VDD  
VIN < VSS  
0
0
0
0
2
–0.2  
25  
mA  
mA  
mA  
mA  
17  
IIC  
Total MCU limit, includes  
sum of all stressed pins  
VIN > VDD  
VIN < VSS  
–5  
MC9S08MP16 Series Data Sheet, Rev. 1  
12  
Freescale Semiconductor  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num C  
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
13 C Input Capacitance, all pins  
14 C RAM retention voltage  
15 C POR re-arm voltage9  
16 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
μs  
P Low-voltage detection threshold —  
high range  
VLVD1  
VLVD0  
VLVW3  
VLVW2  
VLVW1  
17  
VDD falling  
VDD rising  
3.9  
4.0  
4.0  
4.1  
4.1  
4.2  
V
V
V
V
V
P Low-voltage detection threshold —  
low range  
18  
VDD falling  
VDD rising  
2.48  
2.54  
2.56  
2.62  
2.64  
2.70  
P Low-voltage warning threshold —  
high range 1  
19  
VDD falling  
VDD rising  
4.5  
4.6  
4.6  
4.7  
4.7  
4.8  
P Low-voltage warning threshold —  
high range 0  
20  
VDD falling  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
VDD rising  
P Low-voltage warning threshold  
low range 1  
21  
VDD falling  
VDD rising  
2.84  
2.90  
2.92  
2.98  
3.00  
3.06  
P Low-voltage warning threshold —  
low range 0  
VLVW0  
22  
VDD falling  
VDD rising  
2.66  
2.72  
2.74  
2.80  
2.82  
2.88  
V
T
Low-voltage inhibit reset/recover hysteresis  
Vhys  
5 V  
3 V  
100  
60  
23  
mV  
24 P Bandgap voltage reference at 25°C10  
1.18  
1.17  
1.202  
1.21  
1.22  
V
V
VBG  
Bandgap voltage reference across temperature  
range10  
25  
P
1
2
3
4
Typical values are measured at 25°C. Characterized, not tested  
DC potential difference.  
When keyboard interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors.  
The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured externally  
on the pin.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If  
positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply  
going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk  
when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce  
overall power consumption).  
6
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance  
values for positive and negative clamp voltages, then use the larger of the two values.  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
13  
Electrical Characteristics  
All functional non-supply pins except PTF1/RESET are internally clamped to VSS and VDD  
7
8
9
.
The PTF1/RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD  
.
Maximum is highest voltage that POR is guaranteed.  
10 Factory trimmed at VDD = 5.0 V  
2
1.0  
0.8  
0.6  
0.4  
0.2  
0
125°C  
25°C  
125°C  
25°C  
–40°C  
Max 0.8V@5mA  
Max 1.5V@20mA  
–40°C  
1.5  
1
0.5  
0
0
5
10  
I
15  
(mA)  
20  
25  
0
2
4
6
8
10  
I
(mA)  
OL  
OL  
a) V = 5V, High Drive  
b) V = 3V, High Drive  
DD  
DD  
Figure 5. Typical V vs I , High Drive Strength (except PTF1/RESET)  
OL  
OL  
2
1.5  
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
125°C  
25°C  
125°C  
25°C  
–40°C  
Max 0.8V@1mA  
Max 1.5V@4mA  
–40°C  
0.5  
0
0
1
2
I
3
4
5
0
0.4  
0.8  
1.2  
(mA)  
1.6  
2.0  
(mA)  
I
OL  
OL  
a) V = 5V, Low Drive  
b) V = 3V, Low Drive  
DD  
DD  
Figure 6. Typical V vs I , Low Drive Strength (except PTF1/RESET)  
OL  
OL  
MC9S08MP16 Series Data Sheet, Rev. 1  
14  
Freescale Semiconductor  
Electrical Characteristics  
2
1.5  
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
125°C  
25°C  
125°C  
25°C  
Max 0.8V@ –5mA  
Max 1.5V@ –20mA  
–40°C  
–40°C  
0.5  
0
0
–5  
–10  
–15  
(mA)  
–20  
–25  
0
–2  
–4  
–6  
(mA)  
–8  
–10  
I
I
OH  
OH  
a) V = 5V, High Drive  
b) V = 3V, High Drive  
DD  
DD  
Figure 7. Typical V – V vs I , High Drive Strength  
DD  
OH  
OH  
2
1.5  
1
1.0  
125°C  
25°C  
125°C  
25°C  
Max 0.8V@ –1mA  
Max 1.5V@ –4mA  
–40°C  
–40°C  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
0
–1  
–2  
–3  
(mA)  
–4  
–5  
0
–0.4  
–0.8  
–1.2  
(mA)  
–1.6  
–2.0  
I
I
OH  
OH  
a) V = 5V, Low Drive  
b) V = 3V, Low Drive  
DD  
DD  
Figure 8. Typical V – V vs I , Low Drive Strength  
DD  
OH  
OH  
2.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 8. Supply Current Characteristics  
VDD  
(V)  
Num  
C
Parameter  
Symbol  
RIDD  
Typ1  
Max2  
Unit  
C
C
P
C
Run supply current3 measured at  
(CPU clock = 4 MHz, fBus = 2 MHz)  
5
3
5
3
2.16  
1.8  
3
1
2
mA  
mA  
2.5  
7.5  
7
Run supply current3 measured at  
5.26  
4.92  
RIDD  
(CPU clock = 16 MHz, fBus = 8 MHz)  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
15  
Electrical Characteristics  
Table 8. Supply Current Characteristics (continued)  
VDD  
Num  
C
Parameter  
Symbol  
Typ1  
Max2  
Unit  
mA  
mA  
mA  
(V)  
C
C
P
Run supply current4 measured at  
5
3
5
3
5
3
9.4  
9
10  
10  
30  
20  
30  
3
4
5
RIDD  
(CPU clock = 32 MHz, fBus = 16 MHz)  
Run supply current5 measured at  
14.3  
13.9  
16  
RIDD  
(CPU clock = 51.34 MHz, fBus = 25.67 MHz)  
C
P
Run supply current measured at  
RIDD  
(CPU clock = 40 MHz, fBus = 20 MHz)  
Wait mode supply current measured at  
(CPU clock = 8 MHz, fBus = 4 MHz)  
(FEI mode, all modules off)  
6
C
WIDD  
5
2.7  
mA  
Stop3 mode supply current  
C
P
C
–40°C  
0.96  
1.3  
7.5  
37  
25°C  
85°C  
25  
90  
150  
5
μA  
P6  
P
105°C  
7
125°C  
–40°C  
25°C  
65  
S3IDD  
C
P
0.85  
1.2  
6.5  
32.7  
58  
C
85°C  
20  
80  
130  
3
μA  
P6  
P
105°C  
125°C  
Stop2 mode supply current  
C
P
C
–40°C  
25°C  
0.94  
1.25  
7
85°C  
25  
5
3
μA  
μA  
P6  
P
105°C  
30  
65  
8
125°C  
–40°C  
25°C  
64  
120  
S2IDD  
C
P
0.83  
1.1  
6.3  
25  
C
85°C  
20  
P6  
P
105°C  
55  
125°C  
57  
100  
500  
500  
C
RTC adder to stop2 or stop37  
S23IDDRTC  
5
3
300  
300  
nA  
nA  
9
MC9S08MP16 Series Data Sheet, Rev. 1  
16  
Freescale Semiconductor  
Electrical Characteristics  
Table 8. Supply Current Characteristics (continued)  
VDD  
Num  
C
Parameter  
Symbol  
Typ1  
Max2  
Unit  
(V)  
C
LVD adder to stop3 (LVDE = LVDSE = 1)  
S3IDDLVD  
5
3
110  
90  
180  
160  
μA  
μA  
10  
11  
C
Adder to stop3 for oscillator enabled8  
(EREFSTEN =1)  
S3IDDOSC  
5,3  
5
8
μA  
1
Typical values are based on characterization data at 25°C. See Figure 9 through Figure 14 for typical curves across  
temperature and voltage.  
2
3
4
5
6
Max values in this column apply for the full operating temperature range of the device unless otherwise noted.  
All modules except ADC active, ICS configured for FBELP, and does not include any dc loads on port pins  
All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins  
All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins  
Stop currents are tested in production for 25°C on all parts. Tests at other temperatures depend upon the part  
number suffix and maturity of the product. Freescale may eliminate a test insertion at a particular temperature from  
the production test flow once sufficient data has been collected and is approved.  
7
8
Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher  
current wait mode.  
Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal and low  
power mode (HGO = 0).  
16  
FBE  
FEI  
14  
12  
10  
8
6
4
2
0
2
8
16  
20  
25  
fbus (MHz)  
Figure 9. Typical Run I vs. Bus Frequency (V = 5V)  
DD  
DD  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
17  
Electrical Characteristics  
6
FBE  
FEI  
5
4
3
2
1
-40  
0
25  
85  
105  
125  
Temperature (C)  
Figure 10. Typical Run I vs. Temperature (V = 5V, f = 8MHz)  
bus  
DD  
DD  
16  
14  
12  
10  
8
FBE  
FEI  
6
4
2
0
2
8
16  
20  
25  
fbus (MHz)  
Figure 11. Typical Run I vs. Bus Frequency (V = 3V)  
DD  
DD  
MC9S08MP16 Series Data Sheet, Rev. 1  
18  
Freescale Semiconductor  
Electrical Characteristics  
6
5
4
3
2
1
FBE  
FEI  
-40  
0
25  
85  
105  
125  
Temperature (C)  
Figure 12. Typical Run I vs. Temperature (V = 3V, f = 8MHz)  
bus  
DD  
DD  
70  
60  
50  
40  
30  
20  
10  
0
STOP2  
STOP3  
-40  
25  
85  
105  
125  
Temperature (C)  
Figure 13. Typical Stop I vs. Temperature (V = 5V)  
DD  
DD  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
19  
Electrical Characteristics  
70  
STOP2  
60  
STOP3  
50  
40  
30  
20  
10  
0
-40  
25  
85  
105  
125  
Temperature (C)  
Figure 14. Typical Stop I vs. Temperature (V = 3V)  
DD  
DD  
2.8  
External Oscillator (XOSC) Characteristics  
Table 9. Oscillator Electrical Specifications (Temperature Range = –40 to 105°C Ambient)  
Num  
C
Rating  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
flo  
fhi  
32  
1
38.4  
16  
16  
8
kHz  
MHz  
MHz  
MHz  
High range (RANGE = 1) FEE2 or FBE3 mode  
High range (RANGE = 1, HGO = 1) FBELP mode  
High range (RANGE = 1, HGO = 0) FBELP mode  
Load capacitors  
1
C
fhi-hgo  
fhi-lp  
1
1
See crystal or resonator  
manufacturer’s recommendation.  
C1, C2  
2
3
Feedback resistor  
RF  
Low range (32 kHz to 100 kHz)  
High range (1 MHz to 16 MHz)  
Series resistor  
10  
1
MΩ  
Low range, low gain (RANGE = 0, HGO = 0)  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
8 MHz  
0
100  
0
RS  
4
kΩ  
0
0
0
0
4 MHz  
10  
20  
1 MHz  
MC9S08MP16 Series Data Sheet, Rev. 1  
20  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. Oscillator Electrical Specifications (Temperature Range = –40 to 105°C Ambient) (continued)  
Num  
C
Rating  
Symbol  
Min  
Typ1  
Max  
Unit  
Crystal start-up time 4  
t
Low range, low gain (RANGE = 0, HGO = 0)  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)5  
High range, high gain (RANGE = 1, HGO = 1)4  
200  
400  
5
CSTL-LP  
t
5
T
ms  
CSTL-HGO  
t
CSTH-LP  
t
20  
CSTH-HGO  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode 2  
FBE mode 3  
FBELP mode  
0.03125  
51.34  
51.34  
51.34  
MHz  
MHz  
MHz  
fextal  
6
T
0
0
1
2
3
4
Typical data was characterized at 5.0 V, 25°C or is recommended value.  
The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.  
The input clock source must be divided using RDIV to less than or equal to 39.0625 kHz.  
This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve  
specifications.  
5
4 MHz crystal  
MCU  
EXTAL  
XTAL  
RS  
RF  
C1  
Crystal or Resonator  
C2  
2.9  
Internal Clock Source (ICS) Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = –40 to 105°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Average internal reference frequency — factory trimmed  
(consumer- and industrial-qualified devices)  
at VDD = 5 V and temperature = 25°C  
fint_t  
1a  
P
32.768  
kHz  
Average internal reference frequency — factory trimmed  
(automotive-qualified devices)  
fint_t  
1b  
P
31.25  
kHz  
at VDD = 5 V and temperature = 25°C  
Internal reference frequency — user trimmed  
Internal reference start-up time  
fint_t  
2
3
P
T
31.25  
39.06  
100  
kHz  
tirefst  
60  
μs  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
21  
Electrical Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = –40 to 105°C Ambient) (continued)  
Num  
C
Characteristic  
Low range (DRS=00)  
Symbol  
Min  
Typ1  
Max  
Unit  
P
C
P
P
P
P
16  
32  
48  
20  
40  
60  
DCO output frequency range —  
trimmed 2  
fdco_t  
4
Mid range (DRS=01)  
High range (DRS=10)  
Low range (DRS=00)  
Mid range (DRS=01)  
High range (DRS=10)  
MHz  
19.92  
39.85  
59.77  
DCO output frequency 2  
Reference = 32768 Hz and  
DMX32 = 1  
fdco_DMX32  
5
MHz  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (using FTRIM)  
Δfdco_res_t  
Δfdco_res_t  
Δfdco_t  
%fdco  
%fdco  
%fdco  
%fdco  
6
7
8
9
C
C
C
C
± 0.1  
± 0.2  
± 0.8  
± 0.5  
± 0.2  
± 0.4  
± 2  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (not using FTRIM)  
Total deviation of trimmed DCO output frequency over voltage and  
temperature  
Total deviation of trimmed DCO output frequency over fixed voltage  
and temperature range of 0°C to 70 °C  
Δfdco_t  
± 1  
FLL acquisition time 3  
tAcquire  
CJitter  
10  
11  
C
C
1
ms  
Long term jitter of DCO output clock (averaged over 2-ms interval) 4  
%fdco  
0.02  
0.2  
1
2
3
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing  
from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,  
this specification assumes it is already running.  
4
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected  
into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a given  
interval.  
MC9S08MP16 Series Data Sheet, Rev. 1  
22  
Freescale Semiconductor  
Electrical Characteristics  
3%  
2%  
1%  
0%  
-1%  
-2%  
-3%  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
1
Figure 15. Typical Frequency Deviation vs Temperature (ICS Trimmed to 25 MHz bus@25°C, 5V, FEI)  
2.10 ADC Characteristics  
Table 11. 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Symbol  
Min  
Typ1  
Max  
Unit  
Comment  
Supply voltage  
Input Voltage  
Absolute  
VDDA  
VADIN  
CADIN  
RADIN  
RAS  
2.7  
VREFL  
4.5  
3
5.5  
VREFH  
5.5  
V
V
Input Capacitance  
Input Resistance  
pF  
kΩ  
kΩ  
5
Analog Source  
Resistance  
12 bit mode  
fADCK > 4MHz  
fADCK < 4MHz  
External to MCU  
2
5
10 bit mode  
ADCK > 4MHz  
f
5
10  
fADCK < 4MHz  
8 bit mode (all valid fADCK  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
)
10  
8.0  
4.0  
ADC Conversion  
Clock Freq.  
fADCK  
0.4  
0.4  
MHz  
1
Typical values assume VDDAD = 5.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
1. Based on the average of several hundred units from a typical characterization lot.  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
23  
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 16. ADC Input Impedance Equivalency Diagram  
Table 12. 12-bit ADC Characteristics (V = V , V = V )  
SSAD  
REFH  
DDAD REFL  
C
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
T
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
IDDA  
2
133  
μA  
T
T
T
P
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
IDDA  
218  
327  
μA  
μA  
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
IDDA  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
IDDA  
0.582  
mA  
ADC Asynchronous High Speed (ADLPC=0)  
Clock Source  
fADACK  
3.3  
2
5
MHz  
tADACK  
=
1/fADACK  
Low Power (ADLPC=1)  
1.25  
3.3  
MC9S08MP16 Series Data Sheet, Rev. 1  
24  
Freescale Semiconductor  
Electrical Characteristics  
) (continued)  
Table 12. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
REFH  
DDAD REFL SSAD  
C
Characteristic  
Conditions  
Symb  
tADC  
Min  
Typ1  
Max  
Unit  
Comment  
D
Conversion Time  
(Including sample  
time)  
Short Sample (ADLSMP=0)  
Long Sample (ADLSMP=1)  
20  
40  
ADCK  
cycles  
See ADC  
chapter in the  
Reference  
Manual for  
conversion time  
variances  
D
T
T
Sample Time  
Short Sample (ADLSMP=0)  
Long Sample (ADLSMP=1)  
-40°C to 25°C  
tADS  
3.5  
ADCK  
cycles  
23.5  
Temp Sensor  
Slope  
m
3.266  
3.638  
1.396  
mV/°C  
25°C to 125°C  
Temp Sensor  
Voltage  
25°C  
VTEMP25  
ETUE  
mV  
T
P
T
T
P
T
T
P
T
T
Total Unadjusted  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
±3.0  
±1  
±6.5  
±2.5  
±1.0  
±3.5  
±1.0  
±0.5  
±4.5  
±1.0  
±0.5  
LSB2  
Includes  
quantization  
±0.5  
±1.75  
±0.5  
±0.3  
±1.5  
±0.5  
±0.3  
±1.5  
Differential  
Non-Linearity  
12 bit mode  
10 bit mode3  
8 bit mode3  
12 bit mode  
10 bit mode  
8 bit mode  
DNL  
INL  
LSB2  
LSB2  
LSB2  
Integral  
Non-Linearity  
Zero-Scale Error  
Full-Scale Error  
12 bit mode  
EZS  
0.0/  
-3.0  
VADIN = VSSAD  
P
T
T
10 bit mode  
8 bit mode  
12 bit mode  
±0.5  
±0.5  
±1.0  
±1.5  
±0.5  
EFS  
+1.75/  
LSB2  
VADIN = VDDAD  
1.25  
T
T
D
10 bit mode  
8 bit mode  
±0.5  
±0.5  
-1 to 0  
±1  
±0.5  
Quantization Error 12 bit mode  
10 bit mode  
EQ  
LSB2  
LSB2  
±0.5  
±0.5  
8 bit mode  
D
Input Leakage Error 12 bit mode  
10 bit mode  
EIL  
±1  
Pad leakage4 *  
RAS  
±0.2  
±0.1  
±2.5  
±1  
8 bit mode  
1
Typical values assume VDDAD = 5.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
1 LSB = (VREFH - VREFL)/2N  
Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes  
Based on input pad leakage current. Refer to pad electricals.  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
25  
Electrical Characteristics  
2.11 Digital to Analog (DAC) Characteristics  
The accuracy at worst case: +/- 1.5% maximum  
The settling time must be less than 100 ns  
When changing the output voltage level, the voltage glitch cannot be completely eliminated  
Table 13. 5-bit DAC Characteristics  
Num  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
2
3
5
6
D
D
D
D
Supply current adder (enabled)  
DAC reference inputs  
DAC step size  
IDDAC  
Vin  
20  
μA  
V
VSSA  
VDDA  
Vstep  
Vdacout  
0.75 × Vin/32 Vin/32 1.25 × Vin/32  
Vin/32 Vin  
V
DAC voltage range  
V
2.12 High Speed Comparator (HSCMP) Characteristics  
Table 14. High Speed Comparator Electrical Specifications  
Num  
C
Characteristic1  
Symbol  
Min  
Typical  
Max  
Unit  
1
D
Supply current, High Speed Mode  
(EN=1, PMODE=1)  
IDDAHS  
200  
μA  
2
D
Supply current, Low Speed Mode  
(EN=1, PMODE=0)  
IDDALS  
10  
μA  
3
4
5
6
P
Analog input voltage  
VAIN  
VAIO  
VH  
VSSA  
5
VDDA  
40  
V
Analog input offset voltage  
Analog Comparator hysteresis  
mV  
mV  
ns  
C
T
3.0  
9
20.0  
120  
2
Propagation Delay, High Speed Mode  
(EN=1, PMODE=1)  
tDHS  
70  
2
7
T
Propagation Delay, Low Speed Mode  
(EN=1, PMODE=0)  
tDLS  
400  
400  
600  
ns  
ns  
8
D
Analog comparator initialization delay  
tAINIT  
1
2
All timing assumes slew rate control disabled and high drive strength enabled.  
Delay from analog input to the CMPxOUT output pin. Measured with an input waveform that switches 30 mV above and  
below the reference.  
2.13 Programmable Gain Amplifier (PGA) Characteristics  
Table 15. Programmable Gain Amplifier Electrical Specifications  
Num  
C
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
1
T
Supply current adder  
IDDON  
uA  
• normal mode (LP=0)  
• low power mode (LP=1)  
450  
250  
550  
300  
2
3
T
T
Supply current adder (stand-by)  
Absolute analog input level  
IDDAOFF  
VIL  
1
10  
nA  
V
VSSA  
VDDA/2  
VDDA  
MC9S08MP16 Series Data Sheet, Rev. 1  
26  
Freescale Semiconductor  
Electrical Characteristics  
Table 15. Programmable Gain Amplifier Electrical Specifications (continued)  
Num  
C
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
4
D
Differential input voltage  
VDIFFMAX  
0
V
V
1.4  
DDA  
V
1.4  
-----------------------------  
DDA  
2 × Gain  
-----------------------------  
(
)
2 × Gain  
5
T
Linearity (@ voltage gain)1  
LV  
V/V  
• 1x  
• 2x  
• 4x  
• 8x  
• 16x  
• 32x  
1 – 1/2 LSB  
2 – 1/2 LSB  
4 – 1 LSB  
8 – 1 LSB  
16 – 4 LSB  
32 – 4 LSB  
1
2
4
8
16  
32  
1 + 1/2 LSB  
2 + 1/2 LSB  
4 + 1 LSB  
8 + 1 LSB  
16 + 4 LSB  
32 + 4 LSB  
6
T
Max gain error  
EG  
1
2
%
7a  
D
PGA clock  
• normal mode (LP=0)  
• low power mode (LP=1)  
fPGA  
MHz  
82  
4
82  
4
7b  
D
PGA sampling frequency3  
fSAMPL  
Samples  
per second  
1
----------------------------------------------------------------------------------------------------  
12 + 18 × NUM_CLK_GS  
43  
5
------------------------------------------------------------------  
+ ------------- + ------------  
f
f
f
PGA  
ADC  
BUS  
8
9
D
D
Input signal bandwidth  
BW  
0
fSAMPL ÷ 8  
fPGA ÷ 4  
fSAMPL ÷ 2  
Hz  
Hz  
Charge pump clock frequency  
fcpclk  
100  
1
2
3
LSB in 12-bit resolution  
8 MHz is required for PGA achieving 1 μs sampling time.  
ADC in 12-bit mode, long sampling time, fADC = fPGA  
2.14 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
2.14.1 Control Timing  
Table 16. Control Timing  
Num  
C
Rating  
Symbol  
Min  
Typ1  
Max  
Unit  
–40 to 105 °C  
–40 to 125 °C  
fBus  
fBus  
DC  
DC  
25.67  
20  
MHz  
MHz  
μs  
Bus frequency  
(tcyc = 1/fBus  
1
D
)
2
3
4
5
P
D
D
D
Internal low power oscillator period  
External reset pulse width2  
Reset low drive  
tLPO  
700  
1300  
textrst  
trstdrv  
tMSSU  
100  
ns  
34 x tcyc  
500  
ns  
BKGD/MS setup time after issuing background debug force  
reset to enter user or BDM modes  
ns  
6
D
BKGD/MS hold time after issuing background debug force  
reset to enter user or BDM modes 3  
tMSH  
100  
μs  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
27  
Electrical Characteristics  
Table 16. Control Timing (continued)  
Rating Symbol  
Num  
C
Min  
Typ1  
Max  
Unit  
7
D
Keyboard interrupt pulse width  
Asynchronous path4  
ns  
tILIH, IHIL  
t
100  
1.5 x tcyc  
Synchronous path5  
8
C
Port rise and fall time —  
t
Rise, tFall  
ns  
ns  
Low output drive (PTxDS = 0) (load = 50 pF)6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
40  
75  
Port rise and fall time —  
tRise, tFall  
High output drive (PTxDS = 1) (load = 50 pF)6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
11  
35  
1
2
3
Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD rises  
above VLVD  
.
4
5
This is the minimum pulse width that is guaranteed to be recognized as a keyboard interrupt request in stop mode.  
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not  
be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
6
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 125°C.  
textrst  
RESET PIN  
Figure 17. Reset Timing  
tIHIL  
KBIxPn  
KBIxPn  
tILIH  
Figure 18. KBIxPn Timing  
2.14.2 FTM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the FTM timer counter. These synchronizers operate from the current ICSOUT clock. The ICSOUT  
clock period = 0.5 × t = 1/(f × 2).  
cyc  
Bus  
Table 17. FTM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
2
fICSOUT/41  
Hz  
tcyc  
tcyc  
External clock high time  
0.75  
MC9S08MP16 Series Data Sheet, Rev. 1  
28  
Freescale Semiconductor  
Electrical Characteristics  
Table 17. FTM Input Timing (continued)  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
4
5
D
D
External clock low time  
Input capture pulse width  
tclkl  
0.75  
0.75  
tcyc  
tcyc  
tICPW  
1
The maximum external clock frequency is limited to 10MHz due to input filter characteristics.  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 19. FTM External Clock  
tICPW  
FTMxCHn  
FTMxCHn  
tICPW  
Figure 20. FTM Input Capture Pulse  
2.14.3 MTIM Module Timing  
Synchronizer circuits determine the fastest clock that can be used as the optional external clock source to the MTIM timer  
counter. These synchronizers operate from the current bus rate clock.  
Table 18. MTIM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
1.5  
1.5  
tclkl  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 21. MTIM Timer External Clock  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
29  
Electrical Characteristics  
2.14.4 SPI  
Table 19 and Figure 22 through Figure 25 describe the timing requirements for the SPI system.  
Table 19. SPI Electrical Characteristics  
Num1  
C
Rating2  
Symbol  
Min  
Max  
Unit  
Cycle time  
Master  
Slave  
2
4
4096  
tcyc  
tcyc  
1
D
tSCK  
tSCK  
Enable lead time  
Master  
Slave  
1/2  
2
3
D
D
1/2  
t
t
t
t
Lead  
Lead  
SCK  
SCK  
Enable lag time  
Master  
Slave  
1/2  
1/2  
t
t
t
t
Lag  
Lag  
SCK  
SCK  
Clock (SPSCK) high time  
Master and Slave  
4
5
D
D
1/2 tSCK – 25  
1/2 tSCK – 25  
ns  
ns  
t
SCKH  
Clock (SPSCK) low time  
Master and Slave  
t
SCKL  
Data setup time (inputs)  
Master  
Slave  
30  
30  
ns  
ns  
6
7
D
D
t
t
SI(M)  
SI(S)  
Data hold time (inputs)  
Master  
Slave  
30  
30  
ns  
ns  
t
HI(M)  
t
HI(S)  
Access time, slave3  
0
40  
40  
ns  
ns  
8
9
D
D
t
A
Disable time, slave4  
Data setup time (outputs)  
t
dis  
Master  
Slave  
25  
25  
ns  
ns  
10  
11  
D
D
t
t
SO  
SO  
Data hold time (outputs)  
Operating frequency  
Master  
Slave  
–10  
–10  
ns  
ns  
t
t
HO  
HO  
f
op  
5
Master (SPIFE=0)  
Slave (SPIFE=0)  
Master (SPIFE=1)  
Slave (SPIFE=1)  
MHz  
f
f
/4096  
8
Bus  
dc  
/4096  
f
/4  
12  
D
Bus  
5
5
6
MHz  
MHz  
Bus  
6
dc  
1
2
Refer to Figure 22 through Figure 25.  
All timing is shown with respect to 20% V  
timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.  
and 70% V , unless noted; 100 pF load on all SPI pins. All  
DD  
DD  
3
4
5
6
Time to data active from high-impedance state.  
Hold time to high-impedance state.  
Maximum baud rate must be limited to 8 MHz.  
Maximum baud rate must be limited to 5 MHz due to input filter characteristics.  
MC9S08MP16 Series Data Sheet, Rev. 1  
30  
Freescale Semiconductor  
Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
4
5
SCK  
(CPOL = 1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
MSB IN2  
10  
BIT 6 . . . 1  
LSB IN  
10  
11  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 22. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
SCK  
(CPOL = 1)  
5
4
(OUTPUT)  
6
7
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
11  
BIT 6 . . . 1  
LSB IN  
10  
MOSI  
(OUTPUT)  
MSB OUT(2)  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 23. SPI Master Timing (CPHA = 1)  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
31  
Electrical Characteristics  
SS  
(INPUT)  
3
1
SCK  
5
4
(CPOL = 0)  
4
5
(INPUT)  
2
SCK  
(CPOL = 1)  
(INPUT)  
9
8
11  
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
7
SLAVE  
6
MOSI  
(INPUT)  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 24. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
2
SCK  
(CPOL = 0)  
(INPUT)  
5
4
4
5
SCK  
(CPOL = 1)  
(INPUT)  
10  
SLAVE MSB OUT  
11  
9
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
NOTE  
6
7
8
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 25. SPI Slave Timing (CPHA = 1)  
MC9S08MP16 Series Data Sheet, Rev. 1  
32  
Freescale Semiconductor  
Electrical Characteristics  
2.15 Flash Memory Specifications  
This section provides details about program/erase times and program-erase endurance for the flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see the Memory section.  
Table 20. Flash Memory Characteristics  
Num  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
-40°C to 125°C  
1
2.7  
5.5  
Vprog/erase  
VRead  
fFCLK  
V
2
3
C
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
2.7  
150  
5
5.5  
200  
6.67  
V
kHz  
μs  
4
tFcyc  
5
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
6
D
tBurst  
4
4000  
20,000  
4
7
tPage  
8
D
Mass erase time2  
tMass  
9
C
Byte program current3  
RIDDBP  
RIDDPE  
10  
C
Page erase current3  
6
Program/erase endurance4  
TL to TH = –40°C to + 125°C  
T = 25°C  
11  
12  
C
C
10,000  
15  
100,000  
cycles  
years  
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for  
calculating approximate time to program and erase.  
3
4
5
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures with  
VDD = 5.0 V, bus frequency = 4.0 MHz.  
Typical endurance for Flash is based upon the intrinsic bit cell performance. For additional information on how Freescale defines  
typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to  
25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to  
Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.  
2.16 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
2.16.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance  
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
33  
Ordering Information  
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller  
are measured in a TEM cell in two package orientations (North and East).  
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported  
emissions levels.  
Table 21. Radiated Emissions, Electric Field  
Level1  
Parameter  
Symbol  
Conditions  
Frequency  
fOSC/fBUS  
Unit  
(Max)  
0.15 – 50 MHz  
50 – 150 MHz  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level2  
3
8
dBμV  
VDD = 5V  
TA = +25°C  
package type  
48 LQFP  
–4  
–8  
N
Radiated emissions,  
electric field  
4 MHz crystal  
2 MHz bus  
VRE_TEM  
SAE Level3  
1
1
Data based on qualification test results. The reported emission level is the value of the maximum emission, rounded up to the  
next whole number, from among the measured orientations in each frequency range.  
2
3
IEC level maximums: N 12 dBμV, L 24 dBμV, I 36 dBμV  
SAE level maximums: 1 10 dBμV, 2 20 dBμV, 3 30 dBμV, 4 40 dBμV  
3
Ordering Information  
This section contains ordering information for MC9S08MP16 and MC9S08MP12 devices.  
Table 22. Device and Package Options  
Memory  
Available Packages2  
Temp  
Range  
Device Number1  
Flash  
RAM  
48-Pin  
32-Pin  
28-Pin  
Consumer and Industrial Qualification  
MC9S08MP16  
MC9S08MP12  
V
V
16K  
12K  
1024  
512  
48 LQFP  
32 LQFP  
28 SOIC  
28 SOIC  
Automotive Qualification  
1024 48 LQFP  
S9S08MP16  
C, V, M  
16K  
1
2
See the MC9S08MP16RM Reference Manual (MC9S08MP16RM) for a complete description of modules included on each  
device.  
See Table 23 for package information.  
MC9S08MP16 Series Data Sheet, Rev. 1  
34  
Freescale Semiconductor  
Package Information  
3.1  
Device Numbering Scheme  
Example of the device numbering system:  
xx 9 S08 MP nn E2 y zz  
Package designator (see Table 23)  
Status  
MC = Consumer &  
Industrial  
Temperature range  
V = –40°C to 105°C  
M = –40°C to 125°C  
S = Automotive Qualified  
Memory  
9 = Flash-based  
Core  
Wafer fab site and mask revision  
(this field appears only in automotive-qualified  
part numbers)  
Family  
Flash size  
16 KBytes  
12 KBytes  
4
Package Information  
The latest package outline drawings are available on the product summary pages on our web site:  
http://www.freescale.com/8bit. The following table lists the document numbers per package. Use these numbers in the web  
page’s keyword search engine to find the latest package outline drawings.  
NOTE  
The 32 LQFP and 28 SOIC are not qualified to meet automotive requirements.  
Table 23. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
48  
32  
28  
Low Quad Flat Pack  
Low Quad Flat Pack  
LQFP  
LQFP  
SOIC  
LF  
LC  
WL  
932-03  
873A-03  
751F-05  
98ASH00962A  
98ASH70029A  
98ASB42345B  
Small Outline Integrated Circuit  
5
Related Documentation  
Find the most current versions of all documents at http://www.freescale.com.  
Reference Manual (MC9S08MP16RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
6
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your  
printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://www.freescale.com  
MC9S08MP16 Series Data Sheet, Rev. 1  
Freescale Semiconductor  
35  
Table 24 summarizes changes contained in this document.  
Table 24. Revision History  
Rev  
Date  
Description of Changes  
1
10/6/2009  
Initial public revision  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9S08MP16  
Rev. 1  
10/2009  

相关型号:

MC9S08MP16E2MWL

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08MP16E2VLC

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08MP16E2VLF

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08MP16E2VWL

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08MP16VLF

MC9S08MP16VLF
FREESCALE

MC9S08MP16VLF

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PQFP48, QFP-48
NXP

MC9S08MP16VLFR

S08MP 8-bit MCU, S08 core, 16KB Flash, 50MHz, QFP 48
NXP

MC9S08PA16

MC9S08PA16 Series
FREESCALE

MC9S08PA16AVWJR

IC MCU 8BIT 16KB FLASH 20SOIC
NXP

MC9S08PA16VLC

MC9S08PA16VLC
FREESCALE

MC9S08PA32

MC9S08PA60 Series
FREESCALE

MC9S08PA32A

MC9S08PA60A and MC9S08PA32A are recommended for new design
NXP