MC9S08QA4_09 [FREESCALE]

Technical Data; 技术参数
MC9S08QA4_09
型号: MC9S08QA4_09
厂家: Freescale    Freescale
描述:

Technical Data
技术参数

文件: 总32页 (文件大小:2369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08QA4  
Rev. 3, 1/2009  
MC9S08QA4  
8-Pin DFN  
Case 1452-02  
8-Pin NB-SOIC  
Case 751-07  
MC9S08QA4 Series  
8-Pin PDIP  
Case 626-06  
Covers: MC9S08QA4  
MC9S08QA2  
Features:  
– Breakpoint capability to allow single breakpoint setting  
during in-circuit debugging  
• Peripherals  
• 8-bit HCS08 Central Processor Unit (CPU)  
– Up to 20 MHz CPU at 3.6 V to 1.8 V across temperature  
range of –40°C to 85°C  
– HC08 instruction set with added BGND instruction  
– Support for up to 32 interrupt/reset sources  
• On-Chip Memory  
– ADC — 4-channel, 10-bit resolution; 1.7 mV/°C  
temperature sensor; automatic compare function;  
internal bandgap reference channel; operation in stop3;  
fully functional from 3.6 V to 1.8 V  
– ACMP — Analog comparator with selectable interrupt  
on rising, falling, or either edge of comparator output;  
compare option to fixed internal bandgap reference  
voltage; output can be tied internally to TPM input  
capture  
– Flash read/program/erase over full operating voltage  
and temperature  
– Random-access memory (RAM)  
– Security circuitry to prevent unauthorized access to  
RAM and flash contents  
– TPM — One 1-channel timer/pulse-width modulator  
(TPM) module; selectable input capture, output  
compare, or buffered edge- or center-aligned PWM on  
each channel; ACMP output can be tied internally to  
input capture  
• Power-Saving Modes  
– Two very low power stop modes  
– Peripheral clock enable register can disable clocks to  
unused modules, thereby reducing currents  
Very low power real time counter for use in run, wait,  
and stop modes with internal clock sources  
• Clock Source Options  
– MTIM — 8-bit modulo timer module with 8-bit  
prescaler  
– KBI — 4-pin keyboard interrupt module with software  
selectable polarity on edge or edge/level modes  
• Input/Output  
– Internal Clock Source (ICS) — Internal clock source  
module containing a frequency-locked-loop (FLL)  
controlled by internal reference; precision trimming of  
internal reference allows 0.2% resolution and 2%  
deviation over temperature and voltage; supports bus  
frequencies from 1 MHz to 10 MHz  
• System Protection  
– Four GPIOs, one input-only pin and one output-only  
pin.  
– Hysteresis and configurable pullup device on all input  
pins; configurable slew rate and drive strength on all  
output pins except PTA5  
– Watchdog computer operating properly (COP) reset  
with option to run from dedicated 1 kHz internal clock  
source or bus clock  
• Package Options  
– 8-pin SOIC, PDIP, and DFN  
– Low-voltage detection with reset or interrupt  
– Selectable trip points  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
– Flash block protection  
• Development Support  
– Single-wire background debug interface  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008-2009. All rights reserved.  
Table of Contents  
1
2
3
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
3.8 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.8.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.8.2 TPM/MTIM Module Timing. . . . . . . . . . . . . . . . 14  
3.9 Analog Comparator (ACMP) Electricals . . . . . . . . . . . 15  
3.10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.11 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . .5  
3.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.4 ESD Protection and Latch-Up Immunity . . . . . . . . . . . . .6  
3.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .10  
3.7 Internal Clock Source (ICS) Characteristics . . . . . . . . .11  
4
5
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current.  
Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Revision  
Date  
1/2008  
Description of Changes  
1
2
3
Initial public release  
2/2008  
1/2009  
Changed the designator of the device in Table 15.  
Changed the condition of Run supply current measured to fBus = 1 MHz in Table 7.  
Fixed the error of inconsistent table number.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08QA4RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
2
Freescale Semiconductor  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of the MC9S08QA4 MCU.  
BKGD/MS  
IRQ  
HCS08 CORE  
DEBUG MODULE (DBG)  
BDC  
CPU  
TCLK  
PTA5//IRQ/TCLK/RESET  
8-BIT MODULO TIMER  
MODULE (MTIM)  
HCS08 SYSTEM CONTROL  
PTA4/ACMPO/BKGD/MS  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
PTA3/KBIP3/ADP3  
PTA2/KBIP2/ADP2  
4
RTI  
COP  
LVD  
8-BIT KEYBOARD  
INTERRUPT MODULE (KBI)  
IRQ  
ACMPO  
ACMP–  
ACMP+  
PTA1/KBIP1/ADP1/ACMP–  
PTA0/KBIP0/TPMCH0/ADP0/ACMP+  
ANALOG COMPARATOR  
(ACMP)  
USER FLASH  
(MC9S08QA4 = 4096 BYTES)  
(MC9S08QA2 = 2048 BYTES)  
4
10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
USER RAM  
(MC9S08QA4 = 256 BYTES)  
(MC9S08QA2 = 160BYTES)  
TPMCH0  
16-BIT TIMER/PWM  
MODULE (TPM)  
16 MHz INTERNAL CLOCK  
SOURCE (ICS)  
V
V
SS  
VOLTAGE REGULATOR  
DD  
V
V
DDA  
SSA  
V
V
REFH  
REFL  
NOTES:  
1
Port pins are software configurable with pullup device if input port.  
Port pins are software configurable for output drive strength.  
Port pins are software configurable for output slew rate control.  
2
3
4
5
6
7
IRQ contains a software configurable (IRQPDD) pullup device if PTA5 enabled as IRQ pin function (IRQPE = 1).  
RESET contains integrated pullup device if PTA5 enabled as reset pin function (RSTPE = 1).  
PTA4 contains integrated pullup device if BKGD enabled (BKGDPE = 1).  
When pin functions as KBI (KBIPEn = 1) and associated pin is configured to enable the pullup device, KBEDGn can  
be used to reconfigure the pullup as a pulldown device.  
Figure 1. MC9S08QA4 Series Block Diagram  
2
Pin Assignments  
This section shows the pin assignments in the packages available for the MC9S08QA4 series.  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
3
Pin Assignments  
Table 1. Pin Sharing Priority  
Priority  
PIN  
Lowest  
Highest  
8-Pin  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
1
2
3
4
5
6
7
8
PTA51  
PTA4  
IRQ  
TCLK  
RESET  
MS  
ACMPO  
BKGD  
V
DD  
V
SS  
PTA3  
PTA2  
PTA1  
PTA0  
KBIP3  
KBIP2  
KBIP1  
KBIP0  
ADP3  
ADP2  
ADP12  
ADP02  
ACMP–2  
ACMP+2  
TPMCH0  
1
2
Pin does not contain a clamp diode to VDD and must not be driven  
above VDD. The voltage measured on the internally pulled-up RESET  
pin will not be pulled to VDD. The internal gates connected to this pin  
are pulled to VDD  
.
If ACMP and ADC are both enabled, both will have access to the pin.  
PTA5/IRQ/TCLK/RESET  
1
2
3
4
8
7
6
5
PTA0/KBIP0/TPMCH0/ADP0/ACMP+  
PTA1/KBIP1/ADP1/ACMP–  
PTA2/KBIP2/ADP2  
PTA4/ACMPO/BKGD/MS  
VDD  
VSS  
PTA3/KBIP3/ADP3  
8-Pin PDIP/SOIC  
PTA5/IRQ/TCLK/RESET  
1
8
PTA0/KBIP0/TPMCH0/ADP0/ACMP+  
PTA1/KBIP1/ADP1/ACMP–  
PTA2/KBIP2/ADP2  
PTA4/ACMPO/BKGD/MS  
2
3
7
6
VDD  
VSS  
4
5
PTA3/KBIP3/ADP3  
8-Pin DFN  
Figure 2. MC9S08QA4 Series in 8-Pin Packages  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
4
Freescale Semiconductor  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Introduction  
This chapter contains electrical and timing specifications for the MC9S08QA4 series of microcontrollers available at the time  
of publication.  
3.2  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 2 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pullup resistor associated with the pin is enabled.  
SS  
DD  
Table 2. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to 3.8  
120  
V
Maximum current into VDD  
Digital input voltage  
mA  
V
–0.3 to VDD + 0.3  
Instantaneous maximum current  
mA  
±25  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.3  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
5
Electrical Characteristics  
Table 3. Thermal Characteristics  
Symbol  
Rating  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
°C  
Thermal resistance  
Single-layer board  
8-pin PDIP  
113  
150  
179  
8-pin NB SOIC  
8-pin DFN  
θJA  
°C/W  
°C/W  
Thermal resistance  
Four-layer board  
8-pin PDIP  
72  
87  
41  
8-pin NB SOIC  
8-pin DFN  
θJA  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
— T = Ambient temperature, °C  
A
θ = Package thermal resistance, junction-to-ambient, °C/W  
JA  
— P = P + P  
I/O  
D
int  
— P = I × V , Watts — chip internal power  
int  
DD  
DD  
— P = Power dissipation on input and output pins — user-determined  
I/O  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
3.4  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the  
charge device model (CDM).  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
6
Freescale Semiconductor  
Electrical Characteristics  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 4. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
C
1500  
100  
3
Ω
Human  
Body  
Storage capacitance  
Number of pulses per pin  
Series resistance  
pF  
R1  
C
0
Ω
Machine Storage capacitance  
Number of pulses per pin  
200  
3
pF  
Minimum input voltage limit  
Latch-up  
–2.5  
7.5  
V
V
Maximum input voltage limit  
Table 5. ESD and Latch-Up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
Unit  
1
2
3
4
Human body model (HBM)  
Machine model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
±2000  
±200  
±500  
±100  
V
V
Charge device model (CDM)  
Latch-up current at TA = 85°C  
V
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
3.5  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 6. DC Characteristics (Temperature Range = –40 to 85°C Ambient)  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage (run, wait, and stop modes)  
(VDD falling)  
(VDD rising)  
VDD  
1.8  
3.6  
3.6  
V
VLVDL  
(rising)  
1,2  
Minimum RAM retention supply voltage applied to VDD  
Low-voltage detection threshold  
VRAM  
Vpor  
V
V
V
(VDD falling)  
VLVD  
1.80  
1.88  
1.82  
1.90  
1.91  
1.99  
(VDD rising)  
Low-voltage warning threshold  
Freescale Semiconductor  
VLVW  
(VDD falling)  
2.08  
2.1  
2.2  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
7
Electrical Characteristics  
Table 6. DC Characteristics (Temperature Range = –40 to 85°C Ambient) (continued)  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
(VDD rising)  
2.16  
2.19  
1.4  
1.20  
2.27  
Power on reset (POR) re-arm voltage  
Bandgap voltage reference  
Vpor  
VBG  
1.21  
V
V
1.18  
Input high voltage (VDD > 2.3 V) (all digital inputs)  
0.70 × VDD  
0.85 × VDD  
VIH  
VIL  
V
V
Input high voltage (1.8 V VDD 2.3 V) (all digital inputs)  
Input low voltage (VDD > 2.3 V) (all digital inputs)  
Input low voltage (1.8 V VDD 2.3 V) (all digital inputs)  
Input hysteresis (all digital inputs)  
0.35 × VDD  
0.30 × VDD  
Vhys  
|IIn|  
0.06 × VDD  
V
Input leakage current (per pin)  
0.025  
0.025  
1.0  
1.0  
μA  
VIn = VDD or VSS, all input-only pins  
High impedance (off-state) leakage current (per pin)  
|IOZ  
|
μA  
VIn = VDD or VSS, all input/output  
Internal pullup resistors3,4  
RPU  
RPD  
17.5  
17.5  
52.5  
52.5  
kΩ  
kΩ  
Internal pulldown resistor (KBI)  
Output high voltage — low drive (PTxDSn = 0)  
VDD – 0.5  
I
= –2 mA (VDD 1.8 V)  
OH  
VOH  
Output high voltage — high drive (PTxDSn = 1)  
V
I
I
I
= –10 mA (VDD 2.7 V)  
= –6 mA (VDD 2.3 V)  
OH  
OH  
OH  
VDD – 0.5  
= –3 mA (V 1.8 V)  
DD  
Maximum total IOH for all port pins  
|IOHT  
|
60  
mA  
V
Output low voltage — low drive (PTxDSn = 0)  
I
= 2.0 mA (VDD 1.8 V)  
0.5  
OL  
Output low voltage — high drive (PTxDSn = 1)  
VOL  
I
= 10.0 mA (VDD 2.7 V)  
= 6 mA (VDD 2.3 V)  
= 3 mA (VDD 1.8 V)  
0.5  
0.5  
0.5  
OL  
I
I
OL  
OL  
Maximum total IOL for all port pins  
IOLT  
60  
mA  
DC injection current 2, 5, 6, 7  
VIn < VSS, VIn > VDD  
Single pin limit  
IIC  
–0.2  
–5  
0.2  
5
mA  
mA  
Total MCU limit, includes sum of all stressed pins  
Input capacitance (all non-supply pins)  
CIn  
7
pF  
1
2
3
4
RAM will retain data down to POR voltage. RAM data not guaranteed to be valid following a POR.  
This parameter is characterized and not tested on each device.  
Measurement condition for pull resistors: VIn = VSS for pullup and VIn = VDD for pulldown.  
PTA5/IRQ/TCLK/RESET pullup resistor may not pull up to the specified minimum VIH. However, all ports are functionally tested  
to guarantee that a logic 1 will be read on any port input when the pullup is enabled and no DC load is present on the pin.  
5
All functional non-supply pins are internally clamped to VSS and VDD  
.
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
8
Freescale Semiconductor  
Electrical Characteristics  
6
7
Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if  
clock rate is very low (which would reduce overall power consumption).  
PULLUP RESISTOR TYPICALS  
40  
35  
30  
25  
20  
PULLDOWN RESISTOR TYPICALS  
85°C  
40  
35  
30  
25  
20  
85°C  
25°C  
25°C  
–40°C  
–40°C  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
VDD (V)  
Figure 3. Pullup and Pulldown Typical Resistor Values (V = 3.0 V)  
DD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
85°C  
25°C  
1
–40°C  
0.8  
0.6  
0.4  
0.2  
0
85  
25  
–40  
°
°
°
C, IOL = 2 mA  
C, IOL = 2 mA  
C, IOL = 2 mA  
0.05  
0
1
2
3
4
0
5
10  
OL (mA)  
15  
20  
VDD (V)  
I
Figure 4. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
1
0.4  
0.3  
0.2  
0.1  
85°C  
85°C  
25°C  
–40°C  
25°C  
0.8  
0.6  
0.4  
0.2  
–40°C  
IOL = 10 mA  
IOL = 6 mA  
IOL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
IOL (mA)  
Figure 5. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
9
Electrical Characteristics  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
85 C, IOH = 2 mA  
1.2  
1
0.25  
0.2  
85°C  
°
25°C  
25°  
C, IOH = 2 mA  
–40°C  
–40°  
C, IOH = 2 mA  
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
0.05  
0
0
–5  
–10  
IOH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
Figure 6. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
85°C  
25°C  
–40°C  
TYPICAL V – V VS I AT V = 3.0 V  
DD  
OH  
OH  
DD  
0.3  
0.2  
0.1  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
IOH = –10 mA  
–40°C  
IOH = –6 mA  
I
OH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
I
(mA)  
OH  
VDD (V)  
Figure 7. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
3.6  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 7. Supply Current Characteristics  
Parameter  
Symbol  
VDD (V)1  
Typical2  
Max  
T (°C)  
Run supply current3 measured in FBE mode at  
fBus = 8 MHz  
3
2
3
2
3
3
2
3
2
3
2
3
2
3
2
3.5 mA  
2.6 mA  
490 μA  
370 μA  
1 mA  
5 mA  
85  
85  
85  
85  
85  
85  
85  
85  
85  
85  
85  
85  
85  
85  
85  
RIDD  
Run supply current3 measured in FBE mode at  
1 mA  
RIDD  
WIDD  
S1IDD  
fBus = 1 MHz  
Wait mode supply current4 measured in FBE at 8 MHz  
Stop1 mode supply current  
1.5 mA  
1.2 μA  
475 nA  
470 nA  
600 nA  
550 nA  
750 nA  
680 nA  
300 nA  
300 nA  
70 μA  
Stop2 mode supply current  
2 μA  
S2IDD  
S3IDD  
Stop3 mode supply current  
6 μA  
RTI adder to stop1, stop2, or stop34  
LVD adder to stop3 (LVDE = LVDSE = 1)4  
60 μA  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
10  
Freescale Semiconductor  
Electrical Characteristics  
1
2
3
4
3 V values are 100% tested; 2 V values are characterized but not tested.  
Typicals are measured at 25 °C.  
Does not include any DC loads on port pins.  
Most customers are expected to find that auto-wakeup from a stop mode can be used instead of the higher current wait mode.  
3.7  
Internal Clock Source (ICS) Characteristics  
Table 8. ICS Specifications (Temperature Range = –40 to 85°C Ambient)  
Characteristic  
Symbol  
tIRST  
Min  
Typical1  
60  
Max  
100  
Unit  
μs  
Internal reference start-up time  
fint_ut  
fint_t  
fdco_ut  
fdco_t  
Average internal reference frequency — untrimmed  
Average internal reference frequency — trimmed  
DCO output frequency range — untrimmed  
DCO output frequency range — trimmed  
25  
32.7  
41.66  
39.06  
21.33  
20  
kHz  
kHz  
MHz  
MHz  
31.25  
12.8  
16  
16.8  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature2  
Δfdco_res_t  
%fdco  
%fdco  
±0.1  
±0.2  
Total deviation of DCO output from trimmed frequency2  
At 8 MHz over full voltage and temperature range  
At 8 MHz and 3.6 V from 0 to 70 °C  
Δfdco_t  
–1.0 to 0.5  
±2  
±1  
±0.5  
FLL acquisition time 2,3  
tAcquire  
CJitter  
1.5  
0.2  
ms  
%fdco  
0.02  
Long term jitter of DCO output clock (averaged over 2 ms interval)  
1
2
3
Data in Typical column was characterized at 3.0 V, 25 °C, or is typical recommended value.  
This parameter is characterized and not tested on each device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed.  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
11  
Electrical Characteristics  
0.250%  
0.200%  
0.150%  
0.100%  
DEVIATION  
0.050%  
0.000%  
–0.050%  
1.6  
2.1  
2.6  
3.1  
3.6  
VDD  
Figure 8. Deviation of DCO Output from Trimmed Frequency (8 MHz, 25 °C)  
3.8  
AC Characteristics  
This section describes timing characteristics for each peripheral system.  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
12  
Freescale Semiconductor  
Electrical Characteristics  
3.8.1  
Control Timing  
Table 9. Control Timing  
Parameter  
Symbol  
Min  
0
Typical1  
Max  
10  
Unit  
MHz  
μs  
Bus frequency (tcyc = 1/fBus  
)
fBus  
tRTI  
1000  
Real-time interrupt internal oscillator period (see Table 9)  
External reset pulse width2  
700  
100  
1300  
textrst  
ns  
IRQ pulse width  
Asynchronous path2  
Synchronous path3  
tILIH  
100  
1.5 tcyc  
ns  
ns  
KBIPx pulse width  
Asynchronous path2  
Synchronous path3  
tILIH, IHIL  
t
100  
1.5 tcyc  
Port rise and fall time (load = 50 pF)4  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
tMSSU  
3
30  
ns  
ns  
BKGD/MS setup time after issuing background debug force  
reset to enter user or BDM modes  
500  
BKGD/MS hold time after issuing background debug force  
reset to enter user or BDM modes5  
tMSH  
100  
μs  
1
2
3
Data in Typical column was characterized at 3.0 V, 25°C.  
This is the shortest pulse that is guaranteed to be recognized.  
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
4
5
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 85°C.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
1600  
1400  
1200  
1000  
800  
= +3 σ  
= Mean  
= –3 σ  
Period (μs)  
600  
400  
200  
0
–40  
–40  
0
20  
Temperature (°C)  
Figure 9. Typical RTI Clock Period vs. Temperature  
40  
60  
80  
100  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
13  
Electrical Characteristics  
textrst  
RESET PIN  
Figure 10. Reset Timing  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 11. IRQ/KBIPx Timing  
3.8.2  
TPM/MTIM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 10. TPM/MTIM Input Timing  
Function  
Symbol  
Min  
Max  
Unit  
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 12. Timer External Clock  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
14  
Freescale Semiconductor  
Electrical Characteristics  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 13. Timer Input Capture Pulse  
3.9  
Analog Comparator (ACMP) Electricals  
Table 11. Analog Comparator Electrical Specifications  
Characteristic  
Symbol  
VDD  
Min  
Typical  
Max  
Unit  
Supply voltage  
1.80  
3.60  
V
IDDAC  
Supply current (active)  
VSS – 0.3  
20  
VDD  
40  
μA  
V
Analog input voltage  
VAIN  
VAIO  
VH  
Analog input offset voltage  
Analog comparator hysteresis  
20  
9.0  
mV  
mV  
3.0  
15.0  
IALKG  
tAINIT  
Analog input leakage current  
1.0  
1.0  
μA  
μs  
Analog comparator initialization delay  
3.10 ADC Characteristics  
Table 12. 3 V 10-Bit ADC Operating Conditions  
Characteristic  
Conditions  
Absolute  
Symbol  
Min  
Typical1  
Max  
Unit  
Comment  
Supply voltage  
Input voltage  
VDD  
1.8  
VSS  
4.5  
5
3.6  
VDD  
5.5  
7
V
V
VADIN  
CADIN  
RADIN  
Input capacitance  
Input resistance  
pF  
kΩ  
Analog source  
resistance  
10 bit mode  
ADCK > 4 MHz  
fADCK < 4 MHz  
f
5
10  
External to  
MCU  
RAS  
kΩ  
8 bit mode (all valid fADCK  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
)
10  
8.0  
4.0  
ADC conversion  
clock frequency  
0.4  
0.4  
fADCK  
MHz  
1
Typical values assume VDD = 3.0 V, Temp = 25°C, fADCK =1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
15  
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 14. ADC Input Impedance Equivalency Diagram  
Table 13. 3 V 10-Bit ADC Characteristics  
Characteristic  
Conditions  
Symbol  
Min  
Typical1  
Max  
Unit  
Comment  
Supply current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
IDDAD  
120  
μA  
μA  
μA  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
IDDAD  
202  
288  
532  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
IDDAD  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
IDDAD  
646  
μA  
ADC asynchronous  
clock source  
High speed (ADLPC=0)  
Low power (ADLPC=1)  
2
3.3  
2
5
tADACK  
1/fADACK  
=
fADACK  
MHz  
1.25  
3.3  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
16  
Freescale Semiconductor  
Electrical Characteristics  
Table 13. 3 V 10-Bit ADC Characteristics (continued)  
Characteristic  
Conditions  
Symbol  
Min  
Typical1  
20  
Max  
Unit  
Comment  
Conversion time  
(including sample  
time)  
Short sample (ADLSMP=0)  
Long sample (ADLSMP=1)  
Short sample (ADLSMP=0)  
See  
MC9S08QA4  
Series  
Reference  
Manual for  
conversion  
time variances  
ADCK  
cycles  
tADC  
40  
3.5  
ADCK  
cycles  
Sample time  
tADS  
Long sample (ADLSMP=1)  
23.5  
10-bit mode  
8-bit mode  
10-bit mode  
±1.5  
±0.7  
±0.5  
±3.5  
±1.5  
±1.0  
Includes  
quantization  
Total unadjusted error  
ETUE  
LSB2  
LSB2  
Monotonicity  
and no  
missing codes  
guaranteed  
Differential  
non-linearity  
DNL  
8-bit mode  
±0.3  
±0.5  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
–40°C – 25°C  
25°C – 85°C  
0
±0.5  
±0.3  
±1.5  
±0.5  
±1.0  
±0.5  
±1.0  
±0.5  
±2.1  
±0.7  
±1.5  
±0.5  
±0.5  
±0.5  
±4  
Integral non-linearity  
Zero-scale error  
INL  
EZS  
EFS  
EQ  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
VADIN = VSS  
Full-scale error  
VADIN = VDD  
0
0
Quantization error  
Input leakage error  
±0.2  
±0.1  
1.646  
1.769  
Padleakage3 *  
RAS  
EIL  
0
±1.2  
Temp sensor  
slope  
m
mV/°C  
Temp sensor  
voltage  
25°C  
VTEMP25  
701.2  
mV  
1
Typical values assume VDD = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
1 LSB = (VREFH – VREFL)/2N  
Based on input pad leakage current. Refer to pad electricals.  
3.11 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash memory.  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
17  
Electrical Characteristics  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see MC9S08QA4 Series Reference Manual.  
Table 14. Flash Characteristics  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40°C to 85°C  
Vprog/erase  
VRead  
fFCLK  
tFcyc  
1.8  
1.8  
150  
5
3.6  
3.6  
V
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
V
200  
6.67  
kHz  
μs  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
tBurst  
4
tPage  
4000  
20,000  
Mass erase time2  
tMass  
Program/erase endurance3  
TL to TH = –40°C to + 85°C  
T = 25°C  
10,000  
15  
100,000  
cycles  
years  
Data retention4  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for  
calculating approximate time to program and erase.  
3
4
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Motorola defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer  
to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
Ordering Information  
4
Ordering Information  
This section contains ordering numbers for MC9S08QA4 series devices. See below for an example of the device numbering  
system.  
Table 15. Device Numbering System  
Memory  
Package  
Device Number  
Flash  
4 KB  
2 KB  
RAM  
Type  
Designator  
Document No.  
8 DFN  
8 PDIP  
8 NB SOIC  
FQ  
PA  
DN  
98ARL10557D  
98ASB42420B  
98ASB42564B  
MC9S08QA4  
MC9S08QA2  
256 bytes  
160 bytes  
9
QA 4  
XX E  
C
MC S08  
RoHS compliance indicator (E = yes)  
Package designator (see Table 15)  
Status  
(MC = Fully qualified)  
Memory  
(9 = Flash-based)  
Temperature range  
(C = –40°C to 85°C)  
Core  
Family  
Memory size (in KB)  
5
Mechanical Drawings  
The following pages contain mechanical specifications for MC9S08QA4 series package options.  
8-pin DFN (plastic dual in-line pin)  
8-pin NB SOIC (narrow body small outline integrated circuit)  
8-pin PDIP (plastic dual in-line pin)  
MC9S08QA4 Series MCU Data Sheet, Rev. 3  
Freescale Semiconductor  
19  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Semiconductor was negligent regarding the design or manufacture of the part.  
Japan:  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9S08QA4  
Rev. 3  
1/2009  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY