MC9S08QE32CWL [FREESCALE]

8-Bit HCS08 Central Processor Unit (CPU); 8位HCS08中央处理单元(CPU)的
MC9S08QE32CWL
型号: MC9S08QE32CWL
厂家: Freescale    Freescale
描述:

8-Bit HCS08 Central Processor Unit (CPU)
8位HCS08中央处理单元(CPU)的

文件: 总44页 (文件大小:1209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08QE32  
Rev. 1, 6/2008  
MC9S08QE32 Series  
Covers: MC9S08QE32 and  
MC9S08QE16  
MC9S08QE32  
48-QFN  
Case 1314  
7 mm2  
44-LQFP  
Case 824D  
Features  
32-LQFP  
Case 873A  
7 mm2  
28-SOIC  
Case 751F  
8-Bit HCS08 Central Processor Unit (CPU)  
– Up to 50.33 MHz HCS08 CPU at 3.6 V to 2.4 V, 40 MHz CPU  
at 2.4 V to 2.1 V and 20 MHz CPU at 2.1 V to 1.8 V across  
temperature range of –40°C to 85°C  
– HC08 instruction set with added BGND instruction  
– Support for up to 32 interrupt/reset sources  
On-Chip Memory  
– Flash read/program/erase over full operating voltage and  
temperature  
– Random-access memory (RAM)  
– Breakpoint capability to allow single breakpoint setting during  
in-circuit debugging (plus three breakpoints in on-chip debug  
module)  
– On-chip in-circuit emulator (ICE) debug module containing  
three comparators and nine trigger modes. Eight deep FIFO for  
storing change-of-flow addresses and event-only data. Debug  
module supports both tag and force breakpoints  
– Security circuitry to prevent unauthorized access to RAM and  
flash contents  
Power-Saving Modes  
Peripherals  
ADC — 10-channel, 12-bit resolution; 2.5 μs conversion time;  
automatic compare function; 1.7 mV/°C temperature sensor;  
internal bandgap reference channel; operation in stop3; fully  
functional from 3.6V to 1.8V  
– Two very low power stop modes  
– Reduced power wait mode  
– Peripheral clock enable register can disable clocks to unused  
modules, thereby reducing currents; allows clocks to remain  
enabled to specific peripherals in stop3 mode.  
Very low power external oscillator that can be used in run, wait,  
and stop modes to provide accurate clock source to real time  
counter.  
ACMPx — Two analog comparators with selectable interrupt  
on rising, falling, or either edge of comparator output; compare  
option to fixed internal bandgap reference voltage; outputs can  
be optionally routed to TPM module; operation in stop3  
SCIx — Two serial communications interface modules with  
optional 13-bit break. Full duplex non-return to zero (NRZ);  
LIN master extended break generation; LIN slave extended  
break detection; wake up on active edge.  
– 6 μs typical wake up time from stop3 mode  
Clock Source Options  
– Oscillator (XOSCVLP) — Loop-control Pierce oscillator;  
crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or  
1 MHz to 16 MHz  
– Internal clock source (ICS) — Internal clock source module  
containing a frequency-locked-loop (FLL) controlled by  
internal or external reference; precision trimming of internal  
reference allows 0.2% resolution and 2% deviation over  
temperature and voltage; supports CPU frequencies from  
4kHz to 50.33 MHz.  
SPI— One serial peripheral interface; full-duplex or  
single-wire bidirectional; double-buffered transmit and  
receive; master or slave mode; MSB-first or LSB-first shifting  
IIC — One IIC; up to 100 kbps with maximum bus loading;  
multi-master operation; programmable slave address; interrupt  
driven byte-by-byte data transfer; supports broadcast mode and  
10-bit addressing  
TPMx — One 6-channel (TPM3) and two 3-channel (TPM1  
and TPM2); selectable input capture, output compare, or  
buffered edge- or center-aligned PWM on each channel;  
RTC — (Real-time counter) 8-bit modulus counter with binary  
or decimal based prescaler; external clock source for precise  
time base, time-of-day, calendar or task scheduling functions;  
free running on-chip low power oscillator (1 kHz) for cyclic  
wake-up without external components; runs in all MCU modes  
Input/Output  
System Protection  
– Watchdog computer operating properly (COP) reset with option  
to run from dedicated 1 kHz internal clock source or bus clock.  
– Low-voltage warning with interrupt.  
– Low-voltage detection with reset or interrupt  
– Selectable trip points.  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
– Flash block protection  
Development Support  
– 40 GPIOs, including 1 output-only pin and 1 input-only pin  
– 16 KBI interrupts with selectable polarity  
– Hysteresis and configurable pull up device on all input pins;  
Configurable slew rate and drive strength on all output pins.  
Package Options  
– Single-wire background debug interface  
– 48-pin QFN, 44-pin LQFP, 32-pin LQFP, 28-pin SOIC  
This document contains information on a product under development. Freescale reserves  
the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table of Contents  
1
2
3
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . 9  
3.3 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 9  
3.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . 10  
3.5 ESD Protection and Latch-Up Immunity . . . . . . 11  
3.6 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 12  
3.7 Supply Current Characteristics . . . . . . . . . . . . . 15  
3.8 External Oscillator (XOSCVLP) Characteristics 16  
3.9 Internal Clock Source (ICS) Characteristics . . . 18  
3.10 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 19  
3.10.1Control Timing. . . . . . . . . . . . . . . . . . . . . 20  
3.10.2TPM Module Timing . . . . . . . . . . . . . . . . 21  
3.10.3SPI Timing . . . . . . . . . . . . . . . . . . . . . . . .21  
3.11 Analog Comparator (ACMP) Electricals . . . . . . .25  
3.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . .25  
3.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . .28  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.1 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . .29  
4
5
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current.  
Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Revision  
Date  
Description of Changes  
1
6/4/2008  
Initial public released.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08QE32RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
2
Freescale Semiconductor  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of the MC9S08QE32 MCU.  
BKGD/MS  
PTA7/TPM2CH2/ADP9  
PTA6/TPM1CH2/ADP8  
HCS08 CORE  
DEBUG MODULE (DBG)  
PTA5/IRQ/TPM1CLK/RESET  
PTA4/ACMP1O/BKGD/MS  
BDC  
CPU  
PTA3/KBI1P3/SCL/ADP3  
REAL-TIME COUNTER  
(RTC)  
PTA2/KBI1P2/SDA/ADP2  
PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1–  
PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+  
SCL  
SDA  
HCS08 SYSTEM CONTROL  
IIC MODULE (IIC)  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
PTB7/SCL/EXTAL  
RxD1  
TxD1  
IRQ  
SERIAL COMMUNICATIONS  
INTERFACE MODULE(SCI1)  
PTB6/SDA/XTAL  
COP  
IRQ  
LVD  
PTB5/TPM1CH1/SS  
RxD2  
TxD2  
PTB4/TPM2CH1/MISO  
PTB3/KBI1P7/MOSI/ADP7  
PTB2/KBI1P6/SPSCK/ADP6  
PTB1/KBI1P5/TxD1/ADP5  
PTB0/KBI1P4/RxD1/ADP4  
SERIAL COMMUNICATIONS  
INTERFACE MODULE(SCI2)  
USER FLASH  
(MC9S08QE32 = 32768 BYTES)  
(MC9S08QE16 = 16384 BYTES)  
SS  
MISO  
MOSI  
SPSCK  
SERIAL PERIPHERAL  
INTERFACE MODULE(SPI)  
USER RAM  
(MC9S08QE32 = 2048 BYTES)  
(MC9S08QE16 = 1024 BYTES)  
TPM1CLK  
PTC7/TxD2/ACMP2-  
PTC6/RxD2/ACMP2+  
PTC5/TPM3CH5/ACMP2O  
PTC4/TPM3CH4  
3-CHANNEL TIMER/PWM  
MODULE (TPM1)  
TPM1CH2-TPM1CH0  
TPM2CLK  
3-CHANNEL TIMER/PWM  
MODULE (TPM2)  
50.33 MHz INTERNAL CLOCK  
SOURCE (ICS)  
TPM2CH2-TPM2CH0  
PTC3/TPM3CH3  
PTC2/TPM3CH2  
EXTAL  
XTAL  
TPM3CLK  
PTC1/TPM3CH1  
LOW-POWER OSCILLATOR  
31.25 kHz to 38.4 kHz  
1 MHz to 16 MHz  
6-CHANNEL TIMER/PWM  
MODULE (TPM3)  
TPM3CH5-TPM3CH0  
PTC0/TPM3CH0  
(XOSCVLP)  
ACMP1O  
ACMP1–  
ACMP1+  
PTD7/KBI2P7  
PTD6/KBI2P6  
PTD5/KBI2P5  
PTD4/KBI2P4  
PTD3/KBI2P3  
PTD2/KBI2P2  
PTD1/KBI2P1  
PTD0/KBI2P0  
VSSAD  
ANALOG COMPARATOR  
(ACMP1)  
VSS  
VDD  
V
DDAD  
VOLTAGE REGULATOR  
ACMP2O  
ACMP2–  
ACMP2+  
VSSAD  
VDDAD  
ANALOG COMPARATOR  
(ACMP2)  
VSSAD/VREFL  
VDDAD/VREFH  
10-CHANNEL, 12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC12)  
ADP9-ADP0  
VREFL  
VREFH  
PTE7/TPM3CLK  
PTE6  
KBI1P7-KBI1P0  
KBI2P7-KBI2P0  
KEYBOARD INTERRUPT  
MODULE (KBI1)  
PTE5  
PTE4  
PTE3/SS  
KEYBOARD INTERRUPT  
MODULE (KBI2)  
PTE2/MISO  
PTE1/MOSI  
PTE0/TPM2CLK/SPSCK  
pins not available on 28-pin packages  
pins not available on 28-pin or 32-pin packages  
pins not available on 28-pin, 32-pin, or 44-pin packages  
Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pull-up device.  
When PTA4 is configured as BKGD, pin becomes bi-directional.  
For the 28-pin packages: VSSAD/VREFL and VDDAD/VREFH are double bonded to VSS and VDD respectively.  
The 48-pin package is the only package with the option of having the SPI pins (SS, MISO, MOSI, and SPSCK) available on PTE3-0 pins.  
Figure 1. MC9S08QE32 Series Block Diagram  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
3
Pin Assignments  
2
Pin Assignments  
This section shows the pin assignments for the MC9S08QE32 Series devices.  
PTA2/KBI1P2/SDA/ADP2  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD1/KBI2P1  
PTD0/KBI2P0  
1
PTA3/KBI1P3/SCL/ADP3  
PTD2/KBI2P2  
2
PTE7/TPM3CLK  
3
PTD3/KBI2P3  
4
VDD  
PTD4/KBI2P4  
VDDAD  
5
VREFH  
VSS  
6
VREFL  
7
VDD  
VSSAD  
PTE4  
8
VSS  
9
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTB7/SCL/EXTAL  
10  
11  
12  
PTB6/SDA/XTAL  
PTE6  
Pins in bold are lost in the next lower pin count package.  
Figure 2-2. 48-Pin QFN  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
4
Freescale Semiconductor  
Pin Assignments  
PTD1/KBI2P1  
PTD0/KBI2P0  
PTA2/KBI1P2/SDA/ADP2  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PTA3/KBI1P3/SCL/ADP3  
PTD2/KBI2P2  
2
PTE7/TPM3CLK  
3
PTD3/KBI2P3  
VDD  
4
VDDAD  
PTD4/KBI2P4  
5
VREFH  
VREFL  
VSS  
6
VDD  
7
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
VSSAD  
8
VSS  
9
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTB7/SCL/EXTAL  
10  
PTB6/SDA/XTAL 11  
Pins in bold are lost in the next lower pin count package.  
Figure 2-3. 44-pin LQFP  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
5
Pin Assignments  
31 30 29 28 27 26 25  
32  
PTD1/KBI2P1  
1
2
3
4
5
6
7
8
24  
23  
PTA2/KBI1P2/SDA/ADP2  
PTA3/KBI1P3/SCL/ADP3  
PTD0/KBI2P0  
VDD  
22  
21  
20  
19  
18  
17  
PTD2/KBI2P2  
PTD3/KBI2P3  
VDDAD/VREFH  
VSSAD/VREFL  
VSS  
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
PTB7/SCL/EXTAL  
PTB0/KBIP4/RxD1/ADP4  
PTB1/KBIP5/TxD1/ADP5  
PTB6/SDA/XTAL  
15 16  
10 11 12 13 14  
9
Pins in bold are lost in the next lower pin count package.  
Figure 2-4. 32-LQFP  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
6
Freescale Semiconductor  
Pin Assignments  
PTC6/RxD2/ACMP2+  
PTC7/TxD2/ACMP2-  
PTC5/TPM3CH5/ACMP2O  
PTC4/TPM3CH4  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
PTA5/IRQ/TPM1CLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1-  
PTA2/KBI1P2/SDA/ADP2  
3
4
5
VDDAD/VREFH  
VSSAD/VREFL  
VSS  
PTA3/KBI1P3/SCL/ADP3  
PTA6/TPM1CH2/ADP8  
6
7
PTA7/TPM2CH2/ADP9  
8
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB0/KBI1P4/RxD1/ADP4  
9
10  
11  
12  
13  
14  
PTB1/KBI1P5/TxD1/ADP5  
PTB2/KBI1P6/SPSCK/ADP6  
PTB3/KBI1P7/MOSI/ADP7  
PTC0/TPM3CH0  
PTB4/TPM2CH1/MISO  
PTC3/TPM3CH3  
PTC2/TPM3CH2  
PTC1/TPM3CH1  
Figure 2-5. 28-pin SOIC  
Table 2-1. MC9S08QE32 Series Pin Assignment by Package and Pin Sharing Priority  
Pin Number <-- Lowest Priority --> Highest  
48  
44  
32  
28  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
1
2
1
2
1
2
5
PTD1  
PTD0  
PTE7  
KBI2P1  
KBI2P0  
3
3
3
TPM3CLK  
4
4
VDD  
5
5
4
6
VDDAD  
VREFH  
VREFL  
VSSAD  
VSS  
6
6
7
7
5
7
8
8
9
9
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
PTB7  
SCL1  
SDA1  
EXTAL  
XTAL  
8
10 PTB6  
9
PTE6  
PTE5  
11 PTB5  
12 PTB4  
13 PTC3  
14 PTC2  
TPM1CH1 SS2  
TPM2CH1 MISO2  
TPM3CH3  
10  
11  
12  
TPM3CH2  
PTD7  
KBI2P7  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
7
Electrical Characteristics  
Table 2-1. MC9S08QE32 Series Pin Assignment by Package and Pin Sharing Priority (continued)  
Pin Number  
<-- Lowest Priority --> Highest  
48  
44  
32  
28  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PTD6  
PTD5  
KBI2P6  
KBI2P5  
15 PTC1  
16 PTC0  
17 PTB3  
18 PTB2  
19 PTB1  
20 PTB0  
21 PTA7  
22 PTA6  
TPM3CH1  
TPM3CH0  
KBI1P7  
MOSI2  
SPSCK2  
ADP7  
KBI1P6  
ADP6  
ADP5  
ADP4  
ADP9  
ADP8  
KBI1P5  
TxD1  
KBI1P4  
RxD1  
TPM2CH2  
TPM1CH2  
PTE4  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDD  
VSS  
PTD4  
PTD3  
PTD2  
KBI2P4  
KBI2P3  
KBI2P2  
KBI1P3  
KBI1P2  
KBI1P1  
KBI1P0  
TxD2  
23 PTA3  
24 PTA2  
25 PTA1  
26 PTA0  
27 PTC7  
28 PTC6  
SCL1  
SDA1  
TPM2CH0 ADP13  
TPM1CH0 ADP03  
ADP3  
ADP2  
ACMP1-3  
ACMP1+3  
ACMP2-  
ACMP2+  
RxD2  
SS2  
MISO2  
MOSI2  
TPM2CLK SPSCK2  
1
PTE3  
PTE2  
PTE1  
PTE0  
PTC5  
PTC4  
PTA5  
PTA4  
38  
39  
40  
41  
42  
43  
44  
TPM3CH5  
ACMP2O  
2
TPM3CH4  
3
IRQ  
TPM1CLK RESET  
4
ACMP1O BKGD  
MS  
1
2
3
IIC pins, SCL and SDA can be repositioned using IICPS in SOPT2; default reset  
locations are PTA3 and PTA2.  
SPI pins (SS, MISO, MOSI, and SPSCK) can be repositioned using SPIPS in SOPT2.  
Default locations are PTB5, PTB4,PTB3, and PTB2.  
If ADC and ACMP1 are enabled, both modules will have access to the pin.  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08QE32 Series of microcontrollers available at the time  
of publication.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
8
Freescale Semiconductor  
Electrical Characteristics  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pull-up resistor associated with the pin is enabled.  
SS  
DD  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
± 25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
2
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
9
Electrical Characteristics  
3
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 4. Thermal Characteristics  
Symbol  
Rating  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
°C  
°C  
Maximum junction temperature  
TJM  
95  
Thermal resistance  
Single-layer board  
48-pin QFN  
44-pin LQFP  
32-pin LQFP  
28-pin SOIC  
81  
68  
66  
57  
θJA  
°C/W  
°C/W  
Thermal resistance  
Four-layer board  
48-pin QFN  
44-pin LQFP  
32-pin LQFP  
28-pin SOIC  
26  
46  
54  
42  
θJA  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
10  
Freescale Semiconductor  
Electrical Characteristics  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that  
these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the  
charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
Ω
Human  
Body  
R1  
1500  
Storage capacitance  
C
100  
3
pF  
Number of pulses per pin  
Machine  
Series resistance  
R1  
0
Ω
Storage capacitance  
C
200  
3
pF  
Number of pulses per pin  
Latch-up Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Table 6. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
VMM  
Min  
±2000  
±200  
±500  
±100  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Machine model (MM)  
2
V
VCDM  
ILAT  
3
Charge device model (CDM)  
Latch-up current at TA = 85°C  
V
4
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
11  
Electrical Characteristics  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 7. DC Characteristics  
Num C  
Characteristic  
Operating Voltage  
Symbol  
Condition  
Min  
Typical1  
Max  
Unit  
1
1.8  
3.6  
V
Output high  
voltage2  
All I/O pins,  
low-drive strength  
C
1.8 V, ILoad = –2 mA VDD – 0.5  
P
T
2.7 V, ILoad = –10 mA VDD – 0.5  
2.3 V, ILoad = –6 mA VDD – 0.5  
1.8V, ILoad = –3 mA VDD – 0.5  
2
VOH  
V
mA  
V
All I/O pins,  
high-drive strength  
C
Output high  
current  
D
C
Max total IOH for all ports IOHT  
100  
0.5  
3
4
All I/O pins,  
low-drive strength  
1.8 V, ILoad = 2 mA  
Output low  
voltage  
P
T
2.7 V, ILoad = 10 mA  
2.3 V, ILoad = 6 mA  
1.8 V, ILoad = 3 mA  
0.5  
0.5  
0.5  
VOL  
All I/O pins,  
high-drive strength  
C
Output low  
current  
5
6
D
Max total IOL for all ports  
all digital inputs  
IOLT  
VIH  
100  
mA  
V
P
C
P
C
VDD > 2.3 V  
VDD 1.8 V  
VDD > 2.7 V  
VDD 1.8 V  
0.70 x VDD  
Input high  
voltage  
0.85 x VDD  
0.35 x VDD  
0.30 x VDD  
Input low  
voltage  
7
8
all digital inputs  
VIL  
Input  
hysteresis  
C
all digital inputs Vhys  
0.06 x VDD  
mV  
nA  
Input  
P leakage  
current  
all input only pins  
|IIn|  
9
VIn = VDD or VSS  
5
1000  
(Per pin)  
Hi-Z  
(off-state)  
leakage  
current  
all input/output  
10  
P
|IOZ  
|
VIn = VDD or VSS  
5
1000  
52.5  
nA  
(per pin)  
Pullup,  
11 P Pulldown  
resistors  
all digital inputs, when RPU,  
17.5  
kΩ  
enabled  
RPD  
Single pin limit  
–0.2  
–5  
0.2  
5
mA  
mA  
DCinjection  
12 D current 3, 4,  
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
5
13 C Input Capacitance, all pins  
14 C RAM retention voltage  
15 C POR re-arm voltage6  
16 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
μs  
Low-voltage detection threshold—  
high range  
VDD falling  
VDD rising  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
17  
P
VLVDH  
V
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
12  
Freescale Semiconductor  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num C  
Characteristic  
Symbol  
Condition  
Min  
Typical1  
Max  
Unit  
Low-voltage detection threshold—  
low range  
VDD falling  
VDD rising  
1.80  
1.88  
1.82  
1.90  
1.91  
1.99  
18  
19  
20  
21  
P
P
P
C
VLVDL  
V
Low-voltage warning threshold—  
high range  
VDD falling  
VDD rising  
2.36  
2.36  
2.46  
2.46  
2.56  
2.56  
VLVWH  
VLVWL  
V
V
Low-voltage warning threshold—  
low range  
VDD falling  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
VDD rising  
Low-voltage inhibit reset/recover  
hysteresis  
22 P Bandgap Voltage Reference7  
Vhys  
VBG  
80  
mV  
V
1.15  
1.17  
1.18  
1
2
3
4
Typical values are measured at 25°C. Characterized, not tested  
As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL  
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or  
if clock rate is very low (which would reduce overall power consumption).  
6
7
Maximum is highest voltage that POR is guaranteed.  
Factory trimmed at VDD = 3.0 V, Temp = 25°C  
PULLDOWN RESISTOR TYPICALS  
PULLUP RESISTOR TYPICALS  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
85°C  
85°C  
25°C  
25°C  
–40°C  
–40°C  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
VDD (V)  
Figure 6. Pullup and Pulldown Typical Resistor Values (V = 3.0 V)  
DD  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
13  
Electrical Characteristics  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
1
85°C  
25°C  
–40°C  
0.8  
0.6  
0.4  
0.2  
0
85  
25  
–40  
°
C, IOL = 2 mA  
0.05  
0
°
C, IOL = 2 mA  
°
C, IOL = 2 mA  
1
2
3
4
0
5
10  
OL (mA)  
15  
20  
VDD (V)  
I
Figure 7. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
1
0.4  
0.3  
0.2  
0.1  
85°C  
85°C  
25°C  
–40°C  
25°C  
0.8  
0.6  
0.4  
0.2  
–40°C  
IOL = 10 mA  
IOL = 6 mA  
IOL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
IOL (mA)  
Figure 8. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
1.2  
1
0.25  
0.2  
85°C  
85  
°
C, IOH = 2 mA  
C, IOH = 2 mA  
C, IOH = 2 mA  
25°C  
25  
°
–40°C  
–40  
°
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
0.05  
0
0
–5  
–10  
IOH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
Figure 9. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
14  
Freescale Semiconductor  
Electrical Characteristics  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
0.3  
0.2  
0.1  
85°C  
25°C  
–40°C  
TYPICAL V – V VS I AT V = 3.0 V  
DD  
OH  
OH  
DD  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
–40°C  
IOH = –10 mA  
IOH = –6 mA  
I
OH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
I
(mA)  
OH  
VDD (V)  
Figure 10. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 8. Supply Current Characteristics  
Parameter  
Run supply current  
VDD  
(V)  
Bus  
Temp  
Typical1  
Num  
C
Symbol  
Max  
Unit  
Freq  
(°C)  
P
T
T
T
C
T
T
T
T
T
25.165 MHz  
20 MHz  
17.3  
13.75  
5.59  
1.03  
11.5  
9.5  
20  
FEI mode, all modules on  
1
RIDD  
3
mA  
–40 to 85  
8 MHz  
1 MHz  
Run supply current  
FEI mode, all modules off  
25.165 MHz  
20 MHz  
12.3  
2
3
RIDD  
3
3
mA  
–40 to 85  
–40 to 85  
8 MHz  
4.6  
1 MHz  
1.0  
Run supply current  
LPRS=0, all modules off  
16 kHz FBILP  
16 kHz FBELP  
152  
115  
21.9  
RIDD  
μA  
Run supply current  
T
T
LPRS=1, all modules off,  
running from Flash  
4
5
RIDD 16 kHz FBELP  
25.165 MHz  
3
3
μA  
μA  
–40 to 85  
–-40 to 85  
Run supply current  
LPRS=1, all modules off,  
running from RAM  
7.3  
C
T
T
T
P
C
P
C
Wait mode supply current  
FEI mode, all modules off  
5740  
4570  
2000  
730  
6000  
20 MHz  
WIDD  
8 MHz  
1 MHz  
Stop2 mode supply current  
n/a  
3
2
3
2
0.35  
0.25  
0.45  
0.35  
7.5  
6.5  
15  
–40 to 85  
–40 to 85  
–40 to 85  
–40 to 85  
6
7
S2IDD  
n/a  
μA  
μA  
Stop3 mode supply current  
No clocks active  
n/a  
S3IDD  
n/a  
13.2  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
15  
Electrical Characteristics  
Table 8. Supply Current Characteristics (continued)  
Parameter  
VDD  
(V)  
Bus  
Freq  
Temp  
(°C)  
Typical1  
Num  
C
Symbol  
Max  
Unit  
8
T
T
T
T
T
EREFSTEN=1  
32 kHz  
32 kHz  
100 Hz  
300 bps  
1 kHz  
500  
70  
nA  
μA  
μA  
μA  
nA  
9
IREFSTEN=1  
TPM PWM  
10  
11  
12  
12  
SCI, SPI, or IIC  
RTC using LPO  
15  
Low power  
mode adders:  
3
–40 to 85  
200  
RTC using  
ICSERCLK  
13  
T
32 kHz  
μA  
1
LVD  
14  
15  
T
T
n/a  
n/a  
μA  
μA  
100  
20  
ACMP  
1
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
3.8  
External Oscillator (XOSCVLP) Characteristics  
Reference Figure 11 and Figure 12 for crystal or resonator circuits.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
16  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. XOSC and ICS Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typical1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
Load capacitors  
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
See Note 2  
See Note 3  
C1,C2  
2
3
D
D
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, High Gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
MΩ  
kΩ  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
100  
0
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high power  
High range, low power  
High range, high power  
t
200  
400  
5
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode  
fextal  
0.03125  
0
40  
40  
MHz  
MHz  
FBE or FBELP mode  
1
2
3
4
Data in Typical column is characterized at 3.0 V, 25°C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
17  
Electrical Characteristics  
XOSCVLP  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSCVLP  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Power  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
C
P
Characteristic  
Average internal reference frequency - untrimmed  
Average internal reference frequency - trimmed  
Internal reference start-up time  
Symbol  
fint_ut  
fint_t  
Min  
Typical1 Max  
Unit  
kHz  
kHz  
μs  
1
2
3
32.768  
31.25  
39.06  
tIRST  
T
P
P
P
P
P
P
16  
32  
48  
60  
100  
20  
40  
60  
Low range (DFR=00)  
DCO output frequency  
Mid range (DFR=01)  
trimmed2  
fdco_u  
4
5
MHz  
MHz  
High range (DFR=10)  
DCO output frequency2  
Low range (DFR=00)  
19.92  
39.85  
59.77  
Reference = 32768 Hz  
and  
High range (DFR=10)  
DMX32 = 1  
Mid range (DFR=01)  
fdco_DMX32  
Resolution of trimmed DCO output frequency at fixed voltage  
and temperature (using FTRIM)  
Δfdco_res_t  
Δfdco_res_t  
%fdco  
%fdco  
6
7
C
C
±0.1  
±0.2  
±0.2  
±0.4  
Resolution of trimmed DCO output frequency at fixed voltage  
and temperature (not using FTRIM)  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
18  
Freescale Semiconductor  
Electrical Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min  
Typical1 Max  
Unit  
Total deviation of trimmed DCO output frequency over voltage  
and temperature  
+ 0.5  
±2  
Δfdco_t  
%fdco  
8
C
–1.0  
Total deviation of trimmed DCO output frequency over fixed  
voltage and temperature range of 0°C to 70 °C  
Δfdco_t  
tAcquire  
CJitter  
%fdco  
ms  
9
C
C
C
± 0.5  
±1  
1
FLL acquisition time 3  
10  
11  
Long term jitter of DCO output clock (averaged over 2-ms  
interval) 4  
%fdco  
0.02  
0.2  
1
2
3
Data in Typical column is characterized at 3.0 V, 25°C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as  
the reference, this specification assumes it is already running.  
4
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
3.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
0.40%  
0.20%  
0.00%  
–0.20%  
DEVIATION  
–0.40%  
–0.60%  
–0.80%  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
19  
Electrical Characteristics  
3.10.1 Control Timing  
Table 11. Control Timing  
Symbol  
Num  
C
Rating  
Bus frequency (tcyc = 1/fBus  
Min  
Typical1  
Max  
Unit  
)
10  
20  
25.165  
VDD 2.1V  
2.1<VDD 2.4V  
VDD > 2.4Vs  
fBus  
1
D
DC  
MHz  
tLPO  
textrst  
trstdrv  
2
3
4
D
D
D
Internal low power oscillator period  
700  
100  
1300  
μs  
ns  
ns  
External reset pulse width2  
Reset low drive  
34 x tcyc  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
μs  
IRQ pulse width  
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
ns  
7
D
8
D
Keyboard interrupt pulse width  
Asynchronous path2  
tILIH, IHIL  
t
100  
1.5 x tcyc  
Synchronous path5  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
t
Rise, tFall  
ns  
8
31  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
7
24  
Voltage regulator recovery time  
tVRR  
10  
C
4
μs  
1
2
Typical values are based on characterization data at VDD = 3.0V, 25°C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to  
override reset requests from internal sources.  
3
4
5
To enter BDM mode following a POR, BKGD/MS must be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 85°C.  
textrst  
RESET PIN  
Figure 13. Reset Timing  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
20  
Freescale Semiconductor  
Electrical Characteristics  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 14. IRQ/KBIPx Timing  
3.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 12. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 15. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 16. Timer Input Capture Pulse  
3.10.3 SPI Timing  
Table 13 and Figure 17 through Figure 20 describe the timing requirements for the SPI system.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
21  
Electrical Characteristics  
Table 13. SPI Timing  
Symbol  
No.  
C
Function  
Operating frequency  
Master  
Slave  
Min  
Max  
Unit  
D
fop  
tSPSCK  
tLead  
tLag  
fBus/2048  
0
fBus/21  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
1
2
3
4
5
6
D
D
D
D
D
D
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
7
8
D
D
Slave access time  
ta  
1
1
tcyc  
tcyc  
Slave MISO disable time  
tdis  
Data valid (after SPSCK edge)  
9
D
D
D
D
Master  
Slave  
tv  
25  
25  
ns  
ns  
Data hold time (outputs)  
Master  
Slave  
10  
11  
12  
tHO  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
1
Max operating frequency limited to 8MHz when input filter disabled and high output drive strength enabled. Max  
operating frequency limited to 5MHz when input filter enabled and high output drive strength disabled.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
22  
Freescale Semiconductor  
Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 17. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
2
11  
12  
3
12  
11  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
9
MOSI  
(OUTPUT)  
MASTER MSB OUT(2)  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. SPI Master Timing (CPHA =1)  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
23  
Electrical Characteristics  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 19. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 20. SPI Slave Timing (CPHA = 1)  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
24  
Freescale Semiconductor  
Electrical Characteristics  
3.11 Analog Comparator (ACMP) Electricals  
Table 14. Analog Comparator Electrical Specifications  
C
Characteristic  
Symbol  
VDD  
Min  
Typical  
Max  
Unit  
D
Supply voltage  
1.8  
3.6  
V
IDDAC  
P
D
P
C
Supply current (active)  
20  
35  
VDD  
40  
μA  
V
Analog input voltage  
VAIN  
VAIO  
VH  
VSS – 0.3  
Analog input offset voltage  
Analog comparator hysteresis  
20  
9.0  
mV  
mV  
3.0  
15.0  
IALKG  
tAINIT  
P
C
Analog input leakage current  
1.0  
1.0  
μA  
μs  
Analog comparator initialization delay  
3.12 ADC Characteristics  
Table 15. 12-bit ADC Operating Conditions  
C
Characteristic  
Conditions  
Symbol  
Min  
Typical1  
Max  
Unit  
Comment  
D
Supply voltage  
Absolute  
Delta to VDD (VDD-VDDAD  
VDDAD  
ΔVDDAD  
ΔVSSAD  
1.8  
0
3.6  
100  
100  
V
2
)
–100  
–100  
mV  
mV  
2
D
D
Ground voltage  
Delta to VSS (VSS-VSSAD  
)
0
Ref Voltage  
High  
VREFH  
VADIN  
CADIN  
1.8  
VREFL  
VDDAD  
VDDAD  
VREFH  
5.5  
V
V
D
C
Input Voltage  
Input  
Capacitance  
4.5  
pF  
C
C
Input  
Resistance  
RADIN  
5
7
kΩ  
kΩ  
Analog Source  
Resistance  
12 bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
2
5
External to  
MCU  
10 bit mode  
RAS  
fADCK > 4 MHz  
fADCK < 4 MHz  
5
10  
8 bit mode (all valid fADCK  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
)
10  
8.0  
4.0  
D
ADC  
Conversion  
Clock Freq.  
0.4  
0.4  
fADCK  
MHz  
1
2
Typical values assume VDDAD = 3.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise state. Typical values are for reference  
only and are not tested in production.  
DC potential difference.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
25  
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 21. ADC Input Impedance Equivalency Diagram  
Table 16. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
DDAD REFL  
C
Characteristic  
Conditions  
Symbol  
Min  
Typical1  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDAD  
120  
1
μA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
P
IDDAD  
202  
288  
μA  
μA  
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
IDDAD  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
IDDAD  
0.532  
mA  
P
P
ADC  
Asynchronous  
Clock Source  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
2
3.3  
2
5
tADACK  
1/fADACK  
=
fADACK  
MHz  
1.25  
3.3  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
26  
Freescale Semiconductor  
Electrical Characteristics  
Table 16. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
Min  
DDAD REFL  
C
P
C
P
Characteristic  
Conditions  
Symbol  
Typical1  
20  
Max  
Unit  
Comment  
Conversion  
Time(Including  
sample time)  
Short Sample (ADLSMP=0)  
Long Sample (ADLSMP=1)  
Short Sample (ADLSMP=0)  
See ADC  
chapter in the  
QE32 Series  
MCU  
Reference  
Manual for  
conversion  
time variances  
ADCK  
cycles  
tADC  
40  
3.5  
ADCK  
cycles  
Sample Time  
tADS  
ETUE  
DNL  
INL  
C
Long Sample (ADLSMP=1)  
23.5  
T
P
T
T
P
T
T
T
T
T
P
T
T
P
T
12 bit mode  
10 bit mode  
8 bit mode  
±3.0  
±1  
±2.5  
±1.0  
Total  
Unadjusted  
Error  
Includes  
quantization  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
±0.5  
±1.75  
±0.5  
±0.3  
±1.5  
±0.5  
±0.3  
±1.5  
±0.5  
±0.5  
±1.0  
±0.5  
±0.5  
–1 to 0  
12 bit mode  
10 bit mode3  
8 bit mode3  
12 bit mode  
10 bit mode  
8 bit mode  
Differential  
Non-Linearity  
±1.0  
±0.5  
Integral  
Non-Linearity  
±1.0  
±0.5  
12 bit mode  
10 bit mode  
8 bit mode  
Zero-Scale  
Error  
EZS  
EFS  
EQ  
±1.5  
±0.5  
VADIN = VSSAD  
12 bit mode  
10 bit mode  
8 bit mode  
Full-Scale  
Error  
±1  
VADIN = VDDAD  
±0.5  
12 bit mode  
10 bit mode  
8 bit mode  
Quantization  
Error  
D
D
±0.5  
±0.5  
12 bit mode  
10 bit mode  
8 bit mode  
±2  
Input Leakage  
Error  
Padleakage4 *  
RAS  
EIL  
±0.2  
±0.1  
1.646  
1.769  
±4  
±1.2  
-40°C to 25°C  
25°C to 85°C  
Temp Sensor  
Slope  
D
D
m
mV/°C  
Temp Sensor  
Voltage  
25°C  
VTEMP25  
701.2  
mV  
1
Typical values assume VDDAD = 3.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
27  
Electrical Characteristics  
2
1 LSB = (VREFH – VREFL)/2N  
3
4
Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes  
Based on input pad leakage current. Refer to pad electricals.  
3.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see MC9S08QE32 Series Reference Manual Chapter 4 Memory.  
Table 17. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40°C to 85°C  
D
Vprog/erase  
1.8  
3.6  
V
D
D
D
P
P
P
P
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)(2)  
Byte program time (burst mode)(2)  
Page erase time2  
Mass erase time(2)  
Byte program current3  
Page erase current3  
VRead  
fFCLK  
tFcyc  
1.8  
150  
5
3.6  
200  
6.67  
V
kHz  
μs  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
mA  
Program/erase endurance4  
TL to TH = –40°C to 85°C  
T = 25°C  
C
C
10,000  
15  
100,000  
cycles  
years  
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information is  
supplied for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 3.0 V, bus frequency = 4.0 MHz.  
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
28  
Freescale Semiconductor  
Ordering Information  
4
Ordering Information  
This section contains ordering information for Device Numbering System  
Example of the device numbering system:  
32  
C
XX  
MC 9 S08 QE  
Status  
(MC = Fully Qualified)  
Package designator (see Table 18)  
Temperature range  
(C = –40°C to 85°C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in kbytes  
Family  
5
Package Information  
Table 18. Package Descriptions  
Pin Count  
Package Type  
Quad Flat No-Leads  
Abbreviation  
Designator  
Case No.  
Document No.  
48  
44  
32  
28  
QFN  
LQFP  
LQFP  
SOIC  
FT  
LD  
LC  
WL  
1314  
824D  
873A  
751F  
98ARH99048A  
98ASS23225W  
98ASH70029A  
98ASB42345B  
Low Quad Flat Package  
Low Quad Flat Package  
Small Outline Integrated Circuit  
5.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 18. For the latest available drawings please  
visit our web site (http://www.freescale.com) and enter the package’s document number into the keyword search box.  
MC9S08QE32 MCU Series Data Sheet, Rev. 1  
Freescale Semiconductor  
29  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Semiconductor was negligent regarding the design or manufacture of the part.  
Japan:  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9S08QE32  
Rev. 1  
6/2008  

相关型号:

MC9S08QE32_09

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08QE4CTGR

MC9S08QE4CTGR
FREESCALE

MC9S08QE4CTGR

S08QE 8-bit MCU, S08 core, 4KB Flash, 20MHz, SOP 16
NXP

MC9S08QE4CWL

Taking the lead in low power
FREESCALE

MC9S08QE64CFT

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE64CLC

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE64CLC

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LQFP-32
NXP

MC9S08QE64CLD

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08QE64CLD

S08QE 8-bit MCU, S08 core, 64KB Flash, 50MHz, QFP 44
NXP

MC9S08QE64CLH

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE64CLH

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MC9S08QE64CQD

8-Bit HCS08 Central Processor Unit
FREESCALE