MC9S08QE64CLD [NXP]

S08QE 8-bit MCU, S08 core, 64KB Flash, 50MHz, QFP 44;
MC9S08QE64CLD
型号: MC9S08QE64CLD
厂家: NXP    NXP
描述:

S08QE 8-bit MCU, S08 core, 64KB Flash, 50MHz, QFP 44

时钟 PC CD 微控制器 外围集成电路
文件: 总52页 (文件大小:926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: QFN_Addendum  
Rev. 0, 07/2014  
Freescale Semiconductor  
Addendum  
Addendum for New QFN  
Package Migration  
This addendum provides the changes to the 98A case outline numbers for products covered in this book.  
Case outlines were changed because of the migration from gold wire to copper wire in some packages. See  
the table below for the old (gold wire) package versus the new (copper wire) package.  
To view the new drawing, go to Freescale.com and search on the new 98A package number for your  
device.  
For more information about QFN package use, see EB806: Electrical Connection Recommendations for  
the Exposed Pad on QFN and DFN Packages.  
© Freescale Semiconductor, Inc., 2014. All rights reserved.  
Original (gold wire)  
package document number package document number  
Current (copper wire)  
Part Number  
Package Description  
48 QFN  
MC68HC908JW32  
MC9S08AC16  
MC9S908AC60  
MC9S08AC128  
MC9S08AW60  
MC9S08GB60A  
MC9S08GT16A  
MC9S08JM16  
MC9S08JM60  
MC9S08LL16  
MC9S08QE128  
MC9S08QE32  
MC9S08RG60  
MCF51CN128  
MC9RS08LA8  
MC9S08GT16A  
MC9S908QE32  
MC9S908QE8  
MC9S08JS16  
MC9S08QB8  
98ARH99048A  
98ASA00466D  
48 QFN  
32 QFN  
32 QFN  
32 QFN  
24 QFN  
98ARL10606D  
98ARH99035A  
98ARE10566D  
98ASA00071D  
98ARL10608D  
98ASA00466D  
98ASA00473D  
98ASA00473D  
98ASA00736D  
98ASA00734D  
MC9S08QG8  
MC9S08SH8  
24 QFN  
24 QFN  
24 QFN  
16 QFN  
8 DFN  
98ARL10605D  
98ARE10714D  
98ASA00087D  
98ARE10614D  
98ARL10557D  
98ASA00474D  
98ASA00474D  
98ASA00602D  
98ASA00671D  
98ASA00672D  
MC9RS08KB12  
MC9S08QG8  
MC9RS08KB12  
MC9S08QG8  
MC9RS08KA2  
6 DFN  
98ARL10602D  
98ASA00735D  
Addendum for New QFN Package Migration, Rev. 0  
2
Freescale Semiconductor  
Freescale Semiconductor  
Data Sheet: Technical Data  
An Energy Efficient Solution by Freescale  
Document Number: MC9S08QE128  
Rev. 7, 10/2008  
MC9S08QE128  
MC9S08QE128 Series  
80-LQFP  
Case 917A  
14 mm2  
64-LQFP  
Case 840F  
10 mm2  
Covers: MC9S08QE128, MC9S08QE96, MC9S08QE64  
• 8-Bit HCS08 Central Processor Unit (CPU)  
– Up to 50.33-MHz HCS08 CPU above 2.4V, 40-MHz  
CPU above 2.1V, and 20-MHz CPU above 1.8V, across  
temperature range  
– HC08 instruction set with added BGND instruction  
– Support for up to 32 interrupt/reset sources  
• On-Chip Memory  
44-LQFP  
Case 824D  
10 mm2  
48-QFN  
Case 1314  
7 mm2  
32-LQFP  
Case 873A  
7 mm2  
Eight deep FIFO for storing change-of-flow addresses  
and event-only data. Debug module supports both tag  
and force breakpoints.  
– Flash read/program/erase over full operating voltage  
and temperature  
– Random-access memory (RAM)  
– Security circuitry to prevent unauthorized access to  
RAM and flash contents  
• ADC — 24-channel, 12-bit resolution; 2.5 μs conversion  
time; automatic compare function; 1.7 mV/°C temperature  
sensor; internal bandgap reference channel; operation in  
stop3; fully functional from 3.6V to 1.8V  
• Power-Saving Modes  
– Two low power stop modes; reduced power wait mode  
– Peripheral clock enable register can disable clocks to  
unused modules, reducing currents; allows clocks to  
remain enabled to specific peripherals in stop3 mode  
Very low power external oscillator can be used in stop3  
mode to provide accurate clock to active peripherals  
Very low power real time counter for use in run, wait,  
and stop modes with internal and external clock sources  
– 6 μs typical wake up time from stop modes  
• Clock Source Options  
• ACMPx — Two analog comparators with selectable  
interrupt on rising, falling, or either edge of comparator  
output; compare option to fixed internal bandgap reference  
voltage; outputs can be optionally routed to TPM module;  
operation in stop3  
• SCIx — Two SCIs with full duplex non-return to zero  
(NRZ); LIN master extended break generation; LIN slave  
extended break detection; wake up on active edge  
• SPIx— Two serial peripheral interfaces with Full-duplex or  
single-wire bidirectional; Double-buffered transmit and  
receive; MSB-first or LSB-first shifting  
• IICx — Two IICs with; Up to 100 kbps with maximum bus  
loading; Multi-master operation; Programmable slave  
address; Interrupt driven byte-by-byte data transfer;  
supports broadcast mode and 10 bit addressing  
• TPMx — One 6-channel and two 3-channel; Selectable  
input capture, output compare, or buffered edge- or  
center-aligned PWMs on each channel  
• RTC — 8-bit modulus counter with binary or decimal  
based prescaler; External clock source for precise time  
base, time-of-day, calendar or task scheduling functions;  
Free running on-chip low power oscillator (1 kHz) for  
cyclic wake-up without external components  
– Oscillator (XOSC) — Loop-control Pierce oscillator;  
Crystal or ceramic resonator range of 31.25 kHz to  
38.4 kHz or 1 MHz to 16 MHz  
– Internal Clock Source (ICS) — FLL controlled by  
internal or external reference; precision trimming of  
internal reference allows 0.2% resolution and 2%  
deviation; supports CPU freq. from 2 to 50.33 MHz  
• System Protection  
– Watchdog computer operating properly (COP) reset  
with option to run from dedicated 1-kHz internal clock  
source or bus clock  
– Low-voltage detection with reset or interrupt; selectable  
trip points  
– Illegal opcode detection with reset  
– Flash block protection  
• Input/Output  
– 70 GPIOs and 1 input-only and 1 output-only pin  
– 16 KBI interrupts with selectable polarity  
– Hysteresis and configurable pull-up device on all input  
pins; Configurable slew rate and drive strength on all  
output pins.  
• Development Support  
– Single-wire background debug interface  
– Breakpoint capability to allow single breakpoint setting  
during in-circuit debugging (plus two more breakpoints)  
– On-chip in-circuit emulator (ICE) debug module  
containing two comparators and nine trigger modes.  
– SET/CLR registers on 16 pins (PTC and PTE)  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table of Contents  
1
2
3
MC9S08QE128 Series Comparison. . . . . . . . . . . . . . . . . . . . .4  
3.10.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.10.2 TPM Module Timing. . . . . . . . . . . . . . . . . . . . . 26  
3.10.3 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.11 Analog Comparator (ACMP) Electricals . . . . . . . . . . . 30  
3.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.13 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.1 Device Numbering System . . . . . . . . . . . . . . . . . . . . . 34  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .12  
3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12  
3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13  
3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .14  
3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18  
3.8 External Oscillator (XOSC) Characteristics . . . . . . . . .21  
3.9 Internal Clock Source (ICS) Characteristics . . . . . . . . .22  
3.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4
5
6
7
MC9S08QE128 Series Data Sheet, Rev. 7  
2
Freescale Semiconductor  
PTA7/TPM2CH2/ADP9  
TPM1CH2-0  
TPM1CLK  
PTA6/TPM1CH2/ADP8  
HCS08 CORE  
3-CHANNEL TIMER/PWM  
MODULE (TPM1)  
PTA5/IRQ/TPM1CLK/RESET  
PTA4/ACMP1O/BKGD/MS  
PTA3/KBI1P3/SCL1/ADP3  
CPU  
ACMP1O  
ACMP1+  
ACMP1-  
PTA2/KBI1P2/SDA1/ADP2  
ANALOG COMPARATOR  
(ACMP1)  
PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1-  
PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+  
BDC  
BKP  
EXTAL  
XTAL  
INTERNAL CLOCK  
SOURCE (ICS)  
PTB7/SCL1/EXTAL  
PTB6/SDA1/XTAL  
HCS08 SYSTEM CONTROL  
OSCILLATOR (XOSC)  
PTB5/TPM1CH1/SS1  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
3
PTB4/TPM2CH1/MISO1  
PTB3/KBI1P7/MOSI1/ADP7  
PTB2/KBI1P6/SPSCK1/ADP6  
PTB1/KBI1P5/TxD1/ADP5  
PTB0/KBI1P4/RxD1/ADP4  
TPM2CH2-0  
TPM2CLK  
3-CHANNEL TIMER/PWM  
MODULE (TPM2)  
COP  
INT  
LVD  
IRQ  
SCL1  
SDA1  
ACMP2+  
IIC MODULE (IIC1)  
PTC7/TxD2/ACMP2-  
PTC6/RxD2/ACMP2+  
PTC5/TPM3CH5/ACMP2O  
PTC4/TPM3CH4/RSTO  
PTC3/TPM3CH3  
ACMP2O  
ACMP2-  
ANALOG COMPARATOR  
(ACMP2)  
USER FLASH  
128K / 96K / 64K  
TPM3CH5-0  
PTC2/TPM3CH2  
6
6-CHANNEL TIMER/PWM  
MODULE (TPM3)  
PTC1/TPM3CH1  
TPM3CLK  
10  
PTC0/TPM3CH0  
USER RAM  
8K / 6K / 4K  
PTD7/KBI2P7  
PTD6/KBI2P6  
TxD1  
RxD1  
SERIAL COMMUNICATIONS  
INTERFACE (SCI1)  
PTD5/KBI2P5  
PTD4/KBI2P4  
DEBUG MODULE (DBG)  
SS2  
PTD3/KBI2P3/SS2  
PTD2/KBI2P2/MISO2  
PTD1/KBI2P1/MOSI2  
PTD0/KBI2P0/SPSCK2  
MISO2  
MOSI2  
SPSCK2  
SERIAL PERIPHERAL  
INTERFACE MODULE (SPI2)  
REAL TIME COUNTER (RTC)  
VDD  
VDD  
PTE7/TPM3CLK  
PTE6  
TxD2  
RxD2  
VOLTAGE  
SERIAL COMMUNICATIONS  
INTERFACE (SCI2)  
VSS  
VSS  
REGULATOR  
PTE5  
PTE4  
SS1  
PTE3/SS1  
PTJ7  
PTJ6  
PTJ5  
PTJ4  
PTJ3  
PTJ2  
PTJ1  
PTJ0  
MISO1  
MOSI1  
SPSCK1  
PTE2/MISO1  
PTE1/MOSI1  
PTE0/TPM2CLK/SPSCK1  
SERIAL PERIPHERAL  
INTERFACE MODULE (SPI1)  
PTF7/ADP17  
PTF6/ADP16  
PTF5/ADP15  
PTF4/ADP14  
PTF3/ADP13  
PTF2/ADP12  
PTF1/ADP11  
PTF0/ADP10  
24-CHANNEL,12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
VREFH  
VREFL  
VDDA  
VSSA  
SDA2  
SCL2  
PTH7/SDA2  
PTH6/SCL2  
PTH5  
IIC MODULE (IIC2)  
PTG7/ADP23  
PTG6/ADP22  
PTG5/ADP21  
PTG4/ADP20  
PTG3/ADP19  
PTG2/ADP18  
PTG1  
PTH4  
PTH3  
PTH2  
PTH1  
- V  
/V  
internally connected to V  
/V  
in 48-pin and 32-pin packages  
REFH REFL  
DDA SSA  
PTH0  
- V and V pins are each internally connected to two pads in 32-pin package  
DD  
SS  
PTG0  
Figure 1. MC9S08QE128 Series Block Diagram  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
3
MC9S08QE128 Series Comparison  
1
MC9S08QE128 Series Comparison  
The following table compares the various device derivatives available within the MC9S08QE128 series.  
Table 1. MC9S08QE128 Series Features by MCU and Package  
Feature  
MC9S08QE128  
MC9S08QE96  
MC9S08QE64  
Flash size (bytes)  
RAM size (bytes)  
Pin quantity  
ACMP1  
ACMP2  
ADC channels  
DBG  
131072  
8064  
98304  
6016  
65536  
4096  
80 64 48 44 80 64 48 44 64 48 44 32  
yes  
yes  
24 22 10 10 24 22 10 10 22 10 10 10  
yes  
ICS  
yes  
IIC1  
yes  
IIC2  
yes yes no no yes yes no no yes no no no  
IRQ  
yes  
KBI  
16 16 16 16 16 16 16 16 16 16 16 12  
Port I/O1  
70 54 38 34 70 54 38 34 54 38 34 26  
RTC  
yes  
yes  
yes  
yes  
yes  
3
SCI1  
SCI2  
SPI1  
SPI2  
TPM1 channels  
TPM2 channels  
TPM3 channels  
XOSC  
3
6
yes  
1
Port I/O count does not include the input only PTA5/IRQ/TPM1CLK/RESET or the output  
only PTA4/ACMP1O/BKGD/MS.  
MC9S08QE128 Series Data Sheet, Rev. 7  
4
Freescale Semiconductor  
Pin Assignments  
2
Pin Assignments  
This section describes the pin assignments for the available packages. See Table 2 for pin availability by package pin-count.  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
2
3
4
5
6
7
8
PTD1/KBI2P1/MOSI2  
PTD0/KBI2P0/SPSCK2  
PTH7/SDA2  
PTA2/KBI1P2/SDA1/ADP2  
PTA3/KBI1P3/SCL1/ADP3  
PTD2/KBI2P2/MISO2  
PTD3/KBI2P3/SS2  
PTD4/KBI2P4  
PTH6/SCL2  
PTH5  
PTH4  
PTE7/TPM3CLK  
PTJ0  
PTJ1  
PTF0/ADP10  
V
DD  
V
DDAD  
PTF1/ADP11  
9
V
REFH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
V
SS  
V
REFL  
DD  
V
SSAD  
PTE4  
V
SS  
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
PTF2/ADP12  
PTB7/SCL1/EXTAL  
PTB6/SDA1/XTAL  
PTH3  
PTF3/ADP13  
PTJ2  
PTH2  
PTH1  
PTH0  
PTJ3  
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTE6  
Pins in bold are added from the next smaller package.  
Figure 2. Pin Assignments in 80-Pin LQFP  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
5
Pin Assignments  
PTD1/KBI2P1/MOSI2  
PTD0/KBI2P0/SPSCK2  
PTH7/SDA2  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
8
PTA2/KBI1P2/SDA11/ADP2  
PTA3/KBI1P3/SCL1/ADP3  
PTD2/KBI2P2/MISO2  
PTD3/KBI2P3/SS2  
PTD4/KBI2P4  
PTH6/SCL2  
PTE7/TPM3CLK  
V
PTF0/ADP10  
DD  
V
PTF1/ADP11  
DDAD  
V
V
REFH  
SS  
V
V
REFL  
9
DD  
V
PTE4  
SSAD  
10  
11  
12  
13  
14  
15  
16  
V
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
PTF2/ADP12  
SS  
PTB7/SCL1/EXTAL  
PTB6/SDA1/XTAL  
PTF3/ADP13  
PTH1  
PTH0  
PTE6  
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
Pins in bold are added from the next smaller package.  
Figure 3. Pin Assignments in 64-Pin LQFP Package  
MC9S08QE128 Series Data Sheet, Rev. 7  
6
Freescale Semiconductor  
Pin Assignments  
PTA2/KBI1P2/SDA1/ADP2  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD1/KBI2P1/MOSI2  
PTD0/KBI2P0/SPSCK2  
1
2
PTA3/KBI1P3/SCL1/ADP3  
PTD2/KBI2P2/MISO2  
PTD3/KBI2P3/SS2  
PTD4/KBI2P4  
PTE7/TPM3CLK 3  
4
VDD  
VDDAD  
5
VREFH  
V
6
SS  
VREFL  
7
V
DD  
VSSAD  
PTE4  
8
VSS  
9
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTB7/SCL1/EXTAL  
10  
11  
12  
PTB6/SDA11/XTAL  
PTE6  
Figure 4. Pin Assignments in 48-Pin QFN Package  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
7
Pin Assignments  
PTD1/KBI2P1/MOSI2  
PTA2/KBI1P2/SDA1/ADP2  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PTD0/KBI2P0/SPSCK2  
PTA3/KBI1P3/SCL1/ADP3  
PTD2/KBI2P2/MISO2  
PTD3/KBI2P3/SS2  
PTD4/KBI2P4  
2
PTE7/TPM3CLK  
3
VDD  
4
VDDAD  
5
VREFH  
VREFL  
VSS  
6
VDD  
7
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
VSSAD  
8
VSS  
9
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTB7/SCL1/EXTAL  
10  
PTB6/SDA1/XTAL 11  
Figure 5. Pin Assignments in 44-Pin LQFP Package  
MC9S08QE128 Series Data Sheet, Rev. 7  
8
Freescale Semiconductor  
Pin Assignments  
31 30 29 28 27 26 25  
32  
PTD1/KBI2P1/MOSI2  
PTD0/KBI2P0/SPSCK2  
1
PTA2/KBIP2/SDA1/ADP2  
24  
23  
22  
21  
20  
19  
18  
17  
PTA3/KBIP3/SCL1/ADP3  
2
3
4
5
6
7
8
VDD  
PTD2/KBI2P2/MISO2  
PTD3/KBI2P3/SS2  
VREFH/VDDAD  
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
VREFL/VSSAD  
VSS  
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTB7/SCL1/EXTAL  
PTB6/SDA1/XTAL  
9
15 16  
10 11 12 13 14  
Figure 6. Pin Assignments 32-Pin LQFP Package  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
9
Pin Assignments  
Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count  
Pin Number  
Lowest  
←⎯  
Priority  
⎯→  
Highest  
80  
64  
48  
44  
32  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
1
1
1
1
1
2
PTD1  
PTD0  
PTH7  
PTH6  
PTH5  
PTH4  
PTE7  
KBI2P1  
KBI2P0  
SDA2  
MOSI2  
2
2
2
2
SPSCK2  
3
3
3
3
3
4
4
SCL2  
5
5
6
7
TPM3CLK  
8
6
4
4
VDD  
9
7
5
5
4
VDDA  
VREFH  
VREFL  
VSSA  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
8
6
6
5
9
7
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
8
8
9
9
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
7
PTB7  
PTB6  
PTH3  
PTH2  
PTH1  
PTH0  
PTE6  
PTE5  
PTB5  
SCL1  
SDA1  
EXTAL  
XTAL  
8
9
TPM1CH1 SS1  
TPM2CH1 MISO1  
TPM3CH3  
TPM3CH2  
KBI2P7  
10 PTB4  
11 PTC3  
12 PTC2  
PTD7  
PTD6  
PTD5  
PTJ7  
PTJ6  
PTJ5  
PTJ4  
KBI2P6  
KBI2P5  
13 PTC1  
14 PTC0  
TPM3CH1  
TPM3CH0  
PTF7  
PTF6  
PTF5  
PTF4  
ADP17  
ADP16  
ADP15  
ADP14  
ADP7  
15 PTB3  
16 PTB2  
KBI1P7  
KBI1P6  
MOSI1  
SPSCK1  
ADP6  
MC9S08QE128 Series Data Sheet, Rev. 7  
10  
Freescale Semiconductor  
Pin Assignments  
Table 2. MC9S08QE128 Series Pin Assignment by Package and Pin Count (continued)  
Pin Number  
Lowest  
←⎯  
Priority  
⎯→  
Highest  
80  
64  
48  
44  
32  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
17 PTB1  
18 PTB0  
KBI1P5  
KBI1P4  
TxD1  
ADP5  
RxD1  
ADP4  
PTJ3  
PTJ2  
PTF3  
PTF2  
ADP13  
ADP12  
ADP9  
19 PTA7  
20 PTA6  
TPM2CH2  
TPM1CH2  
ADP8  
PTE4  
VDD  
VSS  
PTF1  
PTF0  
PTJ1  
PTJ0  
PTD4  
ADP11  
ADP10  
KBI2P4  
KBI2P3  
KBI2P2  
KBI1P3  
KBI1P2  
KBI1P1  
KBI1P0  
TxD2  
21 PTD3  
22 PTD2  
23 PTA3  
24 PTA2  
25 PTA1  
26 PTA0  
27 PTC7  
28 PTC6  
SS2  
MISO2  
SCL1  
SDA1  
ADP3  
ADP2  
TPM2CH0 ADP1  
TPM1CH0 ADP0  
ACMP1-  
ACMP1+  
ACMP2-  
ACMP2+  
ADP23  
ADP22  
ADP21  
ADP20  
RxD2  
PTG7  
PTG6  
PTG5  
PTG4  
PTE3  
PTE2  
PTG3  
PTG2  
PTG1  
PTG0  
PTE1  
PTE0  
SS1  
MISO1  
ADP19  
ADP18  
MOSI1  
TPM2CLK SPSCK1  
TPM3CH5  
29 PTC5  
30 PTC4  
31 PTA5  
32 PTA4  
ACMP2O  
TPM3CH4 RSTO  
IRQ  
TPM1CLK RESET  
ACMP1O BKGD  
MS  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
11  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08QE128 series of microcontrollers available at the time  
of publication.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 3. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant sample  
size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pull-up resistor associated with the pin is enabled.  
SS  
DD  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
± 25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
2
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
All functional non-supply pins are internally clamped to VSS and VDD  
.
MC9S08QE128 Series Data Sheet, Rev. 7  
12  
Freescale Semiconductor  
 
Electrical Characteristics  
Power supply must maintain regulation within operating VDD range during instantaneous and  
3
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 5. Thermal Characteristics  
Rating  
Symbol  
Value  
Unit  
Operating temperature range (packaged)  
Maximum junction temperature  
TA  
–40 to 85  
95  
°C  
°C  
TJM  
Thermal resistance  
Single-layer board  
32-pin LQFP  
44-pin LQFP  
48-pin QFN  
64-pin LQFP  
80-pin LQFP  
82  
68  
81  
69  
60  
θJA  
°C/W  
°C/W  
θJA  
Thermal resistance  
Four-layer board  
32-pin LQFP  
44-pin LQFP  
48-pin QFN  
64-pin LQFP  
80-pin LQFP  
54  
46  
26  
50  
47  
θJA  
°C/W  
°C/W  
θJA  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
13  
 
Electrical Characteristics  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the  
charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 6. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
C
1500  
100  
3
Ω
Human  
Body  
Storage capacitance  
Number of pulses per pin  
Series resistance  
pF  
R1  
C
0
Ω
Machine Storage capacitance  
Number of pulses per pin  
200  
3
pF  
Minimum input voltage limit  
Latch-up  
– 2.5  
7.5  
V
V
Maximum input voltage limit  
Table 7. ESD and Latch-Up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
Unit  
1
2
3
4
Human body model (HBM)  
Machine model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
± 2000  
± 200  
± 500  
± 100  
V
V
Charge device model (CDM)  
Latch-up current at TA = 85°C  
V
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
MC9S08QE128 Series Data Sheet, Rev. 7  
14  
Freescale Semiconductor  
 
Electrical Characteristics  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 8. DC Characteristics  
Num C  
Characteristic  
Operating Voltage  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
1
1.82  
3.6  
V
Output high  
voltage  
All I/O pins,  
low-drive strength  
C
1.8 V, ILoad = –2 mA VDD – 0.5  
P
2
All I/O pins,  
high-drive strength  
2.7 V, ILoad = –10 mA VDD – 0.5  
2.3 V, ILoad = –6 mA VDD – 0.5  
1.8V, ILoad = –3 mA VDD – 0.5  
VOH  
IOHT  
VOL  
V
mA  
V
T
C
Output high  
current  
Max total IOH for all  
ports  
3
4
D
C
100  
0.5  
Output low  
voltage  
All I/O pins,  
low-drive strength  
1.8 V, ILoad = 2 mA  
P
T
All I/O pins,  
high-drive strength  
2.7 V, ILoad = 10 mA  
2.3 V, ILoad = 6 mA  
1.8 V, ILoad = 3 mA  
0.5  
0.5  
0.5  
C
Output low  
current  
Max total IOL for all  
ports  
5
6
D
IOLT  
100  
mA  
V
P
C
P
C
Input high  
voltage  
all digital inputs  
VDD > 2.7 V  
VDD > 1.8 V  
VDD > 2.7 V  
VDD >1.8 V  
0.70 x VDD  
0.85 x VDD  
VIH  
Input low voltage  
all digital inputs  
0.35 x VDD  
0.30 x VDD  
7
VIL  
8
9
C Input hysteresis  
all digital inputs Vhys  
0.06 x VDD  
mV  
Input leakage  
current  
all input only pins  
|IIn|  
P
VIn = VDD or VSS  
VIn = VDD or VSS  
1
1
μA  
(Per pin)  
Hi-Z (off-state)  
P
all input/output  
|IOZ|  
10  
11  
μA  
kΩ  
leakage current  
(per pin)  
Pull-up resistors  
P
all digital inputs, when  
RPU  
17.5  
52.5  
enabled  
DC injection  
Single pin limit  
–0.2  
–5  
0.2  
5
mA  
mA  
current 3, 4, 5  
12  
D
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
13 C Input Capacitance, all pins  
14 C RAM retention voltage  
15 C POR re-arm voltage6  
16 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
1.79  
0.9  
10  
V
μs  
Low-voltage detection threshold —  
VDD falling  
VDD rising  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
8
17  
P
VLVDH  
V
high range7  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
15  
 
Electrical Characteristics  
Table 8. DC Characteristics (continued)  
Num C  
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
Low-voltage detection threshold —  
low range7  
VDD falling  
VDD rising  
1.80  
1.86  
1.82  
1.90  
1.91  
1.99  
18  
19  
20  
P
P
P
VLVDL  
V
Low-voltage warning threshold —  
high range7  
VDD falling  
2.36  
2.36  
2.46  
2.46  
2.56  
2.56  
VLVWH  
VLVWL  
V
V
VDD rising  
Low-voltage warning threshold —  
low range7  
VDD falling  
VDD rising  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
Low-voltage inhibit reset/recover  
hysteresis7  
21  
22  
C
P
Vhys  
VBG  
50  
mV  
V
Bandgap Voltage Reference9  
1.15  
1.17  
1.18  
1
2
3
4
Typical values are measured at 25°C. Characterized, not tested  
As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL  
All functional non-supply pins are internally clamped to VSS and VDD  
.
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if  
clock rate is very low (which would reduce overall power consumption).  
6
7
8
9
Maximum is highest voltage that POR is guaranteed.  
Low voltage detection and warning limits measured at 1 MHz bus frequency.  
Run at 1 MHz bus frequency  
Factory trimmed at VDD = 3.0 V, Temp = 25°C  
PULL-UP RESISTOR TYPICALS  
40  
35  
30  
25  
20  
PULL-DOWN RESISTOR TYPICALS  
85°C  
40  
35  
30  
25  
20  
85°C  
25°C  
25°C  
–40°C  
–40°C  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
VDD (V)  
Figure 7. Pull-up and Pull-down Typical Resistor Values  
MC9S08QE128 Series Data Sheet, Rev. 7  
16  
Freescale Semiconductor  
 
Electrical Characteristics  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
1
85°C  
25°C  
–40°C  
0.8  
0.6  
0.4  
0.2  
0
85  
25  
–40  
°
C, IOL = 2 mA  
0.05  
0
°
C, IOL = 2 mA  
°
C, IOL = 2 mA  
1
2
3
4
0
5
10  
15  
20  
VDD (V)  
I
OL (mA)  
Figure 8. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
1
0.4  
0.3  
0.2  
0.1  
85°C  
85°C  
25°C  
–40°C  
25°C  
0.8  
0.6  
0.4  
0.2  
–40°C  
IOL = 10 mA  
IOL = 6 mA  
I
OL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
IOL (mA)  
Figure 9. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
1.2  
1
0.25  
0.2  
0.15  
0.1  
0.05  
0
85°C  
85  
25  
–40  
°
C, IOH = 2 mA  
C, IOH = 2 mA  
C, IOH = 2 mA  
25°C  
°
–40°C  
°
0.8  
0.6  
0.4  
0.2  
0
0
–5  
–10  
IOH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
Figure 10. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
17  
Electrical Characteristics  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
0.3  
0.2  
0.1  
85°C  
25°C  
–40°C  
TYPICAL V – V VS I AT V = 3.0 V  
DD  
OH  
OH  
DD  
0.8  
85°C  
25°C  
0.6  
0.4  
0.2  
0
–40°C  
IOH = –10 mA  
IOH = –6 mA  
I
OH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
I
(mA)  
OH  
VDD (V)  
Figure 11. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 9. Supply Current Characteristics  
Bus  
Freq  
VDD  
(V)  
Temp  
(°C)  
Num  
C
Parameter  
Run supply current  
Symbol  
Typ1  
Max  
Unit  
P
P
T
T
T
C
T
T
T
16  
16  
18  
20  
–40 to 25  
85  
25.165 MHz  
FEI mode, all modules on  
1
RIDD  
20 MHz  
8 MHz  
3
14.4  
6.5  
1.4  
11.5  
9.5  
4.6  
1.0  
mA  
–40 to 85  
1 MHz  
Run supply current  
FEI mode, all modules off  
25.165 MHz  
20 MHz  
8 MHz  
12.3  
2
3
RIDD  
3
3
mA  
–40 to 85  
1 MHz  
Run supply current  
LPS=0, all modules off  
16 kHz  
FBILP  
T
T
152  
115  
RIDD  
μA  
–40 to 85  
16 kHz  
FBELP  
Run supply current  
LPS=1, all modules off, running from  
Flash  
0 to 70  
–40 to 85  
0 to 70  
T
T
21.9  
7.3  
16 kHz  
FBELP  
4
5
RIDD  
3
3
μA  
Run supply current  
LPS=1, all modules off, running from  
RAM  
–40 to 85  
C
T
T
T
Wait mode supply current  
FEI mode, all modules off  
25.165 MHz  
20 MHz  
8 MHz  
5.74  
4.57  
2
6
WIDD  
mA  
–-40 to 85  
1 MHz  
0.73  
MC9S08QE128 Series Data Sheet, Rev. 7  
18  
Freescale Semiconductor  
 
Electrical Characteristics  
Temp  
Table 9. Supply Current Characteristics (continued)  
Bus  
VDD  
(V)  
Num  
C
Parameter  
Symbol  
Typ1  
Max  
Unit  
Freq  
(°C)  
P
C
P
C
C
C
P
C
P
C
C
C
Stop2 mode supply current  
0.35  
0.98  
2.5  
0.6  
2.0  
7.5  
0.5  
1.9  
6.5  
1.0  
4.2  
15.0  
0.7  
3.9  
13.2  
-40 to 25  
3
2
3
2
70  
85  
6
S2IDD  
n/a  
μA  
0.25  
1.4  
-40 to 25  
70  
1.91  
0.45  
1.99  
5.0  
85  
Stop3 mode supply current  
No clocks active  
-40 to 25  
70  
85  
7
S3IDD  
n/a  
μA  
0.35  
2.9  
-40 to 25  
70  
3.77  
85  
1
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
Table 10. Stop Mode Adders  
Temperature (°C)  
Num  
C
Parameter  
Condition  
Units  
-40  
25  
70  
85  
1
2
3
4
5
6
7
T
T
T
T
T
T
T
LPO  
50  
1000  
63  
75  
1000  
70  
100  
1100  
77  
150  
1500  
81  
nA  
nA  
uA  
nA  
uA  
uA  
uA  
ERREFSTEN  
IREFSTEN1  
RTC  
RANGE = HGO = 0  
does not include clock source current  
LVDSE = 1  
50  
75  
100  
110  
22  
150  
115  
23  
LVD1  
90  
100  
20  
ACMP1  
ADC1  
not using the bandgap (BGBE = 0)  
18  
ADLPC = ADLSMP = 1 not using the  
bandgap (BGBE = 0)  
95  
106  
114  
120  
1
Not available in stop2 mode.  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
19  
 
Electrical Characteristics  
18.00  
16.00  
14.00  
12.00  
10.00  
8.00  
FEI: 24 MHz  
FBELP: 24 MHz  
FEI: 8 MHz  
FBELP: 8 MHz  
FEI: 1 MHz  
FBELP: 1 MHz  
6.00  
4.00  
2.00  
0.00  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VDD (V)  
Figure 12. Typical Run I for FBE and FEI, I vs. V  
DD  
DD  
DD  
(ADC off, All Other Modules Enabled)  
MC9S08QE128 Series Data Sheet, Rev. 7  
20  
Freescale Semiconductor  
Electrical Characteristics  
3.8  
External Oscillator (XOSC) Characteristics  
Reference Figure 13 and Figure 14 for crystal or resonator circuits.  
Table 11. XOSC and ICS Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
Load capacitors  
See Note2  
See Note3  
C1,C2  
2
3
D
D
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, High Gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
MΩ  
kΩ  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
0
100  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high power  
High range, low power  
High range, high power  
t
200  
400  
5
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
fextal  
FEE or FBE mode  
FBELP mode  
0.03125  
0
40.0  
50.33  
MHz  
MHz  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
21  
 
Electrical Characteristics  
XOSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 13. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSC  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 14. Typical Crystal or Resonator Circuit: Low Range/Low Gain  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
P
P
Characteristic  
Symbol  
Min  
Typ1  
32.768  
Max  
Unit  
Average internal reference frequency — factory trimmed  
fint_ft  
1
kHz  
at VDD = 3.6 V and temperature = 25°C  
Internal reference frequency — user trimmed  
Internal reference start-up time  
Low range (DRS=00)  
DCO output frequency range —  
Mid range (DRS=01)  
trimmed 2  
fint_ut  
tIRST  
2
3
31.25  
39.06  
kHz  
T
P
P
P
P
P
P
16  
32  
48  
60  
100  
20  
40  
60  
μs  
fdco_u  
4
5
MHz  
MHz  
High range (DRS=10)  
DCO output frequency 2  
Low range (DRS=00)  
19.92  
39.85  
59.77  
Reference = 32768 Hz  
and  
DMX32 = 1  
Mid range (DRS=01)  
fdco_DMX32  
High range (DRS=10)  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (using FTRIM)  
Δfdco_res_t  
Δfdco_res_t  
%fdco  
%fdco  
6
7
C
C
± 0.1  
± 0.2  
± 0.2  
± 0.4  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (not using FTRIM)  
MC9S08QE128 Series Data Sheet, Rev. 7  
22  
Freescale Semiconductor  
Electrical Characteristics  
Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Total deviation of trimmed DCO output frequency over voltage  
and temperature  
+ 0.5  
-1.0  
Δfdco_t  
%fdco  
8
C
± 2  
Total deviation of trimmed DCO output frequency over fixed  
voltage and temperature range of 0°C to 70 °C  
Δfdco_t  
tAcquire  
CJitter  
%fdco  
ms  
9
C
C
C
± 0.5  
± 1  
1
FLL acquisition time 3  
10  
11  
Long term jitter of DCO output clock (averaged over 2-ms  
interval) 4  
%fdco  
0.02  
0.2  
1
2
3
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing  
from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,  
this specification assumes it is already running.  
4
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a  
given interval.  
0.60%  
0.40%  
0.20%  
0.00%  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-0.20%  
-0.40%  
-0.60%  
-0.80%  
-1.00%  
VDD  
Figure 15. Deviation of DCO Output Across Temperature at V = 3.0 V  
DD  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
23  
Electrical Characteristics  
0.50%  
0.40%  
0.30%  
0.20%  
0.10%  
0.00%  
2.1V  
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
-0.10%  
-0.20%  
-0.30%  
-0.40%  
-0.50%  
VDD  
Figure 16. Deviation of DCO Output Across V at 25°C  
DD  
3.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
3.10.1 Control Timing  
Table 13. Control Timing  
Num  
C
Rating  
Bus frequency (tcyc = 1/fBus  
Symbol  
Min  
Typ1  
Max  
Unit  
)
VDD 1.8V  
VDD > 2.1V  
VDD > 2.4V  
10  
20  
25.165  
1
D
fBus  
dc  
MHz  
2
3
4
D
D
D
Internal low power oscillator period  
External reset pulse width2  
Reset low drive  
tLPO  
textrst  
trstdrv  
700  
100  
1300  
μs  
ns  
ns  
34 x tcyc  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
5
6
D
D
tMSSU  
tMSH  
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
μs  
MC9S08QE128 Series Data Sheet, Rev. 7  
24  
Freescale Semiconductor  
Electrical Characteristics  
Table 13. Control Timing (continued)  
Rating Symbol  
Num  
C
Min  
Typ1  
Max  
Unit  
IRQ pulse width  
7
D
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
Keyboard interrupt pulse width  
Asynchronous path2  
8
D
C
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
ns  
Synchronous path4  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
8
31  
9
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
7
24  
10  
Voltage regulator recovery time  
tVRR  
4
μs  
1
2
Typical values are based on characterization data at VDD = 3.0V, 25°C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not  
guaranteed to override reset requests from internal sources.  
3
4
5
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 85°C.  
textrst  
RESET PIN  
Figure 17. Reset Timing  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 18. IRQ/KBIPx Timing  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
25  
 
 
Electrical Characteristics  
3.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 14. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 19. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 20. Timer Input Capture Pulse  
MC9S08QE128 Series Data Sheet, Rev. 7  
26  
Freescale Semiconductor  
Electrical Characteristics  
3.10.3 SPI Timing  
Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.  
Table 15. SPI Timing  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
fop  
D
Master  
Slave  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
Hz  
SPSCK period  
Master  
Slave  
tSPSCK  
tLead  
tLag  
1
2
3
4
5
6
D
D
D
D
D
D
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
7
8
D
D
Slave access time  
ta  
tdis  
tv  
1
1
tcyc  
tcyc  
Slave MISO disable time  
Data valid (after SPSCK edge)  
9
D
D
D
D
Master  
Slave  
25  
25  
ns  
ns  
Data hold time (outputs)  
Master  
Slave  
tHO  
10  
11  
12  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
27  
 
 
 
 
 
 
 
 
 
 
 
 
 
Electrical Characteristics  
SS1  
(OUTPUT)  
11  
12  
2
1
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
10  
9
9
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 21. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
11  
2
3
12  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
LSB IN  
9
10  
MOSI  
(OUTPUT)  
MASTER MSB OUT(2)  
PORT DATA  
BIT 6 . . . 1  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 22. SPI Master Timing (CPHA =1)  
MC9S08QE128 Series Data Sheet, Rev. 7  
28  
Freescale Semiconductor  
Electrical Characteristics  
SS  
(INPUT)  
11  
12  
3
12  
11  
1
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
10  
10  
7
9
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 23. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
11  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 24. SPI Slave Timing (CPHA = 1)  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
29  
Electrical Characteristics  
3.11 Analog Comparator (ACMP) Electricals  
Table 16. Analog Comparator Electrical Specifications  
C
D
C
Characteristic  
Symbol  
VDD  
Min  
1.80  
Typical  
Max  
3.6  
35  
Unit  
V
Supply voltage  
Supply current (active)  
IDDAC  
20  
μA  
D
C
C
Analog input voltage  
VAIN  
VAIO  
VH  
VSS – 0.3  
20  
VDD  
40  
V
Analog input offset voltage  
Analog comparator hysteresis  
mV  
mV  
3.0  
9.0  
15.0  
P
C
Analog input leakage current  
IALKG  
tAINIT  
1.0  
1.0  
μA  
μs  
Analog comparator initialization delay  
3.12 ADC Characteristics  
Table 17. 12-bit ADC Operating Conditions  
C
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply voltage Absolute  
VDDAD  
ΔVDDAD  
ΔVSSAD  
VREFH  
VREFL  
1.8  
-100  
-100  
1.8  
0
3.6  
V
mV  
mV  
V
D
2
Delta to VDD (VDD-VDDAD  
)
+100  
+100  
VDDAD  
VSSAD  
VREFH  
5.5  
2
D
D
D
D
Ground voltage  
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
Delta to VSS (VSS-VSSAD  
)
0
VDDAD  
VSSAD  
VSSAD  
VREFL  
V
VADIN  
V
Input  
Capacitance  
CADIN  
4.5  
C
C
pF  
Input Resistance  
RADIN  
RAS  
5
7
kΩ  
Analog Source 12 bit mode  
Resistance fADCK > 4MHz  
fADCK < 4MHz  
External to MCU  
2
5
C
D
10 bit mode  
ADCK > 4MHz  
kΩ  
f
5
10  
fADCK < 4MHz  
8 bit mode (all valid fADCK  
)
10  
8.0  
4.0  
ADCConversion High Speed (ADLPC=0)  
fADCK  
0.4  
0.4  
MHz  
Clock Freq.  
Low Power (ADLPC=1)  
1
2
Typical values assume VDDAD = 3.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential difference.  
MC9S08QE128 Series Data Sheet, Rev. 7  
30  
Freescale Semiconductor  
 
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
Z
ADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
Z
AS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
R
R
AS  
ADIN  
protection  
+
V
ADIN  
C
AS  
V
+
AS  
R
R
R
ADIN  
ADIN  
ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C
ADIN  
Figure 25. ADC Input Impedance Equivalency Diagram  
Table 18. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
REFH  
DDAD  
REFL  
Max  
SSAD  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDAD  
120  
202  
μA  
μA  
μA  
mA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
D
IDDAD  
IDDAD  
IDDAD  
1
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
288  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
0.532  
Supply Current Stop, Reset, Module Off  
P
P
P
IDDAD  
2
0.007  
3.3  
2
0.8  
5
μA  
ADC  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
fADACK  
tADACK = 1/fADACK  
Asynchronous  
Clock Source  
MHz  
1.25  
3.3  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
31  
Electrical Characteristics  
Table 18. 12-bit ADC Characteristics (V  
= V  
Min  
, V  
= V  
) (continued)  
SSAD  
REFH  
DDAD  
REFL  
Characteristic  
Conditions  
C
Symb  
Typ1  
Max  
Unit  
Comment  
Conversion Time Short Sample (ADLSMP=0)  
P
C
tADC  
20  
40  
ADCK  
cycles  
See the ADC  
chapter in the  
MC9S08QE128  
Reference Manual  
for conversion time  
variances  
(Including  
Long Sample (ADLSMP=1)  
sample time)  
Sample Time  
Short Sample (ADLSMP=0)  
Long Sample (ADLSMP=1)  
P
C
T
P
T
T
P
T
T
T
T
T
P
T
T
P
T
D
tADS  
3.5  
23.5  
±3.0  
±1  
ADCK  
cycles  
Total Unadjusted 12 bit mode  
ETUE  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
Includes  
Quantization  
Error  
10 bit mode  
±2.5  
±1.0  
8 bit mode  
±0.5  
Differential  
Non-Linearity  
12 bit mode  
10 bit mode3  
8 bit mode3  
12 bit mode  
10 bit mode  
8 bit mode  
DNL  
INL  
EZS  
EFS  
EQ  
±1.75  
±0.5  
±0.3  
±1.5  
±0.5  
±0.3  
±1.5  
±0.5  
±0.5  
±1.0  
±0.5  
±0.5  
-1 to 0  
±1.0  
±0.5  
Integral  
Non-Linearity  
±1.0  
±0.5  
Zero-Scale Error 12 bit mode  
10 bit mode  
VADIN = VSSAD  
±1.5  
±0.5  
8 bit mode  
Full-Scale Error 12 bit mode  
10 bit mode  
VADIN = VDDAD  
±1  
8 bit mode  
±0.5  
Quantization  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
-40°C to 25°C  
25°C to 85°C  
25°C  
±0.5  
±0.5  
Input Leakage  
Error  
D
EIL  
±2  
LSB2 Pad leakage4 * RAS  
±0.2  
±0.1  
1.646  
1.769  
701.2  
±4  
±1.2  
Temp Sensor  
Slope  
D
D
m
mV/°C  
Temp Sensor  
Voltage  
VTEMP25  
mV  
1
Typical values assume VDDAD = 3.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
1 LSB = (VREFH - VREFL)/2N  
2
3
4
Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes  
Based on input pad leakage current. Refer to pad electricals.  
MC9S08QE128 Series Data Sheet, Rev. 7  
32  
Freescale Semiconductor  
 
 
Electrical Characteristics  
3.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see the Memory section of the MC9S08QE128 Reference Manual.  
Table 19. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
-40°C to 85°C  
D
Vprog/erase  
VRead  
fFCLK  
1.8  
1.8  
150  
5
3.6  
3.6  
V
D
D
D
P
P
P
P
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)(2)  
Byte program time (burst mode)(2)  
Page erase time2  
V
200  
6.67  
kHz  
μs  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
Mass erase time(2)  
tMass  
Byte program current3  
RIDDBP  
RIDDPE  
Page erase current3  
6
Program/erase endurance4  
TL to TH = –40°C to + 85°C  
T = 25°C  
C
C
10,000  
100,000  
cycles  
years  
Data retention5  
tD_ret  
15  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 3.0 V, bus frequency = 4.0 MHz.  
Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on  
how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
33  
 
 
Ordering Information  
4
Ordering Information  
This section contains ordering information for MC9S08QE128, MC9S08QE96, and MC9S08QE64 devices.  
Table 20. Ordering Information  
Memory  
Freescale Part Number1  
Temperature range (°C)  
Package2  
Flash  
RAM  
MC9S08QE128CLK  
MC9S08QE128CLH  
MC9S08QE128CFT  
MC9S08QE128CLD  
MC9S08QE96CLK  
MC9S08QE96CLH  
MC9S08QE96CFT  
MC9S08QE96CLD  
MC9S08QE64CLH  
MC9S08QE64CFT  
MC9S08QE64CLD  
MC9S08QE64CLC  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
80 LQFP  
64 LQFP  
48 QFN  
44 LQFP  
80 LQFP  
64 LQFP  
48 QFN  
44 QFP  
64 LQFP  
48 QFN  
44 QFP  
32 LQFP  
128K  
8K  
96K  
64K  
6K  
4K  
1
2
See the reference manual, MC9S08QE128RM, for a complete description of modules included on each device.  
See Table 21 for package information.  
4.1  
Device Numbering System  
Example of the device numbering system:  
128 C  
9
XX  
MC S08 QE  
Status  
(MC = Fully Qualified)  
Package designator (see Table 21)  
Temperature range  
(C = –40°C to 85°C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in Kbytes  
Family  
5
Package Information  
The below table details the various packages available.  
Table 21. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
80  
64  
48  
44  
32  
Low Quad Flat Package  
Low Quad Flat Package  
Quad Flat No-Leads  
LQFP  
LQFP  
QFN  
LK  
LH  
FT  
LD  
LC  
917A  
840F  
1314  
824D  
873A  
98ASS23237W  
98ASS23234W  
98ARH99048A  
98ASS23225W  
98ASH70029A  
Low Quad Flat Package  
Low Quad Flat Package  
LQFP  
LQFP  
MC9S08QE128 Series Data Sheet, Rev. 7  
34  
Freescale Semiconductor  
 
Package Information  
5.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 21. For the latest available drawings please  
visit our web site (http://www.freescale.com) and enter the package’s document number into the keyword search box.  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
35  
Package Information  
–X–  
X= L, M, N  
4X  
4X 20 TIPS  
0.20 (0.008)  
0.20 (0.008)  
H
L–M  
N
T
L–M  
N
P
80  
61  
C
L
1
60  
AB  
AB  
G
–M–  
B1  
VIEW Y  
B
V
PLATING  
F
–L–  
3X VIEW Y  
BASE  
METAL  
J
V1  
41  
20  
D
U
21  
40  
–N–  
M
S
S
0.13 (0.005)  
T
L–M  
N
A1  
S1  
SECTION AB–AB  
ROTATED 90 CLOCKWISE  
A
S
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –L–, –M– AND –N– TO BE DETERMINED  
AT DATUM PLANE –H–.  
C
8X  
2
0.10 (0.004)  
T
–H–  
–T–  
SEATING  
PLANE  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –T–.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –H–.  
VIEW AA  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE LEAD WIDTH TO EXCEED 0.460  
(0.018). MINIMUM SPACE BETWEEN  
PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION 0.07 (0.003).  
(W)  
C2  
S
0.05 (0.002)  
MILLIMETERS  
MIN MAX  
14.00 BSC  
7.00 BSC  
14.00 BSC  
7.00 BSC  
INCHES  
MIN MAX  
0.551 BSC  
0.276 BSC  
0.551 BSC  
0.276 BSC  
1
DIM  
A
A1  
B
B1  
C
C1  
C2  
D
E
F
G
J
K
P
R1  
S
S1  
U
0.25 (0.010)  
2X R R1  
GAGE  
PLANE  
–––  
0.04  
1.30  
0.22  
0.40  
0.17  
1.60  
–––  
0.002  
0.051  
0.009  
0.016  
0.007  
0.063  
0.24  
1.50  
0.38  
0.75  
0.33  
0.009  
0.059  
0.015  
0.030  
0.013  
(K)  
C1  
E
(Z)  
0.65 BSC  
0.026 BSC  
VIEW AA  
0.09  
0.27  
0.004  
0.011  
0.50 REF  
0.325 BSC  
0.020 REF  
0.013 REF  
0.004 0.008  
0.630 BSC  
0.315 BSC  
0.10  
0.20  
16.00 BSC  
8.00 BSC  
0.09  
0.16  
0.004  
0.006  
V
16.00 BSC  
0.630 BSC  
0.315 BSC  
0.008 REF  
0.039 REF  
V1  
W
Z
8.00 BSC  
0.20 REF  
1.00 REF  
DATE 09/21/95  
CASE 917A-02  
ISSUE C  
0
01  
02  
0
0
9
10  
–––  
14  
0
0
9
10  
–––  
14  
Figure 26. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)  
MC9S08QE128 Series Data Sheet, Rev. 7  
36  
Freescale Semiconductor  
Package Information  
Figure 27. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 1 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
37  
Package Information  
Figure 28. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 2 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
38  
Freescale Semiconductor  
Package Information  
Figure 29. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 3 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
39  
Package Information  
Figure 30. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 1 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
40  
Freescale Semiconductor  
Package Information  
Figure 31. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 2 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
41  
Package Information  
Figure 32. 48-pin QFN Package Drawing (Case 1314, Doc #98ARH99048A), Sheet 3 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
42  
Freescale Semiconductor  
Package Information  
Figure 33. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 1 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
43  
Package Information  
Figure 34. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 2 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
44  
Freescale Semiconductor  
Package Information  
Figure 35. 44-pin LQFP Package Drawing (Case 824D, Doc #98ASS23225W), Sheet 3 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
45  
Package Information  
Figure 36. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 1 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
46  
Freescale Semiconductor  
Package Information  
Figure 37. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 2 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
47  
Package Information  
Figure 38. 32-pin LQFP Package Drawing (Case 873A, Doc #98ASH70029A), Sheet 3 of 3  
MC9S08QE128 Series Data Sheet, Rev. 7  
48  
Freescale Semiconductor  
Product Documentation  
6
Product Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08QE128RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
7
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your  
printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://www.freescale.com  
The following revision history table summarizes changes contained in this document.  
Table 22. Revision History  
Revision  
Date  
Description of Changes  
Replaced 44 QFP package with 44 LQFP package.  
4
9 Nov 2007  
Changed ACMP electricals, VAIO specification’s test category from P to C.  
Updated the tables Thermal Characteristics, DC Characteristics, Supply Current  
Characteristics, XOSC and ICS Specifications (Temperature Range = –40 to 85°C  
Ambient), ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient),  
Control Timing, and Analog Comparator Electrical Specifications, 12-bit ADC  
Characteristics (VREFH = VDDAD, VREFL = VSSAD)  
5
28 May 2008  
Updated the figures Typical Run IDD for FBE and FEI, IDD vs. VDD (ACMP and ADC off,  
All Other Modules Enabled), Deviation of DCO Output from Trimmed Frequency (50.33  
MHz, 3.0 V), and Deviation of DCO Output from Trimmed Frequency (50.33 MHz, 25°C)  
Updated the table Thermal Characteristics  
Updated the row corresponding to Num 18 in the table DC Characteristics  
Updated the tables MC9S08QE128 Series Features by MCU and Package, DC  
Characteristics, Supply Current Characteristics, Thermal Characteristics, Control  
Timing, and Ordering Information  
Updated the figures Typical Run IDD for FBE and FEI, IDD vs. VDD  
(ADC off, All Other Modules Enabled), Deviation of DCO Output Across Temperature at  
VDD = 3.0 V, and Deviation of DCO Output Across VDD at 25×C  
6
7
24 Jun 2008  
2 Oct 2008  
Updated the Stop2 and Stop3 mode supply current in the Supply Current Characteristics table.  
Replaced the stop mode adders section from the Supply Current Characteristics with its own  
Stop Mode Adders table with new specifications.  
MC9S08QE128 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
49  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9S08QE128  
Rev. 7  
10/2008  

相关型号:

MC9S08QE64CLH

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE64CLH

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MC9S08QE64CQD

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8C16

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8C20

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8C28

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8C32

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CLC

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CLC

S08QE 8-bit MCU, S08 core, 8KB Flash, 20MHz, QFP 32
NXP

MC9S08QE8CPG

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE8CTG

8-Bit HCS08 Central Processor Unit
FREESCALE