MCF51CN128CLH [FREESCALE]

MCF51CN128 ColdFire Microcontroller; MCF51CN128的ColdFire微控制器
MCF51CN128CLH
型号: MCF51CN128CLH
厂家: Freescale    Freescale
描述:

MCF51CN128 ColdFire Microcontroller
MCF51CN128的ColdFire微控制器

微控制器 外围集成电路 CD 时钟
文件: 总48页 (文件大小:2707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF51CN128  
Rev. 4, 5/2009  
MCF51CN128  
80 LQFP  
14 mm × 14 mm  
64 LQFP  
10 mm × 10 mm  
MCF51CN128 ColdFire  
Microcontroller  
Cover: MCF51CN128  
48 QFN  
7 mm × 7 mm  
The MCF51CN128 device is a low-cost, low-power,  
high-performance 32-bit ColdFire V1 microcontroller (MCU)  
featuring 10/100 BASE-T/TX fast ethernet controller (FEC),  
media independent interface (MII) to connect an external  
physical transceiver (PHY), and multi-function external bus  
interface.  
– MII—media independent interface to connect ethernet  
controller to external PHY; includes output clock for  
external PHY  
• External Bus  
– Mini-FlexBus—Multi-function external bus interface;  
supports up to 1 MB memories, gate-array logic, simple  
slave device or glueless interfaces to standard  
chip-selected asynchronous memories  
MCF51CN128 also has multiple communication interfaces  
for various ethernet gateway applications. MCF51CN128 is  
the first ColdFire V1 device to incorporate ethernet and  
external bus interface along with new features to minimize  
power consumption and increase functionality in low-power  
modes.  
– Programmable options: access time per chip select, burst  
and burst-inhibited transfers per chip select, transfer  
direction, and address setup and hold times  
• Power-Saving Modes  
– Two low-power stop modes, one of which allows limited  
use of some peripherals (ADC, KBI, RTC)  
– Reduced-power wait mode shuts off CPU and allows  
full use of all peripherals; FEC can remain active and  
conduct DMA transfers to RAM and assert an interrupt  
to wake up the CPU upon completion  
The MCF51CN128 features the following functional units:  
• 32-bit ColdFire V1 Central Processing Unit (CPU)  
– Up to 50.33 MHz ColdFire CPU from 3.6 V to 3.0 V, up  
to 40 MHz CPU from 3.0 V to 2.1 V, and up to 20 MHz  
CPU from 2.1 V to 1.8 V across temperature range of  
–40 °C to 85 °C  
– Low-power run and wait modes allow peripherals to run  
while the voltage regulator is in standby  
– Provides 0.94 Dhrystone 2.1 MIPS per MHz  
performance when running from internal RAM  
(0.76 DMIPS/MHz from flash)  
– ColdFire Instruction Set Revision C (ISA_C)  
– Support for up to 45 peripheral interrupt requests and 7  
software interrupts  
– Peripheral clock enable register can disable clocks to  
unused modules, thereby reducing currents  
– Low-power external oscillator that can be used in stop3  
mode to provide accurate clock source to active  
peripherals  
• On-Chip Memory  
– Low-power real-time counter for use in run, wait, and  
stop modes with internal and external clock sources  
– 6 μs typical wake-up time from stop3 mode  
– Pins and clocks to peripherals not available in smaller  
packages are automatically disabled for reduced current  
consumption; no user interaction is needed  
• Clock Source Options  
– 128 KB Flash, 24 KB RAM  
– Flash read/program/erase over full operating voltage  
and temperature  
– On-chip memory aliased to create a contiguous memory  
space with off-chip memory  
– Security circuitry to prevent unauthorized access to  
Peripherals, RAM, and flash contents  
– Oscillator (XOSC) — Loop-control pierce oscillator;  
crystal or ceramic resonator range of 31.25 kHz to  
38.4 kHz or 1 MHz to 25 MHz  
– Multi-Purpose Clock Generator (MCG) — Flexible  
clock source module with either frequency-locked-loop  
(FLL) or phase-lock loop (PLL) clock options. FLL can  
be controlled by internal or external reference and  
• Ethernet  
– FEC—10/100 BASE-T/TX, bus-mastering fast ethernet  
controller with direct memory access (DMA); supports  
half or full duplex; operation is limited to 3.0 V to 3.6 V  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
includes precision trimming of internal reference, allowing 0.2% resolution and 2% deviation over temperature and  
voltage. PLL derives a higher accuracy clock source derived by an external reference  
• System Protection  
– Watchdog computer operating properly (COP) reset with option to run from dedicated 1-kHz internal clock source or bus  
clock  
– Low-voltage detection with reset or interrupt; selectable trip points  
– Illegal opcode and illegal address detection with programmable reset or exception response  
– Flash block protection  
• Development Support  
– Single-wire background debug module (BDM) interface; supports same electrical interface used by the S08, 9S12, and  
9S12x families debug modules  
– 4 PC plus 2 address (optional data) breakpoint registers with programmable 1- or 2-level trigger response  
– 64-entry processor status and debug data trace buffer with programmable start/stop conditions  
• Peripherals  
– ADC—Up to 12 channel, 12-bit resolution; 2.5 μs conversion time; automatic compare function; 1.7 mV/°C temperature  
sensor; internal bandgap reference channel; operation in stop3; fully functional from 3.6 V to 1.8 V  
– SCI—Three modules with optional 13-bit break  
– SPI—Two interfaces with full-duplex or single-wire bi-directional; double-buffered transmit and receive; master or slave  
mode; MSB-first or LSB-first shifting  
– IIC—Two IICs with up to 100 kbps with maxmimum bus loading; multi-master operation; programmable slave address;  
interrupt-driven byte-by-byte data transfer; supports broadcast mode and 11-bit addressing  
– TPM—Two 3-channel, 16-bit resolution modules; selectable input capture, output compare, or buffered edge- or  
center-aligned PWM on each channel  
– RTC—8-bit modulus counter with binary- or decimal-based prescaler; external clock source for precise time base,  
time-of-day, calendar- or task-scheduling functions; free-running on-chip low-power oscillator (1 kHz) for cyclic wake-up  
without external components; runs in all MCU modes  
– MTIM—Two 8-bit resolution modulo timers with 8-bit prescaler  
• Input/Output  
– Up to 70 general-purpose input/output (GPIO) pins, all with pin mux controls to select alternate functions  
– 16 keyboard interrupt (KBI) pins with selectable polarity  
– Hysteresis and configurable pull-up device or input filtering on all input pins; configurable slew rate and drive strength on  
all output pins  
– 16 Rapid GPIO pins connected to the CPU’s high-speed local bus with set, clear, and toggle functionality (PTD and PTF)  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
2
Freescale Semiconductor  
Table of Contents  
MCF51CN128 Series Comparison. . . . . . . . . . . . . . . . . . . . . .4  
1
Table 13..Receive Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 14..Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 15..MII Transmit Signal Timing . . . . . . . . . . . . . . . . . . . . . 25  
Table 16..MII Serial Management Channel Signal Timing . . . . . 26  
Table 17..Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 18..TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 19..SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 20..12-bit ADC Operating Conditions . . . . . . . . . . . . . . . . 32  
Table 21..12-bit ADC Characteristics (VREFH = VDDAD, VREFL  
1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .12  
3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12  
3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13  
3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .14  
3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18  
3.8 External Oscillator (XOSC) Characteristics . . . . . . . . .20  
3.9 Multipurpose Clock Generator (MCG) Specifications . .21  
3.10 Mini-FlexBus Timing Specifications . . . . . . . . . . . . . . .23  
3.11 Fast Ethernet Timing Specifications . . . . . . . . . . . . . . .24  
3.11.1 Receive Signal Timing Specifications . . . . . . . .24  
3.11.2 Transmit Signal Timing Specifications . . . . . . . .25  
3.11.3 Asynchronous Input Signal Timing Specifications25  
3.11.4 MII Serial Management Timing Specifications .26  
3.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.12.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.12.2 TPM Module Timing . . . . . . . . . . . . . . . . . . . . .28  
3.12.3 SPI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
3.12.4 ADC Characteristics . . . . . . . . . . . . . . . . . . . . .32  
3.12.5 Flash Specifications. . . . . . . . . . . . . . . . . . . . . .35  
3.13 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
3.13.1 Radiated Emissions. . . . . . . . . . . . . . . . . . . . . .36  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .36  
6.1 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
6.2 64-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
6.3 48-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
2
3
=
V
SSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 22..Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 23..Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 24..Package Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 25..Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
List of Figures  
Figure 1..MCF51CN128 Series Block Diagram . . . . . . . . . . . . . . 5  
Figure 2..Pin Assignments in 80-Pin LQFP Package. . . . . . . . . . 6  
Figure 3..Pin Assignments in 64-Pin LQFP Package. . . . . . . . . . 7  
Figure 4..Pin Assignments in 48-Pin QFN Package. . . . . . . . . . . 8  
Figure 5..Pull-up and Pull-down Typical Resistor Values . . . . . . 16  
Figure 6..Typical Low-Side Driver (Sink) Characteristics — Low Drive  
(PTxDSn = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 7..Typical Low-Side Driver (Sink) Characteristics — High  
Drive (PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 8..Typical High-Side (Source) Characteristics — Low Drive  
(PTxDSn = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 9..Typical High-Side (Source) Characteristics — High Drive  
(PTxDSn = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4
5
6
Figure 10..Typical Run IDD for FBE and FEI, IDD vs. VDD  
(ADC off, All Other Modules Enabled). . . . . . . . . . . . . 19  
Figure 11..Typical Crystal or Resonator Circuit: High Range and Low  
Range/High Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12..Typical Crystal or Resonator Circuit: Low Range/Low  
Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7
Figure 13..Mini-FlexBus Read Timing . . . . . . . . . . . . . . . . . . . . 23  
Figure 14..Mini-FlexBus Write Timing . . . . . . . . . . . . . . . . . . . . 24  
Figure 15..MII Receive Signal Timing Diagram . . . . . . . . . . . . . 25  
Figure 16..MII Transmit Signal Timing Diagram . . . . . . . . . . . . . 25  
Figure 17..MII Async Inputs Timing Diagram. . . . . . . . . . . . . . . 25  
Figure 18..MII Serial Management Channel TIming Diagram . . 26  
Figure 19..Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 20..IRQ/KBIPx Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 21..Timer External Clock. . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 22..Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . 28  
Figure 23..SPI Master Timing (CPHA = 0). . . . . . . . . . . . . . . . . 30  
Figure 24..SPI Master Timing (CPHA =1) . . . . . . . . . . . . . . . . . 30  
Figure 25..SPI Slave Timing (CPHA = 0). . . . . . . . . . . . . . . . . . 31  
Figure 26..SPI Slave Timing (CPHA = 1). . . . . . . . . . . . . . . . . . 31  
Figure 27..ADC Input Impedance Equivalency Diagram . . . . . . 33  
List of Tables  
Table 1.. MCF51CN128 Series Device Comparison . . . . . . . . . . .4  
Table 2.. Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . .8  
Table 3.. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . .12  
Table 4.. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12  
Table 5.. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13  
Table 6.. ESD and Latch-up Test Conditions. . . . . . . . . . . . . . . .14  
Table 7.. ESD and Latch-Up Protection Characteristics . . . . . . .14  
Table 8.. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Table 9.. Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18  
Table 10..XOSC and ICS Specifications (Temperature Range = –40  
to 85 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Table 11..MCG Frequency Specifications (Temperature Range = –40  
to 125 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 12..Mini-FlexBus AC Timing Specifications . . . . . . . . . . . .23  
MCF51CN128 ColdFire Microcontroller Advance Information Data Sheet, Rev. 4  
Freescale Semiconductor  
3
MCF51CN128 Series Comparison  
1
MCF51CN128 Series Comparison  
1.1  
Device Comparison  
The following table compares the various device derivatives available within the MCF51CN128 series.  
Table 1. MCF51CN128 Series Device Comparison  
MCF51CN128  
Feature  
80-pin  
64-pin  
48-pin  
Flash memory size (KB)  
RAM size (KB)  
128  
24  
V1 ColdFire core equiped with BDM (background debug  
module) and 2X3 Crossbar switch  
Yes  
ADC (analog-to-digital converter) channels (12-bit)  
FEC (Fast Ethernet Controller with MII Interface)  
COP (computer operating properly)  
IIC1 (inter-integrated circuit)  
IIC2  
12  
Yes  
Yes  
Yes  
Yes  
Yes  
12  
IRQ (interrupt request input)  
KBI (keyboard interrupts)  
16  
6
LVD (low-voltage detector)  
MCG (multipurpose clock generator)  
Port I/O1  
Yes  
Yes  
54  
70  
16  
38  
8
RGPIO (rapid general-purpose I/O)  
RTC (real-time counter)  
16  
Yes  
Yes  
Yes  
3
SCI1, SCI2 & SCI3 (serial communications interface)  
SPI1 & SPI2 (serial peripheral interface)  
TPM1 (Timer/PWM Module) channels  
TPM2 channels  
3
3
3
3
3
MTIM1 & MTIM2  
Yes2  
1
External Timer Clocks  
2
1
0
Mini-FlexBus  
Yes  
0
XOSC (crystal oscillator)  
Yes  
1
All GPIO are muxed with other functions  
2
TMRCLK2 is not available on the 48 pin package, although MTIM2 can be used as an  
internal timebase using on-chip clock sources.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
4
Freescale Semiconductor  
MCF51CN128 Series Comparison  
1.2  
Block Diagram  
The following figure shows the connections between the MCF51CN128 series pins and modules.  
PTA7/MII_RX_DV/MOSI2  
PTA6/MII_RXD0/MISO2  
PTA5/MII_RXD1/SPSCK2  
PTA4/MII_RXD2/RXD3  
PTA3/MII_RXD3/TXD3  
PTA2/MII_MDC/SCL2  
PTA1/MII_MDIO/SDA2  
PTA0/PHYCLK  
PTB7/MII_TXD2/TPM2CH1  
PTB6/MII_TXD1/TPM2CH0  
PTB5/MII_TXD0/SPSCK1  
PTB4/MII_TX_EN/MISO1  
PTB3/MII_TX_CLK/MOSI1  
PTB2/MII_TX_ER/SS1  
VDDA/  
VDDA  
VREFH  
VSSA  
Port C:  
ADP3-  
ADP0  
Port D:  
ADP8-  
ADP4  
Port E:  
ADP11-  
ADP9  
Port C/G:  
SDA1  
VREFH  
IIC1  
IIC2  
VSSA/  
VREFL  
SCL1  
VREFL  
ADC  
Port C/G:  
SDA2  
DBG  
INTC  
SCL2  
BDM  
Port D:  
Port E:  
KBI2P7  
KBI2P6  
KBI2P5  
KBI2P4  
KBI2P3  
KBI2P2  
BKGD/MS  
BKGD/MS/PTD6/RGPIO6  
Port E:  
TPM1CH2  
TPM1CH1  
TPM1CH0  
TPM1  
PTB1/MII_RX_ER/TMRCLK1  
PTB0/MII_RX_CLK/SS2  
KBI2P1  
KBI2P0  
ColdFire V1 core  
Port B, F or H* : TPM1CLK  
PTC7/SDA2/SPSCK1/ADP8  
PTC6/SCL2/MISO1/ADP9  
PTC5/MOSI1/ADP10  
PTC4/IRQ/SS1/ADP11  
PTC2/MII_CRS/SDA1  
Port G/I:  
KBI1P7  
KBI1P6  
KBI1P5  
KBI1P4  
KBI1P3  
KBI1P2  
KBI1P1  
KBI1P0  
KBI  
Port F/H:  
TPM2CH2  
TPM2CH1  
TPM2CH0  
RESET/PTC3  
TPM2  
PTC1/MII_COL/SCL1  
PTC0/MII_TXD3/TPM2CH2  
Port B, F or H* : TPM2CLK  
SIM  
PTD7/RGPIO7/SPSCK2/ADP3  
BKGD/MS/PTD6/RGPIO6  
PTD5/RGPIO5/XTAL  
Port F:  
RGPIO15  
RGPIO14  
RGPIO13  
RGPIO12  
RGPIO11  
RGPIO10  
RGPIO9  
PTD4/RGPIO4/EXTAL  
LVD  
COP  
PTD3/RGPIO3/RXD2/ADP4  
PTD2/RGPIO2/TXD2/ADP5  
PTD1/RGPIO1/RXD1/ADP6  
PTD0/RGPIO0/TXD1/ADP7  
Port D:  
EXTAL  
XTAL  
Port A:  
CLKOUT  
MCG  
XOSC  
RTC  
FLASH  
128 KB  
PTE7/KBI2P7/FB_CS0/RXD3  
PTE6/KBI2P6/FB_D0/TXD3  
PTE5/KBI2P5/IRQ/TPM1CH2  
PTE4/KBI2P4/CLKOUT/TPM1CH1  
PTE3/KBI2P3/TPM1CH0  
PTE2/KBI2P2/SS2/ADP0  
PTE1/KBI2P1/MOSI2/ADP1  
PTE0/KBI2P0/MISO2/ADP2  
PTF7/RGPIO15/FB_A13/FB_AD13/TPM2CH2  
PTF6/RGPIO14/FB_A14/FB_AD14/TPM2CH1  
PTF5/RGPIO13/FB_D4/TPM2CH0  
PTF4/RGPIO12/FB_D5/TMRCLK2  
PTF3/RGPIO11/FB_A16/FB_AD16  
PTF2/RGPIO10/FB_A17/FB_AD17  
PTF1/RGPIO9/FB_A18/FB_AD18  
RGPIO8  
RAM  
24 KB  
RGPIO  
Port D:  
RGPIO7  
RGPIO6  
RGPIO5  
RGPIO4  
RGPIO3  
RGPIO2  
RGPIO1  
RGPIO0  
Port A:  
Port B, F or H* :  
MII_TX_CLK  
MII_RX_CLK  
MII_TX_EN  
MII_TXD0  
MTIM1  
MTIM2  
MTIM1CLK  
Port B, F or H* :  
MII_TXD1  
MTIM2CLK  
MII_TXD2  
MII_TXD3  
Port B:  
MII_TX_ER  
MII_RX_DV  
MII_RXD0  
MII_RXD1  
MII_RXD2  
MII_RXD3  
MII_RX_ER  
MII_CRS  
Port C:  
MII_COL  
MII_MDC  
MII_MDIO  
MII  
PTF0/RGPIO8/FB_A19/FB_AD19  
Port D:  
RXD1  
TXD1  
Port F:  
FB_D7-FB_D0  
SCI1  
PTG7/KBI1P7/FB_D1  
PTG6/KBI1P6/FB_D2  
PTG5/KBI1P5/FB_D3  
PTG4/KBI1P4/FB_RW  
PTG3/KBI1P3/FB_A5/FB_AD5/SDA1  
PTG2/KBI1P2/FB_A6/FB_AD6/SCL1  
PTG1/KBI1P1/FB_A7/FB_AD7/SDA2  
PTG0/KBI1P0/FB_A8/FB_AD8/SCL2  
Port H:  
FB_A19-FB_A16  
FB_A11-FB_A8  
Port D:  
RXD2  
TXD2  
SCI2  
Port G:  
FB_CS1  
FB_CS0  
OE  
FB_RW  
Port E:  
RXD3  
TXD3  
Mini-FlexBus  
PTH7/FB_A9/FB_AD9/TPM2CH2  
PTH6/FB_A10/FB_AD10/TPM2CH1  
PTH5/FB_A11/FB_AD11  
PTH4/FB_A12/FB_AD12  
PTH3/FB_D6/TPM2CH0  
PTH2/FB_D7/TMRCLK1  
PTH1/FB_OE  
SCI3  
FB_A5-FB_A2  
FEC  
Port I:  
FB_A15-FB_A12  
FB_A7-FB_A6  
Port E:  
FB_A1-FB_A0  
Port C:  
SS1  
SPSCK1  
MOSI1  
MISO1  
SPI1  
VDD1  
VSS1  
VDD2  
VSS2  
VDD3  
VSS3  
VDD4  
VSS4  
PTH0/FB_A15/FB_AD15  
PTJ5/FB_A0/FB_AD0  
PTJ4/FB_A1/FB_AD1  
PTJ3/FB_A2/FB_AD2  
PTJ2/FB_A3/FB_AD3  
PTJ1/FB_A4/FB_AD4  
PTJ0/FB_ALE/FB_CS1  
VREG  
Port D/E:  
SS2  
SPSCK2  
MOSI2  
MISO2  
Port C:  
IRQ  
SPI2  
External Interrupt  
* TPMx and MTIMx external clocks each have the choice of being assigned to either TMRCLK1 or TMRCLK2.  
Figure 1. MCF51CN128 Series Block Diagram  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
5
Pin Assignments  
2
Pin Assignments  
This section describes the pin assignments for the available packages. See for pin availability by package pin-count.  
VDD1  
VSS1  
PTA0/PHYCLK  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PTG7/KBI1P7/FB_D1  
PTG6/KBI1P6/FB_D2  
PTG5/KBI1P5/FB_D3  
PTG4/KBI1P4/FB_RW  
PTG3/KBI1P3/FB_A5/FB_AD5/SDA1  
PTG2/KBI1P2/FB_A6/FB_AD6/SCL1  
PTG1/KBI1P1/FB_A7/FB_AD7/SDA2  
PTG0/KBI1P0/FB_A8/FB_AD8/SCL2  
PTD3/RGPIO3/RXD2/ADP4  
PTD2/RGPIO2/TXD2/ADP5  
PTD1/RGPIO1/RXD1/ADP6  
PTD0/RGPIO0/TXD1/ADP7  
PTC7/SDA2/SPSCK1/ADP8  
PTC6/SCL2/MISO1/ADP9  
PTC5/MOSI1/ADP10  
2
3
4
PTA1/MII_MDIO/SDA2  
PTA2/MII_MDC/SCL2  
5
6
PTA3/MII_RXD3/TXD3  
PTA4/MII_RXD2/RXD3  
PTA5/MII_RXD1/SPSCK2  
PTA6/MII_RXD0/MISO2  
PTA7/MII_RX_DV/MOSI2  
PTB0/MII_RX_CLK/SS2  
PTB1/MII_RX_ER/TMRCLK1  
PTF0/RGPIO8/FB_A19/FB_AD19  
PTF1/RGPIO9/FB_A18/FB_AD18  
PTF2/RGPIO10/FB_A17/FB_AD17  
PTF3/RGPIO11/FB_A16/FB_AD16  
PTH0/FB_A15/FB_AD15  
PTH1/FB_OE  
7
8
9
80-Pin LQFP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTC4/IRQ/SS1/ADP11  
VSSA  
VDDA  
VSS3  
PTH2/FB_D7/TMRCLK1  
PTH3/FB_D6/TPM2CH0  
VDD3  
Figure 2. Pin Assignments in 80-Pin LQFP Package  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
6
Freescale Semiconductor  
Pin Assignments  
VDD1  
VSS1  
PTA0/PHYCLK  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PTG3/KBI1P3/FB_A5/FB_AD5/SDA1  
PTG2/KBI1P2/FB_A6/FB_AD6/SCL1  
PTG1/KBI1P1/FB_A7/FB_AD7/SDA2  
PTG0/KBI1P0/FB_A8/FB_AD8/SCL2  
PTD3/RGPIO3/RXD2/ADP4  
PTD2/RGPIO2/TXD2/ADP5  
PTD1/RGPIO1/RXD1/ADP6  
PTD0/RGPIO0/TXD1/ADP7  
PTC7/SDA2/SPSCK1/ADP8  
PTC6/SCL2/MISO1/ADP9  
PTC5/MOSI1/ADP10  
PTC4/IRQ/SS1/ADP11  
VSSA  
PTA1/MII_MDIO/SDA2  
PTA2/MII_MDC/SCL2  
PTA3/MII_RXD3/TXD3  
PTA4/MII_RXD2/RXD3  
PTA5/MII_RXD1/SPSCK2  
PTA6/MII_RXD0/MISO2  
PTA7/MII_RX_DV/MOSI2  
PTB0/MII_RX_CLK/SS2  
PTB1/MII_RX_ER/TMRCLK1  
PTF0/RGPIO8/FB_A19/FB_AD19  
PTF1/RGPIO9/FB_A18/FB_AD18  
PTF2/RGPIO10/FB_A17/FB_AD17  
PTF3/RGPIO11/FB_A16/FB_AD16  
64-Pin LQFP  
9
10  
11  
12  
13  
14  
15  
16  
VDDA  
VSS3  
VDD3  
Figure 3. Pin Assignments in 64-Pin LQFP Package  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Pin Assignments  
PTD3/RGPIO3/RXD2/ADP4  
PTD2/RGPIO2/TXD2/ADP5  
PTD1/RGPIO1/RXD1/ADP6  
PTD0/RGPIO0/TXD1/ADP7  
PTC7/SDA2/SPSCK1/ADP8  
PTC6/SCL2/MISO1/ADP9  
PTC5/MOSI1/ADP10  
PTC4/IRQ/SS1/ADP11  
VSSA  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD1  
VSS1  
1
2
PTA0/PHYCLK  
3
PTA1/MII_MDIO/SDA2  
PTA2/MII_MDC/SCL2  
4
5
PTA3/MII_RXD3/TXD3  
6
48-Pin QFN  
PTA4/MII_RXD2/RXD3  
PTA5/MII_RXD1/SPSCK2  
PTA6/MII_RXD0/MISO2  
PTA7/MII_RX_DV/MOSI2  
PTB0/MII_RX_CLK/SS2  
PTB1/MII_RX_ER/TMRCLK1  
7
8
9
10  
11  
12  
VDDA  
VSS3  
VDD3  
Figure 4. Pin Assignments in 48-Pin QFN Package  
NOTE  
There is no electrical connection to the flag for 48-pin QFN packages.  
Table 2. Package Pin Assignments  
80-Pin 64-Pin 48-Pin Default Function  
Alt 1  
Alt 2  
Alt 3  
Comment  
1
2
3
1
2
3
1
2
3
VDD1  
VSS1  
PTA0  
PHYCLK  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
8
Freescale Semiconductor  
Pin Assignments  
Comment  
Table 2. Package Pin Assignments (continued)  
80-Pin 64-Pin 48-Pin Default Function  
Alt 1  
Alt 2  
Alt 3  
4
4
4
PTA1  
PTA2  
MII_MDIO  
MII_MDC  
MII_RXD3  
MII_RXD2  
MII_RXD1  
MII_RXD0  
MII_RX_DV  
MII_RX_CLK  
MII_RX_ER  
SDA2  
5
5
5
SCL2  
6
6
6
PTA3  
TXD3  
7
7
7
PTA4  
RXD3  
8
8
8
PTA5  
SPSCK2  
9
9
9
PTA6  
MISO2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
PTA7  
MOSI2  
PTB0  
SS2  
PTB1  
TMRCLK1  
PTF0/RGPIO8  
PTF1/RGPIO9  
PTF2/RGPIO10  
PTF3/RGPIO11  
PTH0  
FB_A19/FB_AD19  
RGPIO_ENB selects  
between standard GPIO  
and RGPIO  
FB_A18/FB_AD18  
FB_A17/FB_AD17  
FB_A16/FB_AD16  
FB_A15/FB_AD15  
PTH1  
FB_OE  
FB_D7  
FB_D6  
PTH2  
TMRCLK1  
TPM2CH0  
PTH3  
VDD2  
VSS2  
PTB2  
MII_TX_ER  
MII_TX_CLK  
MII_TX_EN  
MII_TXD0  
MII_TXD1  
MII_TXD2  
MII_TXD3  
MII_COL  
MII_CRS  
SS1  
MOSI1  
MISO1  
SPSCK1  
PTB3  
PTB4  
PTB5  
PTB6  
TPM2CH0  
TPM2CH1  
TPM2CH2  
SCL1  
SDA1  
PTB7  
PTC0  
PTC1  
PTC2  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Pin Assignments  
Table 2. Package Pin Assignments (continued)  
80-Pin 64-Pin 48-Pin Default Function  
Alt 1  
Alt 2  
Alt 3  
Comment  
32  
28  
24  
RESET  
PTC3  
This pin is a  
bi-directional open drain  
pin and has an internal  
pullup. There is no  
clamp diode to VDD.  
DSE and SRE port  
controls for this bit have  
no effect.  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PTF4/RGPIO12  
PTF5/RGPIO13  
PTF6/RGPIO14  
PTF7/RGPIO15  
PTH4  
FB_D5  
FB_D4  
TMRCLK2  
TPM2CH0  
TPM2CH1  
TPM2CH2  
RGPIO_ENB selects  
between standard GPIO  
and RGPIO  
FB_A14/FB_AD14  
FB_A13/FB_AD13  
FB_A12/FB_AD12  
FB_A11/FB_AD11  
FB_A10/FB_AD10  
FB_A9/FB_AD9  
PTH5  
PTH6  
TPM2CH1  
TPM2CH2  
PTH7  
VDD3  
VSS3  
VDDA  
VSSA  
PTC4  
IRQ  
SS1  
ADP11  
ADP10  
ADP9  
ADP8  
ADP7  
ADP6  
ADP5  
ADP4  
SCL2  
SDA2  
SCL1  
SDA1  
PTC5  
MOSI1  
PTC6  
SCL2  
SDA2  
MISO1  
PTC7  
SPSCK1  
PTD0/RGPIO0  
PTD1/RGPIO1  
PTD2/RGPIO2  
PTD3/RGPIO3  
PTG0  
TXD1  
RGPIO_ENB selects  
between standard GPIO  
and RGPIO  
RXD1  
TXD2  
RXD2  
KBI1P0  
KBI1P1  
KBI1P2  
KBI1P3  
KBI1P4  
KBI1P5  
KBI1P6  
FB_A8/FB_AD8  
FB_A7/FB_AD7  
FB_A6/FB_AD6  
FB_A5/FB_AD5  
FB_RW  
PTG1  
PTG2  
PTG3  
PTG4  
PTG5  
FB_D3  
PTG6  
FB_D2  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
Electrical Characteristics  
Comment  
Table 2. Package Pin Assignments (continued)  
80-Pin 64-Pin 48-Pin Default Function  
Alt 1  
Alt 2  
Alt 3  
60  
61  
62  
63  
64  
49  
50  
51  
52  
37  
38  
39  
40  
PTG7  
VDD4  
KBI1P7  
FB_D1  
VSS4  
PTD4/RGPIO4  
PTD5/RGPIO5  
EXTAL  
XTAL  
RGPIO_ENB selects  
between standard GPIO  
and RGPIO  
65  
53  
41  
BKGD/MS  
PTD6/RGPIO6  
This pin has an internal  
pullup. PTD6/RGPIO6  
can only be  
programmed as an  
output.1  
66  
54  
42  
PTD7RGPIO7  
SPSCK2  
ADP3  
RGPIO_ENB selects  
between standard GPIO  
and RGPIO  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
43  
44  
45  
46  
47  
48  
PTE0  
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
PTE6  
PTE7  
PTJ0  
PTJ1  
PTJ2  
PTJ3  
PTJ4  
PTJ5  
KBI2P0  
KBI2P1  
KBI2P2  
KBI2P3  
KBI2P4  
KBI2P5  
KBI2P6  
KBI2P7  
FB_ALE  
MISO2  
MOSI2  
ADP2  
ADP1  
ADP0  
TPM1CH0  
TPM1CH1  
TPM1CH2  
TXD3  
RXD3  
SS2  
CLKOUT  
IRQ  
FB_D0  
FB_CS0  
FB_CS1  
FB_A4/FB_AD4  
FB_A3/FB_AD3  
FB_A2/FB_AD2  
FB_A1/FB_AD1  
FB_A0/FB_AD0  
1
RGPIO_ENB selects between standard GPIO and RGPIO. When PTD6 is set as RGPIO output, and "1" is driven to PTD6 via  
RGPIO function, a read of register RGPIODATA6 always returns a "0" because V1 RGPIO design looks for IO enable when the  
return value of RGPIO function reads data. As PTD6 is set to RGPIO output only, it returns "0" always to RGPIODATA6, athough  
PTD6 pin is driven to high.  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MCF51CN128 series of microcontrollers available at the time  
of publication.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Electrical Characteristics  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 3. Parameter Classifications  
These parameters are guaranteed during production testing on each individual device.  
P
C
These parameters are achieved by the design characterization by measuring a statistically relevant sample  
size across process variations.  
These parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
These parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pull-up resistor associated with the pin is enabled.  
SS  
DD  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
± 25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
I
DD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
Electrical Characteristics  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 5. Thermal Characteristics  
Symbol  
Rating  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
TA  
°C  
°C  
(–40 to 85 or 0 to 70)1  
95  
Maximum junction temperature  
TJM  
Thermal resistance  
Single-layer board  
48-pin QFN  
64-pin LQFP  
80-pin LQFP  
81  
69  
60  
θJA  
°C/W  
°C/W  
Thermal resistance  
Four-layer board  
48-pin QFN  
64-pin LQFP  
26  
50  
47  
θJA  
80-pin LQFP  
1
Depending on device.  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Electrical Characteristics  
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the  
charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 6. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
C
1500  
100  
3
Ω
Human  
Body  
Storage capacitance  
Number of pulses per pin  
Series resistance  
pF  
R1  
C
0
Ω
Machine Storage capacitance  
Number of pulses per pin  
200  
3
pF  
Minimum input voltage limit  
Latch-up  
– 2.5  
7.5  
V
V
Maximum input voltage limit  
Table 7. ESD and Latch-Up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
Unit  
1
2
3
4
Human body model (HBM)  
Machine model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
± 2000  
± 200  
± 500  
± 100  
V
V
Charge device model (CDM)  
Latch-up current at TA = 85°C  
V
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
Electrical Characteristics  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 8. DC Characteristics  
Num  
C
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
1
— Operating Voltage2  
1.83  
3.6  
V
Output high  
voltage  
All I/O pins,  
low-drive strength  
C
1.8 V, ILoad = –2 mA VDD – 0.5  
P
T
All I/O pins,  
high-drive strength  
2.7 V, ILoad = –10 mA VDD – 0.5  
2.3 V, ILoad = –6 mA VDD – 0.5  
1.8V, ILoad = –3 mA VDD – 0.5  
2
3
4
VOH  
IOHT  
VOL  
V
mA  
V
C
Output high  
current  
Max total IOH for all  
ports  
D
100  
0.5  
Output low  
voltage  
All I/O pins,  
low-drive strength  
C
1.8 V, ILoad = 2 mA  
P
T
All I/O pins,  
high-drive strength  
2.7 V, ILoad = 10 mA  
2.3 V, ILoad = 6 mA  
1.8 V, ILoad = 3 mA  
0.5  
0.5  
0.5  
C
Output low  
current  
Max total IOL for all  
ports  
5
6
D
IOLT  
100  
mA  
V
P
C
P
C
Input high  
voltage  
all digital inputs  
VDD > 2.7 V  
VDD > 1.8 V  
VDD > 2.7 V  
VDD >1.8 V  
0.70 x VDD  
0.85 x VDD  
VIH  
Input low voltage  
all digital inputs  
0.35 x VDD  
0.30 x VDD  
7
VIL  
8
9
C Input hysteresis  
all digital inputs Vhys  
0.06 x VDD  
mV  
Input leakage  
current  
all input only pins  
|IIn|  
P
VIn = VDD or VSS  
VIn = VDD or VSS  
0.1  
0.1  
1
1
μA  
(Per pin)  
Hi-Z (off-state)  
P
all input/output  
|IOZ|  
10  
11  
μA  
leakage current  
(per pin)  
Pull resistors  
P
all digital inputs, when  
RP  
17.5  
–0.2  
–5  
52.5  
0.2  
5
kΩ  
mA  
mA  
enabled  
DC injection  
Single pin limit  
current 4, 5, 6  
12  
D
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
13 C Input Capacitance, all pins  
14 C POR re-arm voltage7  
15 D POR re-arm time  
CIn  
0.9  
10  
1.4  
8
pF  
V
VPOR  
tPOR  
1.79  
μs  
Low-voltage detection threshold —  
VDD falling  
VDD rising  
2.15  
2.24  
2.32  
2.39  
2.45  
2.49  
9
16  
P
VLVDH  
V
high range8  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Electrical Characteristics  
Table 8. DC Characteristics (continued)  
Num  
C
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
Low-voltage detection threshold —  
low range8  
VDD falling  
VDD rising  
1.70  
1.80  
1.83  
1.89  
1.95  
2.00  
17  
P
VLVDL  
V
Low-voltage warning threshold —  
high range8  
VDD falling  
2.50  
2.50  
2.62  
2.62  
2.70  
2.70  
18  
P
VLVWH  
V
V
DD rising  
Low-voltage warning threshold —  
low range8  
VDD falling  
VDD rising  
2.25  
2.29  
2.32  
2.39  
2.45  
2.49  
19  
20  
P
P
VLVWL  
VBG  
V
V
Bandgap Voltage Reference10  
1.15  
1.17  
1.18  
1
2
3
4
5
Typical values are measured at 25 °C. Characterized, not tested  
As an exception, the Fast Ethernet Controller (FEC) is only operational above the operating voltage of 3 V.  
As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL  
.
All functional non-supply pins are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
6
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if  
clock rate is very low (which would reduce overall power consumption).  
7
8
9
Maximum is highest voltage that POR is guaranteed.  
Low voltage detection and warning limits measured at 1 MHz bus frequency.  
Run at 1 MHz bus frequency  
10 Factory trimmed at VDD = 3.3 V, Temp = 25 °C  
PULL-UP RESISTOR TYPICALS  
40  
PULL-DOWN RESISTOR TYPICALS  
85°C  
40  
35  
30  
25  
20  
85°C  
25°C  
25°C  
–40°C  
–40°C  
35  
30  
25  
20  
1.8  
2
2.2 2.4 2.6 2.8  
DD (V)  
3
3.2 3.4 3.6  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
V
Figure 5. Pull-up and Pull-down Typical Resistor Values  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
16  
Freescale Semiconductor  
Electrical Characteristics  
TYPICAL VOL VS IOL AT VDD = 3.3 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
1
85°C  
25°C  
–40°C  
0.8  
0.6  
0.4  
0.2  
0
85  
25  
–40  
°
C, IOL = 2 mA  
0.05  
0
°
C, IOL = 2 mA  
°
C, IOL = 2 mA  
1
2
3
4
0
5
10  
15  
20  
VDD (V)  
I
OL (mA)  
Figure 6. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.3 V  
1
0.4  
0.3  
0.2  
0.1  
85°C  
85°C  
25°C  
–40°C  
25°C  
0.8  
0.6  
0.4  
0.2  
–40°C  
I
OL = 10 mA  
IOL = 6 mA  
I
OL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
I
OL (mA)  
Figure 7. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
TYPICAL VDD – VOH VS IOH AT VDD = 3.3 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
1.2  
1
0.25  
0.2  
0.15  
0.1  
0.05  
0
85°C  
85  
25  
–40  
°
C, IOH = 2 mA  
C, IOH = 2 mA  
C, IOH = 2 mA  
25°C  
°
–40°C  
°
0.8  
0.6  
0.4  
0.2  
0
0
–5  
–10  
OH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
I
Figure 8. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
Electrical Characteristics  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
0.3  
0.2  
0.1  
85°C  
25°C  
–40°C  
TYPICAL V – V VS I AT V = 3.3 V  
DD  
OH  
OH  
DD  
0.8  
85°C  
25°C  
0.6  
0.4  
0.2  
0
–40°C  
IOH = –10 mA  
I
OH = –6 mA  
IOH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
I
(mA)  
OH  
VDD (V)  
Figure 9. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 9. Supply Current Characteristics  
Bus  
Freq  
VDD  
(V)  
Temp  
(°C)  
Num  
C
Parameter  
Run supply current  
Symbol  
Typ1  
Max  
Unit  
P
T
T
T
C
T
T
T
25 MHz  
20 MHz  
8 MHz  
1 MHz  
25 MHz  
20 MHz  
8 MHz  
1 MHz  
60  
49  
75  
47  
FEI mode, all modules on  
1
RIDD  
3.3  
3.3  
mA  
–40 to 85 °C  
–40 to 85 °C  
21  
4.6  
44  
Run supply current  
FEI mode, all modules off  
36  
2
RIDD  
mA  
15.5  
3.9  
Run supply current  
LPRS=0, all modules off  
16 kHz  
FBILP  
T
T
203  
154  
3
4
RIDD  
3.3  
3.3  
μA  
μA  
–40 to 85 °C  
–40 to 85 °C  
16 kHz  
FBELP  
Run supply current  
LPRS=1, all modules off, running from  
Flash  
16 kHz  
FBELP  
T
RIDD  
50  
C
T
Wait mode supply current  
FEI mode, all modules off  
25 MHz  
20 MHz  
8 MHz  
1 MHz  
11  
4.57  
2
13.7  
5
6
WIDD  
3.3  
μA –-40 to 85 °C  
0 to 70 °C  
T
T
0.73  
C
P
C
C
Stop2 mode supply current  
11  
3.3  
1.8  
0.35  
0.35  
45  
–40 to 85 °C  
μA  
S2IDD  
n/a  
12  
0 to 70 °C  
16.2  
–40 to 85 °C  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
Electrical Characteristics  
Temp  
Table 9. Supply Current Characteristics (continued)  
Bus  
Freq  
VDD  
(V)  
Num  
C
Parameter  
Symbol  
Typ1  
0.52  
0.52  
Max  
Unit  
(°C)  
C
P
C
C
T
T
T
T
T
Stop3 mode supply current  
No clocks active  
14  
55  
15  
32.4  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
3.3  
1.8  
7
S3IDD  
n/a  
μA  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
8
EREFSTEN=1  
32 kHz  
32 kHz  
100 Hz  
300 bps  
1 kHz  
500  
70  
nA  
μA  
μA  
μA  
nA  
9
IREFSTEN=1  
TPM PWM  
10  
11  
12  
12  
Low power  
mode adders:  
SCI, SPI, or IIC  
RTC using LPO  
15  
3.3  
200  
RTC using  
ICSERCLK  
13  
14  
T
T
32 kHz  
n/a  
1
μA  
μA  
–40 to 85 °C  
–40 to 85 °C  
LVD  
100  
1
Data in Typical column was characterized at 3.3 V, 25 °C or is typical recommended value.  
Figure 10. Typical Run I for FBE and FEI, I vs. V  
DD  
DD  
DD  
(ADC off, All Other Modules Enabled)  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
Electrical Characteristics  
3.8  
External Oscillator (XOSC) Characteristics  
Reference Figure 11 and Figure 12 for crystal or resonator circuits.  
Table 10. XOSC and ICS Specifications (Temperature Range = –40 to 85 °C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
25  
8
kHz  
MHz  
MHz  
1
C
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
Load capacitors  
See Note2  
See Note3  
C1,C2  
2
3
D
D
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, High Gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
MΩ  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
0
100  
Ω
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
ΚΩ  
Crystal start-up time 4  
Low range, low power  
Low range, high power  
High range, low power  
High range, high power  
t
200  
400  
5
CSTL  
5
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
External with FLL / PLL enabled (FEE / PEE)  
fextal  
6
0.03125  
0
50.33  
50.33  
MHz  
MHz  
External with bypass (FBE.FBELP,PBE, PBELP)  
1
2
3
4
Data in Typical column was characterized at 3.3 V, 25 °C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
Electrical Characteristics  
XOSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSC  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Gain  
3.9  
Multipurpose Clock Generator (MCG) Specifications  
Table 11. MCG Frequency Specifications (Temperature Range = –40 to 125 °C Ambient)  
Num  
C
Rating  
Symbol  
Min  
Typical  
Max  
Unit  
Internal reference frequency - factory  
trimmed at VDD = and  
fint_ft  
1
P
32.768  
kHz  
temperature = 25 °C  
Average internal reference frequency -  
untrimmed 1  
fint_ut  
2
P
P
25  
41.66  
kHz  
Average internal reference frequency -  
user trimmed  
fint_t  
3
4
31.25  
39.06  
100  
kHz  
us  
tirefst  
D Internal reference startup time  
60  
DCO output frequency range -  
untrimmed 1  
value provided for reference:  
fdco_ut  
5
25.6  
33.48  
42.66  
MHz  
fdco_ut = 1024 X fint_ut  
fdco_t  
6
7
P DCO output frequency range - trimmed  
32  
40  
MHz  
Resolution of trimmed DCO output  
C frequency at fixed voltage and  
temperature (using FTRIM)  
Δfdco_res_t  
%fdco  
± 0.1  
± 0.2  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
Electrical Characteristics  
Table 11. MCG Frequency Specifications (continued)(Temperature Range = –40 to 125 °C Ambient)  
Num  
C
Rating  
Symbol  
Min  
Typical  
Max  
Unit  
Resolution of trimmed DCO output  
C frequency at fixed voltage and  
temperature (not using FTRIM)  
Δfdco_res_t  
%fdco  
8
± 0.2  
± 0.4  
Total deviation of trimmed DCO output  
P frequency over voltage and  
temperature  
+ 0.5  
-1.0  
Δfdco_t  
%fdco  
9
± 2  
± 1  
Total deviation of trimmed DCO output  
Δfdco_t  
%fdco  
frequency over fixed voltage and  
10  
C
± 0.5  
temperature range of 0 - 70 °C  
FLL acquisition time 2  
PLL acquisition time 3  
tfll_acquire  
tpll_acquire  
11  
12  
C
D
1
1
ms  
ms  
Long term Jitter of DCO output clock  
(averaged over 2ms interval) 4  
CJitter  
%fdco  
13  
C
0.02  
0.2  
fvco  
Dlock  
Dunl  
14 D VCO operating frequency  
7.0  
55.0  
± 2.98  
MHz  
%
Lock entry frequency tolerance5  
Lock exit frequency tolerance6  
15  
16  
D
D
± 1.49  
± 4.47  
± 5.97  
%
tfll_acquire+  
tfll_lock  
tpll_lock  
floc_low  
17 D Lock time - FLL  
18 D Lock time - PLL  
s
s
1075(1/fint_t  
)
tpll_acquire+  
1075(1/fpll_r  
ef)  
Loss of external clock minimum  
19 D frequency - RANGE = 0  
(3/5) x fint  
kHz  
1
2
TRIM register at default value (0x80) and FTRIM control bit at default value (0x0).  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing  
from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,  
this specification assumes it is already running.  
3
4
This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is  
already running.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a  
given interval.  
5
6
Below Dlock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG does not enter lock. But if the  
MCG is already in lock, then the MCG may stay in lock.  
Below Dunl minimum, the MCG does not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Electrical Characteristics  
3.10 Mini-FlexBus Timing Specifications  
A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to interface to slave-only  
devices up to a maximum bus frequency of 25.1666 MHz. It can be directly connected to asynchronous or synchronous devices  
such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional  
circuitry. For asynchronous devices a simple chip-select based interface can be used.  
All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of  
a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus frequency.  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-FlexBus output  
clock (MB_CLK). All other timing relationships can be derived from these values.  
Table 12. Mini-FlexBus AC Timing Specifications  
Num  
C
Characteristic  
Frequency of Operation  
Min  
Max  
Unit  
Notes  
D
P
39.73  
25.1666  
MHz  
ns  
MB1  
MB2  
MB3  
MB4  
MB5  
Clock Period  
Output Valid  
Output Hold  
Input Setup  
Input Hold  
20  
1
ns  
1
2
2
D
P
1.0  
22  
ns  
ns  
D
10  
ns  
1
2
Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE.  
Specification is valid for all MB_D[7:0].  
S0  
S1  
S2  
S3  
S0  
FB_CLK  
MB1  
MB3  
ADDR[19:0]  
FB_A[19:16]  
MB2  
ADDR[31:24]  
MB5  
8-bit Non-Mux’d Bus  
16-bit Mux’d Bus  
DATA[7:0]  
FB_D[7:0]  
MB4  
ADDR[19:16]  
FB_AD[19:16]  
FB_AD[15:0]  
ADDR[15:0]  
DATA[15:0]  
FB_R/W  
FB_ALE  
FB_CSn, FB_OE  
Figure 13. Mini-FlexBus Read Timing  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
Electrical Characteristics  
S0  
S1  
S2  
S3  
S0  
FB_CLK  
MB1  
MB3  
ADDR[19:8]  
FB_AD[19:8]  
MB2  
8-bit Non-Mux’d Bus  
ADDR[7:0]  
FB_AD[7:0]  
DATA[7:0]  
ADDR[19:16]  
FB_AD[19:16]  
16-bit Mux’d Bus  
ADDR[15:0]  
DATA[15:0]  
FB_AD[15:0]  
FB_R/W  
FB_ALE  
FB_CSn  
FB_OE  
Figure 14. Mini-FlexBus Write Timing  
3.11 Fast Ethernet Timing Specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing  
specs/constraints for the physical interface.  
3.11.1 Receive Signal Timing Specifications  
The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.  
Table 13. Receive Signal Timing  
MII Mode  
Num  
C
Characteristic  
Unit  
Min  
Max  
E1  
E2  
E3  
E4  
P
RXCLK frequency  
5
25  
MHz  
ns  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
RXCLK pulse width high  
D
D
D
5
ns  
35%  
35%  
65%  
65%  
RXCLK period  
RXCLK period  
RXCLK pulse width low  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
24  
Freescale Semiconductor  
Electrical Characteristics  
E4  
E1  
E3  
E2  
RXCLK (Input)  
RXD[n:0]  
RXDV,  
Valid Data  
RXER  
Figure 15. MII Receive Signal Timing Diagram  
3.11.2 Transmit Signal Timing Specifications  
Table 14. Transmit Signal Timing  
MII Mode  
Min Max  
Num  
C
Characteristic  
Unit  
E5  
E6  
E7  
E8  
D
P
TXCLK frequency  
5
25  
MHz  
ns  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
TXCLK pulse width high  
25  
ns  
D
D
35%  
35%  
65%  
65%  
tTXCLK  
tTXCLK  
TXCLK pulse width low  
E8  
TXCLK (Input)  
E7  
E5  
E6  
TXD[n:0]  
TXEN,  
TXER  
Valid Data  
Figure 16. MII Transmit Signal Timing Diagram  
3.11.3 Asynchronous Input Signal Timing Specifications  
Table 15. MII Transmit Signal Timing  
Num  
C
Characteristic  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
E9  
D
1.5  
TXCLK period  
CRS, COL  
E9  
Figure 17. MII Async Inputs Timing Diagram  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Electrical Characteristics  
3.11.4 MII Serial Management Timing Specifications  
Table 16. MII Serial Management Channel Signal Timing  
Num  
C
Characteristic  
Symbol  
Min  
Max  
Unit  
E10  
E11  
E12  
E13  
E14  
E15  
D
D
D
D
D
D
MDC cycle time  
MDC pulse width  
tMDC  
400  
40  
30  
5
60  
375  
ns  
% tMDC  
ns  
MDC to MDIO output valid  
MDC to MDIO output invalid  
MDIO input to MDC setup  
MDIO input to MDC hold  
ns  
ns  
15  
ns  
E10  
E11  
MDC (Output)  
MDIO (Output)  
MDIO (Input)  
E11  
E12  
E13  
Valid Data  
E14  
E15  
Valid Data  
Figure 18. MII Serial Management Channel TIming Diagram  
3.12 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
3.12.1 Control Timing  
Table 17. Control Timing  
Num  
C
Rating  
Bus frequency (tcyc = 1/fBus  
Symbol  
Min  
Typ1  
Max  
Unit  
)
VDD > 2.7 V  
2.7 V > VDD > 2.1 V  
2.1 V > VDD > 1.8 V  
dc  
dc  
dc  
50.33  
40  
20  
1
D
fBus  
MHz  
2
3
4
D
D
D
Internal low power oscillator period  
External reset pulse width2  
Reset low drive  
tLPO  
textrst  
trstdrv  
700  
100  
1300  
μs  
ns  
ns  
34 x tcyc  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
5
D
tMSSU  
500  
ns  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Electrical Characteristics  
Table 17. Control Timing (continued)  
Num  
C
Rating  
Symbol  
Min  
Typ1  
Max  
Unit  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
6
D
tMSH  
100  
μs  
IRQ pulse width  
7
8
D
D
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
2 x tcyc  
ns  
ns  
ns  
Keyboard interrupt pulse width  
Asynchronous path2  
tILIH, IHIL  
t
100  
2 x tcyc  
Synchronous path4  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
16  
23  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
5
9
10  
C
Stop3 recovery time, from interrupt event to vector fetch tSTPREC  
6
10  
μs  
1
2
Typical values are based on characterization data at VDD = 3.3 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not  
guaranteed to override reset requests from internal sources.  
3
4
5
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
This is the minimum assertion time in which the interrupt may be recognized. The correct protocol is to assert the interrupt  
request until it is explicitly negated by the interrupt service routine.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 85 °C.  
textrst  
RESET PIN  
Figure 19. Reset Timing  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 20. IRQ/KBIPx Timing  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Electrical Characteristics  
3.12.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 18. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 21. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 22. Timer Input Capture Pulse  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
Electrical Characteristics  
3.12.3 SPI Timing  
Table 19 and Figure 23 through Figure 26 describe the timing requirements for the SPI system.  
Table 19. SPI Timing  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
fop  
D
Master  
Slave  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
Hz  
SPSCK period  
Master  
Slave  
tSPSCK  
tLead  
tLag  
1
2
3
4
5
6
D
D
D
D
D
D
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
7
8
D
D
Slave access time  
ta  
tdis  
tv  
1
1
tcyc  
tcyc  
Slave MISO disable time  
Data valid (after SPSCK edge)  
9
D
D
D
D
Master  
Slave  
25  
25  
ns  
ns  
Data hold time (outputs)  
Master  
Slave  
tHO  
10  
11  
12  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Electrical Characteristics  
SS1  
(OUTPUT)  
2
11  
12  
1
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
10  
9
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 23. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
11  
12  
2
12  
11  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
LSB IN  
10  
9
MOSI  
(OUTPUT)  
MASTER MSB OUT(2)  
PORT DATA  
BIT 6 . . . 1  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 24. SPI Master Timing (CPHA =1)  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
Electrical Characteristics  
SS  
(INPUT)  
11  
12  
12  
11  
3
1
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
10  
10  
7
9
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 25. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
11  
2
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
10  
9
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 26. SPI Slave Timing (CPHA = 1)  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
31  
Electrical Characteristics  
3.12.4 ADC Characteristics  
Table 20. 12-bit ADC Operating Conditions  
C
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply voltage Absolute  
VDDAD  
ΔVDDAD  
ΔVSSAD  
VREFH  
VREFL  
VADIN  
1.8  
-100  
-100  
1.8  
0
3.6  
V
mV  
mV  
V
D
2
Delta to VDD (VDD-VDDAD  
)
+100  
+100  
VDDAD  
VSSAD  
VREFH  
5.5  
2
D
D
D
D
Ground voltage  
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
Delta to VSS (VSS-VSSAD  
)
0
VDDAD  
VSSAD  
VSSAD  
VREFL  
V
V
Input  
Capacitance  
CADIN  
4.5  
C
C
pF  
Input Resistance  
RADIN  
RAS  
5
7
kΩ  
Analog Source 12 bit mode  
Resistance fADCK > 4MHz  
fADCK < 4MHz  
External to MCU  
2
5
C
D
10 bit mode  
kΩ  
fADCK > 4MHz  
fADCK < 4MHz  
5
10  
8 bit mode (all valid fADCK  
)
10  
8.0  
4.0  
ADC Conversion High Speed (ADLPC=0)  
fADCK  
0.4  
0.4  
MHz  
Clock Freq.  
Low Power (ADLPC=1)  
1
2
Typical values assume VDDAD = 3.3 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential difference.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
32  
Freescale Semiconductor  
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
Z
ADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
Z
AS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
R
R
AS  
ADIN  
protection  
+
V
ADIN  
C
AS  
V
+
AS  
R
R
R
ADIN  
ADIN  
ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C
ADIN  
Figure 27. ADC Input Impedance Equivalency Diagram  
Table 21. 12-bit ADC Characteristics (V = V , V = V  
)
REFH  
DDAD REFL  
SSAD  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
120  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDAD  
μA  
μA  
μA  
mA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
T
IDDAD  
IDDAD  
IDDAD  
202  
288  
1
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
0.532  
Supply Current Stop, Reset, Module Off  
D
P
C
IDDAD  
2
0.007  
3.3  
2
0.8  
5
μA  
ADC  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
fADACK  
tADACK = 1/fADACK  
Asynchronous  
Clock Source  
MHz  
1.25  
3.3  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
33  
Electrical Characteristics  
Table 21. 12-bit ADC Characteristics (V  
= V  
Min  
, V  
= V  
) (continued)  
Unit Comment  
REFH  
DDAD REFL  
SSAD  
Characteristic  
Conditions  
C
Symb  
Typ1  
Max  
Conversion Time Short Sample (ADLSMP=0)  
P
C
tADC  
20  
40  
ADCK  
cycles  
See the ADC  
chapter in the  
MCF51CN128  
Reference Manual  
for conversion time  
variances  
(Including  
Long Sample (ADLSMP=1)  
sample time)  
Sample Time  
Short Sample (ADLSMP=0)  
Long Sample (ADLSMP=1)  
P
C
T
P
T
T
P
T
T
P
T
T
P
T
T
P
T
D
tADS  
3.5  
23.5  
±3.0  
±1  
ADCK  
cycles  
Total Unadjusted 12 bit mode  
ETUE  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
Includes  
Quantization  
Error  
10 bit mode  
±2.5  
1.0  
8 bit mode  
±0.5  
±1.75  
±0.5  
±0.3  
±1.5  
±0.5  
±0.3  
±1.5  
±0.5  
±0.5  
±1.0  
±0.5  
±0.5  
-1 to 0  
Differential  
Non-Linearity  
12 bit mode  
10 bit mode3  
8 bit mode3  
12 bit mode  
10 bit mode  
8 bit mode  
DNL  
INL  
EZS  
EFS  
EQ  
±1.0  
±0.5  
Integral  
Non-Linearity  
±1.0  
±0.5  
Zero-Scale Error 12 bit mode  
10 bit mode  
VADIN = VSSAD  
±1.5  
±0.5  
8 bit mode  
Full-Scale Error 12 bit mode  
10 bit mode  
VADIN = VDDAD  
±1  
8 bit mode  
±0.5  
Quantization  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
-40°C to 25°C  
25°C to 85°C  
25°C  
±0.5  
±0.5  
Input Leakage  
Error  
D
EIL  
±2  
Pad leakage4 *  
RAS{test=pad leakage  
±0.2  
±0.1  
1.646  
1.769  
701.2  
±4  
test}  
±1.2  
Temp Sensor  
Slope  
D
D
m
mV/°C  
Temp Sensor  
Voltage  
VTEMP25  
mV  
1
Typical values assume VDDAD = 3.3 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
1 LSB = (VREFH - VREFL)/2N  
Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes  
Based on input pad leakage current. Refer to pad electricals.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
34  
Freescale Semiconductor  
Electrical Characteristics  
3.12.5 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see the Memory section of the MCF51CN128 Reference Manual.  
Table 22. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
-40 °C to 85 °C  
D
Vprog/erase  
VRead  
fFCLK  
1.8  
1.8  
150  
5
3.6  
3.6  
V
D
D
D
P
P
P
P
D
D
Supply voltage for read operation  
Internal FCLK frequency1  
V
200  
6.67  
kHz  
μs  
Internal FCLK period (1/FCLK)  
Longword program time (random location)(2)  
Longword program time (burst mode)(2)  
Page erase time2  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
tPage  
4000  
20,000  
9.7  
7.6  
Mass erase time(2)  
tMass  
Longword program current3  
Page erase current3  
RIDDBP  
RIDDPE  
Program/erase endurance4  
TL to TH = –40°C to + 85°C  
T = 25°C  
C
C
10,000  
100,000  
cycles  
years  
Data retention5  
tD_ret  
15  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 3.3 V, bus frequency = 8.0 MHz.  
Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on  
how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
3.13 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
35  
Ordering Information  
3.13.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance  
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a  
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller  
are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the  
evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.  
4
Ordering Information  
This section contains ordering information for MCF51CN128 devices.  
Table 23. Ordering Information  
Memory  
Temperature Range  
Freescale Part Number1  
Package2  
(°C)  
Flash  
RAM  
MCF51CN128CLK  
MCF51CN128CLH  
MCF51CN128CGT  
128K  
128K  
128K  
24K  
24K  
24K  
–40 to +85  
–40 to +85  
–40 to +85  
80-pin LQFP  
64-pin LQFP  
48-pin QFN  
1
2
See the MCF51CN128 Reference Manual (document MCF51CN128RM), for a complete description of modules included  
on each device.  
See Table 24 for package information.  
5
Package Information  
Table 24. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
80  
64  
48  
Low Quad Flat Package  
Low Quad Flat Package  
Quad Flat No-Leads  
LQFP  
LQFP  
QFN  
LK  
LH  
GT  
917A  
840F  
1314  
98ASS23237W  
98ASS23234W  
98ARH99048A  
6
Mechanical Outline Drawings  
The following pages are mechanical drawings for the packages described in Table 24. For the latest available drawings, visit  
freescale web site (http://www.freescale.com) and enter the package’s document number into the keyword search box.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
36  
Freescale Semiconductor  
Mechanical Outline Drawings  
6.1  
80-pin LQFP  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
37  
Mechanical Outline Drawings  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
38  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
39  
Mechanical Outline Drawings  
6.2  
64-pin LQFP  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
40  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
41  
Mechanical Outline Drawings  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
42  
Freescale Semiconductor  
Mechanical Outline Drawings  
6.3  
48-pin QFN  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
43  
Mechanical Outline Drawings  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
44  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
45  
Mechanical Outline Drawings  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
46  
Freescale Semiconductor  
Revision History  
7
Revision History  
This section lists the changes between versions of MCF51CN128 Data Sheet document.  
Table 25. Revision History  
Revision Number  
Date  
Description of Changes  
Alpha Customer Release.  
1
2
3
4
August 2008  
January 2009  
January 2009  
May 2009  
Pre-Launch Release.  
Launch Release.  
• Changed LVDH trip and recovery values in Table 8.  
• Fixed Mini-FlexBus maximum frequency to 25.1666 MHz in  
Section 3.10, “Mini-FlexBus Timing Specifications.”  
• Updated FEC feature list to describe ethernet operation  
between 3.0 V to 3.6 V.  
• In Table 8, added a footnote to the operating voltage. It  
describes an exception to the Fast Ethernet Controller (FEC),  
because it is only operational above the operating voltage of  
3 V.  
• Corrected Freescale part numbers in Table 23.  
• In Table 21, changed IDDAD classification to T.  
MCF51CN128 ColdFire Microcontroller Data Sheet, Rev. 4  
Freescale Semiconductor  
47  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF51CN128  
Rev. 4  
5/2009  

相关型号:

MCF51CN128CLK

MCF51CN128 ColdFire Microcontroller
FREESCALE

MCF51CN128CLK

32-BIT, FLASH, 50.33 MHz, MICROCONTROLLER, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, 0.65 MM PITCH, LQFP-80
ROCHESTER

MCF51EM128CLK

ColdFire Microcontroller
FREESCALE

MCF51EM128CLL

ColdFire Microcontroller
FREESCALE

MCF51EM256

ColdFire Microcontroller
FREESCALE

MCF51EM256CLK

ColdFire Microcontroller
FREESCALE

MCF51EM256CLL

ColdFire Microcontroller
FREESCALE

MCF51EM256_1

MCF51EM256-based Poly Phase Energy Meter Reference Design 110V Technical Specifications
FREESCALE

MCF51EM256_2

MCF51EM256-based Poly Phase Energy Meter Reference Design 220V Technical Specifications
FREESCALE

MCF51JE128

An Energy-Efficient Solution from Freescale
FREESCALE

MCF51JE128CLK

An Energy-Efficient Solution from Freescale
FREESCALE

MCF51JE128CLK

32-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PQFP80, 12 X 12 MM, ROHS COMPLIANT, LQFP-80
NXP