MCF52233 [FREESCALE]

ColdFire㈢ Microcontroller; ColdFire㈢微控制器
MCF52233
型号: MCF52233
厂家: Freescale    Freescale
描述:

ColdFire㈢ Microcontroller
ColdFire㈢微控制器

微控制器
文件: 总48页 (文件大小:603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCF52235DS  
Rev. 0, 04/2006  
Freescale Semiconductor  
Data Sheet: Advance Information  
MCF52235 ColdFire®  
Microcontroller Data Sheet  
Supports MCF52235, MCF52234, MCF52233, MCF52231, &  
MCF52230  
By: Microcontroller Division  
®
Table of Contents  
The MCF52235 is a member of the ColdFire family of  
reduced  
instruction  
set  
computing  
(RISC)  
1
MCF52235 Family Configurations.......................2  
microprocessors. This hardware specification provides  
an overview of the 32-bit MCF52235 microcontroller,  
focusing on its highly integrated and diverse feature set.  
1.1 Block Diagram ...................................................3  
1.2 Features.............................................................4  
1.3 Part Numbers and Packaging..........................16  
1.4 Package Pinouts..............................................17  
1.5 Reset Signals ..................................................24  
1.6 PLL and Clock Signals ....................................24  
1.7 Mode Selection................................................24  
1.8 External Interrupt Signals................................24  
1.9 Queued Serial Peripheral Interface (QSPI) .....25  
1.11 I2C I/O Signals.................................................27  
1.12 UART Module Signals .....................................27  
1.13 DMA Timer Signals..........................................27  
1.16 Pulse Width Modulator Signals........................28  
1.17 Debug Support Signals....................................28  
1.18 EzPort Signal Descriptions..............................30  
1.19 Power and Ground Pins...................................30  
This 32-bit device is based on the Version 2 ColdFire  
core operating at a frequency up to 60 MHz, offering  
high performance and low power consumption. On-chip  
memories connected tightly to the processor core include  
256 Kbytes of Flash and 32 Kbytes of static random  
access memory (SRAM). On-chip modules include:  
V2 ColdFire core providing 56 Dhrystone 2.1  
MIPS @ 60 MHz executing out of on-chip Flash  
memory using enhanced multiply accumulate  
(EMAC) and hardware divider.  
2
3
Preliminary Electrical Characteristics................31  
Mechanical Outline Drawings............................45  
Enhanced Multiply Accumulate Unit (EMAC)  
and hardware divide module  
Cryptographic Acceleration Unit (CAU)  
coprocessor  
Fast Ethernet Controller (FEC)  
On-chip Ethernet Transceiver (ePHY)  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
• Preliminary  
MCF52235 Family Configurations  
FlexCAN controller area network (CAN) module  
Three universal asynchronous/synchronous receiver/transmitters (UARTs)  
Inter-integrated circuit (I2C™) bus controller  
Queued serial peripheral interface (QSPI) module  
Eight-channel 12-bit fast analog-to-digital converter (ADC)  
Four channel direct memory access (DMA) controller  
Four 32-bit input capture/output compare timers with DMA support (DTIM)  
Four-channel general-purpose timer (GPT) capable of input capture/output compare, pulse width  
modulation (PWM) and pulse accumulation  
Eight/Four-channel 8/16-bit pulse width modulation timers (two adjacent 8-bit PWMs can be  
concatenated to form a single 16-bit timer)  
Two 16-bit periodic interrupt timers (PITs)  
Real-time clock (RTC) module  
Programmable software watchdog timer  
Two interrupt controllers providing every peripheral with a unique selectable-priority interrupt  
vector plus seven external interrupts with fixed levels/priorities  
Clock module with support for crystal or external oscillator and integrated phase locked loop  
(PLL)  
Test access/debug port (JTAG, BDM)  
1 MCF52235 Family Configurations  
Table 1. MCF52235 Family Configurations  
Module  
52230  
52231  
52233  
52234  
52235  
ColdFire Version 2 Core with MAC  
(Multiply-Accumulate Unit)  
x
x
x
x
x
System Clock  
60 MHz  
56  
Performance (Dhrystone 2.1 MIPS)  
Flash / Static RAM (SRAM)  
128/32 Kbytes  
256/32 Kbytes  
Interrupt Controllers (INTC0/INTC1)  
Fast Analog-to-Digital Converter (ADC)  
x
x
-
x
x
-
x
x
-
x
x
-
x
x
x
Random Number Generator and Crypto  
Acceleration Unit (CAU)  
FlexCAN 2.0B Module  
-
x
x
-
x
x
x
x
Fast Ethernet Controller (FEC) with  
on-chip interface (ePHY)  
x
x
Four-channel Direct-Memory Access  
(DMA)  
x
x
x
x
x
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
2
Freescale Semiconductor  
MCF52235 Family Configurations  
Table 1. MCF52235 Family Configurations (continued)  
Module  
52230  
52231  
52233  
52234  
52235  
Software Watchdog Timer (WDT)  
Programmable Interrupt Timer  
Four-Channel General Purpose Timer  
32-bit DMA Timers  
x
2
x
4
x
3
x
x
x
x
x
2
x
4
x
3
x
x
x
x
x
2
x
4
x
3
x
x
x
x
x
2
x
4
x
3
x
x
x
x
x
2
x
4
x
3
x
x
x
x
QSPI  
UART(s)  
I2C  
Eight/Four-channel 8/16-bit PWM Timer  
General Purpose I/O Module (GPIO)  
Chip Configuration and Reset Controller  
Module  
Background Debug Mode (BDM)  
JTAG - IEEE 1149.1 Test Access Port1  
Package  
x
x
x
x
x
x
x
x
x
x
80-pin LQFP  
80-pin LQFP  
80-pin LQFP  
80-pin LQFP 112-pin LQFP  
112-pin LQFP 112-pin LQFP 112-pin LQFP 112-pin LQFP 121 MAPBGA  
121 MAPBGA  
NOTTEhSe:full debug/trace interface is available only on the 112- and 121-pin packages. A reduced debug  
interface is bonded on the 80-pin package.  
1
1.1 Block Diagram  
The MCF52235 (or its variants) come in 80- and 112-pin low-profile quad flat pack packages (LQFP) and  
a 121 MAPBGA, and operates in single-chip mode only. Figure 1 shows a top-level block diagram of the  
MCF52235.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
3
Preliminary  
MCF52235 Family Configurations  
EzPD  
EzPCK  
EzPCS  
EPHY_TX  
EzPort  
Arbiter  
EPHY_RX  
EzPQ  
ICOCn  
QSPI_DIN,  
QSPI_DOUT  
Interrupt  
Controller 1  
Interrupt  
EPHY  
Controller 2  
QSPI_SCK,  
QSPI_PCSn  
I2C_SDA  
I2C_SCL  
UnTXD  
Fast  
Ethernet  
Controller  
(FEC)  
UART  
0
UART  
1
UART  
2
UnRXD  
I2C  
QSPI  
RTC  
UnRTS  
4 CH DMA  
UnCTS  
DTINn/DTOUTn  
CANRX  
CANTX  
DTIM  
0
DTIM  
1
DTIM  
2
DTIM  
3
To/From PADI  
PWMn  
JTAG_EN  
MUX  
V2 ColdFire CPU  
CAU  
IFP OEP  
EMAC  
PMM  
CIM  
JTAG  
TAP  
32 Kbytes  
SRAM  
256 Kbytes  
Flash  
(32Kx16)x4  
RSTIN  
PORTS  
(GPIO)  
AN[7:0]  
ADC  
RSTOUT  
(4Kx16)x4  
VRH VRL  
PLL  
CLKGEN  
Edge  
Port 1  
PWM  
PIT1  
FlexCAN  
Edge  
Port 2  
EXTAL XTAL CLKOUT  
GPT  
PIT0  
RNGA  
To/From Interrupt Controller  
Figure 1. MCF52235 Block Diagram  
1.2 Features  
This document contains information on a new product under development. Freescale reserves the right to  
change or discontinue this product without notice. Specifications and information herein are subject to  
change without notice.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
4
Freescale Semiconductor  
Preliminary  
MCF52235 Family Configurations  
1.2.1 Feature Overview  
Version 2 ColdFire variable-length RISC processor core  
— Static operation  
— 32-bit address and data path on-chip  
— Up to 60MHz processor core frequency  
— Sixteen general-purpose 32-bit data and address registers  
— Implements ColdFire ISA_A+ with extensions to support the user stack pointer register, and 4  
new instructions for improved bit processing  
— Enhanced Multiply-Accumulate (EMAC) unit with four 48-bit accumulators to support 32-bit  
signal processing algorithms  
— Cryptography Acceleration Unit (CAU)  
– Tightly-coupled coprocessor to accelerate software-based encryption and message digest  
functions  
– FIPS-140 compliant random number generator  
– Support for DES, 3DES, AES, MD5, and SHA-1 algorithms  
— Illegal instruction decode that allows for 68K emulation support  
System debug support  
— Real time trace for determining dynamic execution path  
— Background debug mode (BDM) for in-circuit debugging  
— Real time debug support, with four user-visible hardware breakpoint registers (PC and address  
with optional data) that can be configured into a 1- or 2-level trigger  
On-chip memories  
— 32 Kbyte dual-ported SRAM on CPU internal bus, accessible by core and non-core bus  
masters (e.g., DMA) with standby power supply support  
— 256 Kbytes of interleaved Flash memory supporting 2-1-1-1 accesses  
Power management  
— Fully static operation with processor sleep and whole chip stop modes  
Very rapid response to interrupts from the low-power sleep mode (wake-up feature)  
— Software visible clock enable/disable for each peripheral  
Fast Ethernet Controller (FEC)  
— 10/100 BaseT/TX capability, half duplex or full duplex  
— On-chip transmit and receive FIFOs  
— Built-in dedicated DMA controller  
— Memory-based flexible descriptor rings  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
5
Preliminary  
MCF52235 Family Configurations  
On-chip Ethernet Transceiver (ePHY)  
— Digital adaptive equalization  
— Supports auto-negotiation  
— Baseline wander correction  
— Full-/Half-duplex support in all modes  
— Loopback modes  
— Supports MDIO preamble suppression  
— Jumbo packet  
FlexCAN 2.0B Module  
— Based on and includes all existing features of the Freescale TOUCAN module  
— Full implementation of the CAN protocol specification version 2.0B  
– Standard Data and Remote Frames (up to 109 bits long)  
– Extended Data and Remote Frames (up to 127 bits long)  
– 0-8 bytes data length  
– Programmable bit rate up to 1 Mbit/sec  
— Flexible Message Buffers (MBs), totalling up to 16 message buffers of 0–8 byte data length  
each, configurable as Rx or Tx, all supporting standard and extended messages  
— Unused Message Buffer space can be used as general purpose RAM space  
— Listen only mode capability  
— Content-related addressing  
— No read/write semaphores required  
— Three programmable mask registers: global (for MBs 0-13), special for MB14 and special for  
MB15  
— Programmable transmit-first scheme: lowest ID or lowest buffer number  
— “Time stamp” based on 16-bit free-running timer  
— Global network time, synchronized by a specific message  
— Programmable I/O modes  
— Maskable interrupts  
Three Universal Asynchronous/synchronous Receiver Transmitters (UARTs)  
— 16-bit divider for clock generation  
— Interrupt control logic  
— Maskable interrupts  
— DMA support  
— Data formats can be 5, 6, 7 or 8 bits with even, odd or no parity  
— Up to 2 stop bits in 1/16 increments  
— Error-detection capabilities  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
6
Freescale Semiconductor  
Preliminary  
MCF52235 Family Configurations  
— Modem support includes request-to-send (URTS) and clear-to-send (UCTS) lines for two  
UARTs  
— Transmit and receive FIFO buffers  
I2C Module  
— Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads  
— Fully compatible with industry-standard I2C bus  
— Master or slave modes support multiple masters  
— Automatic interrupt generation with programmable level  
Queued Serial Peripheral Interface (QSPI)  
— Full-duplex, three-wire synchronous transfers  
— Up to four chip selects available  
— Master mode operation only  
— Programmable master bit rates  
— Up to 16 pre-programmed transfers  
Fast Analog-to-Digital Converter (ADC)  
— 8 analog input channels  
— 12-bit resolution  
— Minimum 2.25 µS conversion time  
— Simultaneous sampling of two channels for motor control applications  
— Single-scan or continuous operation  
— Optional interrupts on conversion complete, zero crossing (sign change), or under/over  
low/high limit  
— Unused analog channels can be used as digital I/O  
Four 32-bit DMA Timers  
— 16.7-ns resolution at 60 MHz  
— Programmable sources for clock input, including an external clock option  
— Programmable prescaler  
— Input-capture capability with programmable trigger edge on input pin  
— Output-compare with programmable mode for the output pin  
— Free run and restart modes  
— Maskable interrupts on input capture or reference-compare  
— DMA trigger capability on input capture or reference-compare  
Four-channel general purpose timers  
— 16-bit architecture  
— Programmable prescaler  
— Output pulse widths variable from microseconds to seconds  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
7
Preliminary  
MCF52235 Family Configurations  
— Single 16-bit input pulse accumulator  
— Toggle-on-overflow feature for pulse-width modulator (PWM) generation  
— One dual-mode pulse accumulation channel  
Pulse-width modulation timer  
— Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution  
— Programmable period and duty cycle  
— Programmable enable/disable for each channel  
— Software selectable polarity for each channel  
— Period and duty cycle are double buffered. Change takes effect when the end of the current  
period is reached (PWM counter reaches zero) or when the channel is disabled.  
— Programmable center or left aligned outputs on individual channels  
— Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies  
— Emergency shutdown  
Two Periodic Interrupt Timers (PITs)  
— 16-bit counter  
— Selectable as free running or count down  
Real-Time Clock (RTC)  
— Maintains system time-of-day clock  
— Provides stopwatch and alarm interrupt functions  
Software Watchdog Timer  
— 32-bit counter  
— Low power mode support  
Clock Generation Features  
— 25 MHz crystal input  
— On-chip PLL can generate core frequencies up to maximum 60MHz operating frequency  
— Provides clock for integrated ePHY  
Dual Interrupt Controllers (INTC0/INTC1)  
— Support for multiple interrupt sources organized as follows:  
– Fully-programmable interrupt sources for each peripheral  
– 7 fixed-level interrupt sources  
– Seven external interrupt signals  
— Unique vector number for each interrupt source  
— Ability to mask any individual interrupt source or all interrupt sources (global mask-all)  
— Support for hardware and software interrupt acknowledge (IACK) cycles  
— Combinatorial path to provide wake-up from low power modes  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
8
Freescale Semiconductor  
Preliminary  
MCF52235 Family Configurations  
DMA Controller  
— Four fully programmable channels  
— Dual-address transfer support with 8-, 16- and 32-bit data capability along with support for  
16-byte (4 X 32-bit) burst transfers  
— Source/destination address pointers that can increment or remain constant  
— 24-bit byte transfer counter per channel  
— Auto-alignment transfers supported for efficient block movement  
— Bursting and cycle steal support  
— support for channel-to-channel linking  
— Software-programmable DMA channel selections in the UARTs (3) and 32-bit timers (4)  
Reset  
— Separate reset in and reset out signals  
— Seven sources of reset:  
– Power-on reset (POR)  
– External  
– Software  
– Watchdog  
– Loss of clock  
– Loss of lock  
– Low-voltage detection (LVD)  
— Status flag indication of source of last reset  
Chip Integration Module (CIM)  
— System configuration during reset  
— Selects one of six clock modes  
— Configures output pad drive strength  
— Unique part identification number and part revision number  
General Purpose I/O interface  
— Up to 73 bits of general purpose I/O  
— Bit manipulation supported via set/clear functions  
— Unused peripheral pins may be used as extra GPIO  
JTAG support for system level board testing  
1.2.2 V2 Core Overview  
The Version 2 ColdFire processor core is comprised of two separate pipelines that are decoupled by an  
instruction buffer. The two-stage Instruction Fetch Pipeline (IFP) is responsible for instruction-address  
generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
9
Preliminary  
MCF52235 Family Configurations  
prefetched instructions awaiting execution in the Operand Execution Pipeline (OEP). The OEP includes  
two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage  
(AGEX) performs instruction execution and calculates operand effective addresses, if needed.  
The V2 core implements the ColdFire Instruction Set Architecture Revision A+ (see the ColdFire Family  
Programmer’s Reference Manual for instruction set details) which includes support for a separate user  
stack pointer register and four new instructions to assist in bit processing. Additionally, the MCF52235  
core includes the enhanced multiply-accumulate unit (EMAC) for improved signal processing capabilities.  
The MAC implements a 4-stage arithmetic pipeline, optimized for 32 x 32 bit operations, with support for  
four 48-bit accumulators. Supported operands include 16- and 32-bit signed and unsigned integers as well  
as signed fractional operands and a complete set of instructions to process these data types. The EMAC  
provides superb support for execution of DSP operations within the context of a single processor at a  
minimal hardware cost.  
1.2.3 Debug Module  
The ColdFire processor core debug interface is provided to support system debugging in conjunction with  
low-cost debug and emulator development tools. Through a standard debug interface users can access  
debug information, and on 112- and 121-lead packages real-time tracing capability is provided. This  
allows the processor and system to be debugged at full speed without the need for costly in-circuit  
emulators. The debug interface is a superset of the BDM interface provided on Freescale’s 683xx family  
of parts. The MCF52235 supports Revision B+ of the ColdFire debug architecture (DEBUG_B+).  
The on-chip breakpoint resources include a total of nine programmable 32-bit registers: two address  
registers, two data registers (one data register and one data mask register), four 32-bit PC registers and one  
PC mask register. These registers can be accessed through the dedicated debug serial communication  
channel or from the processor’s supervisor mode programming model. The breakpoint registers can be  
configured to generate triggers by combining the address, data, and PC conditions in a variety of single-  
or dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a  
debug interrupt exception.  
The MCF52235’s interrupt servicing options during emulator mode allow real-time critical interrupt  
service routines to be serviced while processing a debug interrupt event, thereby ensuring that the system  
continues to operate even during debugging.  
To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data  
(DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand  
data, and branch target addresses defining processor activity at the CPU’s clock rate. The MCF52235  
includes a new debug signal, ALLPST. This signal is the logical ‘AND’ of the processor status (PST[3:0])  
signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).  
The full debug/trace interface is available only on the 112- and 121-pin packages. However, every product  
features the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.  
1.2.4 JTAG  
The MCF52235 supports circuit board test strategies based on the Test Technology Committee of IEEE  
and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
10  
Freescale Semiconductor  
Preliminary  
MCF52235 Family Configurations  
16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit  
boundary-scan register, and a 32-bit ID register). The boundary scan register links the device’s pins into  
one shift register. Test logic, implemented using static logic design, is independent of the device system  
logic.  
The MCF52235 implementation can do the following:  
Perform boundary-scan operations to test circuit board electrical continuity  
Sample MCF52235 system pins during operation and transparently shift out the result in the  
boundary scan register  
Bypass the MCF52235 for a given circuit board test by effectively reducing the boundary-scan  
register to a single bit  
Disable the output drive to pins during circuit-board testing  
Drive output pins to stable levels  
1.2.5 On-Chip Memories  
1.2.5.1 SRAM  
The SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access  
in a single cycle. The location of the memory block can be set to any 32-Kbyte boundary within the  
4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the  
system stack. Because the SRAM module is physically connected to the processor's high-speed local bus,  
it can quickly service core-initiated accesses or memory-referencing commands from the debug module.  
The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal  
for implementing applications with double-buffer schemes, where the processor and a DMA device  
operate in alternate regions of the SRAM to maximize system performance.  
1.2.5.2 Flash  
The ColdFire Flash Module (CFM) is a non-volatile memory (NVM) module that connects to the  
processor’s high-speed local bus. The CFM is constructed with four banks of 32K x 16-bit Flash arrays to  
generate 256 Kbytes of 32-bit Flash memory. These arrays serve as electrically erasable and  
programmable, non-volatile program and data memory. The Flash memory is ideal for program and data  
storage for single-chip applications, allowing for field reprogramming without requiring an external high  
voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory  
controller which supports address speculation and interleaved accesses from the 2-cycle Flash arrays for  
improved performance. For operation at reduced core frequencies, the access time can be decreased (under  
program control) to a single-cycle access. A backdoor mapping of the Flash memory is used for all  
program, erase, and verify operations, as well as providing a read datapath for the DMA. Flash memory  
may also be programmed via the EzPort, which is a serial Flash programming interface that allows the  
Flash to be read, erased and programmed by an external controller in a format compatible with most SPI  
bus Flash memory chips. This allows easy device programming via Automated Test Equipment or bulk  
programming tools.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
11  
Preliminary  
MCF52235 Family Configurations  
1.2.6 Power Management  
The MCF52235 incorporates several low power modes of operation which are entered under program  
control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors  
the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD)  
monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the  
LVD trip point.  
1.2.7 Fast Ethernet Controller (FEC)  
The integrated Fast Ethernet Controller (FEC) performs the full set of IEEE 802.3/Ethernet CSMA/CD  
®
media access control and channel interface functions. The FEC connects through the on-chip transceiver  
(ePHY) which provides the physical layer interface.  
1.2.8 Ethernet Physical Interface (ePHY)  
The ePHY is an IEEE 802.3 compliant 10/100 Ethernet physical transceiver. The ePHY can be configured  
to support 10BASE-T or 100BASE-TX applications. The ePHY is configurable via internal registers.  
There are five basic modes of operation for the ePHY:  
Power down/initialization  
Auto-negotiate  
10BASE-T  
100BASE-TX  
Low-power  
1.2.9 Cryptography Acceleration Unit  
The MCF52235 device incorporates two hardware accelerators for cryptographic functions. First, the  
CAU is a coprocessor tightly-coupled to the V2 ColdFire core that implements a set of specialized  
operations to increase the throughput of software-based encryption and message digest functions,  
specifically the DES, 3DES, AES, MD5 and SHA-1 algorithms. Second, a random number generator  
provides FIPS-140 compliant 32-bit values to security processing routines. Both modules supply critical  
acceleration to software-based cryptographic algorithms at a minimal hardware cost.  
1.2.10 FlexCAN  
The FlexCAN module is a communication controller implementing version 2.0 of the CAN protocol parts  
A and B. The CAN protocol can be used as an industrial control serial data bus, meeting the specific  
requirements of reliable operation in a harsh EMI environment with high bandwidth. This instantiation of  
FlexCAN has 16 message buffers.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
12  
Freescale Semiconductor  
Preliminary  
MCF52235 Family Configurations  
1.2.11 UARTs  
The MCF52235 has three full-duplex UARTs that function independently. The three UARTs can be  
clocked by the system bus clock, eliminating the need for an external clock source. On smaller packages,  
the third UART is multiplexed with other digital I/O functions.  
2
1.2.12 I C Bus  
The I2C bus is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange  
and minimizes the interconnection between devices. This bus is suitable for applications requiring  
occasional communications over a short distance between many devices on a circuit board.  
1.2.13 QSPI  
The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with  
queued transfer capability. It allows up to 16 transfers to be queued at once, minimizing the need for CPU  
intervention between transfers.  
1.2.14 ADC  
The Fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold  
(S/H) circuits feeding separate 12-bit ADCs. The two separate converters store their results in accessible  
buffers for further processing.  
The ADC can be configured to perform a single scan and halt, perform a scan whenever triggered, or  
perform a programmed scan sequence repeatedly until manually stopped.  
The ADC can be configured for either sequential or simultaneous conversion. When configured for  
sequential conversions, up to eight channels can be sampled and stored in any order specified by the  
channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.  
During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same  
time. This configuration requires that a single channel may not be sampled by both S/H circuits  
simultaneously.  
Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures  
below the low threshold limit or above the high threshold limit set in the limit registers) or at several  
different zero crossing conditions.  
1.2.15 DMA Timers (DTIM0–DTIM3)  
There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3)  
on the MCF52235. Each module incorporates a 32-bit timer with a separate register set for configuration  
and control. The timers can be configured to operate from the system clock or from an external clock  
source using one of the DTINx signals. If the system clock is selected, it can be divided by 16 or 1. The  
input clock is further divided by a user-programmable 8-bit prescaler which clocks the actual timer counter  
register (TCRn). Each of these timers can be configured for input capture or reference (output) compare  
mode. Timer events may optionally cause interrupt requests or DMA transfers.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
13  
Preliminary  
MCF52235 Family Configurations  
1.2.16 General Purpose Timer (GPT)  
The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable  
counter driven by a 7-stage programmable prescaler. Each of the four channels can be configured for input  
capture or output compare. Additionally, one of the channels, channel 3, can be configured as a pulse  
accumulator.  
A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit  
range of the counter. The input capture and output compare functions allow simultaneous input waveform  
measurements and output waveform generation. The input capture function can capture the time of a  
selected transition edge. The output compare function can generate output waveforms and timer software  
delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.  
1.2.17 Periodic Interrupt Timers (PIT0 and PIT1)  
The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular  
intervals with minimal processor intervention. Each timer can either count down from the value written in  
its PIT modulus register, or it can be a free-running down-counter.  
1.2.18 Pulse Width Modulation Timers  
The MCF52235 has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty  
cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms  
with software-selectable duty rates from 0% to 100%. The PWM outputs have programmable polarity, and  
can be programmed as left aligned outputs or center aligned outputs. For higher period and duty cycle  
resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a  
single 16-bit channel. The module can thus be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit  
channels.  
1.2.19 Real-Time Clock (RTC)  
The Real-Time Clock (RTC) module maintains the system (time-of-day) clock and provides stopwatch,  
alarm, and interrupt functions. It includes full clock features: seconds, minutes, hours, days and supports  
a host of time-of-day interrupt functions along with an alarm interrupt.  
1.2.20 Software Watchdog Timer  
The watchdog timer is a 16-bit timer that facilitates recovery from runaway code. The watchdog counter  
is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must  
periodically restart the countdown.  
1.2.21 Phase Locked Loop (PLL)  
The clock module supports an external crystal oscillator and includes a phase-locked loop (PLL), reduced  
frequency divider (RFD), low-power divider status/control registers, and control logic. In order to improve  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
14  
Freescale Semiconductor  
Preliminary  
MCF52235 Family Configurations  
noise immunity the PLL has its’ own power supply inputs: VDDPLL and VSSPLL. All other circuits are  
powered by the normal supply pins, VDD and VSS.  
1.2.22 Interrupt Controller (INTC0/INTC1)  
There are two interrupt controllers on the MCF52235. These interrupt controllers are organized as seven  
levels with up to nine interrupt sources per level. Each interrupt source has a unique interrupt vector, and  
provide each peripheral with all necessary interrupts. Each internal interrupt has a programmable level  
[1-7] and priority within the level. The seven external interrupts have fixed levels/priorities.  
1.2.23 DMA Controller  
The Direct Memory Access (DMA) Controller Module provides an efficient way to move blocks of data  
with minimal processor interaction. The DMA module provides four channels (DMA0-DMA3) that allow  
byte, word, longword or 16-byte burst line transfers. These transfers are triggered by software explicitly  
setting a DCRn[START] bit or by the assertion of a DMA request from any number of on-chip peripherals.  
The DMA controller supports dual address transfers to on-chip devices.  
1.2.24 Reset  
The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and  
keeps track of what caused the last reset. There are six sources of reset:  
External reset input  
Power-on reset (POR)  
Watchdog timer  
Phase locked-loop (PLL) loss of lock  
PLL loss of clock  
Software  
Registers provide status flags indicating the last source of reset and a control bit for software assertion of  
the RSTO pin.  
1.2.25 GPIO  
All of the pins associated with the external bus interface may be used for several different functions. When  
not used this, all of the pins may be used as general-purpose digital I/O pins. In some cases, the pin function  
is set by the operating mode, and the alternate pin functions are not supported.  
The digital I/O pins on the MCF52235 are grouped into 8-bit ports. Some ports do not use all eight bits.  
Each port has registers that configure, monitor, and control the port pins.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
15  
Preliminary  
MCF52235 Family Configurations  
1.3 Part Numbers and Packaging  
Table 2. Part Number Summary  
Part Number  
Flash / SRAM  
Key Features  
Package  
Speed  
MCF52230  
128 Kbytes / 32 Kbytes 3 UARTs, I2C, QSPI, A/D, FEC ePHY, DMA,  
16-/32-bit PWM Timers  
80-pin TQFP  
112-pin LQFP  
60 MHz  
MCF52231  
MCF52233  
MDCF52234  
128 Kbytes / 32 Kbytes 3 UARTs, I2C, QSPI, A/D, FEC ePHY, DMA,  
16-/32-bit PWM Timers, CAN  
80-pin TQFP  
112-pin LQFP  
60 MHz  
60 MHz  
60 MHz  
256 Kbytes / 32 Kbytes 3 UARTs, I2C, QSPI, A/D, FEC ePHY, DMA,  
16-/32-bit PWM Timers  
80-pin TQFP  
112-pin LQFP  
256 Kbytes / 32 Kbytes  
3 UARTs, I2C, QSPI, A/D, FEC, ePHY,  
DMA, 16-/32-bit PWM Timers, CAN  
80-pin TQFP  
112-pin LQFP  
121 MAPBGA  
MCF52235  
256 Kbytes / 32 Kbytes 3 UARTs, I2C, QSPI, A/D, CAU, FEC, DMA,  
ePHY, 16-/32-bit PWM Timers, CAN  
112-pin LQFP  
121 MAPBGA  
60 MHz  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
16  
Freescale Semiconductor  
MCF52235 Family Configurations  
1.4 Package Pinouts  
Figure 2 shows the pinout configuration for the 80-Lead TQFP.  
TCLK/PSTCLK  
TMS/BKPT  
RCON/EZPCS  
TDI/DSI  
TDO/DSO  
TRST/DSCLK  
ALLPST  
TIN0/TOUT0  
TIN1/TOUT1  
VDDX1  
ACT_LED  
LINK_LED  
VDDR  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SPD_LED  
PHY_VSSRX  
PHY_VDDRX  
PHY_RXN  
PHY_RXP  
PHY_VSSTX  
PHY_TXN  
PHY_TXP  
PHY_VDDTX  
PHY_VDDA  
PHY_VSSA  
PHY_RBIAS  
VDD2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
80-Lead  
TQFP-EP  
VSSX1  
JTAG_EN  
TIN2/TOUT2  
TIN3/TOUT3  
U1_RTS  
U1_CTS  
U0_RTS  
U0_CTS  
SYNCB  
VSS2  
DUPLED  
COLLED  
IRQ11  
SYNCA  
Figure 2. 80-Lead TQFP Pin Assignments  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
17  
MCF52235 Family Configurations  
Figure 3 shows the pinout configuration for the 112-Lead LQFP.  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
1
2
3
4
5
6
7
8
ACTLED  
LNKLED  
VDDR  
SPDLED  
PST3  
PST2  
PST1  
TCLK/PSTCLK  
TMS/BKPT  
RCON/EZPCS  
TDI/DSI  
TDO/DSO  
TRST/DSCLK  
ALLPST  
TIN0/TOUT0  
TIN1/TOUT1  
IRQ8  
PST0  
9
PHY_VSSRX  
PHY_VDDRX  
PHY_RXN  
PHY_RXP  
PHY_VSSTX  
PHY_TXN  
PHY_TXP  
PHY_VDDTX  
PHY_VDDA  
PHY_VSSA  
PHY_RBIAS  
VDD2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IRQ9  
DDATA3  
DDATA2  
VDDX1  
112-Lead LQFP  
VSSX1  
DDATA1  
DDATA0  
JTAG_EN  
IRQ6  
IRQ5  
VSS2  
TIN2/TOUT2  
TIN3/TOUT3  
U1_RTS  
U1_CTS  
U0_RTS  
U0_CTS  
SYNCB  
U2_TXD  
U2_RXD  
U2_CTS  
U2_RTS  
DUPLED  
COLLED  
IRQ11  
SYNCA  
Figure 3. 112-Lead LQFP Pin Assignments  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
18  
Freescale Semiconductor  
Table 3. Pin Functions by Primary and Alternate Purpose  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Quaternary  
Function  
Wired OR  
Control  
Pull-up / Pin on121 Pinon112 Pin on 80  
Strength/  
Notes  
Function  
Pull-down2 MAPBGA  
LQFP  
LQFP  
Control1  
ADC  
AN7  
AN6  
PAN[0]  
PAN[1]  
PAN[2]  
PAN[3]  
PAN[4]  
PAN[5]  
PAN[6]  
PAN[7]  
PAS[3]  
PAS[2]  
Low  
Low  
88  
87  
86  
85  
89  
90  
91  
92  
28  
27  
93  
96  
94  
95  
48  
49  
45  
47  
7
64  
63  
62  
61  
65  
66  
67  
68  
20  
19  
69  
72  
70  
71  
36  
37  
33  
35  
7
AN5  
Low  
AN4  
Low  
AN3  
Low  
AN2  
Low  
AN1  
Low  
AN0  
Low  
SYNCA  
SYNCB  
VDDA  
VSSA  
VRH  
CANTX3  
FEC_MDIO  
PDSR[39]  
PDSR[39]  
N/A  
CANRX3  
FEC_MDC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VRL  
N/A  
Clock  
Generation  
EXTAL  
XTAL  
N/A  
N/A  
VDDPLL  
VSSPLL  
ALLPST  
DDATA[3:0]  
N/A  
N/A  
Debug  
Data  
High  
High  
PDD[7:4]  
12,13,  
16,17  
PST[3:0]  
PDD[3:0]  
High  
80,79,  
78,77  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Function  
Quaternary  
Function  
Wired OR  
Control  
Pull-up / Pin on121 Pinon112 Pin on 80  
Strength/  
Notes  
Pull-down2 MAPBGA  
LQFP  
LQFP  
Control1  
Ethernet  
LEDs  
ACTLED  
COLLED  
PSD[0]  
PSD[4]  
PSD[3]  
PSD[1]  
PSD[2]  
PSD[5]  
PSD[6]  
PDSR[32] PWOR[8]  
PDSR[36] PWOR[12]  
PDSR[35] PWOR[11]  
PDSR[33] PWOR[9]  
PDSR[34] PWOR[10]  
PDSR[37] PWOR[13]  
PDSR[38] PWOR[14]  
84  
58  
59  
83  
81  
52  
51  
66  
74  
73  
71  
70  
68  
75  
69  
67  
76  
72  
111  
112  
60  
42  
43  
59  
57  
46  
54  
53  
51  
50  
48  
55  
49  
47  
56  
52  
79  
80  
DUPLED  
LNKLED  
SPDLED  
RXLED  
TXLED  
Ethernet  
PHY  
PHY_RBIAS  
PHY_RXN  
PHY_RXP  
PHY_TXN  
PHY_TXP  
PHY_VDDA  
PHY_VDDRX  
PHY_VDDTX  
PHY_VSSA  
PHY_VSSRX  
PHY_VSSTX  
SCL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
I2C  
CANTX3  
CANRX3  
TXD2  
RXD2  
PAS[1]  
PAS[0]  
PDSR[0]  
PDSR[0]  
pull-up4  
pull-up4  
SDA  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Function  
Quaternary  
Function  
Wired OR  
Control  
Pull-up / Pin on121 Pinon112 Pin on 80  
Strength/  
Notes  
Pull-down2 MAPBGA  
LQFP  
LQFP  
Control1  
Interrupts  
IRQ15  
IRQ14  
IRQ13  
IRQ12  
IRQ11  
IRQ10  
IRQ9  
PGP[7]  
PGP[6]  
PGP[5]  
PGP[4]  
PGP[3]  
PGP[2]  
PGP[1]  
PGP[0]  
PNQ[7]  
PNQ[6]  
PNQ[5]  
PNQ[4]  
PNQ[3]  
PNQ[2]  
PNQ[1]  
PSDR[47]  
PSDR[46]  
PSDR[45]  
PSDR[44]  
PSDR[43]  
PSDR[42]  
PSDR[41]  
PSDR[40]  
Low  
N/A  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-up4  
pull-down  
pull-up5  
106  
105  
98  
97  
57  
29  
11  
10  
56  
19  
20  
41  
53  
54  
55  
18  
1
40  
29  
39  
12  
1
IRQ8  
IRQ7  
IRQ6  
FEC_RXER  
FEC_RXD[1]  
Low  
IRQ5  
Low  
IRQ4  
Low  
IRQ3  
FEC_RXD[2]  
FEC_RXD[3]  
PWM1  
Low  
IRQ2  
Low  
IRQ1  
SYNCA  
High  
JTAG/BDM  
JTAG_EN  
N/A  
TCLK/  
CLKOUT  
High  
PSTCLK  
TDI/DSI  
N/A  
High  
N/A  
N/A  
N/A  
N/A  
pull-up5  
4
5
2
4
5
2
TDO/DSO  
TMS  
pull-up5  
/BKPT  
TRST  
/DSCLK  
N/A  
N/A  
N/A  
N/A  
pull-up5  
pull-up  
6
3
6
3
Mode  
Selection  
RCON/  
EZPCS  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Function  
Quaternary  
Function  
Wired OR  
Control  
Pull-up / Pin on121 Pinon112 Pin on 80  
Strength/  
Notes  
Pull-down2 MAPBGA  
LQFP  
LQFP  
Control1  
PWM  
PWM7  
PWM5  
PWM3  
PWM1  
PTD[3]  
PTD[2]  
PTD[1]  
PTD[0]  
PQS[1]  
PDSR[31]  
PDSR[30]  
PDSR[29]  
PDSR[28]  
PDSR[2]  
104  
103  
100  
99  
25  
QSPI  
QSPI_DIN/  
EZPD  
CANRX3  
RXD1  
PWOR[4]  
35  
QSPI_DOUT/  
EZPQ  
CANTX3  
SCL  
TXD1  
RTS1  
PQS[0]  
PQS[2]  
PDSR[1]  
PDSR[3]  
PWOR[5]  
PWOR[6]  
34  
36  
26  
27  
QSPI_SCK/  
EZPCK  
pull-up6  
QSPI_CS3  
QSPI_CS2  
QSPI_CS1  
QSPI_CS0  
RSTI  
SYNCA  
SYNCB  
PQS[6]  
PQS[5]  
PQS[4]  
PQS[3]  
PDSR[7]  
PDSR[6]  
PDSR[5]  
PDSR[4]  
N/A  
40  
39  
38  
37  
44  
46  
50  
107  
108  
109  
110  
22  
21  
9
58  
32  
34  
38  
75  
76  
77  
78  
14  
13  
9
SDA  
CTS1  
PWOR[7]  
N/A  
pull-up6  
pull-up7  
Reset7  
Test  
RSTO  
high  
TEST  
N/A  
N/A  
pull-down  
pull-up8  
pull-up8  
pull-up8  
pull-up8  
Timers,  
16-bit  
GPT3  
FEC_TXD[3]  
FEC_TXD[2]  
FEC_TXD[1]  
FEC_TXER  
TOUT3  
TOUT2  
TOUT1  
TOUT0  
PWM7  
PWM5  
PWM3  
PWM1  
PWM6  
PWM4  
PWM2  
PWM0  
PTA[3]  
PTA[2]  
PTA[1]  
PTA[0]  
PTC[3]  
PTC[2]  
PTC[1]  
PTC[0]  
PDSR[23] PWOR[23]  
PDSR[22] PWOR[22]  
PDSR[21] PWOR[21]  
PDSR[20] PWOR[20]  
PDSR[19] PWOR[19]  
PDSR[18] PWOR[18]  
PDSR[17] PWOR[17]  
PDSR[16] PWOR[16]  
GPT2  
GPT1  
GPT0  
Timers,  
32-bit  
TIN3  
TIN2  
TIN1  
TIN0  
8
8
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Function  
Quaternary  
Function  
Wired OR  
Control  
Pull-up / Pin on121 Pinon112 Pin on 80  
Strength/  
Notes  
Pull-down2 MAPBGA  
LQFP  
LQFP  
Control1  
UART 0  
UART 1  
UART 2  
FlexCAN  
CTS0  
RTS0  
RXD0  
TXD0  
CTS1  
RTS1  
RXD1  
TXD1  
CTS2  
RTS2  
RXD2  
TXD2  
CANRX  
CANTX  
VDD  
CANRX3  
FEC_RXCLK  
FEC_RXDV  
FEC_RXD[0]  
FEC_CRS  
RXD2  
PUA[3]  
PUA[2]  
PUA[1]  
PUA[0]  
PUB[3]  
PUB[2]  
PUB[1]  
PUB[0]  
PUC[3]  
PUC[2]  
PUC[1]  
PUC[30]  
PAS[3]  
PAS[2]  
PDSR[11]  
PDSR[10]  
PDSR[9]  
PDSR[8]  
PDSR[15]  
PDSR[14]  
26  
25  
30  
31  
24  
23  
32  
33  
61  
60  
62  
63  
18  
17  
21  
22  
16  
15  
23  
24  
CANTX3  
PWOR[0]  
PWOR[1]  
SYNCA  
SYNCB  
TXD2  
FEC_TXD[0]  
FEC_COL  
PDSR[13] PWOR[2]  
PDSR[12] PWOR[3]  
PDSR[27]  
PDSR[26]  
PDSR[25]  
PDSR[24]  
PDSR[39]  
PDSR[39]  
N/A  
FEC_MDIO  
FEC_MDC  
See Note3  
See Note3  
VDD9  
VSS  
N/A  
14,43,65, 10,31,45,  
82,102  
58,74  
VSS  
N/A  
N/A  
15,42,  
64,101  
11,30,  
44,73  
NOTES:  
1
2
3
4
5
6
7
8
9
The PDSR and PSSR registers are described in the MCF52235 Reference Manual. All programmable signals default to 2mA drive in normal (single-chip) mode.  
All signals have a pull-up in GPIO mode.  
The multiplexed CANTX and CANRX signals do not have dedicated pins, but are available as muxed replacements for other signals.  
For primary and GPIO functions only.  
Only when JTAG mode is enabled.  
For secondary and GPIO functions only.  
RSTI has an internal pull-up resistor, however the use of an external resistor is very strongly recommended  
For GPIO function. Primary Function has pull-up control within the GPT module  
This list for power and ground does not include those dedicated power/ground pins included elsewhere, e.g. in the ethernet PHY.  
MCF52235 Family Configurations  
1.5 Reset Signals  
Table 4 describes signals that are used to either reset the chip or as a reset indication.  
Table 4. Reset Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Reset In  
RSTI  
Primary reset input to the device. Asserting RSTI immediately resets  
the CPU and peripherals.  
I
Reset Out  
RSTO  
Driven low for 512 CPU clocks after the reset source has deasserted.  
O
1.6 PLL and Clock Signals  
Table 5 describes signals that are used to support the on-chip clock generation circuitry.  
Table 5. PLL and Clock Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Clock In  
Crystal  
EXTAL  
XTAL  
Crystal oscillator or external clock input.  
Crystal oscillator output.  
I
O
O
Clock Out  
CLKOUT  
This output signal reflects the internal system clock.  
1.7 Mode Selection  
Table 6 describes signals used in mode selection, Table 6 describes particular clocking modes.  
Table 6. Mode Selection Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Reset Configuration  
RCON  
The Serial Flash Programming mode is entered by asserting the  
RCON pin (with the TEST pin negated) as the chip comes out of  
reset. During this mode, the EzPort has access to the Flash memory  
which can be programmed from an external device.  
Test  
TEST  
Reserved for factory testing only and in normal modes of operation  
should be connected to VSS to prevent unintentional activation of  
test functions.  
I
1.8 External Interrupt Signals  
Table 7 describes the external interrupt signals.  
Table 7. External Interrupt Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Interrupts  
IRQ[15:1] External interrupt sources.  
I
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
24  
Freescale Semiconductor  
MCF52235 Family Configurations  
1.9 Queued Serial Peripheral Interface (QSPI)  
Table 8 describes QSPI signals.  
Table 8. Queued Serial Peripheral Interface (QSPI) Signals  
Signal Name  
Abbreviation Function  
I/O  
QSPI Synchronous  
Serial Output  
QSPI_DOUT Provides the serial data from the QSPI and can be programmed to be  
driven on the rising or falling edge of QSPI_CLK.  
O
QSPI Synchronous  
Serial Data Input  
QSPI_DIN Provides the serial data to the QSPI and can be programmed to be  
sampled on the rising or falling edge of QSPI_CLK.  
I
QSPI Serial Clock  
QSPI_CLK Provides the serial clock from the QSPI. The polarity and phase of  
QSPI_CLK are programmable.  
O
O
SynchronousPeripheral QSPI_CS[3:0] QSPI peripheral chip selects that can be programmed to be active  
Chip Selects  
high or low.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
25  
MCF52235 Family Configurations  
1.10 Fast Ethernet Controller ePHY Signals  
Table 9 describes the Fast Ethernet Controller (FEC) Signals.  
Table 9. Fast Ethernet Controller (FEC) Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Twisted Pair Input +  
RXP  
Differential Ethernet twisted-pair input pin. This pin is high-impedance  
out of reset.  
I
Twisted Pair Input -  
Twisted Pair Output +  
Twisted Pair Output -  
Bias Control Resistor  
RXN  
TXN  
Differential Ethernet twisted-pair input pin. This pin is high-impedance  
out of reset.  
I
Differential Ethernet twisted-pair output pin. This pin is  
high-impedance out of reset.  
O
O
I
TXP  
Differential Ethernet twisted-pair output pin. This pin is  
high-impedance out of reset.  
RBIAS  
Connect a 12.4 k(1.0%) external resistor, RBIAS, between the  
PHY_RBIAS pin and analog ground.  
Place this resistor as near to the chip pin as possible. Stray  
capacitance must be kept to less than 10 pF  
(>50 pF will cause instability). No high-speed signals can be permitted  
in the region of RBIAS.  
Activity LED  
Link LED  
ACT_LED  
Indicates when the ePHY is transmitting or receiving  
O
O
O
O
O
O
O
LINK_LED Indicates when the ePHY has a valid link  
SPD_LED Indicates the speed of the ePHY connection  
Speed LED  
Duplex LED  
Collision LED  
Transmit LED  
Receive LED  
DUPLED  
COLLED  
TXLED  
Indicates the duplex (full or half) of the ePHY connection  
Indicates if the ePHY detects a collision  
Indicates if the ePHY is transmitting  
RXLED  
Indicates if the ePHY is receiving  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
26  
Freescale Semiconductor  
MCF52235 Family Configurations  
1.11 I2C I/O Signals  
2
Table 10 describes the I C serial interface module signals.  
2
Table 10. I C I/O Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Serial Clock  
SCL  
Open-drain clock signal for the for the I2C interface. Either it is driven  
by the I2C module when the bus is in master mode or it becomes the  
clock input when the I2C is in slave mode.  
I/O  
Serial Data  
SDA  
Open-drain signal that serves as the data input/output for the I2C  
interface.  
I/O  
1.12 UART Module Signals  
Table 11 describes the UART module signals.  
Table 11. UART Module Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Transmit Serial Data  
Output  
UTXDn  
Transmitter serial data outputs for the UART modules. The output is  
held high (mark condition) when the transmitter is disabled, idle, or in  
the local loopback mode. Data is shifted out, LSB first, on this pin at  
the falling edge of the serial clock source.  
O
Receive Serial Data  
Input  
URXDn  
Receiver serial data inputs for the UART modules. Data is received on  
this pin LSB first. When the UART clock is stopped for power-down  
mode, any transition on this pin restarts it.  
I
Clear-to-Send  
UCTSn  
URTSn  
Indicate to the UART modules that they can begin data transmission.  
I
Request-to-Send  
Automatic request-to-send outputs from the UART modules. This  
signal can also be configured to be asserted and negated as a  
function of the RxFIFO level.  
O
1.13 DMA Timer Signals  
Table 12 describes the signals of the four DMA timer modules.  
Table 12. DMA Timer Signals  
Signal Name  
Abbreviation  
Function  
I/O  
DMA Timer Input  
DTIN  
Event input to the DMA timer modules.  
I
DMA Timer Output  
DTOUT  
Programmable output from the DMA timer modules.  
O
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
27  
MCF52235 Family Configurations  
1.14 ADC Signals  
Table 13 describes the signals of the Analog-to-Digital Converter.  
Table 13. ADC Signals  
Signal Name  
Analog Inputs  
Abbreviation  
Function  
Inputs to the A-to-D converter.  
I/O  
AN[7:0]  
VRH  
I
I
Analog Reference  
Reference voltage high and low inputs.  
VRL  
I
Analog Supply  
VDDA  
VSSA  
Isolate the ADC circuitry from power supply noise  
1.15 General Purpose Timer Signals  
Table 14 describes the General Purpose Timer Signals.  
Table 14. GPT Signals  
Signal Name  
Abbreviation  
Function  
I/O  
General Purpose Timer  
Input/Output  
GPT[3:0]  
Inputs to or outputs from the general purpose timer module  
I/O  
1.16 Pulse Width Modulator Signals  
Table 15 describes the PWM signals.  
Table 15. PWM Signals  
Signal Name  
Abbreviation  
Function  
I/O  
PWM Output Channels  
PWM[7:0]  
Pulse width modulated output for PWM channels  
O
1.17 Debug Support Signals  
These signals are used as the interface to the on-chip JTAG controller and also to interface to the BDM  
logic.  
Table 16. Debug Support Signals  
Signal Name  
Abbreviation  
Function  
I/O  
JTAG Enable  
Test Reset  
JTAG_EN  
TRST  
Select between debug module and JTAG signals at reset  
I
I
This active-low signal is used to initialize the JTAG logic  
asynchronously.  
Test Clock  
TCLK  
TMS  
Used to synchronize the JTAG logic.  
I
I
Test Mode Select  
Used to sequence the JTAG state machine. TMS is sampled on the  
rising edge of TCLK.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
28  
Freescale Semiconductor  
MCF52235 Family Configurations  
Table 16. Debug Support Signals (continued)  
Abbreviation Function  
Signal Name  
I/O  
Test Data Input  
TDI  
Serial input for test instructions and data. TDI is sampled on the rising  
edge of TCLK.  
I
Test Data Output  
TDO  
Serial output for test instructions and data. TDO is tri-stateable and is  
actively driven in the shift-IR and shift-DR controller states. TDO  
changes on the falling edge of TCLK.  
O
Development Serial  
Clock  
DSCLK  
Development Serial Clock-Internally synchronized input. (The logic  
level on DSCLK is validated if it has the same value on two  
consecutive rising bus clock edges.) Clocks the serial communication  
port to the debug module during packet transfers. Maximum frequency  
is PSTCLK/5. At the synchronized rising edge of DSCLK, the data  
input on DSI is sampled and DSO changes state.  
I
I
Breakpoint  
BKPT  
Breakpoint - Input used to request a manual breakpoint. Assertion of  
BKPT puts the processor into a halted state after the current  
instruction completes. Halt status is reflected on processor status  
signals () as the value 0xF.  
Development Serial  
Input  
DSI  
Development Serial Input -Internally synchronized input that provides  
data input for the serial communication port to the debug module,  
once the DSCLK has been seen as high (logic 1).  
I
Development Serial  
Output  
DSO  
Development Serial Output -Provides serial output communication for  
debug module responses. DSO is registered internally. The output is  
delayed from the validation of DSCLK high.  
O
O
O
Debug Data  
DDATA[3:0] Display captured processor data and breakpoint status. The CLKOUT  
signal can be used by the development system to know when to  
sample DDATA[3:0].  
Processor Status Clock  
PSTCLK  
Processor Status Clock - Delayed version of the processor clock. Its  
rising edge appears in the center of valid PST and DDATA output.  
PSTCLK indicates when the development system should sample PST  
and DDATA values.  
If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and  
PST and DDATA outputs from toggling without disabling triggers.  
Non-quiescent operation can be reenabled by clearing CSR[PCD],  
although the external development systems must resynchronize with  
the PST and DDATA outputs.  
PSTCLK starts clocking only when the first non-zero PST value (0xC,  
0xD, or 0xF) occurs during system reset exception processing.  
Processor Status  
Outputs  
PST[3:0]  
ALLPST  
Indicate core status. Debug mode timing is synchronous with the  
processor clock; status is unrelated to the current bus transfer. The  
CLKOUT signal can be used by the development system to know  
when to sample PST[3:0].  
O
O
All Processor Status  
Outputs  
Logical “AND” of PST[3.0]  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
29  
MCF52235 Family Configurations  
1.18 EzPort Signal Descriptions  
Table 17 contains a list of EzPort external signals  
Table 17. EzPort Signal Descriptions  
Abbreviation Function  
EZPCK Shift clock for EzPort transfers  
Signal Name  
I/O  
EzPort Clock  
I
I
EzPort Chip Select  
EZPCS  
EZPD  
EZPQ  
Chip select for signalling the start and end  
of serial transfers  
EzPort Serial Data In  
EzPort Serial Data Out  
EZPD is sampled on the rising edge of  
EZPCK  
I
EZPQ transitions on the falling edge of  
EZPCK  
O
1.19 Power and Ground Pins  
The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided  
for adequate current capability. All power supply pins must have adequate bypass capacitance for  
high-frequency noise suppression.  
Table 18. Power and Ground Pins  
Signal Name  
Abbreviation  
Function  
I/O  
PLL Analog Supply  
VDDPLL,  
VSSPLL  
Dedicated power supply signals to isolate the sensitive PLL analog  
circuitry from the normal levels of noise present on the digital power  
supply.  
I
Positive Supply  
Ground  
VDD  
VSS  
These pins supply positive power to the core logic.  
This pin is the negative supply (ground) to the chip.  
I
Some of the V and V pins on the device are only to be used for noise bypass. Figure 4 shows a typical  
DD  
SS  
connection diagram. Pay particular attention to those pins which show only capacitor connections. Do not  
connect power supply voltage directly to these pins.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
30  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
33  
35  
69  
70  
71  
72  
58  
11  
10  
31  
30  
45  
44  
74  
73  
VDDPLL  
VSSPLL  
VDDA  
VRH  
0.22µF  
0.1µF  
1000pF  
10µF  
0.1µF  
10V  
10µH  
Tantalum  
VRL  
*
VSSA  
VDDR  
VSSX1  
VDDX1  
VDDX2  
VSSX2  
VDD2  
0.1µF  
0.1µF  
3.3V  
MCF52235  
0.1µF  
Pin numbering is shown  
for the 80-lead TQFP  
0.22µF  
0.22µF  
VSS2  
VDD1  
VSS1  
0.22µF 0.22µF 0.22µF  
12.4KΩ  
1%  
optional  
*
Figure 4. Suggested connection scheme for Power and Ground  
2 Preliminary Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the MCF52235  
microcontroller unit. This section contains detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications of MCF52235.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however  
for production silicon these specifications will be met. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this appendix supersede any values found in the  
module specifications.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
31  
Preliminary  
Preliminary Electrical Characteristics  
2.1 Maximum Ratings  
1, 2  
Table 19. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply Voltage  
VDD  
VDDPLL  
VSTBY  
VIN  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to + 4.0  
– 0.3 to + 4.0  
0 to 3.3  
V
V
V
V
V
V
Clock Synthesizer Supply Voltage  
RAM Memory Standby Supply Voltage  
Digital Input Voltage 3  
EXTAL pin voltage  
VEXTAL  
VXTAL  
XTAL pin voltage  
0 to 3.3  
Instantaneous Maximum Current  
IDD  
25  
mA  
Single pin limit (applies to all pins) 4, 5  
Operating Temperature Range (Packaged)  
TA  
– 40 to 85  
°C  
(TL - TH)  
Storage Temperature Range  
N1 OTES:  
Tstg  
– 65 to 150  
°C  
Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum  
Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress  
beyond those listed may affect device reliability or cause permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical  
fields; however, it is advised that normal precautions be taken to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is  
enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or VDD).  
Input must be current limited to the IDD value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then  
use the larger of the two values.  
2
3
4
5
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > VDD) is greater than IDD  
the injection current may flow out of VDD and could result in external power supply going out of  
regulation. Insure external VDD load will shunt current greater than maximum injection current. This  
will be the greatest risk when the MCU is not consuming power (ex; no clock).Power supply must  
maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions.  
,
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
32  
Freescale Semiconductor  
Preliminary  
Preliminary Electrical Characteristics  
Table 20 lists thermal resistance values  
Table 20. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
112 LQFP  
Four layer board (2s2p)  
θJMA  
TBD1,2  
°C/W  
112 LQFP  
θJMA  
TBD  
°C/W  
Four layer board (2s2p)  
Junction to board  
112 LQFP  
θJB  
θJC  
Ψjt  
Tj  
TBD3  
TBD4  
TBD5  
105  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
112 LQFP  
Junction to top of package  
Maximum operating junction temperature  
N1 OTES:  
Natural convection  
112 LQFP  
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent  
device junction temperatures from exceeding the rated specification. System designers should be aware that  
device junction temperatures can be significantly influenced by board layout and surrounding devices.  
Conformance to the device junction temperature specification can be verified by physical measurement in the  
customer’s system using the Ψjt parameter, the device power dissipation, and the method described in EIA/JESD  
Standard 51-2.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written in conformance with Psi-JT.  
2
3
4
5
The average chip-junction temperature (TJ) in °C can be obtained from:  
(1)  
)
TJ = TA + (PD × ΘJMA  
Where:  
TA  
= Ambient Temperature, °C  
ΘJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD × VDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is  
neglected) is:  
PD = K ÷ (TJ + 273°C)  
(2)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA + 273 °C) + ΘJMA × PD  
2
(3)  
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at  
equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1)  
and (2) iteratively for any value of TA.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
33  
Preliminary  
Preliminary Electrical Characteristics  
2.2 ESD Protection  
1, 2  
Table 21. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
ESD Target for Machine Model  
HBM Circuit Description  
HBM  
MM  
2000  
200  
1500  
100  
0
V
V
Rseries  
C
ohms  
pF  
MM Circuit Description  
Rseries  
C
ohms  
pF  
200  
Number of pulses per pin (HBM)  
positive pulses  
negative pulses  
1
1
Number of pulses per pin (MM)  
positive pulses  
negative pulses  
3
3
Interval of Pulses  
N1 OTES:  
1
sec  
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
2.3 DC Electrical Specifications  
1
Table 22. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply Voltage  
VDD  
VIH  
3.0  
3.6  
4.0  
V
V
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
0.7 x VDD  
VSS – 0.3  
0.06 x VDD  
–1.0  
VIL  
0.35 x VDD  
V
VHYS  
Iin  
mV  
µA  
Input Leakage Current  
1.0  
Vin = VDD or VSS, Input-only pins  
High Impedance (Off-State) Leakage Current  
Vin = VDD or VSS, All input/output and output pins  
IOZ  
VOH  
VOL  
–1.0  
O VDD - 0.5  
__  
1.0  
__  
µA  
V
Output High Voltage (All input/output and all output pins)  
IOH = –2.0 mA  
Output Low Voltage (All input/output and all output pins)  
IOL = 2.0mA  
0.5  
V
Weak Internal Pull Up Device Current, tested at VIL Max.2  
Input Capacitance 3  
IAPU  
Cin  
-10  
- 130  
µA  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
Load Capacitance4  
Low Drive Strength  
High Drive Strength  
pF  
CL  
25  
50  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
1
Table 22. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Operating Supply Current 5  
IDD  
Master Mode  
WAIT  
DOZE  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
µA  
STOP  
3, 6, 7, 8  
DC Injection Current  
IIC  
mA  
VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3  
Single Pin Limit  
Total MCU Limit, Includes sum of all stressed pins  
-1.0  
-10  
1.0  
10  
NOTES:  
1
2
3
4
Refer to Table 23 for additional PLL specifications.  
Refer to the MCF52235 signals chapter for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces  
require transmission line analysis to determine proper drive strength and termination.  
Current measured at maximum system clock frequency, all modules active, and default drive strength with matching  
load.  
5
6
7
All functional non-supply pins are internally clamped to VSS and their respective VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD  
and could result in external power supply going out of regulation. Insure external VDD load will shunt current greater  
than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at  
power-up, system clock is not present during the power-up sequence until the PLL has attained lock.  
8
2.4 Phase Lock Loop Electrical Specifications  
Table 23. PLL Electrical Specifications  
(VDD and VDDPLL = 2.7 to 3.6 V, VSS = VSSPLL = 0 V)  
Characteristic  
Symbol  
Min  
Max  
Unit  
PLL Reference Frequency Range1  
Crystal reference  
MHz  
fref_crystal  
fref_ext  
2
2
10.0  
10.0  
External reference  
System Frequency 2  
External Clock Mode  
On-Chip PLL Frequency  
fsys  
MHz  
0
60  
60  
fref / 32  
Loss of Reference Frequency 3, 5  
Self Clocked Mode Frequency 4, 5  
Crystal Start-up Time 5, 6  
fLOR  
fSCM  
tcst  
100  
1
1000  
5
kHz  
MHz  
ms  
10  
EXTAL Input High Voltage  
Crystal reference  
External reference  
VIHEXT  
V
VDD- 1.0  
2.0  
VDD  
VDD  
EXTAL Input Low Voltage  
Crystal reference  
External reference  
VILEXT  
V
VSS  
VSS  
1.0  
0.8  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
35  
Preliminary Electrical Characteristics  
Table 23. PLL Electrical Specifications (continued)  
(VDD and VDDPLL = 2.7 to 3.6 V, VSS = VSSPLL = 0 V)  
Characteristic  
Symbol  
Min  
Max  
Unit  
XTAL Output High Voltage  
IOH = 1.0 mA  
VOL  
V
VDD- 1.0  
XTAL Output Low Voltage  
IOL = 1.0 mA  
XTAL Load Capacitance7  
PLL Lock Time5,9  
VOL  
V
0.5  
pF  
tlpll  
500  
µs  
Power-up To Lock Time 5, 7,8  
With Crystal Reference  
Without Crystal Reference  
tlplk  
10.5  
500  
ms  
µs  
Duty Cycle of reference 5  
Frequency un-LOCK Range  
Frequency LOCK Range  
tdc  
40  
60  
1.5  
% fsys  
% fsys  
fUL  
- 1.5  
- 0.75  
fLCK  
Cjitter  
0.75  
% % fsys  
CLKOUT Period Jitter 5, 6, 8, 9,10, Measured at fSYS Max  
Peak-to-peak Jitter (Clock edge to clock edge)  
Long Term Jitter (Averaged over 2 ms interval)  
5
.01  
% fsys  
N1 OTES:  
Input to the PLL is limited to 10MHz max, however the PLL divider can accept up to 40MHz. The input must be  
divided down to a frequency no greater than 10MHz. This is controlled by register CCHR.  
All internal registers retain data at 0 Hz.  
2
3
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self  
clocked mode.  
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below  
fLOR with default MFD/RFD settings.  
4
5
6
7
8
This parameter is characterized before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
Load Capacitance determined from crystal manufacturer specifications and will include circuit board parasitics.  
Assuming a reference is available at power up, lock time is measured from the time VDD and VDDPLL are valid to  
RSTO negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must  
be added to the PLL lock time to determine the total start-up time.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fsys. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency  
increase the Cjitter percentage for a given interval  
9
10  
Based on slow system clock of 40 MHz measured at fsys max.  
2.5 General Purpose I/O Timing  
GPIO can be configured for certain pins of the QSPI, TIMERS, UARTS, FEC, Interrupts and USB  
interfaces. When in GPIO mode, the timing specification for these pins is given in Table 24 and Figure 5.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
36  
Freescale Semiconductor  
Preliminary  
Table 24. GPIO Timing  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1  
G2  
G3  
G4  
CLKOUT High to GPIO Output Valid  
CLKOUT High to GPIO Output Invalid  
GPIO Input Valid to CLKOUT High  
CLKOUT High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
-
10  
-
ns  
ns  
ns  
ns  
1.5  
9
-
1.5  
-
CLKOUT  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 5. GPIO Timing  
2.6 Reset Timing  
Table 25. Reset and Configuration Override Timing  
(VDD = 2.7 to 3.6 V, VSS = 0 V, TA = TL to TH)1  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RSTI Input valid to CLKOUT High  
R2 CLKOUT High to RSTI Input invalid  
R3 RSTI Input valid Time 2  
tRVCH  
tCHRI  
9
1.5  
5
-
-
ns  
ns  
tRIVT  
-
tCYC  
ns  
R4 CLKOUT High to RSTO Valid  
tCHROV  
-
10  
N1 OTES:  
All AC timing is shown with respect to 50% O VDD levels unless otherwise noted.  
2
During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to  
the system. Thus, RSTI must be held a minimum of 100 ns.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
Preliminary  
37  
Preliminary Electrical Characteristics  
CLKOUT  
1R1  
R2  
R3  
RSTI  
R4  
R4  
RSTO  
Figure 6. RSTI and Configuration Override Timing  
2.7 I2C Input/Output Timing Specifications  
2
Table 26 lists specifications for the I C input timing parameters shown in Figure 7.  
2
Table 26. I C Input Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
11  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2 x tCYC  
8 x tCYC  
1
ns  
ns  
Clock low period  
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
mS  
ns  
0
1
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
mS  
ns  
4 x tCYC  
0
Data setup time  
ns  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2 x tCYC  
2 x tCYC  
ns  
ns  
2
Table 27 lists specifications for the I C output timing parameters shown in Figure 7.  
2
Table 27. I C Output Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
111  
I2 1  
I3 2  
6 x tCYC  
10 x tCYC  
ns  
ns  
µS  
Clock low period  
I2C_SCL/I2C_SDA rise time  
(VIL = 0.5 V to VIH = 2.4 V)  
I4 1  
I5 3  
Data hold time  
7 x tCYC  
3
ns  
ns  
I2C_SCL/I2C_SDA fall time  
(VIH = 2.4 V to VIL = 0.5 V)  
I6 1  
I7 1  
Clock high time  
Data setup time  
10 x tCYC  
2 x tCYC  
ns  
ns  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
38  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 27. I C Output Timing Specifications between I2C_SCL and I2C_SDA (continued)  
2
Num  
Characteristic  
Min  
Max  
Units  
I8 1  
Start condition setup time (for repeated start  
condition only)  
20 x tCYC  
ns  
I9 1  
Stop condition setup time  
10 x tCYC  
ns  
NOTES:  
1
Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with  
the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 27. The  
I2C interface is designed to scale the actual data transition time to move it to the middle of the SCL  
low period. The actual position is affected by the prescale and division values programmed into the  
IFDR; however, the numbers given in Table 27 are minimum values.  
Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time SCL or SDA take to reach a high level depends on external signal capacitance and  
pull-up resistor values.  
2
3
Specified at a nominal 50-pF load.  
Figure 7 shows timing for the values in Table 26 and Table 27.  
I2  
I6  
I5  
SCL  
SDA  
I3  
I1  
I4  
I8  
I9  
I7  
2
Figure 7. I C Input/Output Timings  
2.8 Analog-to-Digital Converter (ADC) Parameters  
Table 28 lists specifications for the analog-to-digital converter.  
1
Table 28. ADC Parameters  
Name  
Characteristic  
Min  
Typical  
Max  
Unit  
VADIN  
Input voltages  
Resolution  
VREFH  
V
VREFL  
RES  
INL  
INL  
12  
12  
3
Bits  
LSB3  
LSB  
Integral Non-Linearity (Full input signal range)2  
2.5  
2.5  
Integral Non-Linearity (10% to 90% input signal  
range)4  
3
DNL  
Differential Non-Linearity  
Monotonicity  
-1 < DNL < +1  
<+1  
LSB  
GUARANTEED  
fADIC  
RAD  
ADC internal clock  
Conversion Range  
0.1  
5.0  
MHz  
V
VREFL  
VREFH  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
39  
Preliminary Electrical Characteristics  
1
Table 28. ADC Parameters (continued)  
Name  
Characteristic  
ADC power-up time5  
Min  
Typical  
Max  
Unit  
tADPU  
tREC  
tADC  
tADS  
CADI  
XIN  
6
0
13  
1
tAIC cycles6  
Recovery from auto standby  
Conversion time  
tAIC cycles  
6
tAIC cycles  
Sample time  
1
tAIC cycles  
Input capacitance  
Input impedance  
TBD  
TBD  
pF  
IADI  
Input injection current7, per pin  
3
mA  
µ
IVREFH  
VREFH current  
0
VOFFSET Offset voltage internal reference  
EGAIN Gain Error (transfer path)  
VOFFSET Offset voltage external reference  
11  
15  
mV  
.99  
1
1.01  
TBD  
3
mV  
dB  
dB  
dB  
dB  
Bits  
SNR  
THD  
Signal-to-Noise ratio  
TBD  
TBD  
TBD  
TBD  
9.1  
62 to 66  
-75  
75  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Signal-to-Noise plus Distortion  
Effective Number OF Bits  
SFDR  
SINAD  
ENOB  
65  
10.6  
NOTES:  
1
All measurements are preliminary pending full characterization, and were made at VDD = 3.3V, VREFH = 3.3V, and VREFL  
=
ground  
2
3
4
5
6
7
INL measured from VIN = VREFL to VIN = VREFH  
LSB = Least Significant Bit  
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH  
Includes power-up of ADC and VREF  
ADC clock cycles  
The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the  
ADC  
2.9 DMA Timers Timing Specifications  
Table 29 lists timer module AC timings.  
Table 29. Timer Module AC Timing Specifications  
Name  
Characteristic 1  
Min  
Max  
Unit  
T1  
T2  
DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time  
DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width  
3 x tCYC  
1 x tCYC  
ns  
ns  
N1 OTES:  
All timing references to CLKOUT are given to its rising edge.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
40  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
2.10 QSPI Electrical Specifications  
Table 30 lists QSPI timings.  
Table 30. QSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
The values in Table 30 correspond to Figure 8.  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QS3  
QS4  
QS5  
QSPI_DIN  
Figure 8. QSPI Timing  
2.11 JTAG and Boundary Scan Timing  
Table 31. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
fJCYC  
tJCYC  
tJCW  
DC  
1/4  
fsys/2  
ns  
TCLK Cycle Period  
4 x tCYC  
-
-
TCLK Clock Pulse Width  
26  
0
ns  
TCLK Rise and Fall Times  
tJCRF  
tBSDST  
tBSDHT  
3
-
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
4
ns  
26  
-
ns  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
41  
Preliminary Electrical Characteristics  
Table 31. JTAG and Boundary Scan Timing (continued)  
Num  
Characteristics1  
Symbol  
Min  
Max  
Unit  
J7  
J8  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
TMS, TDI Input Data Hold Time after TCLK Rise  
TCLK Low to TDO Data Valid  
tBSDV  
tBSDZ  
0
0
33  
33  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J9  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
J10  
J11  
J12  
J13  
J14  
10  
0
-
26  
8
TCLK Low to TDO High Z  
0
TRST Assert Time  
100  
10  
-
TRST Setup Time (Negation) to TCLK High  
-
NOTES:  
1
JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 9. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 10. Boundary Scan (JTAG) Timing  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
42  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 11. Test Access Port Timing  
TCLK  
14  
TRST  
13  
Figure 12. TRST Timing  
2.12 Debug AC Timing Specifications  
Table 32 lists specifications for the debug AC timing parameters shown in Figure 14.  
Table 32. Debug AC Timing Specification  
60 MHz  
Num  
Characteristic  
Units  
Min  
Max  
D0  
D1  
PSTCLK cycle time  
0.5  
tCYC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PST, DDATA to CLKOUT setup  
CLKOUT to PST, DDATA hold  
DSI-to-DSCLK setup  
4
1.5  
D2  
D3  
1 x tCYC  
4 x tCYC  
5 x tCYC  
4
D4 1  
DSCLK-to-DSO hold  
D5  
DSCLK cycle time  
D6  
BKPT input data setup time to CLKOUT Rise  
BKPT input data hold time to CLKOUT Rise  
CLKOUT high to BKPT high Z  
D7  
1.5  
D8  
0.0  
10.0  
N1 OTES:  
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative  
to the rising edge of CLKOUT.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
43  
Preliminary  
Preliminary Electrical Characteristics  
Figure 13 shows real-time trace timing for the values in Table 32.  
CLKOUT  
D1  
D2  
PST[3:0]  
DDATA[3:0]  
Figure 13. Real-Time Trace AC Timing  
Figure 14 shows BDM serial port AC timing for the values in Table 32.  
CLKOUT  
D5  
DSCLK  
D3  
DSI  
Current  
Past  
Next  
D4  
DSO  
Current  
Figure 14. BDM Serial Port AC Timing  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
44  
Freescale Semiconductor  
Mechanical Outline Drawings  
3 Mechanical Outline Drawings  
This section describes the physical properties of the MCF52235 and its derivatives.  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Freescale Semiconductor  
45  
Preliminary  
Mechanical Outline Drawings  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
46  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF52235 ColdFire® Microcontroller Data Sheet, Rev. 0  
Preliminary  
Freescale Semiconductor  
47  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property  
of their respective owners. The ARM POWERED logo is a registered  
trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited.  
Java and all other Java-based marks are trademarks or registered  
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.  
The Bluetooth trademarks are owned by their proprietor and used by  
Freescale Semiconductor, Inc. under license.  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
MCF52235DS  
Rev. 0  
04/2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY