MCF5275 [FREESCALE]

Integrated Microprocessor Family Hardware Specification; 集成的微处理器系列硬件规格
MCF5275
型号: MCF5275
厂家: Freescale    Freescale
描述:

Integrated Microprocessor Family Hardware Specification
集成的微处理器系列硬件规格

微处理器
文件: 总44页 (文件大小:1246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MCF5275EC  
Rev. 2, 08/2006  
Freescale Semiconductor  
Hardware Specification  
MCF5275 Integrated  
Microprocessor Family Hardware  
Specification  
by: Microcontroller Division  
Contents  
The MCF5275 family is a highly integrated  
implementation of the ColdFire family of reduced  
®
1
2
3
4
5
6
7
8
9
MCF5275 Family Configurations. . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Design Recommendations . . . . . . . . . . . . . . . . . . . . . . . 9  
Mechanicals/Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Preliminary Electrical Characteristics . . . . . . . . . . . . . . 18  
Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
instruction set computing (RISC) microprocessors. This  
document describes pertinent features and functions  
characteristics of the MCF5275 family. The MCF5275  
family includes the MCF5275, MCF5275L, MCF5274  
and MCF5274L microprocessors. The differences  
between these parts are summarized in Table 1. This  
document is written from the perspective of the  
MCF5275 and unless otherwise noted, the information  
applies also to the MCF5275L, MCF5274 and  
MCF5274L.  
10 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
The MCF5275 family delivers a new level of  
performance and integration on the popular version 2  
ColdFire core with up to 159 (Dhrystone 2.1) MIPS @  
166MHz. These highly integrated microprocessors build  
upon the widely used peripheral mix on the popular  
MCF5272 ColdFire microprocessor (10/100 Mbps  
Ethernet MAC and USB device) by adding a second  
10/100 Mbps Ethernet MAC (MCF5274 and MCF5275)  
and hardware encryption (MCF5275L and MCF5275).  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
Preliminary—Subject to Change Without Notice  
MCF5275 Family Configurations  
In addition, the MCF5275 family features an enhanced multiply accumulate unit (EMAC), large on-chip  
memory (64 Kbytes SRAM, 16 Kbytes configurable cache), and a 16-bit DDR SDRAM memory  
controller.  
These devices are ideal for cost-sensitive applications requiring significant control processing for file  
management, connectivity, data buffering, and user interface, as well as signal processing in a variety of  
key markets such as security, imaging, networking, gaming, and medical. This leading package of  
integration and high performance allows fast time to market through easy code reuse and extensive third  
party tool support.  
To locate any published errata or updates for this document, refer to the ColdFire products website at  
http://www.freescale.com/coldfire.  
1
MCF5275 Family Configurations  
Table 1. MCF5275 Family Configurations  
Module  
MCF5274L MCF5275L MCF5274  
MCF5275  
ColdFire Version 2 Core with EMAC (Enhanced Multiply-Accumulate Unit)  
x
x
x
x
System Clock  
up to 166 MHz  
Performance (Dhrystone 2.1 MIPS)  
Instruction/Data Cache  
Static RAM (SRAM)  
up to 159  
16 Kbytes (configurable)  
64 Kbytes  
Interrupt Controllers (INTC)  
Edge Port Module (EPORT)  
External Interface Module (EIM)  
4-channel Direct-Memory Access (DMA)  
DDR SDRAM Controller  
Fast Ethernet Controller (FEC)  
Watchdog Timer Module (WDT)  
4-channel Programmable Interval Timer Module (PIT)  
32-bit DMA Timers  
2
x
2
x
x
x
x
1
x
x
4
x
x
3
x
4
x
x
x
x
x
2
x
2
x
x
x
x
2
x
x
4
x
x
3
x
4
x
x
x
x
x
x
x
x
x
x
x
1
x
2
x
x
x
4
x
4
x
USB  
QSPI  
x
x
UART(s)  
3
x
3
x
I2C  
PWM  
4
x
4
x
General Purpose I/O Module (GPIO)  
CIM = Chip Configuration Module + Reset Controller Module  
Debug BDM  
x
x
x
x
JTAG - IEEE 1149.1 Test Access Port  
Hardware Encryption  
x
x
Package  
196 MAPBGA 196 MAPBGA 256 MAPBGA 256 MAPBGA  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
2
Preliminary—Subject to Change Without Notice  
Block Diagram  
2
Block Diagram  
The superset device in the MCF5275 family comes in a 256 Mold Array Plastic Ball Grid Array  
(MAPBGA) package.  
Figure 1 shows a top-level block diagram of the MCF5275, the superset device.  
EIM  
DDR  
CHIP  
SELECTS  
(To/From SRAM backdoor)  
QSPI  
I2C_SDA  
I2C_SCL  
TXDx  
EBI  
INTC0 INTC1  
RXDx  
Arbiter  
RTSx  
CTSx  
DTOUTx  
DTINx  
FAST ETHERNET  
CONTROLLER  
(FEC0)  
(To/From PADI)  
(To/From PADI)  
FEC0  
FEC1  
USB  
UART  
0
UART UART  
I2C  
QSPI  
FAST ETHERNET  
CONTROLLER  
(FEC1)  
1
2
SDRAMC  
PWMx  
D[31:16]  
A[23:0]  
DTIM  
3
DTIM DTIM  
DTIM  
0
1
2
(To/From  
PADI)  
R/  
W
4 CH DMA  
DREQ[1:0]  
CS[3:0]  
TA  
JTAG_EN  
TRST  
V2 ColdFire CPU  
DACK[3:0]  
JTAG  
TAP  
TCLK  
EMAC  
DIV  
TMS  
TDI  
TDO  
JTAG_EN  
TSIZ[1:0]  
TEA  
64 Kbytes  
SRAM  
(8Kx16)x4  
(To/From  
PADI)  
16 Kbytes  
CACHE  
(1Kx32)x4  
BS[3:2]  
4 CH PWM  
(To/From PADI)  
PORTS  
(GPIO)  
CIM  
Watchdog  
Timer  
(To/From Arbiter backdoor)  
PLL  
CLKGEN  
USB 2.0  
Full Speed  
PIT0  
PIT1  
PIT2  
PIT3  
Edge  
Port  
MDHA  
RNGA  
SKHA  
Cryptography  
Modules  
(To/From INTC)  
(To/From PADI)  
Figure 1. MCF5275 Block Diagram  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
3
Preliminary—Subject to Change Without Notice  
Features  
3
Features  
For a detailed feature list see the MCF5275 Reference Manual (MCF5275RM).  
4
Signal Descriptions  
This section describes signals that connect off chip, including a table of signal properties. For a more  
detailed discussion of the MCF5275 signals, consult the MCF5275 Reference Manual (MCF5275RM).  
Table 2 lists the signals for the MCF5275 in functional group order. The “Dir” column is the direction for  
the primary function of the pin. Refer to Section 6, “Mechanicals/Pinouts,” for package diagrams.  
NOTE  
In this table and throughout this document a single signal within a group is  
designated without square brackets (i.e., A24), while designations for  
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to  
include all signals within the two bracketed numbers when these numbers  
are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality.  
Pins that are muxed with GPIO will default to their GPIO functionality.  
Table 2. MCF5274 and MCF5275 Signal Information and Muxing  
MCF5274  
MCF5275  
MCF5274L  
MCF5275L  
Signal Name  
GPIO  
Alternate1 Alternate2 Dir.1  
256 MAPBGA 196 MAPBGA  
Reset  
RESET  
I
N15  
N14  
K12  
L12  
RSTOUT  
O
Clock  
EXTAL  
XTAL  
I
L16  
M16  
T12  
M14  
N14  
P9  
O
O
CLKOUT  
Mode Selection  
CLKMOD[1:0]  
RCON  
I
I
N13, P13  
P8  
M11, N11  
M6  
External Memory Interface and Ports  
PADDR[7:5] CS[6:4] A11, B11, C11  
A[23:21]  
O
A8, B8, C8  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
4
Preliminary—Subject to Change Without Notice  
Signal Descriptions  
Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)  
MCF5274  
MCF5275  
MCF5274L  
MCF5275L  
Signal Name  
GPIO  
Alternate1 Alternate2 Dir.1  
256 MAPBGA 196 MAPBGA  
A[20:0]  
O
A12, B12, C12, B9, D9, C9,  
A13, B13, C13, C10, B10, A11,  
A14, B14, C14, C11, B11, A12,  
B15, C15, B16, D11, C12, B13,  
C16, D14, D15, C13, D12, E11,  
E14:16, F14:16 D13, E12, F11,  
D14, E13, F13  
D[31:16]  
O
M1, N1, N2, N3, J3, L1, K2, K3,  
P1, P2, R1, R2, M1, L2, L3, L4,  
P3, R3, T3, N4, K4, J4, M2, N1,  
P4, R4, T4, N5 N2, M3, M4, N3  
BS[3:2]  
OE  
PBS[3:2]  
CAS[3:2]  
O
O
I
M3, R5  
K1  
K1, L5  
H4  
PBUSCTL[7]  
PBUSCTL[6]  
PBUSCTL[5]  
PBUSCTL[4]  
PBUSCTL[3]  
PBUSCTL[2]  
PBUSCTL[1]  
PBUSCTL[0]  
TA  
L13  
T8  
K14  
TEA  
R/W  
TSIZ1  
TSIZ0  
TS  
DREQ1  
I
O
O
O
O
O
P7  
L6  
DACK1  
DACK0  
DACK2  
DREQ0  
D16  
G16  
L4  
B14  
E14  
H2  
TIP  
P6  
Chip Selects  
CS[7:1]  
CS0  
PCS[7:1]  
O
O
D10:13, E13,  
F13, N7  
D8, A9, A10,  
D10, B12, C14,  
P4  
R6  
N5  
DDR SDRAM Controller  
DDR_CLKOUT  
DDR_CLKOUT  
SD_CS[1:0]  
SD_SRAS  
SD_SCAS  
SD_WE  
O
O
O
O
O
O
O
I/O  
O
I
T7  
T6  
P6  
P5  
PSDRAM[7:6]  
PSDRAM[5]  
PSDRAM[4]  
PSDRAM[3]  
CS[3:2]  
M2, T5  
L2  
H3, M5  
H1  
L1  
G3  
K2  
G4  
SD_A10  
N6  
N4  
SD_DQS[3:2]  
SD_CKE  
PSDRAM[2:1]  
PSDRAM[0]  
M4, P5  
L3  
J2, P3  
J1  
SD_VREF  
A15, T2  
A13, P2  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
5
Preliminary—Subject to Change Without Notice  
Signal Descriptions  
Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)  
MCF5274  
MCF5275  
MCF5274L  
MCF5275L  
Signal Name  
GPIO  
Alternate1 Alternate2 Dir.1  
256 MAPBGA 196 MAPBGA  
External Interrupts Port  
IRQ[7:5]  
IRQ[4]  
IRQ[3:2]  
IRQ1  
PIRQ[7:5]  
PIRQ[4]  
DREQ2  
DREQ[3:2]  
I
I
I
I
G13, H16, H15 F14, G13, G14  
H14  
J14, J13  
K13  
H11  
H14, H12  
J13  
PIRQ[3:2]  
PIRQ[1]  
FEC0  
FEC0_MDIO  
FEC0_MDC  
FEC0_TXCLK  
FEC0_TXEN  
FEC0_TXD[0]  
FEC0_COL  
PFECI2C[5]  
PFECI2C[4]  
PFEC0H[7]  
PFEC0H[6]  
PFEC0H[5]  
PFEC0H[4]  
PFEC0H[3]  
PFEC0H[2]  
PFEC0H[1]  
PFEC0H[0]  
I2C_SDA  
U2RXD  
U2TXD  
I/O  
O
I
A7  
A3  
I2C_SCL  
B7  
C5  
C3  
C1  
O
O
I
D4  
C3  
G4  
D2  
A6  
B4  
FEC0_RXCLK  
FEC0_RXDV  
FEC0_RXD[0]  
FEC0_CRS  
I
B6  
B5  
B3  
C4  
I
I
C6  
D5  
I
C7  
A2  
FEC0_TXD[3:1] PFEC0L[7:5]  
FEC0_TXER PFEC0L[4]  
FEC0_RXD[3:1] PFEC0L[3:1]  
O
O
I
E3, F3, F4  
D3  
D1, E3, D3  
C2  
D5, C5, D6  
C4  
D4, B1, B2  
E4  
FEC0_RXER  
PFEC0L[0]  
I
FEC1  
FEC1_MDIO  
FEC1_MDC  
FEC1_TXCLK  
FEC1_TXEN  
FEC1_TXD[0]  
FEC1_COL  
PFECI2C[3]  
PFECI2C[2]  
PFEC1H[7]  
PFEC1H[6]  
PFEC1H[5]  
PFEC1H[4]  
PFEC1H[3]  
PFEC1H[2]  
PFEC1H[1]  
PFEC1H[0]  
I/O  
G1  
G2  
C1  
D2  
F1  
A5  
B4  
A3  
B3  
A4  
O
I
O
O
I
FEC1_RXCLK  
FEC1_RXDV  
FEC1_RXD[0]  
FEC1_CRS  
I
I
I
I
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
6
Preliminary—Subject to Change Without Notice  
Signal Descriptions  
Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)  
MCF5274  
MCF5275  
MCF5274L  
MCF5275L  
Signal Name  
GPIO  
Alternate1 Alternate2 Dir.1  
256 MAPBGA 196 MAPBGA  
FEC1_TXD[3:1] PFEC1L[7:5]  
FEC1_TXER PFEC1L[4]  
FEC1_RXD[3:1] PFEC1L[3:1]  
O
O
I
E1, E2, F2  
D1  
B1, B2, A2  
C2  
FEC1_RXER  
PFEC1L[0]  
I
I2C  
I2C_SDA  
I2C_SCL  
PFECI2C[1]  
PFECI2C[0]  
U2RXD  
U2TXD  
I/O  
I/O  
B10  
C10  
B7  
A7  
DMA  
DACK[3:0] and DREQ[3:0] do not have a dedicated bond pads.  
Please refer to the following pins for muxing:  
PCS3/PWM3 for DACK3, PCS2/PWM2 for DACK2, TSIZ1 for  
DACK1, TSIZ0 for DACK0, IRQ3 for DREQ3, IRQ2 and TA for  
DREQ2, TEA for DREQ1, and TIP for DREQ0.  
QSPI  
QSPI_CS[3:2]  
QSPI_CS1  
QSPI_CS0  
QSPI_CLK  
QSPI_DIN  
PQSPI[6:5]  
PQSPI[4]  
PQSPI[3]  
PQSPI[2]  
PQSPI[1]  
PQSPI[0]  
PWM[3:2]  
DACK[3:2]  
O
O
O
O
I
R13, N12  
T14  
P10, N9  
N10  
P12  
M9  
I2C_SCL  
I2C_SDA  
T15  
L11  
T13  
M10  
L10  
QSPI_DOUT  
O
R12  
UARTs  
U2RXD  
U2TXD  
U2CTS  
U2RTS  
U1RXD  
U1TXD  
U1CTS  
U1RTS  
U0RXD  
U0TXD  
U0CTS  
PUARTH[3]  
PUARTH[2]  
PUARTH[1]  
PUARTH[0]  
PUARTL[7]  
PUARTL[6]  
PUARTL[5]  
PUARTL[4]  
PUARTL[3]  
PUARTL[2]  
PUARTL[1]  
I
O
I
T9  
R9  
P9  
R8  
A9  
B9  
C9  
D9  
A8  
B8  
C8  
PWM1  
PWM0  
O
I
A6  
D7  
C7  
B6  
A4  
A5  
C6  
O
I
O
I
O
I
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
7
Preliminary—Subject to Change Without Notice  
Signal Descriptions  
Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)  
MCF5274  
MCF5275  
MCF5274L  
MCF5275L  
Signal Name  
GPIO  
Alternate1 Alternate2 Dir.1  
256 MAPBGA 196 MAPBGA  
U0RTS  
PUARTL[0]  
O
D7  
B5  
USB  
USB_SPEED  
USB_CLK  
USB_RN  
PUSBH[0]  
PUSBL[7]  
PUSBL[6]  
PUSBL[5]  
PUSBL[4]  
PUSBL[3]  
PUSBL[2]  
PUSBL[1]  
PUSBL[0]  
I/O  
I
G14  
G15  
J16  
J15  
L15  
M13  
K14  
K15  
L14  
G11  
F12  
H13  
J11  
L14  
N13  
J14  
J12  
K13  
I
USB_RP  
I
USB_RXD  
USB_SUSP  
USB_TN  
I
O
O
O
O
USB_TP  
USB_TXEN  
Timers (and PWMs)  
DT3IN  
DT3OUT  
DT2IN  
PTIMERH[3]  
PTIMERH[2]  
PTIMERH[1]  
PTIMERH[0]  
PTIMERL[3]  
PTIMERL[2]  
PTIMERL[1]  
PTIMERL[0]  
DT3OUT  
U2RTS  
U2CTS  
I
O
I
J4  
K3  
J2  
G2  
G1  
F3  
F4  
F1  
F2  
E1  
E2  
PWM3  
DT2OUT  
PWM2  
DT2OUT  
DT1IN  
O
I
J3  
DT1OUT  
PWM1  
H1  
H2  
H3  
G3  
DT1OUT  
DT0IN  
O
I
DT0OUT  
PWM0  
DT0OUT  
O
BDM/JTAG2  
DSCLK  
PSTCLK  
BKPT  
TRST  
TCLK  
TMS  
TDI  
I
O
I
P14  
P16  
R15  
R16  
P15  
R14  
P13  
P12  
N12  
M12  
K11  
P11  
DSI  
I
DSO  
TDO  
O
I
JTAG_EN  
DDATA[3:0]  
O
P10, N10, P11, M7, N7, P8, L9  
N11  
PST[3:0]  
O
T10, R10, T11, P7, L8, M8, N8  
R11  
Test  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
8
Preliminary—Subject to Change Without Notice  
Design Recommendations  
Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)  
MCF5274  
MCF5275  
MCF5274L  
MCF5275L  
Signal Name  
GPIO  
Alternate1 Alternate2 Dir.1  
256 MAPBGA 196 MAPBGA  
TEST  
I
I
N9  
N6  
PLL_TEST  
M14  
Power Supplies  
VDDPLL  
VSSPLL  
VSS  
I
I
I
M15  
K16  
M13  
L13  
A1, A10, A16,  
E5, E12, F6,  
F11, G7:10,  
H7:10, J1,  
F7, F8, G6:9,  
H6:9, J7, J8  
J7:10, K7:10,  
L6, L11, M5,  
N16, R7, T1,  
T16  
OVDD  
I
E6:8, F5, F7, F8, E5:7, F5, F6,  
G5, G6, H5, H6, H10, J9, J10,  
J11, J12, K11,  
K12, L9, L10,  
L12, M9:11  
K8:10  
VDD  
I
I
D8, H13, K4, N8 D6, G5, G12, L7  
SD_VDD  
E9:11, F9, F10, E8:10, F9, F10,  
F12, G11, G12, G10, H5, J5, J6,  
H11, H12, J5,  
J6, K5, K6, L5,  
L7, L8, M6, M7,  
M8  
K5:7  
1
2
Refers to pin’s primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO  
mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.  
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not  
responsible for assigning these pins.  
5
Design Recommendations  
5.1  
Layout  
Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power  
and ground planes for the MCF5275.  
See application note AN1259 System Design and Layout Techniques for Noise Reduction in  
MCU-Based Systems.  
Match the PC layout trace width and routing to match trace length to operating frequency and board  
impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the  
PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
9
Preliminary—Subject to Change Without Notice  
Design Recommendations  
analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace  
and separation. Clocks get extra separation and more precise balancing.  
5.2  
Power Supply  
33uF, 0.1 µF, and 0.01 µF across each power supply  
5.2.1  
Supply Voltage Sequencing and Separation Cautions  
Figure 2 shows situations in sequencing the I/O V (OV ), SDRAM V (SDV ), PLL V  
DD  
DD  
DD  
DD  
DD  
(PLLV ), and Core V (V ).  
DD  
DD  
DD  
OVDD, SDVDD  
SDVDD (2.5V)  
3.3V  
2.5V  
Supplies Stable  
VDD, PLLVDD  
1.5V  
1
2
0
Time  
Notes:  
1. VDD should not exceed OVDD, SDVDD or PLLVDD by more than  
0.4 V at any time, including power-up.  
2. Recommended that VDD/PLLVDD should track OVDD/SDVDD up to  
0.9 V, then separate for completion of ramps.  
3. Input voltage must not be greater than the supply voltage (OVDD, SDVDD,  
VDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.  
4. Use 1 ms or slower rise time for all supplies.  
Figure 2. Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and OV is non-critical during power-up and power-down sequences.  
DD  
DD  
Both SDV (2.5V or 3.3V) and OV are specified relative to V .  
DD  
DD  
DD  
5.2.1.1  
Power Up Sequence  
If OV /SDV are powered up with V at 0 V, then the sense circuits in the I/O pads will cause all pad  
DD  
DD  
DD  
output drivers connected to the OV /SDV to be in a high impedance state. There is no limit on how  
DD  
DD  
long after OV /SDV powers up before V must powered up. V should not lead the OV ,  
DD  
DD  
DD  
DD  
DD  
SDV or PLLV by more than 0.4 V during power ramp-up, or there will be high current in the internal  
DD  
DD  
ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning  
on the internal ESD protection clamp diodes.  
The recommended power up sequence is as follows:  
1. Use 1 µs or slower rise time for all supplies.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
10  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Design Recommendations  
2. V /PLLV and OV /SDV should track up to 0.9 V, then separate for the completion of  
DD  
DD  
DD  
DD  
ramps with OV /SD V going to the higher external voltages. One way to accomplish this is to  
DD  
DD  
use a low drop-out voltage regulator.  
5.2.1.2  
Power Down Sequence  
If V /PLLV are powered down first, then sense circuits in the I/O pads will cause all output drivers to  
DD  
DD  
be in a high impedance state. There is no limit on how long after V and PLLV power down before  
DD  
DD  
OV or SDV must power down. V should not lag OV , SDV , or PLLV going low by more  
DD  
DD  
DD  
DD  
DD  
DD  
than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There  
are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop V /PLLV to 0 V.  
DD  
DD  
2. Drop OV /SDV supplies.  
DD  
DD  
5.3  
Decoupling  
Place the decoupling capacitors as close to the pins as possible, but they can be outside the footprint  
of the package.  
0.1 µF and 0.01 µF at each supply input  
5.4  
Buffering  
Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses  
when excessive loading is expected. See electricals.  
5.5  
Pull-up Recommendations  
Use external pull-up resistors on unused inputs. See pin table.  
5.6  
Clocking Recommendations  
Use a multi-layer board with a separate ground plane.  
Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator  
pins) as possible.  
Do not run a high frequency trace around crystal circuit.  
Ensure that the ground for the bypass capacitors is connected to a solid ground trace.  
Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents  
in the vicinity of the crystal.  
Tie the ground pin to the most solid ground in the system.  
Do not connect the trace that connects the oscillator and the ground plane to any other circuit  
element. This tends to make the oscillator unstable.  
Tie XTAL to ground when an external oscillator is clocking the device.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
11  
Preliminary—Subject to Change Without Notice  
Design Recommendations  
5.7  
Interface Recommendations  
5.7.1  
DDR SDRAM Controller  
5.7.1.1  
SDRAM Controller Signals in Synchronous Mode  
Table 3 shows the behavior of SDRAM signals in synchronous mode.  
Table 3. Synchronous DRAM Signal Connections  
Signal  
Description  
SD_SRAS  
Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be  
latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM  
SD_SRAS. Do not confuse SD_SRAS with the DRAM controller’s SDRAM_CS[1:0], which  
should not be interfaced to the SDRAM SD_SRAS signals.  
SD_SCAS  
Synchronous column address strobe. Indicates a valid column address is present and can be  
latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled  
SD_SCAS on the SDRAM.  
SD_WE  
DRAM read/write. Asserted for write operations and negated for read operations.  
SD_CS[1:0]  
Row address strobe. Select each memory block of SDRAMs connected to the MCF5275. One  
SDRAM_CS signal selects one SDRAM block and connects to the corresponding CS signals.  
SD_CKE  
Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of  
SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can  
enter a power-down mode where operations are suspended or they can enter self-refresh  
mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external  
multiplexing, setting COC allows SD_CKE to provide command-bit functionality.  
BS[3:2]  
Column address strobe. For synchronous operation, BS[3:2] function as byte enables to the  
SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.  
DDR_CLKOUT Bus clock output. Connects to the CLK input of SDRAMs.  
5.7.1.2  
Address Multiplexing  
See the SDRAM controller module chapter in the MCF5275 Reference Manual for details on address  
multiplexing.  
5.7.2  
Ethernet PHY Transceiver Connection  
The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10  
Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3  
standard defines and the FEC module supports 18 signals. These are shown in Table 4.  
Table 4. MII Mode  
Signal Description  
Transmit clock  
MCF5275 Pin  
FECn_TXCLK  
FECn_TXEN  
FECn_TXD[3:0]  
FECn_TXER  
Transmit enable  
Transmit data  
Transmit error  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
12  
Preliminary—Subject to Change Without Notice  
Design Recommendations  
Table 4. MII Mode (continued)  
Signal Description MCF5275 Pin  
Collision  
FECn_COL  
Carrier sense  
FECn_CRS  
Receive clock  
FECn_RXCLK  
FECn_RXDV  
FECn_RXD[3:0]  
FECn_RXER  
FECn_MDC  
FECn_MDIO  
Receive enable  
Receive data  
Receive error  
Management channel clock  
Management channel serial data  
The serial mode interface operates in what is generally referred to as AMD mode. The MCF5275  
configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5.  
Table 5. Seven-Wire Mode Configuration  
Signal Description  
Transmit clock  
MCF5275 Pin  
FECn_TXCLK  
FECn_TXEN  
FECn_TXD[0]  
FECn_COL  
Transmit enable  
Transmit data  
Collision  
Receive clock  
FECn_RXCLK  
FECn_RXDV  
FECn_RXD[0]  
FECn_RXER  
FECn_CRS  
Receive enable  
Receive data  
Unused, configure as PB14  
Unused input, tie to ground  
Unused, configure as PB[13:11]  
Unused output, ignore  
Unused, configure as PB[10:8]  
Unused, configure as PB15  
Input after reset, connect to ground  
FECn_RXD[3:1]  
FECn_TXER  
FECn_TXD[3:1]  
FECn_MDC  
FECn_MDIO  
Refer to the M5275EVBevaluation board user’s manual for an example of how to connect an external  
PHY. Schematics for this board are accessible at the MCF5275 site by navigating to:  
http://www.freescale.com/coldfire.  
5.7.3  
BDM  
Use the BDM interface as shown in the M5275EVB evaluation board user’s manual. The schematics for  
this board are accessible at the MCF5275 site by navigating to: http://www.freescale.com/coldfire.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
13  
Preliminary—Subject to Change Without Notice  
Mechanicals/Pinouts  
6
Mechanicals/Pinouts  
6.1  
256 MAPBGA Pinout  
Figure 3 is a consolidated MCF5274/75 pinout for the 256 MAPBGA package. Table 2 lists the signals by  
group and shows which signals are muxed and bonded on each of the device packages.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FEC1_  
RXD1  
FEC1_  
RXDV  
FEC1_  
CRS  
FEC1_  
COL  
FEC0_  
COL  
FEC0_  
MDIO  
SD_  
VREF  
A
B
C
D
E
F
VSS  
U0RXD U1RXD  
U0TXD U1TXD  
U0CTS U1CTS  
VSS  
A23  
A20  
A17  
A14  
VSS  
A
B
C
D
E
F
FEC1_ FEC1_  
RXD3 RXD2  
FEC1_  
RXD0  
FEC1_  
RXCLK  
FEC0_  
RXDV  
FEC0_  
RXCLK  
FEC0_  
MDC  
I2C_  
SDA  
A22  
A21  
CS6  
A19  
A18  
CS5  
A16  
A15  
CS4  
CS3  
A13  
A12  
A7  
A11  
A10  
A6  
A9  
A8  
FEC1_ FEC1_  
TXCLK RXER  
FEC0_  
TXCLK  
FEC0_  
RXER  
FEC0_  
RXD2  
FEC0_  
RXD0  
FEC0_  
CRS  
I2C_  
SCL  
FEC1_ FEC1_  
FEC0_  
TXER  
FEC0_  
TXEN  
FEC0_  
RXD3  
FEC0_  
RXD1  
U0RTS  
OVDD  
OVDD  
VSS  
VDD  
U1RTS  
CS7  
TSIZ1  
A3  
TXER  
TXEN  
FEC1_ FEC1_  
TXD3 TXD2  
FEC0_  
TXD3  
NC  
VSS  
OVDD  
VSS  
OVDD SD_VDD SD_VDD SD_VDD VSS  
A5  
A4  
FEC1_ FEC1_  
TXD0 TXD1  
FEC0_  
TXD2  
FEC0_  
TXD1  
OVDD  
OVDD  
OVDD  
OVDD SD_VDD SD_VDD VSS SD_VDD CS2  
A2  
A1  
A0  
FEC1_ FEC1_  
MDIO MDC  
FEC0_  
TXD0  
USB_  
SPEED  
USB_  
CLK  
G
H
J
DT0OUT  
OVDD  
OVDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS SD_VDD SD_VDD IRQ7  
VSS SD_VDD SD_VDD VDD  
TSIZ0  
IRQ6  
G
H
J
DT1IN DT1OUT DT0IN  
NC  
DT3IN  
VDD  
VSS  
IRQ4  
IRQ5  
VSS  
OE  
DT2IN DT2OUT  
SD_WE DT3OUT  
SD_VDD SD_VDD  
SD_VDD SD_VDD  
VSS  
VSS  
VSS  
OVDD OVDD  
OVDD OVDD  
IRQ2  
IRQ3 USB_RP USB_RN  
K
L
VSS  
IRQ1 USB_TN USB_TP VSSPLL  
K
L
SD_  
SCAS  
SD_  
USB_  
TXEN  
USB_  
RXD  
SD_CKE  
SRAS  
TS  
SD_VDD  
VSS  
VSS  
SD_VDD SD_VDD OVDD OVDD  
VSS  
OVDD  
NC  
TA  
EXTAL  
USB_  
SUSP  
PLL_  
TEST  
M
N
P
R
T
D31 SD_CS1  
BS3  
D28  
D23  
D22  
SD_DQS3  
D20  
SD_VDD SD_VDD SD_VDD OVDD OVDD OVDD  
VDDPLL XTAL  
M
N
P
R
T
QSPI_  
CS2  
CLK  
MOD1  
D30  
D27  
D25  
D29  
D26  
D24  
D16  
SD_A10  
TIP  
CS1  
R/W  
VSS  
VDD  
TEST DDATA2 DDATA0  
RSTOUT RESET  
VSS  
QSPI_  
CS0  
CLK  
TRST/ TDO/  
TCLK/  
D19  
SD_DQS2  
BS2  
RCON U2CTS DDATA3 DDATA1  
MOD0 DSCLK  
DSO PSTCLK  
QSPI_ QSPI_ JTAG_  
DOUT CS3 EN  
TMS/  
D18  
CS0  
U2RTS U2TXD PST2  
PST0  
TDI/DSI  
BKPT  
SD_  
VREF  
DDR_CLK DDR_CLK  
OUT  
QSPI_ QSPI_ QSPI_  
VSS  
D21  
D17  
SD_CS0  
TEA  
U2RXD PST3  
10  
PST1 CLKOUT  
11 12  
VSS  
OUT  
DIN  
CS1  
CLK  
1
2
3
4
5
6
7
8
9
13  
14  
15  
16  
Figure 3. MCF5274 and MCF5275 Pinout (256 MAPBGA)  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
14  
Preliminary—Subject to Change Without Notice  
Mechanicals/Pinouts  
6.2  
Package Dimensions - 256 MAPBGA  
Figure 6 shows MCF5275 256 MAPBGA package dimensions.  
X
D
M
LASER MARK FOR PIN A1  
IDENTIFICATION IN  
THIS AREA  
5
Y
E
0.30 Z  
A2  
K
A
A1  
256X  
4
0.15 Z  
Z
DETAIL K  
ROTATED 90 CLOCKWISE  
°
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSION b IS MEASURED AT THE  
MAXIMUM SOLDER BALL DIAMETER,  
PARALLEL TO DATUM PLANE Z.  
4. DATUM Z (SEATING PLANE) IS DEFINED BY  
THE SPHERICAL CROWNS OF THE SOLDER  
BALLS.  
5. PARALLELISM MEASUREMENT SHALL  
EXCLUDE ANY EFFECT OF MARK ON TOP  
SURFACE OF PACKAGE.  
M
0.20  
15X e  
S
METALIZED MARK FOR  
PIN A1 IDENTIFICATION  
IN THIS AREA  
16151413121110  
7 6 5 4 3 2 1  
A
B
C
D
E
F
S
15X e  
3
G
H
J
256X  
b
MILLIMETERS  
M
M
0.25  
0.10  
Z X Y  
K
L
M
N
P
R
T
DIM MIN  
1.25  
A1 0.27  
MAX  
1.60  
0.47  
Z
A
A2  
b
1.16 REF  
0.40  
0.60  
D
E
e
17.00 BSC  
17.00 BSC  
1.00 BSC  
0.50 BSC  
VIEW M-M  
S
Figure 4. 256 MAPBGA Package Dimensions  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
15  
Preliminary—Subject to Change Without Notice  
Mechanicals/Pinouts  
6.3  
196 MAPBGA Pinout  
Figure 5 is a consolidated MCF5274L/75L pinout for the 196 MAPBGA package. Table 2 lists the signals  
by group and shows which signals are muxed and bonded on each of the device packages.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
FEC0_  
CRS  
FEC0_  
MDIO  
SD_  
VREF  
A
B
C
D
E
F
NC  
U0RXD  
U0TXD  
U1RXD  
I2C_SCL  
A23  
CS6  
CS5  
A15  
A12  
NC  
A
B
C
D
E
F
FEC0_  
RXD2  
FEC0_  
RXD1  
FEC0_  
RXCLK  
FEC0_  
COL  
U0RTS  
U1RTS  
U0CTS  
VDD  
I2C_SDA  
U1CTS  
U1TXD  
OVDD  
VSS  
A22  
A21  
CS7  
A20  
A18  
A19  
A16  
A17  
CS4  
A13  
A14  
A11  
A6  
CS3  
A10  
A9  
A8  
TSIZ1  
CS2  
FEC0_  
TXCLK  
FEC0_  
TXER  
FEC0_  
TXEN  
FEC0_  
RXDV  
FEC0_  
MDC  
FEC0_  
TXD3  
FEC0_  
TXD0  
FEC0_  
TXD1  
FEC0_  
RXD3  
FEC0_  
RXD0  
A7  
A5  
A2  
FEC0_  
TXD2  
FEC0_  
RXER  
DT0IN  
DT1IN  
DT0OUT  
DT1OUT  
DT3IN  
TS  
OVDD  
OVDD  
OVDD  
OVDD  
VSS  
SD_VDD2 SD_VDD2 SD_VDD2  
A4  
A1  
TSIZ0  
IRQ7  
IRQ5  
IRQ3  
USB_TN  
TA  
DT2IN  
SD_CAS  
SD_CS1  
D31  
DT2OUT  
SD_WE  
OE  
VSS  
VSS  
SD_VDD2 SD_VDD2  
A3  
USB_CLK  
VDD  
A0  
USB_  
SPEED  
G
H
J
DT3OUT  
SD_SRAS  
VDD  
VSS  
VSS  
VSS  
SD_VDD2  
OVDD  
IRQ6  
USB_RN  
IRQ1  
G
H
J
SD_VDD1  
VSS  
VSS  
VSS  
IRQ4  
IRQ2  
SD_CKE SD_DQS3  
D22  
SD_VDD1 SD_VDD1  
VSS  
VSS  
OVDD  
OVDD  
DDATA0  
OVDD  
USB_RP USB_TP  
TDO/DSO RESET  
USB_  
TXEN  
K
L
BS3  
D30  
D27  
D20  
D29  
D26  
D21  
D19  
D28  
D23  
SD_VDD1 SD_VDD1 SD_VDD1  
OVDD  
PST2  
PST1  
PST0  
OVDD  
K
L
QSPI_  
DOUT  
D25  
D24  
BS2  
SD_CS0  
CS0  
R/W  
RCON  
TEST  
VDD  
QSPI_CLK RSTOUT VSSPLL USB_RXD  
QSPI_  
CS0  
M
N
P
D18  
D17  
DDATA3  
DDATA2  
QSPI_DIN CLKMOD1 TDI/DSI  
VDDPLL  
EXTAL  
XTAL  
M
N
P
QSPI_  
CS2  
QSPI_  
USB_  
SUSP  
D16  
SD_A10  
CLKMOD0 TMS/BKPT  
CS1  
SD_  
VREF  
DDR_CLK DDR_CLK  
OUT  
QSPI_  
CS3  
TCLK/PST TRST/DSC  
NC  
SD_DQS2  
CS1  
PST3  
DDATA1 CLKOUT  
JTAG_EN  
NC  
OUT  
CLK  
LK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 5. MCF5274L and MCF5275L Pinout (196 MAPBGA)  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
16  
Preliminary—Subject to Change Without Notice  
Mechanicals/Pinouts  
6.4  
Package Dimensions - 196 MAPBGA  
Figure 6 shows MCF5275 196 MAPBGA package dimensions.  
NOTES:  
D
X
Y
1. Dimensions are in millimeters.  
2. Interpret dimensions and tolerances  
per ASME Y14.5M, 1994.  
3. Dimension b is measured at the  
maximum solder ball diameter,  
parallel to datum plane Z.  
Laser mark for pin 1  
identification in  
this area  
M
K
4. Datum Z (seating plane) is defined  
by the spherical crowns of the solder  
balls.  
5. Parallelism measurement shall  
exclude any effect of mark on top  
surface of package.  
E
Millimeters  
DIM  
Min  
Max  
1.25  
0.27  
1.60  
0.47  
A
A1  
A2  
b
1.16 REF  
M
0.45  
0.55  
TOL  
15.00 BSC  
D
13Xe  
15.00 BSC  
1.00 BSC  
0.50 BSC  
E
S
Metalized mark for  
pin 1 identification  
in this area  
e
14 13 12 11 10  
9
6
5
4
3
2
1
S
A
B
C
D
E
F
5
S
0.20 Z  
13Xe  
A2  
A
G
H
J
A1  
0.10 Z  
196X  
4
Z
K
L
Detail K  
Rotated 90° Clockwise  
M
N
P
3
196X  
b
View M-M  
0.15 Z X Y  
0.08 Z  
Figure 6. 196 MAPBGA Package Dimensions  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
17  
Preliminary—Subject to Change Without Notice  
Ordering Information  
7
Ordering Information  
Table 6. Orderable Part Numbers  
Freescale Part  
Number  
Description  
Speed  
Temperature  
MCF5274LVM133  
MCF5274LVM166  
MCF5274VM133  
MCF5274VM166  
MCF5275LCVM133  
MCF5275LCVM166  
MCF5275CVM133  
MCF5275CVM166  
MCF5274L RISC Microprocessor, 196 MAPBGA  
MCF5274L RISC Microprocessor, 196 MAPBGA  
MCF5274 RISC Microprocessor, 256 MAPBGA  
MCF5274 RISC Microprocessor, 256 MAPBGA  
MCF5275L RISC Microprocessor, 196 MAPBGA  
MCF5275L RISC Microprocessor, 196 MAPBGA  
MCF5275 RISC Microprocessor, 256 MAPBGA  
MCF5275 RISC Microprocessor, 256 MAPBGA  
133MHz  
166MHz  
133MHz  
166MHz  
133MHz  
166MHz  
133MHz  
166MHz  
0° to +70° C  
0° to +70° C  
0° to +70° C  
0° to +70° C  
-40° to +85° C  
-40° to +85° C  
-40° to +85° C  
-40° to +85° C  
8
Preliminary Electrical Characteristics  
This appendix contains electrical specification tables and reference timing diagrams for the MCF5275  
microcontroller unit. This section contains detailed information on power considerations, DC/AC  
electrical characteristics, and AC timing specifications of MCF5275.  
The electrical specifications are preliminary and are from previous designs or design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however  
for production silicon these specifications will be met. Finalized specifications will be published after  
complete characterization and device qualifications have been completed.  
NOTE  
The parameters specified in this appendix supersede any values found in the  
module specifications.  
8.1  
Maximum Ratings  
1, 2  
Table 7. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core Supply Voltage  
VDD  
OVDD  
SDVDD  
SDVDD  
VDDPLL  
VIN  
– 0.5 to +2.0  
– 0.3 to +4.0  
V
V
V
V
V
V
V
V
I/O Pad Supply Voltage (3.3V)  
Memory Interface SSTL 2.5V Pad Supply Voltage  
Memory Interface SSTL 3.3V Pad Supply Voltage  
PLL Supply Voltage  
– 0.3 to + 2.8  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to + 4.0  
0 to 3.3  
Digital Input Voltage 3  
EXTAL pin voltage  
VEXTAL  
VXTAL  
XTAL pin voltage  
0 to 3.3  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
18  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
(continued)  
1, 2  
Table 7. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Instantaneous Maximum Current  
ID  
25  
mA  
Single pin limit (applies to all pins) 4, 5  
Operating Temperature Range (Packaged)  
TA  
– 40 to 85  
°C  
(TL - TH)  
Storage Temperature Range  
Tstg  
– 65 to 150  
°C  
1
Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings  
are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those  
listed may affect device reliability or cause permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (e.g., either VSS or O VDD).  
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use  
the larger of the two values.  
2
3
4
5
All functional non-supply pins are internally clamped to VSS and O VDD  
.
Power supply must maintain regulation within operating O VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > O VDD) is greater than IDD, the  
injection current may flow out of O VDD and could result in external power supply going out of  
regulation. Insure external O VDD load will shunt current greater than maximum injection current. This  
will be the greatest risk when the MCU is not consuming power (ex; no clock).Power supply must  
maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions.  
8.2  
Thermal Characteristics  
Table 8 lists thermal resistance values  
Table 8. Thermal characteristics  
Symbol  
θJMA  
Characteristic  
256MBGA 196MBGA  
Unit  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
Junction to board  
Four layer board (2s2p)  
Four layer board (2s2p)  
261,2  
231,2  
153  
321,2  
291,2  
203  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
oC  
θJMA  
θJB  
θJC  
Ψjt  
Junction to case  
104  
104  
Junction to top of package  
Natural convection  
21,5  
21,5  
Maximum operating junction temperature  
Tj  
105  
105  
1
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale  
recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction  
temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures  
can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature  
specification can be verified by physical measurement in the customer’s system using the Ψjt parameter, the device power  
dissipation, and the method described in EIA/JESD Standard 51-2.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
2
3
4
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
19  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
5
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
in conformance with Psi-JT.  
The average chip-junction temperature (TJ) in °C can be obtained from:  
(1)  
)
TJ = TA + (PD × ΘJMA  
Where:  
TA  
= Ambient Temperature, °C  
ΘJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD × VDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is  
neglected) is:  
PD = K ÷ (TJ + 273°C)  
(2)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA + 273 °C) + ΘJMA × PD  
2
(3)  
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at  
equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1)  
and (2) iteratively for any value of TA.  
8.3  
ESD Protection  
1, 2  
Table 9. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
ESD Target for Machine Model  
HBM Circuit Description  
HBM  
MM  
2000  
200  
1500  
100  
0
V
V
Rseries  
C
pF  
MM Circuit Description  
Rseries  
C
200  
pF  
Number of pulses per pin (HBM)  
positive pulses  
negative pulses  
1
1
Number of pulses per pin (MM)  
positive pulses  
3
3
negative pulses  
Interval of Pulses  
1
sec  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive  
Grade Integrated Circuits.  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the  
device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
2
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
20  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
8.4  
DC Electrical Specifications  
1
Table 10. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
I/O Pad Supply Voltage  
VDD  
OVDD  
SDVDD  
SDVDD  
VREF  
VREF  
VIH  
1.4  
3.0  
1.6  
3.6  
2.7  
3.6  
V
V
V
V
V
V
V
V
V
SSTL I/O Pad Supply Voltage  
2.3  
SSTL I/O Pad Supply Voltage  
3.0  
2
SSTL Memory pads reference voltage (SD VDD = 2.5V)  
SSTL Memory pads reference voltage (SD VDD = 3.3V)  
Input High Voltage 3.3V I/O Pads  
0.5 SD VDD  
0.45 SD VDD  
0.7 x OVDD  
VSS – 0.3  
OVDD - 0.5  
2
3.6  
0.35 x OVDD  
Input Low Voltage 3.3V I/O Pads  
VIL  
Output High Voltage 3.3V I/O Pads  
VOH  
I
OH = –2.0 mA  
Output Low Voltage 3.3V I/O Pads  
IOL = 2.0mA  
VOL  
0.5  
V
Input Hysteresis 3.3V I/O Pads  
VHYS  
VIH  
0.06 x VDD  
VREF + 0.3  
VSS - 0.3  
SDVDD + 0.3  
VREF - 0.3  
mV  
V
Input High Voltage SSTL 3.3V/2.5V3  
Input Low Voltage SSTL 3.3V/2.5V3  
Output High Voltage SSTL 3.3V/2.5V4  
VIL  
V
VOH  
SDVDD - 0.25V  
V
IOH = –5.0 mA  
Output Low Voltage SSTL 3.3V/2.5V4  
IOL = 5.0 mA  
VOL  
Iin  
0.35  
1.0  
V
Input Leakage Current  
-1.0  
-1.0  
-10  
µA  
µA  
Vin = VDD or VSS, Input-only pins  
High Impedance (Off-State) Leakage Current  
Vin = VDD or VSS, All input/output and output pins  
Weak Internal Pull Up Device Current, tested at VIL Max.5  
IOZ  
1.0  
IAPU  
Cin  
-130  
µA  
Input Capacitance 6  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
Load Capacitance7  
Low Drive Strength  
High Drive Strength  
pF  
CL  
25  
50  
Core Operating Supply Current 8  
IDD  
Master Mode  
WAIT  
DOZE  
175  
15  
10  
mA  
mA  
mA  
µA  
STOP  
100  
I/O Pad Operating Supply Current  
Master Mode  
OIDD  
250  
250  
mA  
µA  
Low Power Modes  
DC Injection Current 3, 9, 10, 11  
IIC  
mA  
VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3  
Single Pin Limit  
Total MCU Limit, Includes sum of all stressed pins  
-1.0  
-10  
1.0  
10  
1
Refer to Table 11 for additional PLL specifications.  
VREF is specified as a nominal value only instead of a range, so no maximum value is listed.  
This specification is guaranteed by design and is not 100% tested.  
2
3
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
21  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
4
The actual VOH and VOL values for SSTL pads are dependent on the termination and drive strength used. The specifications  
numbers assume no parallel termination.  
5
Refer to the MCF5274 signals chapter for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces  
6
7
require transmission line analysis to determine proper drive strength and termination.  
Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.  
8
9
All functional non-supply pins are internally clamped to VSS and their respective VDD  
.
10  
11  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Insure external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not  
present during the power-up sequence until the PLL has attained lock.  
8.5  
Oscillator and Phase Lock Loop (PLLMRFM) Electrical  
Specifications  
1
Table 11. PLL Electrical Specifications  
Characteristic  
PLL Reference Frequency Range  
Symbol  
Min  
Max  
Unit  
MHz  
Crystal reference  
External reference  
1:1 Mode (NOTE: fsys/2 = 2 × fref_1:1  
fref_crystal  
fref_ext  
fref_1:1  
8
8
24  
25  
25  
83  
)
Core frequency  
fcore  
166  
MHz  
CLKOUT Frequency 2  
External reference  
On-Chip PLL Frequency  
0
83  
83  
MHz  
MHz  
fsys/2  
fLOR  
fSCM  
tcst  
fref / 32  
Loss of Reference Frequency 3, 5  
Self Clocked Mode Frequency 4, 5  
Crystal Start-up Time 5, 6  
100  
TBD  
1000  
TBD  
10  
kHz  
MHz  
ms  
EXTAL Input High Voltage  
Crystal Mode  
VIHEXT  
VIHEXT  
V
TBD  
TBD  
TBD  
TBD  
All other modes (Dual Controller (1:1), Bypass, External)  
EXTAL Input Low Voltage  
VILEXT  
VILEXT  
V
Crystal Mode  
TBD  
TBD  
TBD  
TBD  
All other modes (Dual Controller (1:1), Bypass, External)  
XTAL Output High Voltage  
IOH = 1.0 mA  
VOH  
VOL  
V
V
TBD  
XTAL Output Low Voltage  
IOL = 1.0 mA  
XTAL Load Capacitance7  
PLL Lock Time 8  
5
TBD  
30  
pF  
tlpll  
750  
µs  
Power-up To Lock Time 6, 9  
With Crystal Reference  
tlplk  
11  
750  
ms  
µs  
Without Crystal Reference10  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
22  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
Table 11. PLL Electrical Specifications (continued)  
1
Characteristic  
Symbol  
Min  
Max  
Unit  
1:1 Mode Clock Skew (between CLKOUT and EXTAL) 11  
Duty Cycle of reference 5  
tskew  
tdc  
-1  
1
ns  
40  
60  
4.1  
2.0  
% fsys/2  
% fsys/2  
% fsys/2  
Frequency un-LOCK Range  
fUL  
-3.8  
-1.7  
Frequency LOCK Range  
fLCK  
Cjitter  
CLKOUT Period Jitter, 5, 6, 9,12, 13 Measured at fsys/2 Max  
Peak-to-peak Jitter (Clock edge to clock edge)  
Long Term Jitter (Averaged over 2 ms interval)  
5
.01  
% fsys/2  
% fsys/2  
MHz  
15  
Frequency Modulation Range Limit14  
,
Cmod  
fico  
0.8  
2.2  
83  
(fsys/2Max must not be exceeded)  
ICO Frequency. fico = fref * 2 * (MFD+2)16  
48  
1
All values given are initial design targets and subject to change.  
All internal registers retain data at 0 Hz.  
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self  
clocked mode.  
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below  
fLOR with default MFD/RFD settings.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
Load Capacitance determined from crystal manufacturer specifications and will include circuit board parasitics.  
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits  
in the synthesizer control register (SYNCR).  
2
3
4
5
6
7
8
9
Assuming a reference is available at power up, lock time is measured from the time VDD and VDDPLL are valid to  
RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time  
must be added to the PLL lock time to determine the total start-up time.  
10  
11  
12  
tlpll = (64 * 4 * 5 + 5 x τ) x T , where Tref = 1/Fref_crystal = 1/Fref_ext = 1/Fref_1:1, and τ = 1.57x10-6 x 2(MFD + 2)  
ref  
PLL is operating in 1:1 PLL mode.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fsys/2. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency  
increase the jitter percentage for a given interval.  
13  
14  
15  
Based on slow system clock of 33MHz maximum frequency.  
Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz.  
Modulation rate selected must not result in fsys/2 value greater than the fsys/2 maximum specified value. Modulation  
range determined by hardware design.  
16  
fsys/2 = fico / (2 * 2RFD  
)
8.6  
External Interface Timing Characteristics  
Table 12 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and  
output delay with respect to the rising edge of a reference clock. The  
reference clock is the CLKOUT output.  
All other timing relationships can be derived from these values.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
23  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
Table 12. Processor Bus Input Timing Specifications  
Name  
Characteristic1  
Symbol  
Min  
Max Unit  
B0  
CLKOUT  
tCYC  
12  
ns  
Control Inputs  
B1a  
B1b  
B2a  
B2b  
Control input valid to CLKOUT high2  
BKPT valid to CLKOUT high3  
tCVCH  
tBKVCH  
tCHCII  
9
9
0
0
ns  
ns  
ns  
ns  
CLKOUT high to control inputs invalid2  
CLKOUT high to asynchronous control input BKPT invalid3  
tBKNCH  
Data Inputs  
B4  
B5  
Data input (D[31:16]) valid to CLKOUT high  
CLKOUT high to data input (D[31:16]) invalid  
tDIVCH  
tCHDII  
4
0
ns  
ns  
1
2
3
Timing specifications have been indicated taking into account the full drive strength for the pads.  
TEA and TA pins are being referred to as control inputs.  
Refer to figure A-19.  
Timings listed in Table 12 are shown in Figure 7.  
* The timings are also valid for inputs sampled on the negative clock edge.  
CLKOUT (83MHz)  
TSETUP  
THOLD  
Invalid  
Valid  
Invalid  
Input Setup And Hold  
Input Rise Time  
trise  
Vh = VIH  
Vl = VIL  
tfall  
Vh = VIH  
Vl = VIL  
Input Fall Time  
CLKOUT  
Inputs  
B4  
B5  
Figure 7. General Input Timing Requirements  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
24  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
8.7  
Processor Bus Output Timing Specifications  
Table 13 lists processor bus output timings.  
Table 13. External Bus Output Timing Specifications  
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Control Outputs  
B6a  
CLKOUT high to chip selects (CS[7:0]) valid 1  
CLKOUT high to byte enables (BS[3:2]) valid2  
CLKOUT high to output enable (OE) valid3  
CLKOUT high to control output (BS[3:2], OE) invalid  
CLKOUT high to chip selects invalid  
tCHCV  
tCHBV  
tCHOV  
tCHCOI  
tCHCI  
0.5tCYC + 5.5  
0.5tCYC + 5.5  
0.5tCYC + 5.5  
ns  
ns  
ns  
ns  
ns  
B6b  
B6c  
B7  
0.5tCYC + 1.0  
0.5tCYC + 1.0  
B7a  
Address and Attribute Outputs  
CLKOUT high to address (A[23:0]) and control (TS, tCHAV  
B8  
B9  
9
ns  
ns  
TSIZ[1:0], TIP, R/W) valid  
CLKOUT high to address (A[23:0]) and control (TS,  
TSIZ[1:0], TIP, R/W) invalid  
tCHAI  
1.0  
Data Outputs  
B11  
B12  
B13  
CLKOUT high to data output (D[31:16]) valid  
CLKOUT high to data output (D[31:16]) invalid  
tCHDOV  
tCHDOI  
1.0  
9
9
ns  
ns  
ns  
CLKOUT high to data output (D[31:16]) high impedance tCHDOZ  
1
2
3
CS transitions after the falling edge of CLKOUT.  
BS transitions after the falling edge of CLKOUT.  
OE transitions after the falling edge of CLKOUT.  
Read/write bus timings listed in Table 13 are shown in Figure 8, Figure 9, and Figure 10.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
25  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
S4  
S5  
S0  
S1  
S2  
S5  
S0  
S1  
S2  
S3  
S4  
S3  
CLKOUT  
CSn  
B7a  
B7a  
B6a  
B6a  
B8  
B8  
B9  
A[23:0]  
TSIZ[1:0]  
TS  
B8  
B9  
B9  
B8  
TIP  
B9  
B8  
B0  
B6c  
B7  
OE  
B8  
B9  
(H)  
R/W  
B6b  
B6b  
B7  
BS[3:2]  
B7  
B11  
B12  
B13  
B4  
D[31:16]  
B5  
(H)  
TA  
(H)  
TEA  
Figure 8. Read/Write (Internally Terminated) SRAM Bus Timing  
Figure 9 shows a bus cycle terminated by TA showing timings listed in Table 13.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
26  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
S4  
S0  
S1  
S2  
S5  
S0  
S1  
S3  
CLKOUT  
CSn  
B6a  
B7a  
B8  
B8  
B8  
B9  
A[23:0]  
TSIZ[1:0]  
TS  
B9  
B9  
TIP  
OE  
B6c  
B6b  
B7  
B7  
(H)  
R/W  
BS[3:2]  
B5  
B4  
D[31:16]  
TA  
B2a  
B1a  
TEA  
(H)  
Figure 9. SRAM Read Bus Cycle Terminated by TA  
Figure 10 shows an SRAM bus cycle terminated by TEA showing timings listed in Table 13.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
27  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
S4  
S1  
S2  
S5  
S0  
S1  
S0  
S3  
CLKOUT  
CSn  
B6a  
B7a  
B8  
B9  
A[23:0]  
TSIZ[1:0]  
B8  
TS  
B9  
B8  
TIP  
B9  
B6c  
B6b  
B7  
OE  
(H)  
R/W  
B7  
BS[3:2]  
D[31:16]  
TA  
(H)  
B1a  
TEA  
B2a  
Figure 10. SRAM Read Bus Cycle Terminated by TEA  
8.8  
DDR SDRAM AC Timing Characteristics  
The DDR SDRAM controller uses SSTL2 and I/O drivers. Either Class I or Class II drive strength is  
available and is user programmable. DDR Clock timing specifications are given in Table 14 and Figure 11.  
1
Table 14. DDR Clock Timing Specifications  
Symbol  
Characteristic  
Clock output mid-point voltage  
Min  
Max  
Unit  
VMP  
VOUT  
VID  
1.05  
-0.3  
0.7  
1.45  
V
V
V
V
Clock output voltage level  
SDVDD + 0.3  
SDVDD + 0.6  
1.45  
Clock output differential voltage (peak to peak swing)  
Clock crossing point voltage  
VIX  
1.05  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
28  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
1
SD VDD is nominally 2.5V.  
SDCLK  
VIX  
VID  
VMP  
VIX  
SDCLK  
Figure 11. DDR Clock Timing Diagram  
When using the DDR SDRAM controller the timing numbers in Table 15 must be followed to properly  
latch or drive data onto the memory bus. All timing numbers are relative to the two DQS byte lanes.  
Table 15. DDR Timing  
NUM  
Characteristic1  
Frequency of operation2  
Symbol  
Min  
Max  
Unit  
TBD  
12  
83  
TBD  
MHz  
ns  
DD1 Clock Period (DDR_CLKOUT)  
DD2 Pulse Width High3  
DD3 Pulse Width Low3  
tCK  
tCKH  
tCKl  
0.45  
0.45  
0.55  
tCK  
tCK  
ns  
0.55  
DD4 DDR_CLKOUT high to DDR address, SD_CKE,  
SD_CS[1:0], SD_SCAS, SD_SRAS, SD_WE valid  
tCMV  
0.5 x tCK + 1  
DD5 DDR_CLKOUT high to DDR address, SD_CKE, SD_CS,  
SD_SCAS, SD_SRAS, SD_WE invalid  
tCMH  
2
ns  
DD6 Write command to first SD_DQS Latching Transition  
DD7 SD_DQS high to Data and DM valid (write) - setup4,5  
DD8 SD_DQS high to Data and DM invalid (write) - hold4  
DD9 SD_DQS high to Data valid (read) - setup6  
tDQSS  
tQS  
1.25  
tCK  
ns  
1.5  
tQH  
1
ns  
tIS  
1
ns  
DD10 SD_DQS high to Data invalid (read) - hold7  
DD11 SD_DQS falling edge to CLKOUT high - setup  
DD12 SD_DQS falling edge to CLKOUT high - hold  
tIH  
0.25 x tCK + 1  
ns  
tDSS  
tDSH  
tRPRE  
tRPST  
tWPRE  
tWPST  
0.5  
0.5  
ns  
ns  
DD13 DQS input read preamble width (tRPRE  
DD14 DQS input read postamble width (tRPST  
DD15 DQS output write preamble width (tWPRE  
DD16 DQS output write postamble width (tWPST  
)
0.9  
1.1  
0.6  
tCK  
tCK  
tCK  
tCK  
)
0.4  
)
0.25  
0.4  
)
0.6  
1
2
3
4
5
All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.  
DDR_CLKOUT operates at half the frequency of the PLLMRFM output and the ColdFire core.  
tCKH + tCKL must be less than or equal to tCK  
.
D[31:24] is relative to SD_DQS3 and D[23:16] is relative to SD_DQS2.  
The first data beat will be valid before the first rising edge of SD_DQS and after the SD_DQS write preamble. The  
remaining data beats will be valid for each subsequent SD_DQS edge  
Data input skew is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the last data  
line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or  
other factors).  
Data input hold is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the first data  
line becomes invalid.  
6
7
Figure 13 shows a DDR SDRAM write cycle.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
29  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
DDR_CLKOUT  
VIX  
VID  
VMP  
VIX  
DDR_CLKOUT  
Figure 12. DDR_CLKOUT and DDR_CLKOUT Crossover Timing  
DD1  
DD2  
DDR_CLKOUT  
DDR_CLKOUT  
DD3  
DD5  
SD_CSn,SD_WE,  
SD_SRAS,SD_SCAS  
CMD  
ROW  
DD4  
DD6  
A[13:0]  
COL  
DD7  
DM[3:2]  
SD_DQS[3:2]  
D[31:16]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 13. DDR Write Timing  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
30  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
DD1  
DD2  
CLKOUT  
CLKOUT  
DD3  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_SRAS,SD_SCAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS[3:2]  
D[31:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS[3:2]  
D[31:16]  
WD1 WD2 WD3 WD4  
Figure 14. DDR Read Timing  
8.9  
General Purpose I/O Timing  
GPIO can be configured for certain pins of the QSPI, DDR Control, TIMERS, UARTS, FEC0, FEC1,  
Interrupts and USB interfaces. When in GPIO mode the timing specification for these pins is given in  
Table 16 and Figure 15.  
Table 16. GPIO Timing  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1 CLKOUT High to GPIO Output Valid  
G2 CLKOUT High to GPIO Output Invalid  
G3 GPIO Input Valid to CLKOUT High  
G4 CLKOUT High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.0  
9
10  
ns  
ns  
ns  
ns  
1.5  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
31  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
CLKOUT  
G2  
G1  
GPIO Outputs  
GPIO Inputs  
G3  
G4  
Figure 15. GPIO Timing  
8.10 Reset and Configuration Override Timing  
Table 17. Reset and Configuration Override Timing  
1
(V = 2.7 to 3.6 V, V = 0 V, T = T to T )  
DD  
SS  
L
H
A
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to CLKOUT High  
R2 CLKOUT High to RESET Input invalid  
R3 RESET Input valid Time 2  
tRVCH  
tCHRI  
9
1.5  
5
ns  
ns  
tRIVT  
tCYC  
ns  
R4 CLKOUT High to RSTOUT Valid  
R5 RSTOUT valid to Config. Overrides valid  
tCHROV  
tROVCV  
tCOS  
0
10  
ns  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
1 x tCYC  
ns  
1
2
All AC timing is shown with respect to 50% OVDD levels unless otherwise noted.  
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted  
asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.  
CLKOUT  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides1:  
(RCON, Override pins])  
1. Refer to the Coldfire Integration Module (CIM) section for more information.  
RESET and Configuration Override Timing  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
32  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
8.11 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.  
8.11.1 MII Receive Signal Timing (FECn_RXD[3:0], FECn_RXDV,  
FECn_RXER, and FECn_RXCLK)  
The receiver functions correctly up to a FECn_RXCLK maximum frequency of 25 MHz +1%. The  
processor clock frequency must exceed twice the FECn_RXCLK frequency.  
Table 18 lists MII receive channel timings.  
Table 18. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
FECn_RXD[3:0], FECn_RXDV, FECn_RXER to  
FECn_RXCLK setup  
5
ns  
M2  
M3  
M4  
FECn_RXCLK to FECn_RXD[3:0], FECn_RXDV,  
FECn_RXER hold  
5
ns  
FECn_RXCLK pulse width high  
35%  
35%  
65%  
65%  
FECn_RXCLK  
period  
FECn_RXCLK pulse width low  
FECn_RXCLK  
period  
Figure 16 shows MII receive signal timings listed in Table 18.  
M4  
M3  
FECn_RXCLK (input)  
FECn_RXD[3:0] (inputs)  
FECn_RXDV  
FECn_RXER  
M1  
M2  
Figure 16. MII Receive Signal Timing Diagram  
8.11.2 MII Transmit Signal Timing (FECn_TXD[3:0], FECn_TXEN,  
FECn_TXER, FECn_TXCLK)  
Table 19 lists MII transmit channel timings.  
The transmitter functions correctly up to a FECn_TXCLK maximum frequency of 25 MHz +1%. The  
processor clock frequency must exceed twice the FECn_TXCLK frequency.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
33  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
Table 19. MII Transmit Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
FECn_TXCLK to FECn_TXD[3:0], FECn_TXEN,  
FECn_TXER invalid  
5
ns  
M6  
FECn_TXCLK to FECn_TXD[3:0], FECn_TXEN,  
FECn_TXER valid  
25  
ns  
M7  
M8  
FECn_TXCLK pulse width high  
FECn_TXCLK pulse width low  
35%  
35%  
65%  
65%  
FECn_TXCLK period  
FECn_TXCLK period  
Figure 17 shows MII transmit signal timings listed in Table 19.  
M8  
M7  
FECn_TXCLK (input)  
M5  
FECn_TXD[3:0] (outputs)  
FECn_TXEN  
FECn_TXER  
M6  
Figure 17. MII Transmit Signal Timing Diagram  
8.11.3 MII Async Inputs Signal Timing (FECn_CRS and FECn_COL)  
Table 20 lists MII asynchronous inputs signal timing.  
Table 20. MII Asynchronous Input Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
FECn_CRS, FECn_COL minimum pulse width  
1.5  
FECn_TXCLK period  
Figure 18 shows MII asynchronous input timings listed in Table 20.  
FECn_CRS  
FECn_COL  
M9  
Figure 18. MII Async Inputs Timing Diagram  
8.11.4 MII Serial Management Channel Timing (FECn_MDIO and  
FECn_MDC)  
Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum  
MDC frequency of 2.5 MHz.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
34  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
Table 21. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10 FECn_MDC falling edge to FECn_MDIO output invalid (minimum  
0
ns  
propagation delay)  
M11 FECn_MDC falling edge to FECn_MDIO output valid (max prop delay)  
M12 FECn_MDIO (input) to FECn_MDC rising edge setup  
M13 FECn_MDIO (input) to FECn_MDC rising edge hold  
M14 FECn_MDC pulse width high  
10  
25  
ns  
ns  
0
ns  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
M15 FECn_MDC pulse width low  
Figure 19 shows MII serial management channel timings listed in Table 21.  
M14  
M15  
FECn_MDC (output)  
M10  
FECn_MDIO (output)  
M11  
FECn_MDIO (input)  
M13  
Figure 19. MII Serial Management Channel Timing Diagram  
M12  
8.11.5 USB Interface AC Timing Specifications  
Table 22 lists USB Interface timings.  
Table 22. USB Interface Timing  
Num  
Characteristic  
USB_CLK frequency of operation  
Min  
Max  
Units  
US1  
US2  
US3  
US4  
48  
45  
48  
2
MHz  
ns  
USB_CLK fall time (VIH = 2.4 V to VIL = 0.5 V)  
USB_CLK rise time (VIL = 0.5 V to VIH = 2.4 V)  
2
ns  
USB_CLK duty cycle (at 0.5 x O VDD  
)
55  
%
Data Inputs  
USB_RP, USB_RN, USB_RXD valid to USB_CLK high  
US5  
6
ns  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
35  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
Table 22. USB Interface Timing (continued)  
Num  
Characteristic  
Min  
Max  
Units  
US6  
USB_CLK high to USB_RP, USB_RN, USB_RXD invalid  
Data Outputs  
6
ns  
US7  
US8  
USB_CLK high to USB_TP, USB_TN, USB_SUSP valid  
USB_CLK high to USB_TP, USB_TN, USB_SUSP invalid  
3
12  
ns  
ns  
Figure 20 shows USB interface timings listed in Table 22.  
US1  
USB_CLK  
US8  
US7  
USB Outputs  
US5  
US6  
USB Inputs  
trise  
Vh = VIH  
Input Rise Time  
Input Fall Time  
Vl = VIL  
tfall  
Vh = VIH  
Vl = VIL  
Figure 20. USB Signals Timing Diagram  
2
8.12 I C Input/Output Timing Specifications  
2
Table 23 lists specifications for the I C input timing parameters shown in Figure 21.  
2
Table 23. I C Input Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
2 x tCYC  
1
ns  
ns  
ms  
ns  
ms  
ns  
ns  
Clock low period  
8 x tCYC  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4 x tCYC  
0
Data setup time  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
36  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
Table 23. I C Input Timing Specifications between I2C_SCL and I2C_SDA (continued)  
2
Num  
Characteristic  
Min  
Max  
Units  
I8  
I9  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2 x tCYC  
2 x tCYC  
ns  
ns  
2
Table 24 lists specifications for the I C output timing parameters shown in Figure 21.  
2
Table 24. I C Output Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I11  
6 x tCYC  
10 x tCYC  
ns  
ns  
µs  
I2 1  
I3 2  
Clock low period  
I2C_SCL/I2C_SDA rise time  
(VIL = 0.5 V to VIH = 2.4 V)  
I4 1  
I5 3  
Data hold time  
7 x tCYC  
3
ns  
ns  
I2C_SCL/I2C_SDA fall time  
(VIH = 2.4 V to VIL = 0.5 V)  
I6 1  
I7 1  
I8 1  
Clock high time  
Data setup time  
10 x tCYC  
2 x tCYC  
ns  
ns  
ns  
Start condition setup time (for repeated start  
condition only)  
20 x tCYC  
I9 1  
Stop condition setup time  
10 x tCYC  
ns  
1
Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed  
with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in  
Table 24. The I2C interface is designed to scale the actual data transition time to move it to the  
middle of the I2C_SCL low period. The actual position is affected by the prescale and division  
values programmed into the IFDR; however, the numbers given in Table 24 are minimum values.  
2
3
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only  
actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external  
signal capacitance and pull-up resistor values.  
Specified at a nominal 50-pF load.  
Figure 21 shows timing for the values in Table 23 and Table 24.  
I2  
I6  
I5  
SCL  
SDA  
I3  
I1  
I4  
I8  
I9  
I7  
2
Figure 21. I C Input/Output Timings  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
37  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
8.13 DMA Timers Timing Specifications  
Table 25. Timer Module AC Timing Specifications  
Name  
Characteristic 1  
Min  
Max  
Unit  
T1  
T2  
T0IN / T1IN / T2IN / T3IN cycle time  
T0IN / T1IN / T2IN / T3IN pulse width  
3 x tCYC  
1 x tCYC  
ns  
ns  
1
All timing references to CLKOUT are given to its rising edge.  
8.14 QSPI Electrical Specifications  
Table 26. QSPI Modules AC Timing Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QSPI_DOUT  
QSPI_DIN  
QS2  
QS3  
QS4  
QS5  
Figure 22. QSPI Timing  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
38  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
8.15 JTAG and Boundary Scan Timing  
Table 27. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
fJCYC  
tJCYC  
DC  
1/4  
3
fsys/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK Cycle Period  
4 x tCYC  
J3  
TCLK Clock Pulse Width  
tJCW  
26  
0
J4  
TCLK Rise and Fall Times  
tJCRF  
J5  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
TMS, TDI Input Data Hold Time after TCLK Rise  
TCLK Low to TDO Data Valid  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
26  
8
J6  
26  
0
J7  
J8  
tBSDZ  
0
J9  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
J10  
J11  
J12  
J13  
J14  
10  
0
TCLK Low to TDO High Z  
0
TRST Assert Time  
100  
10  
TRST Setup Time (Negation) to TCLK High  
1
JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 23. Test Clock Input Timing  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
39  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
TCLK  
VIL  
VIH  
J5  
Input Data Valid  
J6  
Data Inputs  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 24. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 25. Test Access Port Timing  
TCLK  
TRST  
14  
13  
Figure 26. TRST Timing  
8.16 Debug AC Timing Specifications  
Table 28 lists specifications for the debug AC timing parameters shown in Figure 28.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
40  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Preliminary Electrical Characteristics  
Table 28. Debug AC Timing Specification  
166 MHz  
Units  
Num  
Characteristic  
Min  
Max  
D0  
PSTCLK cycle time  
0.5  
tCYC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
D1  
D2  
D3  
D4 1  
D5  
D6  
D7  
D8  
PST, DDATA to PSTCLK setup  
CLKOUT to PST, DDATA hold  
DSI-to-DSCLK setup  
4
1.0  
1 x tCYC  
4 x tCYC  
5 x tCYC  
4
DSCLK-to-DSO hold  
DSCLK cycle time  
BKPT input data setup time to PSTCLK Rise  
BKPT input data hold time to PSTCLK Rise  
PSTCLK high to BKPT high Z  
1.5  
0.0  
10.0  
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input  
relative to the rising edge of PSTCLK.  
Figure 27 shows real-time trace timing for the values in Table 28.  
PSTCLK  
D1  
D2  
PST[3:0]  
DDATA[3:0]  
Figure 27. Real-Time Trace AC Timing  
Figure 28 shows BDM serial port AC timing for the values in Table 28.  
PSTCLK  
D5  
DSCLK  
D3  
DSI  
Current  
Past  
Next  
D4  
DSO  
Current  
Figure 28. BDM Serial Port AC Timing  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
41  
Preliminary—Subject to Change Without Notice  
Documentation  
9
Documentation  
Documentation regarding the MCF5275 and their development support tools is available from a local  
Freescale distributor, a Freescale semiconductor sales office, the Freescale Literature Distribution Center,  
or through the Freescale web address at http://www.freescale.com/coldfire.  
10 Revision History  
Table 29 provides a revision history for this hardware specification.  
Table 29. Document Revision History  
Rev. No.  
Substantive Change(s)  
0
1
• Initial release.  
• Added Figure 6.  
1.1  
• Removed duplicate information in the module description sections. The information is all in the  
Signals Description Table.  
1.2  
• Removed Overview, Features, Signal Descriptions, Modes of Operation, and Address  
Multiplexing sections. This information can be found in the MCF5275 Reference Manual.  
• Removed list of documentation in Section 9, “Documentation.. An up-to-date list is always  
available on our web site.  
• Changed CLKOUT -> PSTCLK in Section 8.16, “Debug AC Timing Specifications.”  
Table 10: Update VDD spec from 1.35-1.65 to 1.4-1.6.  
Table 13: Timings B6a, B6b, B6c, B7, B7a, B9, B12 updated:  
B6a, B6b, B6c maximum changed from “0.5tCYC + 5” to “0.5tCYC + 5.5”  
B7, B7a minimum changed from “0.5tCYC + 1.5” to “0.5tCYC + 1.0”  
B9, B11 minimum changed from “1.5” to “1.0”  
1.3  
2
• Added Section 5.2.1, “Supply Voltage Sequencing and Separation Cautions.”  
• Added thermal characteristics for 196 MAPBGA in Table 8.  
• Updated package dimensions drawing, Figure 6.  
• Removed second sentence from Section 8.11.1, “MII Receive Signal Timing  
(FECn_RXD[3:0], FECn_RXDV, FECn_RXER, and FECn_RXCLK),and Section 8.11.2, “MII  
Transmit Signal Timing (FECn_TXD[3:0], FECn_TXEN, FECn_TXER, FECn_TXCLK),”  
regarding no minimum frequency requirement for TXCLK.  
• Removed third and fourth paragraphs from Section 8.11.2, “MII Transmit Signal Timing  
(FECn_TXD[3:0], FECn_TXEN, FECn_TXER, FECn_TXCLK),as this feature is not  
supported on this device.  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
42  
Freescale Semiconductor  
Preliminary—Subject to Change Without Notice  
Revision History  
MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 2  
Freescale Semiconductor  
43  
Preliminary—Subject to Change Without Notice  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
Semiconductor was negligent regarding the design or manufacture of the part.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF5275EC  
Rev. 2  
08/2006  
Preliminary—Subject to Change Without Notice  

相关型号:

MCF5275CVM133

MCF5275 Integrated Microprocessor Family Hardware Specification
MOTOROLA

MCF5275CVM133

Integrated Microprocessor Family Hardware Specification
FREESCALE

MCF5275CVM166

MCF5275 Integrated Microprocessor Family Hardware Specification
MOTOROLA

MCF5275CVM166

Integrated Microprocessor Family Hardware Specification
FREESCALE

MCF5275CVM166

MCF5275 V2CORE 64KSRAM
NXP

MCF5275LCVM133

MCF5275 Integrated Microprocessor Family Hardware Specification
MOTOROLA

MCF5275LCVM133

Integrated Microprocessor Family Hardware Specification
FREESCALE

MCF5275LCVM166

MCF5275 Integrated Microprocessor Family Hardware Specification
MOTOROLA

MCF5275LCVM166

Integrated Microprocessor Family Hardware Specification
FREESCALE

MCF5275LCVM166

MCF5275L V2CORE 64KSRAM
NXP

MCF5275LCVM166J

32-BIT, 166 MHz, RISC PROCESSOR, PBGA196, ROHS COMPLIANT, MAPBGA-196
NXP

MCF527X

CodeWarrior Development Studio for ColdFire㈢ Architectures
FREESCALE