MK10X32VLK50R [FREESCALE]

K10 Sub-Family Data Sheet; K10次系列数据手册
MK10X32VLK50R
型号: MK10X32VLK50R
厂家: Freescale    Freescale
描述:

K10 Sub-Family Data Sheet
K10次系列数据手册

文件: 总60页 (文件大小:859K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K10P81M100SF2  
Rev. 1, 11/2010  
Freescale Semiconductor  
Data Sheet: Product Preview  
K10P81M100SF2  
K10 Sub-Family Data Sheet  
Supports the following:  
MK10N512VLK100, MK10N512VMB100  
Features  
Human-machine interface  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
Analog modules  
– 16-bit SAR ADC with GA (x6
– 12-bit DAC  
– Analog comparat(CMcontaining a 6-bit DAC  
and programmble rence input  
– Voltage reference  
Performance  
– Up to 100 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Memories and memory interfaces  
– Up to 512 KB program flash memory on non-  
FlexMemory devices  
Timers  
– Programable delay block  
– Eit-chael motor control/general purpose/PWM  
timers  
– Up to 128 KB RAM  
– Serial programming interface (EzPort)  
– FlexBus external bus interface  
– To-channel quadrature decoder/general purpose  
timers  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
Clocks  
– 1 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
Communication interfaces  
– Controller Area Network (CAN) module  
– SPI modules  
– I2C modules  
– UART modules  
System peripherals  
– 10 low-power modes to provide pooptimization  
based on application requi
– Memory protection unit i-master  
protection  
– 16-channel DMA controller, pporting up to 64  
request sources  
– Secure Digital host controller (SDHC)  
– I2S  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
– Hardware random-number generator  
– 128-bit unique identification (ID) number per chip  
This document contains information on a product under development. Freescale  
reserves the right to change or discontinue this product without notice.  
© 2010–2010 Freescale Semiconductor, Inc.  
Preliminary  
Table of Contents  
1 Ordering parts...........................................................................4  
6.1 Core modules....................................................................19  
6.1.1 Debug trace timing specifications.........................19  
6.1.2 JTAG electricals....................................................20  
6.2 System modules................................................................23  
6.3 Clock modules...................................................................23  
6.3.1 MCG Specifications...............................................23  
6.3.2 Oscillator Electrical Characteristics.......................25  
1.1 Determining valid orderable parts......................................4  
2 Part identification......................................................................4  
2.1 Description.........................................................................4  
2.2 Format...............................................................................4  
2.3 Fields.................................................................................4  
2.4 Example............................................................................5  
3 Terminology and guidelines......................................................5  
3.1 Definition: Operating requirement......................................5  
3.2 Definition: Operating behavior...........................................6  
3.3 Definition: Attribute............................................................6  
3.4 Definition: Rating...............................................................7  
3.5 Result of exceeding a rating..............................................7  
3.6 Relationship between ratings and operating  
6.3.2.1  
6.3.2.2  
Oscillator DC Electrical Specifications 25  
Oscillator frequenspecifications......26  
6.3.3 32kHz Oscillator Electril Chacteristics............27  
6.3.3.1  
32kHz Ocillator DC ctrical  
Specificas..................................27  
32kscillator Frequency  
6.3.3.2  
Sations......................................27  
requirements......................................................................7  
3.7 Guidelines for ratings and operating requirements............8  
3.8 Definition: Typical value.....................................................8  
3.9 Typical Value Conditions...................................................9  
4 Ratings......................................................................................9  
4.1 Thermal handling ratings...................................................9  
4.2 Moisture handling ratings.............................................10  
4.3 ESD handling ratings........................................................
4.4 Voltage and current operating ratings...................10  
5 General.........................................................................11  
5.1 Nonswitching electrical specificns..........................11  
5.1.1 Voltage and Curreg Requiments......11  
5.1.2 LVD and POR operatquirements.................12  
5.1.3 Voltage and current operag behaviors..............13  
5.1.4 Power mode transition operating behaviors..........13  
5.1.5 Power consumption operating behaviors..............14  
6.4 Memories and mmory interfaces.....................................28  
6.4.1 Fl(FTFL) Electrical Characteristics.................28  
.4.1.1  
6.4.1.2  
6.4.1.3  
6.4.1.4  
Flash Timing Parameters — Program  
and Erase............................................28  
Flash Timing Parameters —  
Commands..........................................28  
Flash (FTFL) Current and Power  
Parameters..........................................29  
Reliability Characteristics....................29  
6.4.2 EzPort Switching Specifications............................29  
6.4.3 Flexbus Switching Specifications..........................30  
6.5 Security and integrity modules..........................................32  
6.6 Analog...............................................................................32  
6.6.1 ADC electrical specifications.................................32  
6.6.1.1  
6.6.1.2  
6.6.1.3  
16-bit ADC operating conditions..........33  
16-bit ADC electrical characteristics....35  
16-bit ADC with PGA operating  
5.1.5.1  
Diagram: Typical IDD_RUN operating  
behavior...............................................16  
conditions............................................38  
16-bit ADC with PGA characteristics...39  
5.1.6 EMC radiated emissions operating behaviors.......17  
5.1.7 Designing with radiated emissions in mind...........18  
5.1.8 Capacitance attributes..........................................18  
5.2 Switching electrical specifications.....................................18  
5.3 Thermal specifications.......................................................18  
5.3.1 Thermal operating requirements...........................18  
5.3.2 Thermal attributes.................................................19  
6 Peripheral operating requirements and behaviors....................19  
6.6.1.4  
6.6.2 CMP and 6-bit DAC electrical specifications.........40  
6.6.3 12-bit DAC electrical characteristics.....................41  
6.6.3.1  
6.6.3.2  
12-bit DAC operating requirements.....41  
12-bit DAC operating behaviors..........42  
6.6.4 Voltage Reference Electrical Specifications..........44  
6.7 Timers................................................................................45  
6.8 Communication interfaces.................................................45  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
2
Freescale Semiconductor, Inc.  
Preliminary  
6.8.1 DSPI Switching Specifications for Low-speed  
Operation..............................................................46  
6.8.2 DSPI Switching Specifications (High-speed  
6.9.2 TSI Electrical Specifications..................................52  
7 Dimensions...............................................................................53  
7.1 Obtaining package dimensions.........................................53  
8 Pinout........................................................................................54  
8.1 K10 Signal Multiplexing and Pin Assignments..................54  
8.2 K10 Pinouts.......................................................................57  
9 Revision History........................................................................58  
mode)....................................................................47  
6.8.3 SDHC Specifications.............................................49  
6.8.4 I2S Switching Specifications.................................50  
6.9 Human-machine interfaces (HMI)......................................52  
6.9.1 General Switching Specifications..........................52  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
3
Preliminary  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to www.freescale.com and perform a part number search for  
the following device numbers: PK10 and MK10.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the pecic part. You can use the  
values of these fields to determine the specific part ou have received.  
2.2 Format  
Part numbers for this device have tfollowing format:  
Q K## M FFF T PP CCC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
M
Kinetis family  
• K10  
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
4
Freescale Semiconductor, Inc.  
Terminology and guidelines  
Values  
Field  
Description  
Program flash memory size  
FFF  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• FX = 64 QFN (9 mm x 9 m)  
• LH = 64 LQFP (10 mm x 1mm)  
• LK = 80 LQFP (12 mx 12 m)  
• MB = 81 MAPBG(8 mm mm)  
• LL = 100 LQFP mm x 14 m)  
• ML = 104 MAPBG8 mm x mm)  
• LQ = 144 LQ(20 mm x 20 mm)  
• MD = 144 MA (13 mm x 13 mm)  
• MF 196 MGA (15 mm x 15 mm)  
• MJ = 2MAPBGA (17 mm x 17 mm)  
CCC  
Maximum CPU frequency (MHz)  
Packaging type  
• 550 MHz  
72 = 2 MHz  
00 = 100 MHz  
• 120 = 120 MHz  
• 150 = 150 MHz  
N
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example paber:  
MK10N512VMD100  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
5
Preliminary  
Terminology and guidelines  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply volt‐ 0.9  
age  
1.1  
V
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a tecnical  
characteristic that are guaranteed during operation if you meet the erating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Mi.  
Max.  
Unit  
IWP  
Digital I/O weak pullu
pulldown current  
130  
µA  
3.3 Definition: Atibute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance: digi‐  
tal pins  
7
pF  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply volt‐ –0.3  
age  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
Tkelihd of permanent chip failure increases rapidly as  
soocharacteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
7
Terminology and guidelines  
3.6 Relationship between ratings and operating requirements  
Fatal  
range  
Normal  
operating  
range  
Fatal  
range  
- Probable permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Probable permanent failure  
Handling range  
- No permanent failure  
 
3.7 Guidelines for ratings and operating requirents  
Follow these guidelines for ratings and operating requirements
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of te chip’s operating requirements.  
• If you must exceed an operating requiremenat times other than during normal  
operation (for example, during power seqencing), limit the duration as much as  
possible.  
3.8 Definition: Typicavalue  
A typical value is a spd vale for a technical characteristic that:  
• Lies within the raf values specified by the operating behavior  
• Given the typical maufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
8
Freescale Semiconductor, Inc.  
Ratings  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
10C  
2500  
25 °C  
2000  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
0  
VDD (V)  
3.9 Typical Value Conditins  
Typical values assume meet he following conditions (or other conditions as  
specified):  
Symbol  
Description  
Value  
Unit  
TA  
Ambient temperature  
25  
°C  
V
VDD  
3.3 V supply voltage  
3.3  
4 Ratings  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
9
Ratings  
4.1 Thermal handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TSTG  
Storage temperature  
–55  
150  
°C  
1
TSDR  
Solder temperature, lead-free  
Solder temperature, leaded  
260  
245  
°C  
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Ma
Unit  
Notes  
MSL  
Moisture sensitivity level  
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Refloensitiy Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
Electrostatic discharge voltage, human bodmodel  
-2000  
+2000  
V
1
VCDM  
ILAT  
Electrostatic discharge voltage, ed-evice model  
Latch-up current at ambienemperatre of 85°C  
-500  
-100  
+500  
+100  
V
2
mA  
1. Determined according to Jandard ESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDStandard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-WithstanThresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Digital supply voltage  
–0.3  
3.8  
V
IDD  
Digital supply current  
185  
5.5  
mA  
V
VDIO  
VAIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog, RESET, EXTAL, and XTAL input voltage  
–0.3  
–0.3  
VDD + 0.3  
V
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
10  
Freescale Semiconductor, Inc.  
General  
Unit  
Symbol  
Description  
Min.  
Max.  
ID  
Instantaneous maximum current single pin limit (applies to all  
port pins)  
–25  
25  
mA  
VDDA  
IDDA  
Analog supply voltage  
VDD – 0.3  
TBD  
VDD + 0.3  
TBD  
3.8  
V
mA  
V
Analog supply current1  
VBAT  
RTC battery supply voltage  
–0.3  
VRAM  
VDD voltage required to retain RAM  
VBAT voltage required to retain the VBAT register file  
1.2  
V
VRFVBAT  
TBD  
V
1. The analog supply current is the sum of the active or disabled current for each of the analog modules n the device. See  
each module's specification for its supply current.  
5 General  
5.1 Nonswitching electrical specifications  
5.1.1 Voltage and Current Operating Requirements  
Table 1. Voltage and currenoperating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
VDDA  
Analog supply voltage  
1.71  
–0.1  
–0.1  
3.6  
0.1  
0.1  
V
V
V
VDD – VDDA VDD-to-VDDA differenal volte  
VSS – VSSA VSS-to-VSSA dioltage  
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
Input hysteresis  
0.06 × VDD  
V
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
11  
General  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
IIC  
Description  
Min.  
Max.  
Unit  
Notes  
DC injection current — single pin  
• VIN > VDD  
1
0
0
2
mA  
mA  
–0.2  
• VIN < VSS  
DC injection current — total MCU limit, includes sum  
of all stressed pins  
1
0
0
25  
–5  
mA  
mA  
• VIN > VDD  
• VIN < VSS  
1. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limito te value specified.  
To determine the value of the required current-limiting resistor, calculate resistance values fopositive negative clamp  
voltages, then use the larger of the two values. Power supply must maintain regulation withiperating VD range during  
instantaneous and operating maximum current conditions. If positive injection current (Vn > V) is greaer than IDD, the  
injection current may flow out of VDD and could result in external power supply goinout regulation. Ensure external  
VDD load will shunt current greater than maximum injection current. This will be the gresk when the MCU is not  
consuming power. Examples are: if no system clock is present, or if clock rate ery lohich would reduce overall  
power consumption).  
5.1.2 LVD and POR operating requiremets  
Table 2. LVD and POR perting requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR  
Falling VDD POR detect voltage  
TBD  
1.1  
TBD  
V
VLVDH  
Falling low-voltage detect thresholh  
range (LVDV=01)  
TBD  
2.56  
TBD  
V
Low-voltage warning threshls — higrange  
• Level 1 fallinV=00
1
VLVW1  
VLVW2  
VLVW3  
VLVW4  
VHYS  
TBD  
TBD  
TBD  
TBD  
2.70  
2.80  
2.90  
3.00  
TBD  
TBD  
TBD  
TBD  
V
V
V
V
• Level 2 fallWV=01)  
• Level 3 falling (WV=10)  
• Level 4 falling (LVWV=11)  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
VLVDL  
Falling low-voltage detect threshold — low range  
(LVDV=00)  
TBD  
TBD  
TBD  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1  
VLVW2  
VLVW3  
VLVW4  
TBD  
TBD  
TBD  
TBD  
1.80  
1.90  
2.00  
2.10  
TBD  
TBD  
TBD  
TBD  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
12  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 2. LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
VHYS  
Low-voltage inhibit reset/recover hysteresis —  
40  
mV  
low range  
VBG  
tLPO  
Bandgap voltage reference  
TBD  
TBD  
1.00  
TBD  
TBD  
V
Internal low power oscillator period  
factory trimmed  
1000  
μs  
1. Rising thresholds are falling threshold + VHYS  
5.1.3 Voltage and current operating behaviors  
Table 3. Voltage and current operating behavior
Symbol  
Description  
Min.  
Ma
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD 5  
VD– 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
100  
mA  
Output low voltage — high drive h  
• 2.7 V ≤ VDD ≤ 3.6 V, IO= A  
• 1.71 V ≤ VDD ≤ 2.7 VL = 3mA  
0.5  
0.5  
V
V
Output low voltw drive strength  
• 2.7 V ≤ VDD .6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
Input leakage current (per pin)  
30  
100  
1
mA  
μA  
μA  
kΩ  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal weak pullup and pulldown resistors  
1
RPU and  
RPD  
50  
1
1. Measured at VIL max and VDD min  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
13  
General  
5.1.4 Power mode transition operating behaviors  
In the table below, all specifications except tPOR, assume the following clock  
configuration:  
• CPU and system clocks = 100MHz  
• Bus and FlexBus clocks = 50 MHz  
• Flash clock = 25 MHz  
Table 4. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
U
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.8V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μ
1
RUN VLLS1 RUN  
• RUN VLLS1  
μs  
μs  
• VLLS1 RUN  
23.8  
RUN VLLS2 RUN  
• RUN VLLS2  
4.1  
μs  
μs  
• VLLS2 RUN  
49.3  
RUN VLLS3 RUN  
• RUN VLLS3  
4.1  
μs  
μs  
• VLLS3 RUN  
49.2  
RUN LLS RUN  
• RUN LLS  
4.1  
5.9  
μs  
μs  
• LLS RU
RUN STOP R
• RUN STOP  
4.1  
4.2  
μs  
μs  
• STOP RUN  
RUN VLPS RUN  
• RUN VLPS  
4.1  
5.8  
μs  
μs  
• VLPS RUN  
1. Normal boot (FTFL_OPT[LPBOOT]=1)  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
14  
Freescale Semiconductor, Inc.  
General  
5.1.5 Power consumption operating behaviors  
Table 5. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current — all peripheral clocks disa‐  
bled, code executing from flash  
1
• @ 1.8V  
• @ 3.0V  
40  
42  
TBD  
TBD  
mA  
mA  
IDD_RUN Run mode current — all peripheral clocks ena‐  
bled, code executing from flash  
2
3
• @ 1.8V  
• @ 3.0V  
55  
56  
TBD  
TBD  
A  
IDD_RUN_M Run mode current — all peripheral clocks ena‐  
bled and peripherals active, code executing from  
AX  
flash  
85  
85  
TBD  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_WAIT Wait mode current at 3.0 V — all peripheral  
clocks disabled  
1
TBD  
mA  
4
IDD_STOP Stop mode current at 3.0 V  
1.4  
TBD  
TBD  
mA  
mA  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
1.25  
5
6
7
IDD_VLPR Very-low-power run mode current at 3.0 — al
peripheral clocks enabled  
TBD  
TBD  
mA  
IDD_VLPW Very-low-power wait mode current V  
IDD_VLPS Very-low-power stop mode cuent 3.0
1.05  
30  
TBD  
TBD  
TBD  
mA  
μA  
μA  
IDD_LLS  
Low leakage stop mcurreat 3.0 V  
12  
IDD_VLLS3 Very low-leakagde 3 current at 3.0 V  
• 128KB RAM dces  
8
TBD  
μA  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
4
2
TBD  
TBD  
TBD  
μA  
μA  
nA  
IDD_VBAT Average current when CPU is not accessing  
RTC registers at 3.0 V  
550  
1. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.  
All peripheral clocks disabled.  
2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks enabled, but peripherals are not in active operation.  
3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks enabled, and peripherals are in active operation.  
4. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.  
5. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral  
clocks disabled. Code executing from flash.  
6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral  
clocks enabled but peripherals are not in active operation. Code executing from flash.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
15  
Preliminary  
General  
7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral  
clocks disabled.  
5.1.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)  
• All peripheral clocks disabled except FTFL  
• LVD disabled  
• No GPIOs toggled  
• Code execution from flash  
Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled  
The following data was measured under these conditions:  
• MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)  
• All peripheral clocks enabled but peripherals are not in active operation  
• LVD disabled  
• No GPIOs toggled  
• Code execution from flash  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
16  
Freescale Semiconductor, Inc.  
Preliminary  
General  
Figure 2. Run mode supply current vscore frequency — all peripheral clocks enabled  
5.1.6 EMC radiated emisions operating behaviors  
TabMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
VRE3  
VRE4  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
0.15–50  
50–150  
TBD  
TBD  
TBD  
TBD  
TBD  
dBμV  
1, 2  
150–500  
500–1000  
0.15–1000  
VRE_IEC_SAE IEC and SAE level  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/  
Wideband TEM (GTEM) Cell Method.  
2. VDD = 3 V, TA = 25 °C, fOSC = 16 MHz (crystal), fBUS = 20 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated  
Circuits—TEM/Wideband TEM (GTEM) Cell Method.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
17  
Preliminary  
General  
5.1.7 Designing with radiated emissions in mind  
1. To find application notes that provide guidance on designing your system to  
minimize interference from radiated emissions, go to www.freescale.com and  
perform a keyword search for “EMC design.”  
5.1.8 Capacitance attributes  
Table 7. Capacitance attributes  
Symbol  
Description  
Min.  
Ma
Unit  
CIN_A  
Input capacitance: analog pins  
7
pF  
CIN_D  
Input capacitance: digital pins  
7
pF  
5.2 Switching electrical specifications  
Table 8. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
ormaun mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
100  
50  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
50  
25  
VLPR mode  
fSYS  
fBUS  
System and core cloc
Bus clock  
2
2
2
1
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
5.3 Thermal specifications  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
18  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
5.3.1 Thermal operating requirements  
Table 9. Thermal operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
TJ  
Die junction temperature  
–40  
–40  
125  
°C  
TA  
Ambient temperature  
105  
°C  
5.3.2 Thermal attributes  
Board Symbol Description  
type  
81  
MAPBGA  
80 LQFP Uni
Notes  
Single-  
layer (1s)  
RθJA  
Thermal resistance, junction to ambient (natural TBD  
convection)  
TBD  
T
TBD  
TBD  
°C/W  
°C/W  
°C/W  
°C/W  
1
Four-layer RθJA  
(2s2p)  
Thermal resistance, junction to ambient (natural TBD  
convection)  
1
1
1
Single-  
layer (1s)  
RθJMA  
Thermal resistance, junction to ambient (200 ft./ T
min. air speed)  
Four-layer RθJMA  
(2s2p)  
Thermal resistance, junction to ambient (200 ft./ BD  
min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to board  
Thermal resistance, junction tcase  
TBD  
TBD  
TBD  
TBD  
TBD  
°C/W  
°C/W  
°C/W  
2
3
4
Thermal characterization ramer, junon to TBD  
package top outside center atural onvection)  
6 Peripheral operatig requirements and behaviors  
6.1 Core modules  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions  
—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
19  
Preliminary  
Peripheral operating requirements and behaviors  
6.1.1 Debug trace timing specifications  
Table 10. Debug trace operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Tcyc  
Clock period  
Frequency dependent  
MHz  
Twl  
Twh  
Tr  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
ns  
ns  
ns  
ns  
ns  
ns  
3
Tf  
3
Ts  
Th  
Data hold  
2
Figure 3. TRACE_CLKOT spcifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Th  
Ts  
Th  
Figure 4. Trace data specifications  
6.1.2 JTAG electricals  
Table 11. JTAG electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• JTAG and CJTAG  
• Serial Wire Debug  
MHz  
0
0
25  
50  
J2  
TCLK cycle period  
1/J1  
ns  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
20  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 11. JTAG electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J3  
TCLK clock pulse width  
• JTAG and CJTAG  
• Serial Wire Debug  
ns  
20  
10  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
30  
0  
4
J6  
J7  
16  
1
J8  
J9  
J10  
J11  
J12  
J13  
J14  
100  
8
TCLK low to TDO high-Z  
4
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
Fiure . Test clock input timing  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
21  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output dad  
Figure 6. Boundary scan (TAGtiming  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 7. Test Access Port timing  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
22  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
TRST  
J14  
J13  
Figure 8. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modul.  
6.3 Clock modules  
6.3.1 MCG Specifications  
Table 12. MCspecfications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft  
fints_t  
tirefsts  
Internal reference frequency (slow clock) — cto‐  
ry trimmed at nominal VDD and 25°
32.768  
kHz  
Internal reference frequency (slow k) user  
trimmed  
31.25  
39.0625  
kHz  
Internal reference (ock) rtup time  
TBD  
0.1  
4
µs  
Δfdco_res_t Resolution of trimCO output frequency at  
fixed voltage and terature — using SCTRIM  
and SCFTRIM  
0.3  
%fdco  
Δfdco_res_t Resolution of trimmed DCO output frequency at  
fixed voltage and temperature — using SCTRIM  
only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed DCO output frequency  
over voltage and temperature  
+ 0.5  
- 1.0  
0.5  
3.5  
%fdco  
%fdco  
Δfdco_t  
Total deviation of trimmed DCO output frequency  
over fixed voltage and temperature range of 0–  
70°C  
TBD  
fintf_ft  
Internal reference frequency (fast clock) — factory  
trimmed at nominal VDD and 25°C  
3.875  
3
4
4.125  
5
MHz  
MHz  
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
Table 12. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tirefstf  
Internal reference startup time (fast clock)  
TBD  
TBD  
µs  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
kHz  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
FLL  
fdco_t  
DCO output fre‐  
quency range —  
user trimmed  
Low range (DRS=00)  
640 × fints_t  
20  
40  
60  
80  
20.97  
41.94  
62.91  
3.89  
23.99  
47.97  
71.99  
95.98  
25  
50  
75  
100  
MHz  
Mz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
1, 2  
and DMX32=0  
Mid range (DRS=01)  
1280 × fints_t  
Mid-high range (DRS=10  
192)0 × fints_t  
High range (DRS=11)  
2560 × fints_t  
fdco_t_DMX3 DCO output fre‐  
Low range (DRS=00)  
732 × fints_t  
3
quency range —  
2
reference =  
32,768Hz and  
DMX32=1  
Mid range (DRS=01)  
1464 × fintt  
Mid-high range (DR10)  
2197 ×
High range RS=1)  
29 × fints_t  
Jcyc_fll  
Jacc_fll  
FLL period jitter  
TBD  
TBD  
TBD  
TBD  
ps  
ps  
4
5
FLL accumulated jif DCO output over a 1µs  
time window  
tfll_acquire FLL target frequency acquisition time  
1
ms  
PLL  
fvco  
VCO operating frequency  
48.0  
2.0  
100  
4.0  
MHz  
MHz  
ps  
fpll_ref  
Jcyc_pll  
Jacc_pll  
Dlock  
PLL reference frequency range  
PLL period jitter  
400  
TBD  
6, 7  
PLL accumulated jitter over 1µs window  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
ps  
6 , 7  
1.49  
4.47  
2.98  
5.97  
%
Dunl  
%
tpll_lock  
0.15 +  
ms  
8
1075(1/  
fpll_ref  
)
1. The resulting system clock frequencies should not exceed their maximum specified values.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
24  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
2. This specification includes the 2% precision of the internal reference frequency (slow clock).  
3. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
4. This specification was obtained at TBD frequency.  
5. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
6. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
7. This specification was obtained at internal frequency of TBD.  
8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
6.3.2 Oscillator Electrical Characteristics  
This section provides the electrical characteristics of the module.  
6.3.2.1 Oscillator DC Electrical Specifications  
Table 13. Oscillator DC electrical specifications, (VSOSC= 0 VDC) (TA = TL to TH)  
Symbol Description  
M
yp.  
Max.  
Unit  
Notes  
VDD33OSC 3.3 V supply voltage  
71  
3.6  
V
IDDOSC  
Supply current — low-power mode  
1
• 32 kHz  
• 1 MHz  
• 4 MHz  
• 8 MHz  
• 16 MHz  
• 24 MHz  
• 32 MHz  
500  
100  
200  
300  
700  
1.2  
nA  
μA  
μA  
μA  
μA  
mA  
mA  
1.5  
IDDOSC  
Supply current — high gin mode  
• 32 kHz  
1
25  
200  
400  
800  
1.5  
3
μA  
μA  
• 1 MHz  
• 4 MHz  
μA  
• 8 MHz  
μA  
• 16 MHz  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2 , 3  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
Table 13. Oscillator DC electrical specifications, (VSSOSC= 0 VDC) (TA = TL to TH)  
(continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
RF Feedback resistor — low-frequency, low-power  
MΩ  
2 , 3  
mode  
Feedback resistor — low-frequency, high-gain  
mode  
10  
1
MΩ  
MΩ  
MΩ  
k
Feedback resistor — high-frequency, low-power  
mode (1 – 8 MHz, 8 – 32 MHz)  
Feedback resistor — high-frequency, high-gain  
mode (1 – 8 MHz, 8 – 32 MHz)  
RS  
Series resistor — low-frequency, low-power  
mode  
Series resistor — low-frequency, high-gain mode  
200  
kΩ  
kΩ  
Series resistor — high-frequency, low-power  
mode  
Series resistor — high-frequency, high-gain  
mode  
• 1 MHz resonator  
• 2 MHz resonator  
• 4 MHz resonator  
• 8 MHz resonator  
• 16 MHz resonator  
• 20 MHz resonator  
• 32 MHz resonator  
6.6  
3.3  
0
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
V
0
0
0
0
Vpp  
Peak-to-peak amplitude of osllation illator  
mode) — low-freque, low-wer mode  
0.6  
Peak-to-peak aoscillaion (oscillator  
mode) — low-freq, high-gain mode  
0.75 ×  
VDD33OSC  
VDD33OSC  
V
V
V
Peak-to-peak amplitudf oscillation (oscillator  
mode) — high-frequency, low-power mode  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
0.75 ×  
VDD33OSC  
VDD33OSC  
1. VDD33OSC=3.3 V, Temperature =27 °C, Cx/Cy=20 pF  
2. See crystal or resonator manufacturer's recommendation  
3. RF and Cx,Cy are integrated in low-frequency, low-power mode and must not be attached externally  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
26  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.3.2.2 Oscillator frequency specifications  
Table 14. Oscillator frequency specifications, (VDD33OSC = VDD33OSC (min) to  
VDD33OSC (max), TA = TL to TH)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
fosc_hi_1  
fosc_hi_2  
Oscillator crystal or resonator frequency — low  
frequency mode  
32  
40  
kHz  
Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
1
8
8
MHz  
MHz  
Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
tdc_extal  
tcst  
Input clock duty cycle (external clock mode)  
40  
50  
60  
Crystal start-up time — 32 kHz low-frequency,  
low-power mode  
TBD  
ms  
1, 2, 3  
Crystal start-up time — 32 kHz low-frequency,  
high-gain mode  
800  
4
ms  
ms  
ms  
Crystal start-up time — 8 MHz high-frequency,  
low-power mode  
Crystal start-up time — 8 MHz high-frequency,  
high-gain mode  
3
1. This parameter is characterized before qualification rather thn 1% tested.  
2. Proper PC board layout procedures must be followeto acve spifications.  
3. Crystal start up time is defined as the time between the oscillar being enabled and the OSCINIT bit in the MCG_S  
register being set.  
6.3.3 32kHz Oscillator Elecrical Characteristics  
This section describes odulelectrical characteristics.  
6.3.3.1 32kHz Oscillaor DC Electrical Specifications  
Table 15. 32kHz Oscillator Module DC Electrical Specifications (VSSOSC= 0 VDC)  
(TA = TL to TH)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VBAT  
Supply voltage  
1.71  
3.6  
V
RF  
Internal feedback resistor  
100  
2.5  
15  
MΩ  
pF  
pF  
V
Cpara  
Cload  
Vpp  
Parasitical capacitance of EXTAL32 and XTAL32  
Internal load capacitance (programmable)  
Peak-to-peak amplitude of oscillation  
0.6  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
6.3.3.2 32kHz Oscillator Frequency Specifications  
Table 16. 32kHz oscillator frequency specifications (VDD33OSC = VDD33OSC (min)  
to VDD33OSC (max), TA = TL to TH)  
Symbol Description  
Min.  
Typ.  
32  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1000  
1, 2  
1. This parameter is characterized before qualification rather than 100% tested.  
2. Proper PC board layout procedures must be followed to achieve specifications.  
6.4 Memories and memory interfaces  
6.4.1 Flash (FTFL) Electrical Characteristics  
This section describes the electrical characteristics of the FTFL module.  
6.4.1.1 Flash Timing Parameters — Proram and Erase  
The following characteristics represent the amunt of time the internal charge pumps are  
active and do not include command ovrhead.  
Table 17. NVM gram/erase timing characteristics  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
thvpgm4  
thversscr  
thversblk  
Longword Prograoltage me  
20  
TBD  
μs  
Sector Erase highge time  
Erase Block high-voltatime  
20  
100  
800  
ms  
ms  
1
1
160  
1. Maximum time based on expectations at cycling end-of-life.  
6.4.1.2 Flash Timing Parameters — Commands  
Table 18. Flash command timing characteristics  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk  
Read 1s Block execution time  
1.4  
ms  
trd1sec2k  
Read 1s Section execution time (2 KB flash sec‐  
tor)  
40  
μs  
tpgmchk  
Program Check execution time  
35  
μs  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 18. Flash command timing characteristics (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
trdrsrc  
tpgm4  
tersblk  
tersscr  
Read Resource execution time  
35  
μs  
1
Program Longword execution time  
Erase Flash Block execution time  
Erase Flash Sector execution time  
50  
160  
20  
TBD  
800  
100  
TBD  
μs  
ms  
ms  
ms  
2
2
tpgmsec2k Program Section execution time (2 KB flash sec‐  
tor)  
TBD  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
2.8  
35  
ms  
s  
μ
ms  
μs  
trdonce  
1
tpgmonce Program Once execution time  
50  
320  
TB
1600  
tersall  
Erase All Blocks execution time  
2
1
tvfykey  
Verify Backdoor Access Key execution time  
1. Assumes 25MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cyclig end-life.  
6.4.1.3 Flash (FTFL) Current and Power Paameters  
Table 19. Flash (FTFL) cuent ad power parameters  
Symbol  
Description  
Typ.  
Unit  
mA  
IDD_PGM  
Worst case programming current irogram flash  
10  
6.4.1.4 Reliability Charaeristics  
ble 20. NVM reliability characteristics  
Typ.1  
Symbol Description  
Min.  
Program Flash  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
tnvmretp100 Data retention after up to 100 cycles  
nnvmcycp Cycling endurance  
5
10  
TBD  
TBD  
TBD  
TBD  
years  
years  
years  
cycles  
2
2
2
3
15  
10 K  
1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to  
25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin  
EB618.  
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).  
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
29  
Preliminary  
Peripheral operating requirements and behaviors  
6.4.2 EzPort Switching Specifications  
Table 21. EzPort switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid (setup)  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
12  
ns  
ns  
12  
ns  
EZP_CK  
EP3  
EP
EP2  
EZP_CS  
P9  
7  
P8  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 9. EzPort Timing Diagram  
6.4.3 Flexbus Switching Specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
30  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
Table 22. Flexbus switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
50  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
Mhz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
20  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
TBD  
0
11.5  
1
1
2
2
ns  
8.5  
0.5  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FBT, FB_TSIZ[1:0], and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
FB1  
FB_CLK  
FB5  
B3  
FB_A[Y]  
Adss  
FB4  
FB2  
FB_D[X]  
FB_RW  
Address  
Data  
FB_TS  
AA=1  
AA=0  
FB_CSn  
FB_OEn  
FB_BE/BWEn  
FB_TA  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 10. FlexBus read timing diagram  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
31  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB3  
FB_A[Y]  
Address  
FB2  
FB_D[X]  
Address  
Data  
FB_RW  
FB_TS  
AA=1  
AA=0  
FB_CSn  
FB_OEn  
FB_BE/BWEn  
FB_TA  
FB4  
FB5  
AA=1  
AA
FB_TSIZ[1:0]  
TSI
Figur11. FlexBus write timing diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the  
differential pins (ADCx_DP0, ADCx_DM0, ADC, ADCx_DP1, ADCx_DM1,  
ADCx_DP3, and ADCx_DP3). The ADCx_DP2 and ADCx_DM2 ADC inputs are used  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
32  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
as the PGA inputs and are not direct device pins. Accuracy specifications for these pins  
are defined in Table 25 and Table 26. All other ADC channels meet the 13-bit  
differential/12-bit single-ended accuracy specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 23. 16-bit ADC operating conditions  
Typ.1  
Symbol Description  
Conditions  
Absolute  
Min.  
1.71  
-100  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Supply voltage  
Supply voltage  
ΔVDDA  
Delta to VDD (VDD  
-
0
+100  
mV  
2
2
VDDA  
)
ΔVSSA  
Ground voltage  
Delta to VSS (VSS  
-
-100  
0
+100  
mV  
VSSA  
)
VREFH  
ADC reference  
voltage high  
1.13  
VSSA  
VREFL  
VDDA  
VSSA  
VDDA  
V
V
VREFL  
Reference volt‐  
age low  
VA  
VADIN  
CADIN  
Input voltage  
VREFH  
V
Input capaci‐  
tance  
• 16 bit modes  
4
10  
5
pF  
• 8/10/12 bit  
modes  
RADIN  
Input resistance  
2
5
kΩ  
Tantinuon the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
Table 23. 16-bit ADC operating conditions (continued)  
Typ.1  
Symbol Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
RAS  
Analog source  
resistance  
16 bit modes  
External to MCU  
• fADCK > 8MHz  
0.5  
1
kΩ  
kΩ  
kΩ  
Assumes  
ADLSMP=0  
• fADCK = 4–8MHz  
• fADCK < 4MHz  
2
13/12 bit modes  
• fADCK > 16MHz  
• fADCK > 8MHz  
• fADCK = 4–8MHz  
• fADCK < 4MHz  
0.5  
1
kΩ  
kΩ  
kΩ  
kΩ  
2
5
11/10 bit modes  
• fADCK > 8MHz  
• fADCK = 4–8MHz  
• fADCK < 4MHz  
2
5
kΩ  
kΩ  
kΩ  
10  
9/8 bit modes  
5
kΩ  
kΩ  
• fADCK > 8MHz  
• fADCK < 8MHz  
10  
fADCK  
ADC conversion ADLPC=0, ADHSC=
clock frequency  
• 16 bit modes  
1.0  
1.0  
TBD  
TBD  
MHz  
MHz  
• ≤13 bit m
ADLPC=ADHSC=0  
6 bit des  
1.0  
1.0  
8.0  
MHz  
MHz  
≤13 bit modes  
12.0  
ADLPC=1, ADHSC=1  
• 16 bit modes  
1.0  
1.0  
5.0  
8.0  
MHz  
MHz  
• ≤13 bit modes  
ADLPC=1, ADHSC=0  
• 16 bit modes  
1.0  
1.0  
2.5  
5.0  
MHz  
MHz  
• ≤13 bit modes  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
34  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
Pad  
ZAS  
leakage  
due to  
input  
CIRCUIT  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
RADIN  
RADIN  
CADIN  
Figure 12. ADC input impedance euivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
Table 24. 16-bit ADC characterstics (VREFH = VDDA, VREFL = VSSA  
)
Conditions1  
• ADC=1, AHSC=0  
Typ.2  
215  
340  
470  
610  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IDDA  
Supply current  
μA  
μA  
μA  
μA  
ADLSMP=  
0
DLP1, ADHSC=1  
ADLPC=0, ADHSC=0  
ADLPC=0, ADHSC=1  
ADCO=1  
Supply current  
• Stop, reset, module off  
• ADLPC=1, ADHSC=0  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
0.01  
2.4  
4.0  
5.2  
6.2  
0.8  
μA  
ADC asynchro‐  
nous clock  
source  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
fADACK  
Sample Time  
See Reference Manual chapter for sample times  
Conversion Time See Reference Manual chapter for conversion times  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
35  
Peripheral operating requirements and behaviors  
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
• 16 bit differential  
Typ.2  
14.0  
13.0  
1.5  
Symbol Description  
Min.  
Max.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.0  
Unit  
Notes  
LSB3  
TUE  
DNL  
INL  
Total unadjusted  
error  
Max hard‐  
ware aver‐  
aging  
(AVGE =  
%1, AVGS  
= %11)  
• 16 bit single-ended  
• 13 bit differential  
• 12 bit single-ended  
• 11 bit differential  
• 10 bit single-ended  
• 9 bit differential  
TBD  
0.8  
TBD  
0.5  
• 8 bit single-ended  
0.5  
1.0  
LS
LSB3  
LSB3  
Differential non-  
linearity  
• 16 bit differential  
• 16 bit single-ended  
• 13 bit differential  
• 12 bit single-ended  
• 11 bit differential  
• 10 bit single-ended  
• 9 bit differential  
2.5  
2.5  
0.7  
0.7  
0.5  
TD  
0.2  
0.2  
TB
TBD  
D  
D  
TBD  
TBD  
0.5  
Max hard‐  
ware aver‐  
aging  
(AVGE =  
%1, AVGS  
= %11)  
• 8 bit single-ended  
0.5  
Integral non-line‐  
arity  
• 16 bit differential  
• 16 bit single-ded  
• 13 bit differential  
• 12 bit singed  
• 11 bit diffntial  
• 10 single-ended  
bit difrential  
-6 to +2.5  
-2 to +12  
1.0  
Max aver‐  
aging  
TBD  
TBD  
TBD  
TBD  
0.5  
1.0  
0.5  
0.5  
0.3  
8 bit single-ended  
0.3  
0.5  
EZS  
Zero-scale error  
6 bit differential  
• 16 bit single-ended  
• 13 bit differential  
• 12 bit single-ended  
• 11 bit differential  
• 10 bit single-ended  
• 9 bit differential  
4.0  
4.0  
0.7  
0.7  
0.4  
0.4  
0.2  
0.2  
VADIN  
=
VSSA  
TBD  
TBD  
TBD  
TBD  
0.5  
• 8 bit single-ended  
0.5  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
36  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
• 16 bit differential  
Typ.2  
0 to +10  
0 to +14  
1.0  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
LSB3  
EFS  
Full-scale error  
VADIN  
=
VDDA  
• 16 bit single-ended  
• 13 bit differential  
• 12 bit single-ended  
• 11 bit differential  
• 10 bit single-ended  
• 9 bit differential  
TBD  
TBD  
TBD  
TBD  
0.5  
TBD  
0.4  
0.4  
0.2  
• 8 bit single-ended  
0.2  
0.5  
LS
EQ  
Quantization er‐  
ror  
• 16 bit modes  
• ≤13 bit modes  
-1 to 0  
0.5  
ENOB  
Effective number 16 bit differential mode  
4
of bits  
• Avg=32  
TBD  
TBD  
TBD  
TD  
D  
1.
BD  
14.
BD  
13.2  
BD  
TBD  
TBD  
TBD  
TBD  
bits  
bits  
bits  
bits  
bits  
• Avg=16  
• Avg=8  
• Avg=4  
• Avg=1  
16 bit single-ended mode  
• Avg=32  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
bits  
bits  
bits  
bits  
bits  
• Avg=16  
• Avg=8  
• Avg4  
Avg=
Signal-to-noise  
plus distortion  
ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16 bit differential mode  
• Avg=32  
4
4
-94  
TBD  
TBD  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
TBD  
SFDR  
Spurious free dy‐ 16 bit differential mode  
namic range  
• Avg=32  
TBD  
TBD  
95  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
TBD  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
37  
Peripheral operating requirements and behaviors  
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
EIL  
Input leakage er‐  
ror  
IIn × RAS  
mV  
IIn = leak‐  
age cur‐  
rent  
(refer to  
the MCU's  
voltage  
and cur‐  
rent oper‐  
ating rat‐  
ings)  
Temp sensor  
slope  
• –40°C to 25°C  
• 25°C to 105°C  
TBD  
TBD  
m°C  
mV/
VTEMP25 Temp sensor  
voltage  
25°C  
TBD  
mV  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unlestherwistated. Typical values are for  
reference only and are not tested in production.  
1 LSB = (VREFH - VREFL)/2N  
3.  
4. Input data is 1 kHz sine wave.  
6.6.1.3 16-bit ADC with PGA operating conditions  
Table 25. 16-bit ADC with GA operating conditions  
Typ.1  
Symbol Description  
VDDA Supply voltage  
VREFPGA PGA ref voltage  
Conditions  
Min.  
Max.  
Unit  
V
Notes  
Absolute  
1.71  
3.6  
VREFOUT VREFOUT VREFOUT  
V
2, 3  
VADIN  
RPGA  
Input voltage  
VSSA  
VDDA  
V
Input impedance G= 1, 2, 4, 8  
Gain = 16, 32  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
64  
32  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
kΩ  
Gain = 64  
16  
RPGAD  
Differntial input  
impedance  
Gain = 1, 2, 4, 8  
Gain = 16, 32  
Gain = 64  
128  
64  
kΩ  
IN+ to IN-  
32  
RAS  
TS  
Analog source  
resistance  
Gain = 16, 32  
100  
Ω
4
5
ADC sampling  
time  
Gain = 64  
1.25  
µs  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. ADC must be configured to use the internal voltage reference (VREFOUT)  
3. PGA reference connected to the VREFOUT pin. If the user wishes to drive VREFOUT with a voltage other than the output  
of the VREF module, the VREF module must be disabled.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
38  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
4. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop  
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.  
5. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs  
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at  
8 MHz ADC clock. The ADLSTS bits can be adjusted for different ADC clock frequency  
6.6.1.4 16-bit ADC with PGA characteristics  
Table 26. 16-bit ADC with PGA characteristics  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
TBD  
Max.  
TBD  
TBD  
Unit  
μA  
Notes  
IDDA_PGA Supply current  
590  
ILKG  
G
Leakage current  
Gain2  
PGA disabled  
< 1  
A  
• PGAG=0  
• PGAG=1  
• PGAG=2  
• PGAG=3  
• PGAG=4  
• PGAG=5  
• PGAG=6  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
T
1
TBD  
D  
D  
TBD  
TBD  
TBD  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
R
AS < 100Ω  
2
3.9  
T
BD  
29
BD  
GA  
Gain error  
0.5  
dB  
R
AS < 100Ω  
BW  
Input signal band‐  
width  
• 16-bit modes  
• < 16-bit mod
4
kHz  
kHz  
dB  
40  
PSRR  
CMRR  
Power supply re‐ Gain=1  
jection ration  
TBD  
TBD  
VDDA= 3V  
100mV,  
fVDDA= 50Hz,  
60Hz  
Common mode  
rejection ratio  
Gain
TBD  
TBD  
TBD  
TBD  
dB  
dB  
VCM=  
500mVpp,  
fVCM= 50Hz,  
100Hz  
• Gain=64  
VOFS  
TGSW  
dG/dT  
Input offset volt‐  
age  
0.2  
TBD  
10  
mV  
µs  
Gain=1, ADC  
Averaging=32  
Gain switching  
settling time  
TBD  
3
Gain drift over  
temperature  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ppm/°C  
ppm/°C  
0 to 50°C  
dVOFS/dT Offset drift over  
temperature  
Gain=1  
ppm/°C 0 to 50°C, ADC  
Averaging=32  
dG/dVDDA Gain drift over  
supply voltage  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
%/V  
%/V  
VDDA from 1.71  
to 3.6V  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
39  
Peripheral operating requirements and behaviors  
Table 26. 16-bit ADC with PGA characteristics (continued)  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
EIL  
Input leakage er‐ All modes  
ror  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current op‐  
erating ratings)  
VPP,DIFF  
Maximum differ‐  
ential input signal  
swing  
[(VREFPGA × 2.33) - 0.2] / (2 ×  
Gain)  
V
4
SNR  
THD  
Signal-to-noise  
ratio  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
D  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
8.3  
57.7  
87.3  
85.3  
92.42  
2.54  
13  
12.7  
8.4  
dB  
dB  
Average=32  
Total harmonic  
distortion  
• Gain=1  
• Gain=64  
dB  
Average=32,  
fin=100Hz  
dB  
SFDR  
ENOB  
Spurious free dy‐  
namic range  
• Gain=1  
• Gain=64  
dB  
Average=32,  
fin=100Hz  
dB  
Effective number  
of bits  
• Gain=1, Average=4  
• Gain=1, Average=8  
• Gain=64, Average=4  
• Gain=64, Average=8  
• Gain=1, Average=2  
• Gain=2, Avere=32  
• Gain=4, Average=
• Gain=8rage=32  
• Gan=16, age=32  
Gai32, Average=32  
Gain=64, Average=32  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
8.7  
13.4  
13.1  
12.6  
11.8  
11.1  
10.2  
9.3  
SINAD  
Signal-to-noise  
plus distortion ra‐  
tio  
SENOB  
6.02 × ENOB + 1.76  
dB  
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.  
2.  
Gain = 2PGAGx  
3. When the PGA gain is changed, it takes some time to settle the output for the ADC to work properly. During a gain  
switching, a few ADC outputs should be discarded (minimum two data samples, may be more depending on ADC  
sampling rate and time of the switching).  
4. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the  
PGA reference voltage and gain setting.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
40  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 27. Comparator and 6-bit DAC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDHS  
Supply current, High-speed mode (EN=1, PMODE=1,  
200  
μA  
VDDA >= VLVI_trip  
)
IDDLS  
IDDOFF  
VAIN  
VAIO  
VH  
Supply current, low-speed mode (EN=1, PMODE=0)  
Supply current, OFF Mode (EN=0,)  
Analog input voltage  
20  
100  
VD
μA  
nA  
V
VSS – 0.3  
Analog input offset voltage  
mV  
Analog comparator hysteresis  
• HYSTCTR = 00  
5
mV  
mV  
mV  
mV  
• HYSTCTR = 01  
20  
30  
• HYSTCTR = 10  
• HYSTCTR = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD 5  
50  
0.5  
120  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN1,  
PMODE=1)  
120  
250  
420  
ns  
Analog comparator initialization
6-bit DAC current adder (enbled)  
6-bit DAC integraneari
6-bit DAC differeon-linearity  
TBD  
8
ns  
IDAC6b  
INL  
μA  
LSB1  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
1. 1 LSB = Vreference/64  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 28. 12-bit DAC operating requirements  
Symbol  
Desciption  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
VDACR  
TA  
Reference voltage  
Temperature  
1.15  
−40  
3.6  
V
1
105  
°C  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
41  
Peripheral operating requirements and behaviors  
Table 28. 12-bit DAC operating requirements (continued)  
Symbol  
Desciption  
Min.  
Max.  
Unit  
Notes  
CL  
Output load capacitance  
100  
pF  
2
IL  
Output load current  
1
mA  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREFO)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
6.6.3.2 12-bit DAC operating behaviors  
Table 29. 12-bit DAC operating behaviors  
Symbol Description  
Resolution  
Min.  
12  
Typ.  
Max.  
12  
Uit  
b
Notes  
n
IDDA_DACLP Supply current — low-power mode  
150  
μA  
IDDA_DACH Supply current — high-speed mode  
μA  
P
tDACLP  
Full-scale settling time (0x080 to 0xF7F) — low-  
power mode  
1
00  
15  
200  
30  
μs  
μs  
1
1
1
1
tDACHP  
Full-scale settling time (0x080 to 0xF7F) — high-  
power mode  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) —  
low-power mode  
5
μs  
tCCDACHP Code-to-code settling time (0xBF8 to 0C08)
high-speed mode  
TBD  
100  
μs  
Vdacoutl  
DAC output voltage range low — hipeed  
mode, no load, DAC set to 0x000  
0
mV  
mV  
Vdacouth DAC output voltage range hig— hi-seed  
mode, no load, DAC t to 0FF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-line— high speed mode  
Differential non-lineerror — VDACR > 2 V  
3
8
1
1
LSB  
LSB  
LSB  
2
3
4
0.5  
0.5  
Differential non-linearity rror — VDACR = VRE‐  
FO (1.15 V)  
VOFFSET Offset error  
0.4  
0.1  
60  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
EG  
PSRR  
TCO  
Gain error  
Power supply rejection ratio, VDDA > = 2.4 V  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
TBD  
TBD  
μV/C  
TGE  
ppm of  
FSR/C  
AC  
Offset aging coefficient  
TBD  
250  
μV/yr  
Ω
Rop  
Output resistance load = 3 kΩ  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 29. 12-bit DAC operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
SR  
Slew rate -80hF7Fh80h  
• High power (SPHP  
• Low power (SPLP  
V/μs  
)
1.2  
1.7  
0.05  
0.12  
)
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0+100mV to VDACR−100 mV  
3. The DNL is measured for 0+100 mV to VDACR−100 mV  
4. The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V  
5. Calculated by a best fit curve from VSS+100 mV to VREF−100 mV  
Figure 13. Typical INL error vs. digital code  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
43  
Peripheral operating requirements and behaviors  
Figure 14. Offset half scale vs. temperature  
6.6.4 Voltage RefeencElectrical Specifications  
Tabl0. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
TA  
CL  
Temperature  
−40  
105  
100  
°C  
nF  
Output load capacitance  
Table 31. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Vout  
Vdrift  
Voltage reference output with factory trim  
TBD  
1.2  
TBD  
V
V
Voltage reference output without factory trim  
1.15  
1.24  
7
Temperature drift (Vmax -Vmin across the full  
temperature range)  
mV  
See Fig‐  
ure 15  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
44  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 31. VREF full-range operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Tc  
Ac  
Ioff  
Temperature coefficient  
TBD  
ppm/°C  
Aging coefficient  
TBD  
0.10  
ppm/year  
µA  
Powered down current (off mode, VREFEN = 0,  
VRSTEN = 0)  
Ibg  
Itr  
Bandgap only (MODE_LV = 00) current  
Tight-regulation buffer (MODE_LV =10) current  
Load regulation (MODE_LV = 10) current  
Buffer startup time  
TBD  
75  
µA  
mA  
1.1  
100  
TBD  
TBD  
TBD  
µV/mA  
s  
Tstup  
DC  
100  
Line regulation (power supply rejection)  
–60  
dB  
Table 32. VREF limited-range operating requients  
Symbol  
Description  
Mi
Max.  
Unit  
Notes  
Notes  
TA  
Temperature  
0
50  
°C  
Table 33. VREF limited-ranopeating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Vout  
Voltage reference output with factory m  
TBD  
TBD  
µA  
TBD  
ure 15. Typical output vs.temperature  
Figure 16. Typical output vs. VDD  
TBD  
6.7 Timers  
See General Switching Specifications.  
6.8 Communication interfaces  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
45  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.1 DSPI Switching Specifications for Low-speed Operation  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 34. Master Mode DSPI Timing (Low-speed mode)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Un
V
Notes  
Operating voltage  
1
Frequency of operation  
12.5  
MHz  
ns  
DS1  
DS2  
DS3  
DS4  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK output cycle time  
4 x tBCLK  
DSPI_SCK output high/low time  
DSPI_PCSn to DSPI_SCK output valid  
DSPI_SCK to DSPI_PCSn output hold  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
(tSCK/2) - (tSCK/4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK/2) 4  
10  
(tSCK) - 4  
-2  
15  
0
1. The DSPI module can operate across the enterativoltage for the processor, but to run across the full voltage  
range the maximum frequency of operation uced.  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 17. DSPI Classic SPI Timing — Master Mode  
Table 35. Slave Mode DSPI Timing (Low-speed Mode)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
Frequency of operation  
6.25  
MHz  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
46  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 35. Slave Mode DSPI Timing (Low-speed Mode) (continued)  
Num  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
DS9  
8 x tBCLK  
ns  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_SOUT valid  
0
20  
15  
15  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSIP_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
5
15  
DSPI_SS  
DS10  
S9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
ata  
Data  
DS13  
First d
Last data  
DSPI_SIN  
Figure 18. DSlassic SPI Timing — Slave Mode  
6.8.2 DSPI Switcg Specifications (High-speed mode)  
The DMA Serial PeripherInterface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 36. Master Mode DSPI Timing (High-speed mode)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
25  
Unit  
V
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DSPI_SCK output cycle time  
2 x tBCLK  
DSPI_SCK output high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
47  
Peripheral operating requirements and behaviors  
Table 36. Master Mode DSPI Timing (High-speed mode) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
DS3  
DSPI_PCSn to DSPI_SCK output valid  
(tSCK/2) − 2  
ns  
DS4  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_PCSn output hold  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
(tSCK/2) − 2  
8.5  
ns  
ns  
ns  
ns  
ns  
−2  
TBD  
0
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last dat
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
data  
DSPI_SOUT  
Figure 19. DSPI Classic SI Timng — Master Mode  
Table 37. Slave ModDSI Timing (High-speed mode)  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
12.5  
MHz  
ns  
DS9  
DSPI_SCK inptime  
4 x tBCLK  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK inp/low time  
(tSCK/2) − 2  
(tSCK/2 + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPIOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSIP_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
TBD  
2
7
14  
14  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
48  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
DSPI_SIN  
Figure 20. DSPI Classic SPI Timing — Slave Mode  
6.8.3 SDHC Specifications  
The following timing specs are defined at the chip I/O piand must be translated  
appropriately to arrive at timing specs/constraints for te physical interface.  
Table 38. SDHC switchng secifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Card nput ock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low spee
Clock frequency (SO full peed)  
Clock frequenc(Mfulpeed)  
Clock equen(identification mode)  
ime  
0
0
400  
25  
20  
400  
3
kHz  
MHz  
MHz  
kHz  
ns  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clocgh time  
7
ns  
Clock rise time  
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
tOD SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
ns  
SD7  
SD8  
tTHL  
tTHL  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
49  
Peripheral operating requirements and behaviors  
SD3  
SD2  
SD1  
SDHC_CLK  
SD6  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
Input SDHC_DAT[3:0]  
SD7  
SD8  
Figure 21. SDHC timing  
I2S Switching Specifications  
6.8.4  
This section provides the AC timings for the I2S n master (clocks driven) and slave  
modes (clocks input). All timings are given for non-inverted serial clock polarity  
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a on-inverted frame sync (TCR[TFSI] = 0,  
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all  
the timings remain valid by inverting the lock signal (I2S_BCLK) and/or the frame sync  
(I2S_FS) shown in the figures bel
I2S master mode timing  
Tae 39.  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating volta
I2S_MCLK cycle tim
2.7  
2 x tSYS  
45%  
5 x tSYS  
45%  
3.6  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
ns  
I2S_MCLK pulse width high/low  
I2S_BCLK cycle time  
55%  
MCLK period  
ns  
I2S_BCLK pulse width high/low  
I2S_BCLK to I2S_FS output valid  
I2S_BCLK to I2S_FS output invalid  
I2S_BCLK to I2S_TXD valid  
55%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
-2.5  
15  
I2S_BCLK to I2S_TXD invalid  
-3  
I2S_RXD/I2S_FS input setup before I2S_BCLK  
I2S_RXD/I2S_FS input hold after I2S_BCLK  
20  
0
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
50  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
I2S_BCLK (output)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S3  
S4  
S4  
S5  
S6  
S10  
S9  
S7  
S8  
S7  
S8  
S9  
S10  
I2S_RXD  
Figure 22. I2S timing — master mode  
Table 40.  
I2S alave mode tiing  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
2.7  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
I2S_BCLK cycle time (input)  
8 x tSYS  
ns  
I2S_BCLK pulse width high/low (input)  
I2S_FS input setup before I2S_BCL
I2S_FS input hold after I2S_BCLK  
I2S_BCLK to I2S_TXD/I2S_FS t valid  
I2S_BCLK to I2S_TXD/I2SFS opunvalid  
I2S_RXD setup I2SCLK  
I2S_RXD holS_BCLK  
45%  
10  
3
55%  
MCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
20  
10  
2
S11  
S12  
I2S_BCLK (input)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S12  
S15  
S16  
S13  
S14  
S15  
S16  
S15  
S16  
S17  
S18  
I2S_RXD  
Figure 23. I2S timing — slave modes  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
51  
Peripheral operating requirements and behaviors  
6.9 Human-machine interfaces (HMI)  
6.9.1 General Switching Specifications  
These general purpose specifications apply to all signals configured for GPIO, SCI,  
FlexCAN, CMT, and I2C signals.  
Table 41. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Un
Notes  
GPIO pin interrupt pulse width (digital glitch filter disa‐  
bled) — Synchronous path  
1.5  
Bus cloc
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter disa‐  
bled, analog filter enabled) — Asynchronous path  
100  
16  
ns  
2
2
GPIO pin interrupt pulse width (digital glitch filter disa‐  
bled, analog filter disabled) — Asynchronous path  
ns  
External reset pulse width (digital glitch filter disabled)  
TD  
2
Mode select (EZP_CS) hold time after reset deasser‐  
tion  
Bus clock  
cycles  
Port rise and fall time (high drive strength
• Slew disabled  
3
4
12  
36  
ns  
ns  
• Slew enabled  
Port rise and fall time (low drive h)  
• Slew disabled  
32  
36  
ns  
ns  
• Slew enable
1. The greater synchronous annchronous timing must be met.  
2. This is the shortest pulse that iuaranteed to be recognized.  
3. 75pF load  
4. 15pF load  
6.9.2 TSI Electrical Specifications  
Table 42. Touch Sensing Input module specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
Target electrode capacitance range  
Reference oscillator frequency  
1
20  
500  
pF  
1
fREFmax  
5.5  
TBD  
MHz  
Table continues on the next page...  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
52  
Freescale Semiconductor, Inc.  
Dimensions  
Notes  
Table 42. Touch Sensing Input module specifications (continued)  
Symbol Description  
fELEmax Electrode oscillator frequency  
CREF  
VDELTA  
IREF  
Min.  
Typ.  
Max.  
Unit  
0.5  
TBD  
MHz  
Internal reference capacitor  
TBD  
TBD  
TBD  
TBD  
1
600  
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
6
pF  
mV  
μA  
μA  
%
Oscillator delta voltage  
Reference oscillator current source base current  
Electrode oscillator current source base current  
Electrode capacitance measurement precision  
Electrode capacitance measurement precision  
2
3
4
5
6
7
IELE  
1
Pres5  
Pres20  
TBD  
TBD  
TBD  
0.326  
%
Pres100 Electrode capacitance measurement precision  
Max‐  
Max sensitivity @ 20pF electrode  
0.15  
fF  
Sens20  
MaxSens Maximum sensitivity  
0.006  
0.326  
6  
fF  
bits  
μs  
8
9
Res  
Resolution  
TCon20  
Response time @ 20pF  
30  
ITSI_RUN Current added in run mode  
ITSI_LP Low power mode current adder  
TB
1
μA  
μA  
TBD  
1. The TSI module is functional with capacitance values outsidof thrange. However, optimal performance is not  
guaranteed.  
2. The programmable current source value is geneted bmultiping the SCANC[REFCHRG] value and the base current  
3. The programmable current source value is generad by ltiplying the SCANC[EXTCHRG] value and the base current  
4. Measured with a 5pF electrode, reference oscillator fquency of 10MHz, PS = 128, NCSC = 8; Iext = 16  
5. Measured with a 20pF electrode, reference oor freuency of 10MHz, PS = 128, NCSC = 2; Iext = 16  
6. Measured with a 20pF electrode, reference ator frequency of 10MHz, PS = 16, NCSC = 3; Iext = 16  
7. 6.2ms scan time  
8. 1pF electrode capacitance with 4.96mcan time  
9. Time that takes to do one comearement of the electrode. Sensitivity resolution of 0.0133pF  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to www.freescale.com and perform a keyword search for  
the drawing’s document number:  
If you want the drawing for this package  
80-pin LQFP  
Then use this document number  
98ASS23174W  
81-pin MAPBGA  
98ASH98051A  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
53  
Pinout  
8 Pinout  
8.1 K10 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
80  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
T7  
EzPort  
QFP  
1
2
3
ADC1_SE4a  
ADC1_SE5a  
ADC1_SE6a  
ADC1_SE4a  
ADC1_SE5a  
ADC1_SE6a  
PTE0  
SPI1_PCS1  
SPI1_SOUT  
SPI1_SCK  
UART1_TX  
UART1_RX  
SDHC0_D1  
SDHC0_D0  
I2C1_S
I2SCL  
PTE1  
PTE2  
UART1_CTS_ SDHC0_DCLK  
b
4
ADC1_SE7a  
ADC1_SE7a  
PTE3  
SPI1_SIN  
UART1_RTS_ SDHC0CMD  
b
5
6
DISABLED  
DISABLED  
VDD  
PTE4  
PTE5  
SPI1_PCS0  
SPI1_PCS2  
UART3_TX  
UART3_RX  
SDHC0_D3  
SHC0_D
7
VDD  
8
VSS  
VSS  
9
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
PTE16  
PTE17  
PTE18  
SPI0_PCS0  
SPI0_SCK  
SPI0_
UART2_
UA2_RX  
FTM_CLKIN0  
FTM_CLKIN1  
FTM0_FLT3  
LPT00_ALT3  
10  
11  
UART2_CTS_ I2C0_SDA  
12  
13  
ADC0_SE7a  
ADC0_SE7a  
PTE19  
PI0_SIN  
UART2_RTS_ I2C0_SCL  
b
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
14  
15  
16  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
17  
18  
19  
20  
21  
22  
VDDA  
VDDA  
VREFH  
VREFH  
VREFL  
VREFL  
VSSA  
VSSA  
VREF_OUT  
DAC0_OUT  
VREF_OUT  
DAC0_OUT  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
54  
Freescale Semiconductor, Inc.  
Pinout  
80  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
QFP  
23  
24  
25  
26  
XTAL32  
XTAL32  
EXTAL32  
VBAT  
EXTAL32  
VBAT  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
TSI0_CH1  
PTA0  
UART0_CTS_ FTM0_CH5  
b
JTAG_TCLK/  
SWD_CLK  
EZP_CLK  
27  
28  
JTAG_TDI/  
EZP_DI  
TSI0_CH2  
TSI0_CH3  
PTA1  
PTA2  
UART0_RX  
UART0_TX  
FTM0_CH6  
FTM0_CH7  
JTAG_TDI  
EZP_DI  
JTAG_TDO/  
TRACE_SWO/  
EZP_DO  
JTG_TDO/  
TRE_SWO  
EZP_DO  
29  
30  
31  
32  
33  
34  
JTAG_TMS/  
SWD_DIO  
TSI0_CH4  
TSI0_CH5  
PTA3  
UART0_RTS_ FTM0_CH0  
b
JTAGS/  
SWD_D
NMI_b/  
EZP_CS_b  
PTA4  
FTM0_CH1  
NMI_b  
EZP_CS_b  
JTAG_TRST  
CMP2_IN0  
CMP2_IN1  
DISABLED  
PTA5  
FTM0_CH2  
CMUT  
RX_BCL JTAG_TRST  
K
CMP2_IN0  
CMP2_IN1  
PTA12  
PTA13  
PTA14  
CAN0_TX  
CAN0_RX  
SPI0_PCS0  
FTM1_CH0  
FTM1_CH1  
UART0_T
UART0
I2S0_TXD  
FTM1_QD_PH  
A
I2S0_TX_FS  
FTM1_QD_PH  
B
I2S0_TX_BCL  
K
35  
36  
DISABLED  
DISABLED  
PTA15  
PTA16  
SPI0_SCK  
I2S0_RXD  
SPI0_SOUT  
UA0_CTS_  
b
I2S0_RX_FS  
37  
ADC1_SE17  
ADC1_SE17  
PTA17  
SPI0_
RT0_RTS_  
b
I2S0_MCLK  
LPT0_ALT1  
I2S0_CLKIN  
38  
39  
40  
41  
42  
43  
VDD  
VDD  
VSS  
VSS  
EXTAL  
XTAL  
EXTAL  
XTAL  
PT
PTA19  
FTM0_FLT2  
FTM1_FLT0  
FTM_CLKIN0  
FTM_CLKIN1  
RESET_b  
RESET_b  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
PTB0  
PTB1  
I2C0_SCL  
I2C0_SDA  
FTM1_CH0  
FTM1_CH1  
FTM1_QD_PH  
A
44  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
FTM1_QD_PH  
B
45  
46  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE12/  
TSI0_CH7  
PTB2  
PTB3  
I2C0_SCL  
I2C0_SDA  
UART0_RTS_  
b
FTM0_FLT3  
FTM0_FLT0  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
UART0_CTS_  
b
47  
48  
49  
50  
ADC1_SE14  
ADC1_SE15  
VSS  
ADC1_SE14  
ADC1_SE15  
VSS  
PTB10  
PTB11  
SPI1_PCS0  
SPI1_SCK  
UART3_RX  
UART3_TX  
FB_AD19  
FB_AD18  
FTM0_FLT1  
FTM0_FLT2  
VDD  
VDD  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
55  
Pinout  
80  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
QFP  
51  
52  
53  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
PTB16  
SPI1_SOUT  
SPI1_SIN  
CAN0_TX  
UART0_RX  
UART0_TX  
FTM2_CH0  
FB_AD17  
FB_AD16  
EWM_IN  
PTB17  
PTB18  
EWM_OUT_b  
I2S0_TX_BCL FB_AD15  
K
FTM2_QD_PH  
A
54  
55  
56  
57  
TSI0_CH12  
TSI0_CH12  
PTB19  
PTC0  
PTC1  
PTC2  
CAN0_RX  
FTM2_CH1  
I2S0_TX_FS  
FB_OE_b  
FB_AD14  
FB_AD13  
FB_AD12  
FTM2_QD_PH  
B
ADC0_SE14/  
TSI0_CH13  
ADC0_SE14/  
TSI0_CH13  
SPI0_PCS4  
SPI0_PCS3  
SPI0_PCS2  
PDB0_EXTRG I2S0_TXD  
ADC0_SE15/  
TSI0_CH14  
ADC0_SE15/  
TSI0_CH14  
UART1_RTS_ FTM0_CH0  
b
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
UART1_CTS_ FTM0_CH1  
b
58  
59  
60  
61  
62  
63  
64  
65  
CMP1_IN1  
VSS  
CMP1_IN1  
VSS  
PTC3  
SPI0_PCS1  
UART1_RX  
FTM0_CH2  
FB_CLKOUT  
VDD  
VDD  
DISABLED  
DISABLED  
CMP0_IN0  
CMP0_IN1  
PTC4  
PTC5  
PTC6  
PTC7  
PTC8  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART1_TX  
FTM0_H3  
LPT0_ALT2  
AD11  
FB_A0  
_AD9  
FB_AD8  
FB_AD7  
CMP1_OUT  
CMP0_OUT  
CMP0_IN0  
CMP0_IN1  
PDB0_EXTRG  
I2S0_MCL
ADC1_SE4b/  
CMP0_IN2  
ADC1_SE4b/  
CMP0_IN2  
I2S0_KIN  
66  
67  
ADC1_SE5b/  
CMP0_IN3  
ADC1_SE5b/  
CMP0_IN3  
PTC9  
I2S0_RX_BCL FB_AD6  
K
FTM2_FLT0  
ADC1_SE6b/  
CMP0_IN4  
ADC1_SE6b/  
CMP0_IN4  
PTC10  
PTC11  
I2C1_S
C1_SDA  
I2S0_RX_FS  
FB_AD5  
68  
69  
70  
71  
ADC1_SE7b  
VSS  
ADC1_SE7b  
VSS  
I2S0_RXD  
FB_RW_b  
VDD  
VDD  
DISABLED  
PTC
PTC17  
CAN1_RX  
CAN1_TX  
UART3_RX  
UART3_TX  
FB_CS5_b/  
FB_TSIZ1/  
FB_BE23_16_  
BLS15_8_b  
72  
DISABLED  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_24_  
BLS7_0_b  
73  
74  
DISABLED  
PTD0  
PTD1  
SPI0_PCS0  
SPI0_SCK  
UART2_RTS_  
b
FB_ALE/  
FB_CS1_b/  
FB_TS_b  
ADC0_SE5b  
ADC0_SE5b  
UART2_CTS_  
b
FB_CS0_b  
75  
76  
77  
DISABLED  
DISABLED  
DISABLED  
PTD2  
PTD3  
PTD4  
SPI0_SOUT  
SPI0_SIN  
UART2_RX  
UART2_TX  
FB_AD4  
FB_AD3  
FB_AD2  
SPI0_PCS1  
UART0_RTS_ FTM0_CH4  
b
EWM_IN  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
56  
Freescale Semiconductor, Inc.  
Pinout  
80  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
QFP  
78  
ADC0_SE6b  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
SPI0_PCS2  
UART0_CTS_ FTM0_CH5  
b
FB_AD1  
EWM_OUT_b  
79  
80  
ADC0_SE7b  
DISABLED  
PTD6  
PTD7  
SPI0_PCS3  
CMT_IRO  
UART0_RX  
UART0_TX  
FTM0_CH6  
FTM0_CH7  
FB_AD0  
FTM0_FLT0  
FTM0_FLT1  
8.2 K10 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what sigals can be  
used on which pin, see the previous section.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Freescale Semiconductor, Inc.  
57  
Preliminary  
Revision History  
1
PTE0  
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
VDD  
60  
59  
58  
57  
56  
5  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VDD  
2
VSS  
3
PTC3  
PTC2  
PTC1  
PTC0  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
4
5
6
7
8
VSS  
9
PTE16  
PTE17  
PTE18  
PTE19  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
PGA0_DP/ADC0_DP0/ADC1_DP3  
PTB11  
PTB10  
PTB3  
PTB2  
PTB1  
PTB0  
RESET_b  
PTA19  
PGA0_DM/ADC0_DM0/ADC1_DM3  
PGA1_DP/ADC1_DP0/ADC0_DP3  
PGA1_DM/ADC1_DM0/ADC0_DM3  
VDDA  
VREFH  
VREFL  
VSSA  
Figure 24. K10 80 LQFP Pinout Diagram  
9 Revision History  
The following table provides a revision history for this document.  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
58  
Freescale Semiconductor, Inc.  
Preliminary  
Revision History  
Table 43. Revision History  
Rev. No.  
Date  
Substantial Changes  
1
11/2010  
Initial public revision  
K10 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.  
Preliminary  
Freescale Semiconductor, Inc.  
59  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes out further  
notice to any products herein. Freescale Semiconductor makes arranty,  
representation or guarantee regarding the suitability of productany  
particular purpose, nor does Freescale Semicondur ase any llity  
arising out of the application or use of any product circspecifically  
disclaims any and all liability, including without limitationtial or  
incidental damages. “Typical” parameters tmay be in Freescale  
Semiconductor data sheets and/or specatioan and vary in different  
applications and actual performance my vary ovme. All operating  
parameters, including “Tyals”, musvalidated each customer  
application by customer’s techal expereescale Semiconductor does  
not convey any license under its ent righor the rights of others.  
Freescale Semiconductor products not designed, intended, or authorized  
for use as componenn ms inted for surgical implant into the body,  
or other applications ntendesupport or sustain life, or for any other  
application in wfailure of Freescale Semiconductor product could  
create a situan wheersonal injury or death may occur. Should Buyer  
phase oFreescalemiconductor products for any such unintended  
or unauthorizeplication, Buyer shall indemnify and hold Freescale  
Semicuctor as officers, employees, subsidiaries, affiliates, and  
istributoarmless against all claims, costs, damages, and expenses, and  
onable ney fees arising out of, directly or indirectly, any claim of  
peral injury or death associated with such unintended or unauthorized  
use, eif such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd. Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literatuibutioenter  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2
Fax: +1-303-675-2150  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. ARM is the registered trademark of ARM Limited. ARM  
Cortex-M4 is the trademark of ARM Limited. All other product or service  
names are the property of their respective owners.  
LDCForFreescaleSemiconductor@hibtgroup.com  
© Freescale Semiconductor, Inc. 2010. All rights reserved.  
K10P81M100SF2  
Rev. 1  
11/2010  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY