MPC8360ZUALDGA [FREESCALE]

PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications; 的PowerQUICC II Pro处理器版本2.x的TBGA硅硬件规格
MPC8360ZUALDGA
型号: MPC8360ZUALDGA
厂家: Freescale    Freescale
描述:

PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications
的PowerQUICC II Pro处理器版本2.x的TBGA硅硬件规格

文件: 总102页 (文件大小:612K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8360EEC  
Rev. 5, 09/2011  
Freescale Semiconductor  
Technical Data  
MPC8360E/MPC8358E  
PowerQUICC II Pro Processor  
Revision 2.x TBGA Silicon  
Hardware Specifications  
Contents  
This document provides an overview of the MPC8360E/58E  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . 7  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . 12  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . 14  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . 16  
6. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . 18  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8. UCC Ethernet Controller: Three-Speed Ethernet,  
MII Management . . . . . . . . . . . . . . . . . . . . . . . 25  
9. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
11. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
14. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
15. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
16. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
17. TDM/SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
18. HDLC, BISYNC, Transparent, and Synchronous  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
19. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
20. Package and Pin Listings . . . . . . . . . . . . . . . . . 63  
21. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
22. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
23. System Design Information . . . . . . . . . . . . . . . 96  
24. Ordering Information . . . . . . . . . . . . . . . . . . . . 99  
25. Document Revision History . . . . . . . . . . . . . 100  
PowerQUICC II Pro processor revision 2.x TBGA features, including a  
block diagram showing the major functional components. This device is  
a cost-effective, highly integrated communications processor that  
addresses the needs of the networking, wireless infrastructure, and  
telecommunications markets. Target applications include next generation  
DSLAMs, network interface cards for 3G base stations (Node Bs),  
routers, media gateways, and high end IADs. The device extends current  
PowerQUICC II Pro offerings, adding higher CPU performance,  
additional functionality, faster interfaces, and robust interworking  
between protocols while addressing the requirements related to  
time-to-market, price, power, and package size. This device can be used  
for the control plane and also has data plane functionality.  
For functional characteristics of the processor, refer to the MPC8360E  
PowerQUICC II Pro Integrated Communications Processor Reference  
Manual, Rev. 3.  
To locate any updates for this document, refer to the MPC8360E product  
summary page on our website listed on the back cover of this document  
or contact your Freescale sales office.  
1
Overview  
This section describes a high-level overview including features and  
general operation of the MPC8360E/58E PowerQUICC II Pro processor.  
A major component of this device is the e300 core, which includes  
32 Kbytes of instruction and data cache and is fully compatible with the  
Power Architecture™ 603e instruction set. The new QUICC Engine  
module provides termination, interworking, and switching between a  
© 2011 Freescale Semiconductor, Inc. All rights reserved.  
wide range of protocols including ATM, Ethernet, HDLC, and POS. The QUICC Engine module’s enhanced interworking eases  
the transition and reduces investment costs from ATM to IP based systems. The other major features include a dual DDR  
SDRAM memory controller for the MPC8360E, which allows equipment providers to partition system parameters and data in  
an extremely efficient way, such as using one 32-bit DDR memory controller for control plane processing and the other for data  
plane processing. The MPC8358E has a single DDR SDRAM memory controller. The MPC8360E/58E also offers a 32-bit PCI  
controller, a flexible local bus, and a dedicated security engine.  
This figure shows the MPC8360Eblock diagram.  
System Interface Unit  
(SIU)  
e300 Core  
Security Engine  
32KB  
32KB  
Memory Controllers  
GPCM/UPM/SDRAM  
I-Cache  
D-Cache  
DDRC1  
DDRC2  
Classic G2 MMUs  
32/64 DDR Interface Unit  
PCI Bridge  
Power  
FPU  
PCI  
Management  
Local  
JTAG/COP  
Timers  
Local Bus  
Bus Arbitration  
DUART  
QUICC Engine Module  
Multi-User  
Accelerators  
RAM  
Baud Rate  
Generators  
Serial DMA  
&
2 Virtual  
DMAs  
Dual I2C  
Dual 32-Bit RISC CP  
4 Channel DMA  
Interrupt Controller  
Protection & Configuration  
System Reset  
Parallel I/O  
Time Slot Assigner  
Serial Interface  
Clock Synthesizer  
8 MII/  
RMII  
2 GMII/  
RGMII/TBI/RTBI  
2 UTOPIA/POS  
(124 MPHY)  
8 TDM Ports  
Figure 1. MPC8360E Block Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
2
Freescale Semiconductor  
This figure shows the MPC8358E block diagram.  
System Interface Unit  
(SIU)  
e300 Core  
Security Engine  
32KB  
32KB  
Memory Controllers  
GPCM/UPM/SDRAM  
I-Cache  
D-Cache  
Classic G2 MMUs  
DDRC  
PCI  
32/64 DDR Interface Unit  
PCI Bridge  
Power  
FPU  
Management  
Local  
JTAG/COP  
Timers  
Local Bus  
Bus Arbitration  
DUART  
QUICC Engine Module  
Multi-User  
Accelerators  
RAM  
Baud Rate  
Generators  
Serial DMA  
&
2 Virtual  
DMAs  
Dual I2C  
Dual 32-Bit RISC CP  
4 Channel DMA  
Interrupt Controller  
Protection & Configuration  
System Reset  
Parallel I/O  
Time Slot Assigner  
Serial Interface  
Clock Synthesizer  
6 MII/  
RMII  
2 GMII/  
RGMII/TBI/RTBI  
1 UTOPIA/POS  
(31/124 MPHY)  
4 TDM Ports  
Figure 2. MPC8358E Block Diagram  
Major features of the MPC8360E/58E are as follows:  
e300 PowerPC processor core (enhanced version of the MPC603e core)  
— Operates at up to 667 MHz (for the MPC8360E) and 400 MHz (for the MPC8358E)  
— High-performance, superscalar processor core  
— Floating-point, integer, load/store, system register, and branch processing units  
— 32-Kbyte instruction cache, 32-Kbyte data cache  
— Lockable portion of L1 cache  
— Dynamic power management  
— Software-compatible with the Freescale processor families implementing the Power Architecture™ technology  
QUICC Engine unit  
— Two 32-bit RISC controllers for flexible support of the communications peripherals, each operating up to  
500 MHz (for the MPC8360E) and 400 MHz (for the MPC8358E)  
— Serial DMA channel for receive and transmit on all serial channels  
— QUICC Engine module peripheral request interface (for SEC, PCI, IEEE Std. 1588™)  
— Eight universal communication controllers (UCCs) on the MPC8360E and six UCCs on the MPC8358E  
supporting the following protocols and interfaces (not all of them simultaneously):  
IEEE 1588 protocol supported  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
3
10/100 Mbps Ethernet/IEEE Std. 802.3™ CDMA/CS interface through a media-independent interface (MII,  
RMII, RGMII)  
1
1000 Mbps Ethernet/IEEE 802.3 CDMA/CS interface through a media-independent interface (GMII, RGMII,  
TBI, RTBI) on UCC1 and UCC2  
9.6-Kbyte jumbo frames  
ATM full-duplex SAR, up to 622 Mbps (OC-12/STM-4), AAL0, AAL1, and AAL5 in accordance ITU-T  
I.363.5  
ATM AAL2 CPS, SSSAR, and SSTED up to 155 Mbps (OC-3/STM-1) Mbps full duplex (with 4 CPS packets  
per cell) in accordance ITU-T I.366.1 and I.363.2  
ATM traffic shaping for CBR, VBR, UBR, and GFR traffic types compatible with ATM forum TM4.1 for up  
to 64-Kbyte simultaneous ATM channels  
ATM AAL1 structured and unstructured circuit emulation service (CES 2.0) in accordance with ITU-T I.163.1  
and ATM Forum af-vtoa-00-0078.000  
IMA (Inverse Multiplexing over ATM) for up to 31 IMA links over 8 IMA groups in accordance with the ATM  
forum AF-PHY-0086.000 (Version 1.0) and AF-PHY-0086.001 (Version 1.1)  
ATM Transmission Convergence layer support in accordance with ITU-T I.432  
ATM OAM handling features compatible with ITU-T I.610  
PPP, Multi-Link (ML-PPP), Multi-Class (MC-PPP) and PPP mux in accordance with the following RFCs:  
1661, 1662, 1990, 2686, and 3153  
IP support for IPv4 packets including TOS, TTL, and header checksum processing  
Ethernet over first mile IEEE 802.3ah  
Shim header  
Ethernet-to-Ethernet/AAL5/AAL2 inter-working  
L2 Ethernet switching using MAC address or IEEE Std. 802.1P/Q™ VLAN tags  
ATM (AAL2/AAL5) to Ethernet (IP) interworking in accordance with RFC2684 including bridging of ATM  
ports to Ethernet ports  
Extensive support for ATM statistics and Ethernet RMON/MIB statistics  
AAL2 protocol rate up to 4 CPS at OC-3/STM-1 rate  
Packet over Sonet (POS) up to 622-Mbps full-duplex 124 MultiPHY  
POS hardware; microcode must be loaded as an IRAM package  
Transparent up to 70-Mbps full-duplex  
HDLC up to 70-Mbps full-duplex  
HDLC BUS up to 10 Mbps  
Asynchronous HDLC  
UART  
BISYNC up to 2 Mbps  
User-programmable Virtual FIFO size  
QUICC multichannel controller (QMC) for 64 TDM channels  
— One multichannel communication controller (MCC) only on the MPC8360E supporting the following:  
256 HDLC or transparent channels  
128 SS7 channels  
Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces  
— Two UTOPIA/POS interfaces on the MPC8360E supporting 124 MultiPHY each (optional 2*128 MultiPHY with  
extended address) and one UTOPIA/POS interface on the MPC8358E supporting 31/124 MultiPHY  
— Two serial peripheral interfaces (SPI); SPI2 is dedicated to Ethernet PHY management  
1.SMII or SGMII media-independent interface is not currently supported.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
4
Freescale Semiconductor  
— Eight TDM interfaces on the MPC8360E and four TDM interfaces on the MPC8358E with 1-bit mode for E3/T3  
rates in clear channel  
— Sixteen independent baud rate generators and 30 input clock pins for supplying clocks to UCC and MCC serial  
channels (MCC is only available on the MPC8360E)  
— Four independent 16-bit timers that can be interconnected as four 32-bit timers  
— Interworking functionality:  
Layer 2 10/100-Base T Ethernet switch  
ATM-to-ATM switching (AAL0, 2, 5)  
Ethernet-to-ATM switching with L3/L4 support  
PPP interworking  
Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, 802.11i®, iSCSI,  
and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units  
(EUs).  
— Public key execution unit (PKEU) supporting the following:  
RSA and Diffie-Hellman  
Programmable field size up to 2048 bits  
Elliptic curve cryptography  
F2m and F(p) modes  
Programmable field size up to 511 bits  
— Data encryption standard execution unit (DEU)  
DES, 3DES  
Two key (K1, K2) or three key (K1, K2, K3)  
ECB and CBC modes for both DES and 3DES  
— Advanced encryption standard unit (AESU)  
— Implements the Rinjdael symmetric key cipher  
— Key lengths of 128, 192, and 256 bits, two key  
ECB, CBC, CCM, and counter modes  
— ARC four execution unit (AFEU)  
Implements a stream cipher compatible with the RC4 algorithm  
40- to 128-bit programmable key  
— Message digest execution unit (MDEU)  
SHA with 160-, 224-, or 256-bit message digest  
MD5 with 128-bit message digest  
HMAC with either SHA or MD5 algorithm  
— Random number generator (RNG)  
— Four crypto-channels, each supporting multi-command descriptor chains  
Static and/or dynamic assignment of crypto-execution units via an integrated controller  
Buffer size of 256 bytes for each execution unit, with flow control for large data sizes  
— Storage/NAS XOR parity generation accelerator for RAID applications  
Dual DDR SDRAM memory controllers on the MPC8360E and a single DDR SDRAM memory controller on the  
MPC8358E  
— Programmable timing supporting both DDR1 and DDR2 SDRAM  
— On the MPC8360E, the DDR buses can be configured as two 32-bit buses or one 64-bit bus; on the MPC8358E,  
the DDR bus can be configured as a 32- or 64-bit bus  
— 32- or 64-bit data interface, up to 333 MHz (for the MPC8360E) and 266 MHz (for the MPC8358E) data rate  
— Four banks of memory, each up to 1 Gbyte  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
5
— DRAM chip configurations from 64 Mbits to 1 Gigabit with ×8/×16 data ports  
— Full ECC support (when the MPC8360E is configured as 2×32-bit DDR memory controllers, both support ECC)  
— Page mode support (up to 16 simultaneous open pages for DDR1, up to 32 simultaneous open pages for DDR2)  
— Contiguous or discontiguous memory mapping  
— Read-modify-write support  
— Sleep mode support for self refresh SDRAM  
— Supports auto refreshing  
— Supports source clock mode  
— On-the-fly power management using CKE  
— Registered DIMM support  
— 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2  
— External driver impedance calibration  
— On-die termination (ODT)  
PCI interface  
— PCI Specification Revision 2.3 compatible  
— Data bus widths:  
Single 32-bit data PCI interface that operates at up to 66 MHz  
— PCI 3.3-V compatible (not 5-V compatible)  
— PCI host bridge capabilities on both interfaces  
— PCI agent mode supported on PCI interface  
— Support for PCI-to-memory and memory-to-PCI streaming  
— Memory prefetching of PCI read accesses and support for delayed read transactions  
— Support for posting of processor-to-PCI and PCI-to-memory writes  
— On-chip arbitration, supporting five masters on PCI  
— Support for accesses to all PCI address spaces  
— Parity support  
— Selectable hardware-enforced coherency  
— Address translation units for address mapping between host and peripheral  
— Dual address cycle supported when the device is the target  
— Internal configuration registers accessible from PCI  
Local bus controller (LBC)  
— Multiplexed 32-bit address and data operating at up to 133 MHz  
— Eight chip selects support eight external slaves  
— Up to eight-beat burst transfers  
— 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller  
— Three protocol engines available on a per chip select basis:  
General-purpose chip select machine (GPCM)  
Three user programmable machines (UPMs)  
Dedicated single data rate SDRAM controller  
— Parity support  
— Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)  
Programmable interrupt controller (PIC)  
— Functional and programming compatibility with the MPC8260 interrupt controller  
— Support for 8 external and 35 internal discrete interrupt sources  
— Support for one external (optional) and seven internal machine checkstop interrupt sources  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
6
Freescale Semiconductor  
— Programmable highest priority request  
— Four groups of interrupts with programmable priority  
— External and internal interrupts directed to communication processor  
— Redirects interrupts to external INTA pin when in core disable mode  
— Unique vector number for each interrupt source  
2
Dual industry-standard I C interfaces  
— Two-wire interface  
— Multiple master support  
2
— Master or slave I C mode support  
— On-chip digital filtering rejects spikes on the bus  
2
— System initialization data is optionally loaded from I C-1 EPROM by boot sequencer embedded hardware  
DMA controller  
— Four independent virtual channels  
— Concurrent execution across multiple channels with programmable bandwidth control  
— All channels accessible by local core and remote PCI masters  
— Misaligned transfer capability  
— Data chaining and direct mode  
— Interrupt on completed segment and chain  
— DMA external handshake signals: DMA_DREQ[0:3]/DMA_DACK[0:3]/DMA_DONE[0:3]. There is one set for  
each DMA channel. The pins are multiplexed to the parallel IO pins with other QE functions.  
DUART  
— Two 4-wire interfaces (RxD, TxD, RTS, CTS)  
— Programming model compatible with the original 16450 UART and the PC16550D  
System timers  
— Periodic interrupt timer  
— Real-time clock  
— Software watchdog timer  
— Eight general-purpose timers  
IEEE Std. 1149.1™-compliant, JTAG boundary scan  
Integrated PCI bus and SDRAM clock generation  
2
Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8360E/58E. The device  
is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a  
more complete reference. These are not purely I/O buffer design specifications.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
7
Overall DC Electrical Characteristics  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute Maximum Ratings  
This table provides the absolute maximum ratings.  
Table 1. Absolute Maximum Ratings  
1
Characteristic  
Core and PLL supply voltage for  
Symbol  
Max Value  
Unit  
Notes  
VDD & AVDD  
–0.3 to 1.32  
V
MPC8358 Device Part Number with  
Processor Frequency label of AD=266MHz and AG=400MHz &  
QUICC Engine Frequency label of E=300MHz & G=400MHz  
MPC8360 Device Part Number with  
Processor Frequency label of AG=400MHz and AJ=533MHz &  
QUICC Engine Frequency label of G=400MHz  
Core and PLL supply voltage for  
VDD & AVDD  
–0.3 to 1.37  
V
V
MPC8360 device Part Number with  
Processor Frequency label of AL=667MHz and QUICC Engine  
Frequency label of H=500MHz  
DDR and DDR2 DRAM I/O voltage  
GVDD  
DDR  
DDR2  
–0.3 to 2.75  
–0.3 to 1.89  
Three-speed Ethernet I/O, MII management voltage  
LVDD  
–0.3 to 3.63  
–0.3 to 3.63  
V
V
PCI, local bus, DUART, system control and power management,  
I2C, SPI, and JTAG I/O voltage  
OVDD  
Input voltage  
DDR DRAM signals  
MVIN  
MVREF  
LVIN  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
–0.3 to (LVDD + 0.3)  
–0.3 to (OVDD + 0.3)  
V
V
V
V
2, 5  
2, 5  
4, 5  
3, 5  
DDR DRAM reference  
Three-speed Ethernet signals  
Local bus, DUART, CLKIN, system  
control and power management, I2C, SPI,  
and JTAG signals  
OVIN  
PCI  
OVIN  
–0.3 to (OVDD + 0.3)  
V
6
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
8
Freescale Semiconductor  
Overall DC Electrical Characteristics  
1
Table 1. Absolute Maximum Ratings (continued)  
Characteristic  
Symbol  
Max Value  
–55 to 150  
Unit  
Notes  
Storage temperature range  
TSTG  
°C  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
power-on reset and power-down sequences.  
3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
power-on reset and power-down sequences.  
4. Caution: LVIN must not exceed LVDD by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
power-on reset and power-down sequences.  
5. (M,L,O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 3.  
6. OVIN on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as  
shown in Figure 4.  
2.1.2  
Power Supply Voltage Specification  
This table provides the recommended operating conditions for the device. Note that the values in this table are the recommended  
and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Characteristic  
Core and PLL supply voltage for  
Symbol  
Unit  
Notes  
Value  
VDD & AVDD  
1.2 V ± 60 mV  
V
1, 3  
MPC8358 Device Part Number with  
Processor Frequency label of AD=266MHz and AG=400MHz &  
QUICC Engine Frequency label of E=300MHz & G=400MHz  
MPC8360 Device Part Number with  
Processor Frequency label of AG=400MHz and AJ=533MHz &  
QUICC Engine Frequency label of G=400MHz  
Core and PLL supply voltage for  
VDD & AVDD  
1.3 V ± 50 mV  
V
V
1, 3  
MPC8360 Device Part Number with  
Processor Frequency label of AL=667MHz and QUICC Engine  
Frequency label of H=500MHz  
DDR and DDR2 DRAM I/O supply voltage  
GVDD  
DDR  
DDR2  
2.5 V ± 125 mV  
1.8 V ± 90 mV  
Three-speed Ethernet I/O supply voltage  
Three-speed Ethernet I/O supply voltage  
Three-speed Ethernet I/O supply voltage  
LVDD  
LVDD  
LVDD  
0
1
2
3.3 V ± 330 mV  
2.5 V ± 125 mV  
V
V
V
3.3 V ± 330 mV  
2.5 V ± 125 mV  
3.3 V ± 330 mV  
2.5 V ± 125 mV  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
9
Overall DC Electrical Characteristics  
Table 2. Recommended Operating Conditions (continued)  
Recommended  
Value  
Characteristic  
Symbol  
Unit  
Notes  
PCI, local bus, DUART, system control and power management, I2C,  
SPI, and JTAG I/O voltage  
OVDD  
3.3 V ± 330 mV  
V
Junction temperature  
TJ  
0 to 105  
–40 to 105  
°C  
2
Notes:  
1. GVDD, LVDD, OVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or  
negative direction.  
2. The operating conditions for junction temperature, TJ, on the 600/333/400 MHz and 500/333/500 MHz on rev. 2.0 silicon is  
0° to 70 °C. Refer to Errata General9 in Chip Errata for the MPC8360E, Rev. 1.  
3. For more information on Part Numbering, refer to Table 80.  
This figure shows the undershoot and overshoot voltages at the interfaces of the device.  
G/L/OVDD + 20%  
G/L/OVDD + 5%  
G/L/OVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 0.7 V  
Not to Exceed 10%  
1
of tinterface  
Note:  
1. Note that tinterface refers to the clock period associated with the bus clock interface.  
Figure 3. Overshoot/Undershoot Voltage for GV /OV /LV  
DD  
DD  
DD  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
10  
Freescale Semiconductor  
Power Sequencing  
This figure shows the undershoot and overshoot voltage of the PCI interface of the device for the 3.3-V signals, respectively.  
11 ns  
(Min)  
+7.1 V  
Overvoltage  
Waveform  
7.1 V p-to-p  
(Min)  
0 V  
4 ns  
(Max)  
4 ns  
(Max)  
62.5 ns  
+3.6 V  
Undervoltage  
Waveform  
7.1 V p-to-p  
(Min)  
–3.5 V  
Figure 4. Maximum AC Waveforms on PCI interface for 3.3-V Signaling  
2.1.3  
Output Driver Characteristics  
This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.  
Table 3. Output Drive Capability  
Driver Type  
Local bus interface utilities signals  
Output Impedance (Ω)  
Supply Voltage  
42  
25  
42  
OVDD = 3.3 V  
PCI signals  
PCI output clocks (including PCI_SYNC_OUT)  
DDR signal  
20  
GVDD = 2.5 V  
GVDD = 1.8 V  
36 (half-strength mode)1  
DDR2 signal  
18  
36 (half-strength mode)1  
10/100/1000 Ethernet signals  
DUART, system control, I2C, SPI, JTAG  
GPIO signals  
42  
42  
42  
LVDD = 2.5/3.3 V  
OVDD = 3.3 V  
OVDD = 3.3 V  
LVDD = 2.5/3.3 V  
Note:  
1. DDR output impedance values for half strength mode are verified by design and not tested.  
2.2  
Power Sequencing  
This section details the power sequencing considerations for the MPC8360E/58E.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
11  
Power Sequencing  
2.2.1  
Power-Up Sequencing  
MPC8360E/58E does not require the core supply voltage (V and AV ) and I/O supply voltages (GV , LV , and OV )  
DD  
DD  
DD  
DD  
DD  
to be applied in any particular order. During the power ramp up, before the power supplies are stable and if the I/O voltages are  
supplied before the core voltage, there may be a period of time that all input and output pins are actively be driven and cause  
contention and excessive current from 3A to 5A. In order to avoid actively driving the I/O pins and to eliminate excessive current  
draw, apply the core voltage (V ) before the I/O voltage (GV , LV , and OV ) and assert PORESET before the power  
DD  
DD  
DD  
DD  
supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal  
value before the I/O supplies reach 0.7 V, see this figure.  
Voltage  
I/O Voltage (GVDD, LVDD, OVDD  
)
Core Voltage (VDD, AVDD  
)
0.7 V  
90%  
Time  
Figure 5. Power Sequencing Example  
I/O voltage supplies (GV , LV , and OV ) do not have any ordering requirements with respect to one another.  
DD  
DD  
DD  
2.2.2  
Power-Down Sequencing  
The MPC8360E/58E does not require the core supply voltage and I/O supply voltages to be powered down in any particular  
order.  
3
Power Characteristics  
The estimated typical power dissipation values are shown in these tables.  
1
Table 4. MPC8360E TBGA Core Power Dissipation  
Core  
Frequency (MHz)  
CSB  
Frequency (MHz)  
QUICC Engine  
Frequency (MHz)  
Typical  
Maximum  
Unit  
Notes  
266  
400  
533  
667  
500  
266  
266  
266  
333  
333  
500  
400  
400  
400  
500  
5.0  
4.5  
4.8  
5.8  
5.9  
5.6  
5.0  
5.3  
6.3  
6.4  
W
W
W
W
W
2, 3, 5  
2, 3, 4  
2, 3, 4  
3, 6, 7, 8  
3, 6, 7, 8  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
12  
Freescale Semiconductor  
Power Sequencing  
1
Table 4. MPC8360E TBGA Core Power Dissipation (continued)  
Core  
Frequency (MHz)  
CSB  
Frequency (MHz)  
QUICC Engine  
Frequency (MHz)  
Typical  
Maximum  
Unit  
Notes  
667  
333  
500  
6.1  
6.8  
W
2, 3, 5, 9  
Notes:  
1. The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD. For I/O power values, see Table 6.  
2. Typical power is based on a voltage of VDD = 1.2 V or 1.3 V, a junction temperature of TJ = 105°C, and a Dhrystone  
benchmark application.  
3. Thermal solutions need to design to a value higher than typical power on the end application, TA target, and I/O power.  
4. Maximum power is based on a voltage of VDD = 1.2 V, WC process, a junction TJ = 105° C, and an artificial smoke test.  
5. Maximum power is based on a voltage of VDD = 1.3 V for applications that use 667 MHz (CPU)/500 (QE) with WC process,  
a junction TJ = 105°C, and an artificial smoke test.  
6. Typical power is based on a voltage of VDD = 1.3 V, a junction temperature of TJ = 70°C, and a Dhrystone benchmark  
application.  
7. Maximum power is based on a voltage of VDD = 1.3 V for applications that use 667 MHz (CPU) or 500 (QE) with WC  
process, a junction TJ = 70°C, and an artificial smoke test.  
8. This frequency combination is only available for rev. 2.0 silicon.  
9. This frequency combination is not available for rev. 2.0 silicon.  
1
Table 5. MPC8358E TBGA Core Power Dissipation  
Core  
Frequency (MHz)  
CSB  
Frequency (MHz)  
QUICC Engine  
Frequency (MHz)  
Typical  
Maximum  
Unit  
Notes  
266  
400  
266  
266  
300  
400  
4.1  
4.5  
4.5  
5.0  
W
W
2, 3, 4  
2, 3, 4  
Notes:  
1. The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD. For I/O power values, see Table 6.  
2. Typical power is based on a voltage of VDD = 1.2 V, a junction temperature of TJ = 105°C, and a Dhrystone benchmark  
application.  
3. Thermal solutions need to design to a value higher than typical power on the end application, TA target, and I/O power.  
4. Maximum power is based on a voltage of VDD = 1.2 V, WC process, a junction TJ = 105° C, and an artificial smoke test.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
13  
Power Sequencing  
This table shows the estimated typical I/O power dissipation for the device.  
Table 6. Estimated Typical I/O Power Dissipation  
GVDD  
(1.8 V)  
GVDD  
(2.5 V)  
OVDD  
(3.3 V)  
LVDD  
(3.3 V)  
LVDD  
(2.5 V)  
Interface  
DDR I/O  
65% utilization  
Rs = 20 Ω  
Parameter  
Unit  
Comments  
200 MHz, 1 × 32 bits  
200 MHz, 1 × 64 bits  
200 MHz, 2 × 32 bits  
266 MHz, 1 × 32 bits  
266 MHz, 1 × 64 bits  
266 MHz, 2 × 32 bits  
333 MHz, 1 × 32 bits  
333 MHz, 1 × 64 bits  
333 MHz, 2 × 32 bits  
133 MHz, 32 bits  
83 MHz, 32 bits  
66 MHz, 32 bits  
50 MHz, 32 bits  
33 MHz, 32 bits  
66 MHz, 32 bits  
MII or RMII  
0.3  
0.4  
0.6  
0.35  
0.46  
0.7  
0.4  
0.53  
0.81  
0.46  
0.58  
0.92  
0.56  
0.7  
1.11  
0.65  
0.82  
1.3  
0.04  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Rt = 50 Ω  
2 pairs of clocks  
Local Bus I/O  
Load = 25 pf  
3 pairs of clocks  
0.22  
0.14  
0.12  
0.09  
0.05  
0.07  
PCI I/O  
Load = 30 pF  
10/100/1000  
Ethernet I/O  
Load = 20 pF  
0.01  
0.04  
Multiply by  
number of  
interfaces used.  
GMII or TBI  
RGMII or RTBI  
Other I/O  
0.1  
4
Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8360E/58E.  
NOTE  
The rise/fall time on QUICC Engine block input pins should not exceed 5 ns. This should  
be enforced especially on clock signals. Rise time refers to signal transitions from 10% to  
90% of V ; fall time refers to transitions from 90% to 10% of V  
.
DD  
DD  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
14  
Freescale Semiconductor  
DC Electrical Characteristics  
4.1  
DC Electrical Characteristics  
This table provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the device.  
Table 7. CLKIN DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.7  
–0.3  
OVDD + 0.3  
0.4  
V
V
Input low voltage  
CLKIN input current  
PCI_SYNC_IN input current  
0 V VIN OVDD  
±10  
μA  
μA  
0 V VIN 0.5V or  
OVDD – 0.5V VIN OVDD  
IIN  
±10  
PCI_SYNC_IN input current  
0.5 V VIN OVDD – 0.5 V  
IIN  
±100  
μA  
4.2  
AC Electrical Characteristics  
The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is  
configured in PCI host or PCI agent mode. This table provides the clock input (CLKIN/PCI_CLK) AC timing specifications for  
the device.  
Table 8. CLKIN AC Timing Specifications  
Parameter/Condition  
CLKIN/PCI_CLK frequency  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
fCLKIN  
tCLKIN  
15  
0.6  
40  
66.67  
MHz  
ns  
1
2
CLKIN/PCI_CLK cycle time  
CLKIN/PCI_CLK rise and fall time  
CLKIN/PCI_CLK duty cycle  
CLKIN/PCI_CLK jitter  
Notes:  
tKH, tKL  
1.0  
2.3  
ns  
tKHK CLKIN  
/t  
60  
%
3
±150  
ps  
4, 5  
1. Caution: The system, core, USB, security, and 10/100/1000 Ethernet must not exceed their respective maximum or  
minimum operating frequencies.  
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be set low  
to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.  
4.3  
Gigabit Reference Clock Input Timing  
This table provides the Gigabit reference clocks (GTX_CLK125) AC timing specifications.  
Table 9. GTX_CLK125 AC Timing Specifications  
At recommended operating conditions with LVDD = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV  
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
GTX_CLK125 frequency  
GTX_CLK125 cycle time  
tG125  
tG125  
125  
8
MHz  
ns  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
15  
RESET DC Electrical Characteristics  
Table 9. GTX_CLK125 AC Timing Specifications  
At recommended operating conditions with LVDD = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV (continued)  
Parameter/Condition  
Symbol  
tG125R/tG125F  
Min  
Typical  
Max  
Unit  
Notes  
GTX_CLK rise and fall time  
ns  
1
LVDD = 2.5 V  
LVDD = 3.3 V  
0.75  
1.0  
GTX_CLK125 duty cycle  
tG125H G125  
/t  
%
2
2
GMII & TBI  
45  
47  
55  
53  
1000Base-T for RGMII & RTBI  
GTX_CLK125 jitter  
Notes:  
±150  
ps  
1. Rise and fall times for GTX_CLK125 are measured from 0.5 and 2.0 V for LVDD = 2.5 V and from 0.6 and 2.7 V for  
LVDD = 3.3 V.  
2. GTX_CLK125 is used to generate the GTX clock for the UCC Ethernet transmitter with 2% degradation. The GTX_CLK125  
duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by GTX_CLK.  
See Section 8.2.2, “MII AC Timing Specifications,Section 8.2.3, “RMII AC Timing Specifications,and Section 8.2.5,  
“RGMII and RTBI AC Timing Specifications” for the duty cycle for 10Base-T and 100Base-T reference clock.  
5
RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of  
the MPC8360E/58E.  
5.1  
RESET DC Electrical Characteristics  
This table provides the DC electrical characteristics for the RESET pins of the device.  
1
Table 10. RESET Pins DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
V
V
0.8  
±10  
μA  
V
2
Output high voltage  
Output low voltage  
Output low voltage  
Notes:  
VOH  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
VOL  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.  
2. HRESET and SRESET are open drain pins, thus VOH is not relevant for those pins.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
16  
Freescale Semiconductor  
RESET AC Electrical Characteristics  
5.2  
RESET AC Electrical Characteristics  
This section describes the AC electrical specifications for the reset initialization timing requirements of the device. This table  
provides the reset initialization AC timing specifications for the DDR SDRAM component(s).  
Table 11. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET or SRESET (input) to activate reset  
flow  
32  
tPCI_SYNC_IN  
1
Required assertion time of PORESET with stable clock applied to CLKIN  
when the device is in PCI host mode  
32  
32  
tCLKIN  
2
1
Required assertion time of PORESET with stable clock applied to  
PCI_SYNC_IN when the device is in PCI agent mode  
tPCI_SYNC_IN  
HRESET/SRESET assertion (output)  
512  
16  
4
tPCI_SYNC_IN  
tPCI_SYNC_IN  
tCLKIN  
1
1
2
HRESET negation to SRESET negation (output)  
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and  
CFG_CLKIN_DIV) with respect to negation of PORESET when the device  
is in PCI host mode  
Input setup time for POR config signals (CFG_RESET_SOURCE[0:2] and  
CFG_CLKIN_DIV) with respect to negation of PORESET when the device  
is in PCI agent mode  
4
tPCI_SYNC_IN  
1
Input hold time for POR config signals with respect to negation of HRESET  
0
4
ns  
ns  
3
Time for the device to turn off POR config signals with respect to the  
assertion of HRESET  
Time for the device to turn on POR config signals with respect to the  
negation of HRESET  
1
tPCI_SYNC_IN  
1, 3  
Notes:  
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the  
primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. Refer  
MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.  
2. tCLKIN is the clock period of the input clock applied to CLKIN. It is only valid when the device is in PCI host mode. Refer  
MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.  
3. POR config signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.  
This table provides the PLL and DLL lock times.  
Table 12. PLL and DLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
PLL lock times  
DLL lock times  
Notes:  
100  
μs  
7680  
122,880  
csb_clk cycles  
1, 2  
1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1  
ratio results in the minimum and an 8:1 ratio results in the maximum.  
2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 21, “Clocking,for more information.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
17  
QUICC Engine Block Operating Frequency Limitations  
5.3  
QUICC Engine Block Operating Frequency Limitations  
This section specify the limits of the AC electrical characteristics for the operation of the QUICC Engine block’s  
communication interfaces.  
NOTE  
The settings listed below are required for correct hardware interface operation. Each  
protocol by itself requires a minimal QUICC Engine block operating frequency setting for  
meeting the performance target. Because the performance is a complex function of all the  
QUICC Engine block settings, the user should make use of the QUICC Engine block  
performance utility tool provided by Freescale to validate their system.  
This table lists the maximal QUICC Engine block I/O frequencies and the minimal QUICC Engine block core frequency for  
each interface.  
Table 13. QUICC Engine Block Operating Frequency Limitations  
Min QUICC Engine  
Interface Operating Max Interface Bit  
Interface  
Operating  
Notes  
Frequency (MHz)  
Rate (Mbps)  
Frequency1 (MHz)  
Ethernet Management: MDC/MDIO  
MII  
10 (max)  
25 (typ)  
10  
100  
20  
50  
2
RMII  
50 (typ)  
100  
50  
GMII/RGMII/TBI/RTBI  
SPI (master/slave)  
UCC through TDM  
MCC  
125 (typ)  
10 (max)  
50 (max)  
25 (max)  
50 (max)  
50 (max)  
10 (max)  
50 (max)  
1000  
10  
250  
20  
70  
8 × F  
16 × F  
2 × F  
2 × F  
20  
16.67  
800  
2, 4  
2
UTOPIA L2  
POS-PHY L2  
800  
2
HDLC bus  
10  
2, 3  
HDLC/transparent  
UART/async HDLC  
50  
8/3 × F  
20  
3.68 (max internal ref  
clock)  
115 (Kbps)  
BISYNC  
USB  
2 (max)  
2
20  
96  
48 (ref clock)  
12  
Notes:  
1. The QUICC Engine module needs to run at a frequency higher than or equal to what is listed in this table.  
2. ‘F’ is the actual interface operating frequency.\  
3. The bit rate limit is independent of the data bus width (that is, the same for serial, nibble, or octal interfaces).  
4. TDM in high-speed mode for serial data interface.  
6
DDR and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR and DDR2 SDRAM interface of the  
MPC8360E/58E.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
18  
Freescale Semiconductor  
DDR and DDR2 SDRAM DC Electrical Characteristics  
6.1  
DDR and DDR2 SDRAM DC Electrical Characteristics  
This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the device when  
GV (typ) = 1.8 V.  
DD  
Table 14. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
I/O supply voltage  
GVDD  
MVREF  
VTT  
VIH  
1.71  
1.89  
0.51 × GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.125  
±10  
V
V
1
2
I/O reference voltage  
0.49 × GVDD  
I/O termination voltage  
Input high voltage  
MVREF – 0.04  
V
3
MVREF + 0.125  
V
4
Input low voltage  
VIL  
–0.3  
V
Output leakage current  
Output high current (VOUT = 1.420 V)  
Output low current (VOUT = 0.280 V)  
MVREF input leakage current  
IOZ  
μA  
mA  
mA  
μA  
μA  
IOH  
–13.4  
13.4  
IOL  
IVREF  
IIN  
±10  
Input current (0 V VIN OVDD  
)
±10  
Notes:  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to equal 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise  
on MVREF cannot exceed ±2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal  
MVREF. This rail should track variations in the DC level of MVREF  
.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
This table provides the DDR2 capacitance when GV (typ) = 1.8 V.  
DD  
Table 15. DDR2 SDRAM Capacitance for GV (typ)=1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 1.8 V ± 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
This table provides the recommended operating conditions for the DDR SDRAM component(s) of the device when  
GV (typ) = 2.5 V.  
DD  
Table 16. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
I/O supply voltage  
GVDD  
MVREF  
VTT  
2.375  
2.625  
V
V
V
1
2
3
I/O reference voltage  
I/O termination voltage  
0.49 × GVDD  
MVREF – 0.04  
0.51 × GVDD  
MVREF + 0.04  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
19  
DDR and DDR2 SDRAM AC Electrical Characteristics  
Table 16. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V (continued)  
DD  
Parameter/Condition  
Input high voltage  
Symbol  
Min  
Max  
Unit  
Notes  
VIH  
VIL  
MVREF + 0.18  
GVDD + 0.3  
V
V
4
Input low voltage  
–0.3  
MVREF – 0.18  
Output leakage current  
IOZ  
±10  
μA  
mA  
mA  
μA  
μA  
Output high current (VOUT = 1.95 V)  
Output low current (VOUT = 0.35 V)  
MVREF input leakage current  
IOH  
IOL  
IVREF  
IIN  
–15.2  
15.2  
±10  
±10  
Input current (0 V VIN OVDD  
)
Notes:  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed ±2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF  
.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
This table provides the DDR capacitance when GV (typ) = 2.5 V.  
DD  
Table 17. DDR SDRAM Capacitance for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
Input/output capacitance: DQ, DQS  
Symbol  
Min  
Max  
Unit  
Notes  
CIO  
6
8
pF  
pF  
1
1
Delta input/output capacitance: DQ, DQS  
CDIO  
0.5  
Note:  
1. This parameter is sampled. GVDD = 2.5 V ± 0.125 V, f = 1 MHz, TA = 25° C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
6.2  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.  
6.2.1  
DDR and DDR2 SDRAM Input AC Timing Specifications  
This table provides the input AC timing specifications for the DDR2 SDRAM interface when GV (typ) = 1.8 V.  
DD  
Table 18. DDR2 SDRAM Input AC Timing Specifications for GV (typ) = 1.8 V  
DD  
At recommended operating conditions with GVDD of 1.8 V ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
VIL  
VIH  
MVREF – 0.25  
V
V
MVREF + 0.25  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
20  
Freescale Semiconductor  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This table provides the input AC timing specifications for the DDR SDRAM interface when GV (typ) = 2.5 V.  
DD  
Table 19. DDR SDRAM Input AC Timing Specifications  
At recommended operating conditions with GVDD of 2.5 V ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.31  
V
V
VIH  
MVREF + 0.31  
Table 20. DDR and DDR2 SDRAM Input AC Timing Specifications Mode  
At recommended operating conditions with GVDD of (1.8 or 2.5 V) ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MDQS—MDQ/MECC input skew per byte  
tDISKEW  
ps  
1, 2  
333 MHz  
266 MHz  
200 MHz  
–750  
–1125  
–1250  
750  
1125  
1250  
Notes:  
1. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.  
2. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 n 7)  
or ECC (MECC[{0...7}] if n = 8).  
This figure shows the input timing diagram for the DDR controller.  
MCK[n]  
MCK[n]  
tMCK  
MDQS[n]  
MDQ[x]  
D0  
D1  
tDISKEW  
tDISKEW  
Figure 6. DDR Input Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
21  
DDR and DDR2 SDRAM AC Electrical Characteristics  
6.2.2  
DDR and DDR2 SDRAM Output AC Timing Specifications  
Table 21 and Table 22 provide the output AC timing specifications and measurement conditions for the DDR and DDR2  
SDRAM interface.  
Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Source  
Synchronous Mode  
At recommended operating conditions with GVDD of (1.8 V or 2.5 V) ± 5%.  
Parameter8  
Symbol1  
Min  
Max  
Unit  
Notes  
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)  
Skew between any MCK to ADDR/CMD  
tMCK  
6
10  
ns  
ns  
2
3
tAOSKEW  
333 MHz  
266 MHz  
200 MHz  
–1.0  
–1.1  
–1.2  
0.2  
0.3  
0.4  
ADDR/CMD output setup with respect to MCK  
333 MHz  
tDDKHAS  
ns  
ns  
4
4
2.1  
2.8  
3.5  
266 MHz  
200 MHz  
ADDR/CMD output hold with respect to MCK  
tDDKHAX  
333 MHz  
2.0  
2.7  
2.8  
3.5  
266 MHz—DDR1  
266 MHz—DDR2  
200 MHz  
MCS(n) output setup with respect to MCK  
tDDKHCS  
tDDKHCX  
tDDKHMH  
ns  
ns  
4
4
333 MHz  
266 MHz  
200 MHz  
2.1  
2.8  
3.5  
MCS(n) output hold with respect to MCK  
MCK to MDQS  
333 MHz  
266 MHz  
200 MHz  
2.0  
2.7  
3.5  
–0.8  
0.7  
ns  
ns  
5, 9  
6
MDQ/MECC/MDM output setup with respect to MDQS tDDKHDS  
,
333 MHz tDDKLDS  
266 MHz  
200 MHz  
0.7  
1.0  
1.2  
MDQ/MECC/MDM output hold with respect to MDQS  
tDDKHDX  
,
ns  
ns  
6
7
333 MHz tDDKLDX  
266 MHz  
200 MHz  
0.7  
1.0  
1.2  
MDQS preamble start  
tDDKHMP –0.5 × tMCK – 0.6 –0.5 × tMCK + 0.6  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
22  
Freescale Semiconductor  
DDR and DDR2 SDRAM AC Electrical Characteristics  
Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Source  
Synchronous Mode (continued)  
At recommended operating conditions with GVDD of (1.8 V or 2.5 V) ± 5%.  
Parameter8  
Symbol1  
Min  
Max  
Unit  
Notes  
MDQS epilogue end  
tDDKHME  
–0.6  
0.9  
ns  
7
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs  
(A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. In the source synchronous mode, MCK/MCK can be shifted in ¼ applied cycle increments through the clock control register.  
For the skew measurements referenced for tAOSKEW it is assumed that the clock adjustment is set to align the  
address/command valid with the rising edge of MCK.  
4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the  
ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks  
by ½ applied cycle.  
5. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing  
(DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through  
control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this is typically set to the  
same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two  
parameters have been set to the same adjustment value. Refer MPC8360E PowerQUICC II Pro Integrated Communications  
Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.  
6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the device.  
7. All outputs are referenced to the rising edge of MCK(n) at the pins of the device. Note that tDDKHMP follows the symbol  
conventions described in note 1.  
8. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.  
9. In rev. 2.0 silicon, tDDKHMH maximum meets the specification of 0.6 ns. In rev. 2.0 silicon, due to errata, tDDKHMH minimum  
is –0.9 ns. Refer to Errata DDR18 in Chip Errata for the MPC8360E, Rev. 1.  
This figure shows the DDR SDRAM output timing for address skew with respect to any MCK.  
MCK[n]  
MCK[n]  
tMCK  
tAOSKEW(max)  
ADDR/CMD  
ADDR/CMD  
CMD  
NOOP  
tAOSKEW(min)  
CMD  
NOOP  
Figure 7. Timing Diagram for t  
Measurement  
AOSKEW  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
23  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This figure provides the AC test load for the DDR bus.  
GVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 8. DDR AC Test Load  
Table 22. DDR and DDR2 SDRAM Measurement Conditions  
Symbol  
DDR  
DDR2  
Unit  
Notes  
VTH  
MVREF ± 0.31 V  
MVREF ± 0.25 V  
V
V
1
2
V
0.5 × GVDD  
0.5 × GVDD  
OUT  
Notes:  
1. Data input threshold measurement point.  
2. Data output measurement point.  
This figure shows the DDR SDRAM output timing diagram for source synchronous mode.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS, tDDKHCS  
tDDKHAX, tDDKHCX  
ADDR/CMD  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHME  
tDDKHDS  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 9. DDR SDRAM Output Timing Diagram for Source Synchronous Mode  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
24  
Freescale Semiconductor  
DUART DC Electrical Characteristics  
7
DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the MPC8360E/58E.  
7.1  
DUART DC Electrical Characteristics  
This table provides the DC electrical characteristics for the DUART interface of the device.  
Table 23. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
High-level input voltage  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
1
Low-level input voltage OVDD  
0.8  
High-level output voltage, IOH = –100 μA  
Low-level output voltage, IOL = 100 μA  
VOH  
VOL  
IIN  
OVDD – 0.4  
V
0.2  
±10  
V
Input current (0 V VIN OVDD  
)
μA  
Note:  
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.  
7.2  
DUART AC Electrical Specifications  
This table provides the AC timing parameters for the DUART interface of the device.  
Table 24. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Notes  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
256  
>1,000,000  
16  
baud  
baud  
1
2
Notes:  
1. Actual attainable baud rate is limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values  
are sampled each sixteenth sample.  
8
UCC Ethernet Controller: Three-Speed Ethernet,  
MII Management  
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.  
8.1  
Three-Speed Ethernet Controller (10/100/1000 Mbps)—  
GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics  
The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII (media independent  
interface), RMII (reduced media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent  
interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management  
data clock). The MII, RMII, GMII, and TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only  
defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
25  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for the MDIO and MDC are  
specified in Section 8.3, “Ethernet Management Interface Electrical Characteristics.”  
8.1.1  
10/100/1000 Ethernet DC Electrical Characteristics  
The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent  
interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent interface (RMII) signals, management data  
input/output (MDIO) and management data clock (MDC).  
The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated at 2.5 V. The RGMII  
and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface (RGMII) Specification Version 1.3. The RMII  
interface follows the RMII Consortium RMII Specification Version 1.2.  
Table 25. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Notes  
Supply voltage 3.3 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.97  
2.40  
GND  
2.0  
3.63  
LVDD + 0.3  
0.50  
V
V
1
IOH = –4.0 mA  
LVDD = Min  
IOL = 4.0 mA  
LVDD = Min  
V
LVDD + 0.3  
0.90  
V
–0.3  
V
IIN  
0 V VIN LVDD  
±10  
μA  
Note:  
1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OVDD supply.  
Table 26. RGMII/RTBI DC Electrical Characteristics (when operating at 2.5 V)  
Parameters  
Supply voltage 2.5 V  
Symbol  
Conditions  
Min  
Max  
Unit  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.37  
2.00  
2.63  
LVDD + 0.3  
0.40  
V
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
IOH = –1.0 mA  
LVDD = Min  
LVDD = Min  
LVDD = Min  
LVDD = Min  
IOL = 1.0 mA  
GND – 0.3  
1.7  
V
LVDD + 0.3  
0.70  
V
–0.3  
V
IIN  
0 V VIN LVDD  
±10  
μA  
8.2  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.  
8.2.1  
GMII Timing Specifications  
This sections describe the GMII transmit and receive AC timing specifications.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
26  
Freescale Semiconductor  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.1.1  
GMII Transmit AC Timing Specifications  
This table provides the GMII transmit AC timing specifications.  
Table 27. GMII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
GTX_CLK clock period  
tGTX  
8.0  
ns  
%
3
GTX_CLK duty cycle  
tGTXH/tGTX  
40  
60  
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  
tGTKHDX  
tGTKHDV  
0.5  
5.0  
ns  
GTX_CLK clock rise time, (20% to 80%)  
GTX_CLK clock fall time, (80% to 20%)  
GTX_CLK125 clock period  
tGTXR  
tGTXF  
tG125  
45  
1.0  
1.0  
ns  
ns  
ns  
%
2
8.0  
GTX_CLK125 reference clock duty cycle measured at  
LVDD/2  
tG125H G125  
/t  
55  
2
Notes:  
1. The symbols used for timing specifications follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGTKHDV symbolizes GMII  
transmit timing (GT) with respect to the tGTX clock reference (K) going to the high state (H) relative to the time date input  
signals (D) reaching the valid state (V) to state or setup time. Also, tGTKHDX symbolizes GMII transmit timing (GT) with  
respect to the tGTX clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X)  
or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock  
of a particular functional. For example, the subscript of tGTX represents the GMII(G) transmit (TX) clock. For rise and fall  
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. This symbol is used to represent the external GTX_CLK125 signal and does not follow the original symbol naming  
convention.  
3. In rev. 2.0 silicon, due to errata, tGTKHDX minimum and tGTKHDV maximum are not supported when the GTX_CLK is  
selected. Refer to Errata QE_ENET18 in Chip Errata for the MPC8360E, Rev. 1.  
This figure shows the GMII transmit AC timing diagram.  
tGTXR  
tGTX  
GTX_CLK  
tGTXH  
tGTXF  
TXD[7:0]  
TX_EN  
TX_ER  
tGTKHDX  
Figure 10. GMII Transmit AC Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
27  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.1.2  
GMII Receive AC Timing Specifications  
This table provides the GMII receive AC timing specifications.  
Table 28. GMII Receive AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
RX_CLK clock period  
tGRX  
40  
2.0  
0.2  
8.0  
60  
ns  
%
2
RX_CLK duty cycle  
tGRXH/tGRX  
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise time, (20% to 80%)  
RX_CLK clock fall time, (80% to 20%)  
Notes:  
tGRDVKH  
tGRDXKH  
tGRXR  
ns  
ns  
ns  
ns  
1.0  
1.0  
tGRXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGRDVKH symbolizes GMII  
receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the tRX clock  
reference (K) going to the high state (H) or setup time. Also, tGRDXKL symbolizes GMII receive timing (GR) with respect to  
the time data input signals (D) went invalid (X) relative to the tGRX clock reference (K) going to the low (L) state or hold time.  
Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a  
particular functional. For example, the subscript of tGRX represents the GMII (G) receive (RX) clock. For rise and fall times,  
the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. In rev. 2.0 silicon, due to errata, tGRDXKH minimum is 0.5 which is not compliant with the standard. Refer to Errata  
QE_ENET18 in Chip Errata for the MPC8360E, Rev. 1.  
This figure shows the GMII receive AC timing diagram.  
tGRXR  
tGRX  
RX_CLK  
tGRXH  
tGRXF  
RXD[7:0]  
RX_DV  
RX_ER  
tGRDXKH  
tGRDVKH  
Figure 11. GMII Receive AC Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
28  
Freescale Semiconductor  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.2  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
8.2.2.1  
MII Transmit AC Timing Specifications  
This table provides the MII transmit AC timing specifications.  
Table 29. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
TX_CLK clock period 10 Mbps  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
tMTX  
tMTX  
tMTXH/tMTX  
tMTKHDX  
35  
400  
40  
5
65  
ns  
ns  
%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
1
ns  
tMTKHDV  
tMTXR  
tMTXF  
15  
TX_CLK data clock rise time, (20% to 80%)  
TX_CLK data clock fall time, (80% to 20%)  
Note:  
1.0  
1.0  
4.0  
4.0  
ns  
ns  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit  
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,  
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.  
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is  
used with the appropriate letter: R (rise) or F (fall).  
This figure shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 12. MII Transmit AC Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
29  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.2.2  
MII Receive AC Timing Specifications  
This table provides the MII receive AC timing specifications.  
Table 30. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
RX_CLK clock period 10 Mbps  
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
tMRX  
tMRX  
tMRXH/tMRX  
400  
40  
ns  
ns  
%
35  
65  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise time, (20% to 80%)  
RX_CLK clock fall time, (80% to 20%)  
Note:  
tMRDVKH  
tMRDXKH  
tMRXR  
10.0  
10.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tMRXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII receive  
timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference (K)  
going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data  
input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. Note that, in  
general, the clock reference symbol representation is based on three letters representing the clock of a particular functional.  
For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention  
is used with the appropriate letter: R (rise) or F (fall).  
This figure provides the AC test load.  
Output  
LVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 13. AC Test Load  
This figure shows the MII receive AC timing diagram.  
tMRX  
tMRXR  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 14. MII Receive AC Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
30  
Freescale Semiconductor  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.3  
RMII AC Timing Specifications  
This section describes the RMII transmit and receive AC timing specifications.  
8.2.3.1  
RMII Transmit AC Timing Specifications  
This table provides the RMII transmit AC timing specifications.  
Table 31. RMII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
REF_CLK clock  
tRMX  
20  
ns  
%
REF_CLK duty cycle  
tRMXH RMX  
/t  
35  
65  
REF_CLK to RMII data TXD[1:0], TX_EN delay  
tRMTKHDX  
2
ns  
tRMTKHDV  
tRMXR  
tRMXF  
10  
REF_CLK data clock rise time  
REF_CLK data clock fall time  
Note:  
1.0  
1.0  
4.0  
4.0  
ns  
ns  
1. The symbols used for timing specifications follow the pattern of t(first three letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMTKHDX symbolizes RMII  
transmit timing (RMT) for the time tRMX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that,  
in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of tRMX represents the RMII(RM) reference (X) clock. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
This figure shows the RMII transmit AC timing diagram.  
tRMXR  
tRMX  
REF_CLK  
tRMXF  
tRMXH  
TXD[1:0]  
TX_EN  
tRMTKHDX  
Figure 15. RMII Transmit AC Timing Diagram  
8.2.3.2  
RMII Receive AC Timing Specifications  
This table provides the RMII receive AC timing specifications.  
Table 32. RMII Receive AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
REF_CLK clock period  
REF_CLK duty cycle  
tRMX  
20  
ns  
%
tRMXH RMX  
/t  
35  
65  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
31  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
Table 32. RMII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK  
REF_CLK clock rise time  
tRMRDVKH  
tRMRDXKH  
tRMXR  
4.0  
2.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
REF_CLK clock fall time  
tRMXF  
Note:  
1. The symbols used for timing specifications follow the pattern of t(first three letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMRDVKH symbolizes RMII  
receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the tRMX clock  
reference (K) going to the high (H) state or setup time. Also, tRMRDXKL symbolizes RMII receive timing (RMR) with respect  
to the time data input signals (D) went invalid (X) relative to the tRMX clock reference (K) going to the low (L) state or hold  
time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a  
particular functional. For example, the subscript of tRMX represents the RMII (RM) reference (X) clock. For rise and fall times,  
the latter convention is used with the appropriate letter: R (rise) or F (fall).  
This figure provides the AC test load.  
Output  
LVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 16. AC Test Load  
This figure shows the RMII receive AC timing diagram.  
tRMXR  
tRMX  
REF_CLK  
tRMXF  
Valid Data  
tRMXH  
RXD[1:0]  
CRS_DV  
RX_ER  
tRMRDVKH  
tRMRDXKH  
Figure 17. RMII Receive AC Timing Diagram  
8.2.4  
TBI AC Timing Specifications  
This section describes the TBI transmit and receive AC timing specifications.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
32  
Freescale Semiconductor  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.4.1  
TBI Transmit AC Timing Specifications  
This table provides the TBI transmit AC timing specifications.  
Table 33. TBI Transmit AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
GTX_CLK clock period  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
tTTX  
tTTXH/tTTX  
tTTKHDX  
8.0  
ns  
%
3
GTX_CLK duty cycle  
40  
60  
GTX_CLK to TBI data TCG[9:0] delay  
1.0  
5.0  
ns  
tTTKHDV  
GTX_CLK clock rise time, (20% to 80%)  
GTX_CLK clock fall time, (80% to 20%)  
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Notes:  
tTTXR  
tTTXF  
tG125  
45  
1.0  
1.0  
ns  
ns  
ns  
ns  
2
8.0  
tG125H G125  
/t  
55  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state )(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTTKHDV symbolizes the TBI  
transmit timing (TT) with respect to the time from tTTX (K) going high (H) until the referenced data signals (D) reach the valid  
state (V) or setup time. Also, tTTKHDX symbolizes the TBI transmit timing (TT) with respect to the time from tTTX (K) going  
high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference  
symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript  
of tTTX represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
2. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
3. In rev. 2.0 silicon, due to errata, tTTKHDX minimum is 0.7 ns for UCC1. Refer to Errata QE_ENET19 in Chip Errata for the  
MPC8360E, Rev. 1.  
This figure shows the TBI transmit AC timing diagram.  
tTTXR  
tTTX  
GTX_CLK  
tTTXH  
tTTXF  
TXD[7:0]  
TX_EN  
TX_ER  
tTTKHDX  
Figure 18. TBI Transmit AC Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
33  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.4.2  
TBI Receive AC Timing Specifications  
This table provides the TBI receive AC timing specifications.  
Table 34. TBI Receive AC Timing Specifications  
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.  
Parameter/Condition  
PMA_RX_CLK clock period  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
tTRX  
7.5  
40  
16.0  
8.5  
60  
ns  
ns  
%
2
PMA_RX_CLK skew  
tSKTRX  
RX_CLK duty cycle  
tTRXH TRX  
tTRDVKH  
tTRDXKH  
/t  
RCG[9:0] setup time to rising PMA_RX_CLK  
2.5  
ns  
RCG[9:0] hold time to rising PMA_RX_CLK  
1.0  
ns  
2
RX_CLK clock rise time, VIL(min) to VIH(max)  
RX_CLK clock fall time, VIH(max) to VIL(min)  
Notes:  
tTRXR  
tTRXF  
0.7  
0.7  
2.4  
2.4  
ns  
ns  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTRDVKH symbolizes TBI receive  
timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the tTRX clock reference (K)  
going to the high (H) state or setup time. Also, tTRDXKH symbolizes TBI receive timing (TR) with respect to the time data  
input signals (D) went invalid (X) relative to the tTRX clock reference (K) going to the high (H) state. Note that, in general,  
the clock reference symbol representation is based on three letters representing the clock of a particular functional. For  
example, the subscript of tTRX represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used  
with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the  
clock that is being skewed (TRX).  
2. Setup and hold time of even numbered RCG are measured from riding edge of PMA_RX_CLK1. Setup and hold time of  
odd numbered RCG are measured from riding edge of PMA_RX_CLK0.  
This figure shows the TBI receive AC timing diagram.  
tTRXR  
tTRX  
PMA_RX_CLK1  
RCG[9:0]  
tTRXH  
tTRXF  
Even RCG  
Odd RCG  
tTRDVKH  
tSKTRX  
tTRDXKH  
PMA_RX_CLK0  
tTRDXKH  
tTRXH  
tTRDVKH  
Figure 19. TBI Receive AC Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
34  
Freescale Semiconductor  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
8.2.5  
RGMII and RTBI AC Timing Specifications  
This table presents the RGMII and RTBI AC timing specifications.  
Table 35. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions with LVDD of 2.5 V ± 5%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver)  
tSKRGTKHDX  
tSKRGTKHDV  
–0.5  
0.5  
ns  
7
tSKRGDXKH  
tSKRGDVKH  
1.0  
2.6  
ns  
2
Clock cycle duration  
tRGT  
7.2  
45  
40  
8.0  
50  
50  
8.8  
55  
ns  
%
3
4, 5  
3, 5  
Duty cycle for 1000Base-T  
Duty cycle for 10BASE-T and 100BASE-TX  
Rise time (20–80%)  
tRGTH RGT  
/t  
tRGTH/tRGT  
60  
%
tRGTR  
tRGTF  
tG125  
0.75  
0.75  
ns  
ns  
ns  
%
Fall time (20–80%)  
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Notes:  
8.0  
6
tG125H G125  
/t  
47  
53  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent  
RGMII and RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (Rx) clock. Note also that the  
notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews,  
the subscript is skew (SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns can  
be added to the associated clock signal.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as  
long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed  
transitioned between.  
5. Duty cycle reference is LVDD/2.  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
7. In rev. 2.0 silicon, due to errata, tSKRGTKHDX minimum is –2.3 ns and tSKRGTKHDV maximum is 1 ns for UCC1, 1.2 ns for  
UCC2 option 1, and 1.8 ns for UCC2 option 2. In rev. 2.1 silicon, due to errata, tSKRGTKHDX minimum is –0.65 ns for UCC2  
option 1 and –0.9 for UCC2 option 2, and tSKRGTKHDV maximum is 0.75 ns for UCC1 and UCC2 option 1 and 0.85 for UCC2  
option 2. Refer to Errata QE_ENET10 in Chip Errata for the MPC8360E, Rev. 1. UCC1 does meet tSKRGTKHDX minimum for  
rev. 2.1 silicon.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
35  
Ethernet Management Interface Electrical Characteristics  
This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.  
tRGT  
tRGTH  
GTX_CLK  
(At Transmitter)  
tSKRGTKHDX  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
tSKRGTKHDX  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
tSKRGTKHDX  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
tSKRGTKHDX  
RX_CLK  
(At PHY)  
Figure 20. RGMII and RTBI AC Timing and Multiplexing Diagrams  
8.3  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output)  
and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI, and RTBI are specified in  
Section 8.1, “Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical  
Characteristics.”  
8.3.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC  
are provided in this table.  
Table 36. MII Management DC Electrical Characteristics When Powered at 3.3 V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
OVDD  
VOH  
VOL  
VIH  
2.97  
2.10  
GND  
2.00  
3.63  
OVDD + 0.3  
0.50  
V
V
IOH = –1.0 mA OVDD = Min  
IOL = 1.0 mA  
OVDD = Min  
V
V
VIL  
0.80  
V
IIN  
0 V VIN OVDD  
±10  
μA  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
36  
Freescale Semiconductor  
Ethernet Management Interface Electrical Characteristics  
8.3.2  
MII Management AC Electrical Specifications  
This table provides the MII management AC timing specifications.  
Table 37. MII Management AC Timing Specifications  
At recommended operating conditions with LVDD is 3.3 V ± 10%.  
Parameter/Condition  
MDC frequency  
Symbol1  
Min  
Typ  
Max  
Unit  
Notes  
fMDC  
tMDC  
32  
2.5  
400  
MHz  
ns  
2
3
MDC period  
MDC clock pulse width high  
MDC to MDIO delay  
tMDCH  
ns  
tMDTKHDX  
tMDTKHDV  
10  
110  
ns  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
tMDRDVKH  
tMDRDXKH  
tMDCR  
10  
0
10  
10  
ns  
ns  
ns  
ns  
MDC fall time  
tMDHF  
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes  
management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or  
data hold time. Also, tMDRDVKH symbolizes management data timing (MD) with respect to the time data input signals (D)  
reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall  
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz  
and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum  
frequency is 1.7 MHz).  
3. This parameter is dependent on the ce_clk speed (that is, for a ce_clk of 200 MHz, the delay is 90 ns and for a ce_clk of  
300 MHz, the delay is 63 ns).  
This figure shows the MII management AC timing diagram.  
tMDCR  
tMDC  
MDC  
tMDCH  
tMDHF  
MDIO  
(Input)  
tMDRDVKH  
tMDRDXKH  
MDIO  
(Output)  
tMDTKHDX  
Figure 21. MII Management Interface Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
37  
Local Bus DC Electrical Characteristics  
8.3.3  
IEEE 1588 Timer AC Specifications  
This table provides the IEEE 1588 timer AC specifications.  
Table 38. IEEE 1588 Timer AC Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Timer clock frequency  
tTMRCK  
tTMRCKS  
tTMRCKH  
tGCLKNV  
tTMRAL  
0
70  
6
MHz  
1
2, 3  
2, 3  
Input setup to timer clock  
Input hold from timer clock  
Output clock to output valid  
Timer alarm to output valid  
Notes:  
0
ns  
2
1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected. The  
minimum and maximum requirement for both rtc_clock and tmr_clock are the same.  
2. These are asynchronous signals.  
3. Inputs need to be stable at least one TMR clock.  
9
Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the MPC8360E/58E.  
9.1  
Local Bus DC Electrical Characteristics  
This table provides the DC electrical characteristics for the local bus interface.  
Table 39. Local Bus DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
High-level output voltage, IOH = –100 μA  
Low-level output voltage, IOL = 100 μA  
Input current  
VOH  
VOL  
IIN  
OVDD – 0.4  
V
0.2  
±10  
V
μA  
9.2  
Local Bus AC Electrical Specifications  
This table describes the general timing parameters of the local bus interface of the device.  
Table 40. Local Bus General Timing Parameters—DLL Enabled  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
7.5  
1.7  
1.9  
1.0  
ns  
ns  
ns  
ns  
2
Input setup to local bus clock (except LUPWAIT)  
LUPWAIT input setup to local bus clock  
tLBIVKH1  
tLBIVKH2  
tLBIXKH1  
3, 4  
3, 4  
3, 4  
Input hold from local bus clock (except LUPWAIT)  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
38  
Freescale Semiconductor  
Local Bus AC Electrical Specifications  
Table 40. Local Bus General Timing Parameters—DLL Enabled (continued)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
LUPWAIT input hold from local bus clock  
tLBIXKH2  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLBKHLR  
1.0  
1.5  
3.0  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3, 4  
5
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to LALE rise  
6
7
4.5  
4.5  
4.5  
4.5  
3
Local bus clock to output valid (except LAD/LDP and LALE)  
Local bus clock to data valid for LAD/LDP  
tLBKHOV1  
tLBKHOV2  
tLBKHOV3  
tLBKHOX1  
tLBKHOX2  
tLBKHOZ  
Local bus clock to address valid for LAD  
3
Output hold from local bus clock (except LAD/LDP and LALE)  
Output hold from local bus clock for LAD/LDP  
Local bus clock to output high impedance for LAD/LDP  
Notes:  
1.0  
1.0  
3
3
3.8  
8
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus  
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case  
for clock one (1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect  
to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to rising edge of LSYNC_IN.  
3. All signals are measured from OVDD/2 of the rising edge of LSYNC_IN to 0.4 × OVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than  
the load on LAD output pins.  
6. tLBOTOT2 should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the  
load on LAD output pins.  
7. tLBOTOT3 should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output  
pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
This table describes the general timing parameters of the local bus interface of the device.  
Table 41. Local Bus General Timing Parameters—DLL Bypass Mode9  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
15  
7
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
5
Input setup to local bus clock  
tLBIVKH  
tLBIXKH  
Input hold from local bus clock  
1.0  
1.5  
3
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
6
2.5  
7
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
39  
Local Bus AC Electrical Specifications  
Table 41. Local Bus General Timing Parameters—DLL Bypass Mode9 (continued)  
Parameter  
Local bus clock to output valid  
Symbol1  
Min  
Max  
Unit  
Notes  
tLBKHOV  
tLBKHOZ  
3
4
ns  
ns  
3
8
Local bus clock to output high impedance for LAD/LDP  
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus  
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case  
for clock one (1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect  
to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from OVDD/2 of the rising/falling edge of LCLK0 to 0.4 × OVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10 pF less than  
the load on LAD output pins.  
6. tLBOTOT2 should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10 pF less than the  
load on LAD output pins.  
7. tLBOTOT3 should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output  
pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.  
This figure provides the AC test load for the local bus.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 22. Local Bus C Test Load  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
40  
Freescale Semiconductor  
Local Bus AC Electrical Specifications  
These figures show the local bus signals.  
LSYNC_IN  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBIXKH  
tLBKHOX  
tLBKHOV  
tLBKHOV  
tLBKHOV  
tLBKHLR  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE/  
tLBKHOZ  
tLBKHOX  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOX  
Output (Address) Signal:  
LAD[0:31]  
tLBOTOT  
LALE  
Figure 23. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)  
LCLK[n]  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
tLBIXKH  
tLBKHOV  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE/  
tLBKHOZ  
tLBKHOV  
Output Signals:  
LAD[0:31]/LDP[0:3]  
tLBOTOT  
LALE  
Figure 24. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
41  
Local Bus AC Electrical Specifications  
LSYNC_IN  
T1  
T3  
tLBKHOZ1  
tLBKHOV1  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH2  
tLBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH1  
tLBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ1  
tLBKHOV1  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 25. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (DLL Enabled)  
LCLK  
T1  
T3  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 26. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2 (DLL Bypass Mode)  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
42  
Freescale Semiconductor  
Local Bus AC Electrical Specifications  
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 27. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Bypass Mode)  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
43  
JTAG DC Electrical Characteristics  
LSYNC_IN  
T1  
T2  
T3  
T4  
tLBKHOZ1  
tLBKHOV1  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH2  
tLBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH1  
tLBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ1  
tLBKHOV1  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 28. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Enabled)  
10 JTAG  
This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8360E/58E.  
10.1 JTAG DC Electrical Characteristics  
This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the device.  
Table 42. JTAG interface DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.5  
–0.3  
OVDD + 0.3  
0.8  
V
V
0 V VIN OVDD  
±10  
μA  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
44  
Freescale Semiconductor  
JTAG AC Electrical Characteristics  
10.2 JTAG AC Electrical Characteristics  
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.  
This table provides the JTAG AC timing specifications as defined in Figure 30 through Figure 33.  
1
Table 43. JTAG AC Timing Specifications (Independent of CLKIN)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol 2  
Min  
Max  
Unit  
Notes  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock duty cycle  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
tJTG  
0
33.3  
MHz  
ns  
3
30  
45  
0
t
JTKHKL/tJTG  
55  
2
%
tJTGR & tJTGF  
tTRST  
ns  
25  
ns  
Input setup times:  
ns  
4
Boundary-scan data  
TMS, TDI  
tJTDVKH  
tJTIVKH  
4
4
Input hold times:  
Valid times:  
ns  
ns  
ns  
ns  
4
5
Boundary-scan data  
TMS, TDI  
tJTDXKH  
tJTIXKH  
10  
10  
Boundary-scan data  
TDO  
tJTKLDV  
tJTKLOV  
2
2
11  
11  
Output hold times:  
5
Boundary-scan data  
TDO  
tJTKLDX  
tJTKLOX  
2
2
JTAG external clock to output high impedance:  
Boundary-scan data  
TDO  
5, 6  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in  
question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see  
Figure 22). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH  
symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to  
the tJTG clock reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect  
to the time data input signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note  
that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular  
functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
.
6. Guaranteed by design and characterization.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
45  
JTAG AC Electrical Characteristics  
This figure provides the AC test load for TDO and the boundary-scan outputs of the device.  
Z0 = 50 Ω  
OVDD/2  
Output  
RL = 50 Ω  
Figure 29. AC Test Load for the JTAG Interface  
This figure provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTGF  
tJTG  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 30. JTAG Clock Input Timing Diagram  
This figure provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 31. TRST Timing Diagram  
This figure provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Boundary  
Output Data Valid  
Data Outputs  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 32. Boundary-Scan Timing Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
46  
Freescale Semiconductor  
I2C DC Electrical Characteristics  
This figure provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTIVKH  
tJTIXKH  
Input  
Data Valid  
TDI, TMS  
tJTKLOV  
tJTKLOX  
TDO  
Output Data Valid  
tJTKLOZ  
TDO  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 33. Test Access Port Timing Diagram  
11 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the MPC8360E/58E.  
2
11.1 I C DC Electrical Characteristics  
2
This table provides the DC electrical characteristics for the I C interface of the device.  
2
Table 44. I C DC Electrical Characteristics  
At recommended operating conditions with OVDD of 3.3 V ± 10%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input high voltage level  
Input low voltage level  
Low level output voltage  
VIH  
VIL  
0.7 × OVDD  
OVDD + 0.3  
0.3 × OVDD  
0.4  
V
V
1
–0.3  
0
VOL  
V
Output fall time from VIH(min) to VIL(max) with a bus  
capacitance from 10 to 400 pF  
t
20 + 0.1 × CB  
250  
ns  
2
I2KLKV  
Pulse width of spikes which must be suppressed by the input  
filter  
tI2KHKL  
0
50  
ns  
3
Capacitance for each I/O pin  
CI  
10  
pF  
4
Input current (0 V VIN OVDD  
)
IIN  
±10  
μA  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. Refer to the MPC8360E Integrated Communications Processor Reference Manual for information on the digital filter used.  
4. I/O pins obstruct the SDA and SCL lines if OVDD is switched off.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
47  
I2C AC Electrical Specifications  
2
11.2 I C AC Electrical Specifications  
2
This table provides the AC timing parameters for the I C interface of the device.  
2
Table 45. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 44).  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
SCL clock frequency  
fI2C  
tI2CL  
0
400  
kHz  
μs  
2
Low period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
High period of the SCL clock  
tI2CH  
μs  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
μs  
Hold time (repeated) START condition (after this period, the  
first clock pulse is generated)  
μs  
Data setup time  
tI2DVKH  
tI2DXKL  
100  
ns  
3
Data hold time:  
μs  
CBUS compatible masters  
I2C bus devices  
02  
0.93  
4
4
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Set-up time for STOP condition  
tI2CR  
tI2CF  
20 + 0.1 Cb  
20 + 0.1 Cb  
0.6  
300  
300  
ns  
ns  
μs  
μs  
V
t
I2PVKH  
Bus free time between a STOP and START condition  
tI2KHDX  
VNL  
1.3  
Noise margin at the LOW level for each connected device  
(including hysteresis)  
0.1 × OVDD  
Noise margin at the HIGH level for each connected device  
(including hysteresis)  
VNH  
0.2 × OVDD  
V
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional  
block)(signal)(state)(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For  
example, tI2DVKH symbolizes I2C timing (I2) with respect to the time data input signals (D) reach the valid state (V)  
relative to the tI2C clock reference (K) going to the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing  
(I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the tI2C clock  
reference (K) going to the low (L) state or hold time. Also, tI2PVKH symbolizes I2C timing (I2) for the time that the  
data with respect to the stop condition (P) reaching the valid state (V) relative to the tI2C clock reference (K) going  
to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter:  
R (rise) or F (fall).  
2. The device provides a hold time of at least 300 ns for the SDA signal (referred to the VIH min of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
3. The maximum tI2DVKH has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
4. CB = capacitance of one bus line in pF.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
48  
Freescale Semiconductor  
PCI DC Electrical Characteristics  
2
This figure provides the AC test load for the I C.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
2
Figure 34. I C AC Test Load  
2
This figure shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
P
S
2
Figure 35. I C Bus AC Timing Diagram  
12 PCI  
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8360E/58E.  
12.1 PCI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the PCI interface of the device.  
Table 46. PCI DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Test Condition  
Min  
Max  
Unit  
VIH  
VIL  
VOUT VOH (min) or  
VOUT VOL (max)  
IOH = –500 μA  
0.5 × OVDD  
OVDD + 0.5  
0.3 × OVDD  
V
V
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input current  
-0.5  
VOH  
VOL  
IIN  
0.9 × OVDD  
V
IOL = 1500 μA  
0.1 × OVDD  
±10  
V
0 V VIN1 OVDD  
μA  
12.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus of the device. Note that the PCI_CLK or PCI_SYNC_IN  
signal is used as the PCI input clock depending on whether the device is configured as a host or agent device. This table provides  
the PCI AC timing specifications at 66 MHz.  
.
Table 47. PCI AC Timing Specifications at 66 MHz  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Clock to output valid  
tPCKHOV  
tPCKHOX  
1
6.0  
ns  
ns  
2, 5  
2
Output hold from clock  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
49  
PCI AC Electrical Specifications  
Table 47. PCI AC Timing Specifications at 66 MHz (continued)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Notes:  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
14  
ns  
ns  
ns  
2, 3  
2, 4  
3.0  
0.3  
2, 4, 6  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing  
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference  
(K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset  
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
5. In rev. 2.0 silicon, due to errata, tPCIHOV maximum is 6.6 ns. Refer to Errata PCI21 in Chip Errata for the MPC8360E, Rev. 1.  
6. In rev. 2.0 silicon, due to errata, tPCIXKH minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.  
Table 48. PCI AC Timing Specifications at 33 MHz  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Clock to output valid  
tPCKHOV  
tPCKHOX  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
2
Output hold from clock  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Notes:  
2, 3  
2, 2  
2, 4, 5  
7.0  
0.3  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI  
timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS  
,
reference (K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time  
hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
5. In rev. 2.0 silicon, due to errata, tPCIXKH minimum is 1 ns. Refer to Errata PCI17 in Chip Errata for the MPC8360E, Rev. 1.  
This figure provides the AC test load for PCI.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 36. PCI AC Test Load  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
50  
Freescale Semiconductor  
Timers DC Electrical Characteristics  
This figure shows the PCI input AC timing conditions.  
CLK  
tPCIVKH  
tPCIXKH  
Input  
Figure 37. PCI Input AC Timing Measurement Conditions  
This figure shows the PCI output AC timing conditions.  
CLK  
tPCKHOV  
tPCKHOX  
Output Delay  
tPCKHOZ  
High-Impedance  
Output  
Figure 38. PCI Output AC Timing Measurement Condition  
13 Timers  
This section describes the DC and AC electrical specifications for the timers of the MPC8360E/58E.  
13.1 Timers DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device timer pins, including TIN, TOUT, TGATE, and RTC_CLK.  
Table 49. Timers DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
IOL = 3.2 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
0.4  
V
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
0 V VIN OVDD  
±10  
μA  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
51  
Timers AC Timing Specifications  
13.2 Timers AC Timing Specifications  
This table provides the timer input and output AC timing specifications.  
1
Table 50. Timers Input AC Timing Specifications  
Characteristic  
Symbol2  
Typ  
Unit  
Timers inputs—minimum pulse width  
Notes:  
tTIWID  
20  
ns  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any  
external synchronous logic. Timers inputs are required to be valid for at least tTIWID ns to ensure proper operation.  
This figure provides the AC test load for the timers.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 39. Timers AC Test Load  
14 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of the MPC8360E/58E.  
14.1 GPIO DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device GPIO.  
Table 51. GPIO DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
Notes  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
V
V
1
1
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
1
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
1
V
0 V VIN OVDD  
±10  
μA  
Note:  
1. This specification applies when operating from 3.3-V supply.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
52  
Freescale Semiconductor  
GPIO AC Timing Specifications  
14.2 GPIO AC Timing Specifications  
This table provides the GPIO input and output AC timing specifications.  
1
Table 52. GPIO Input AC Timing Specifications  
Characteristic  
Symbol2  
Typ  
Unit  
GPIO inputs—minimum pulse width  
tPIWID  
20  
ns  
Notes:  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.  
This figure provides the AC test load for the GPIO.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 40. GPIO AC Test Load  
15 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8360E/58E.  
15.1 IPIC DC Electrical Characteristics  
This table provides the DC electrical characteristics for the external interrupt pins of the IPIC.  
Table 53. IPIC DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
V
V
0.8  
±10  
0.5  
0.4  
μA  
V
Output low voltage  
Output low voltage  
Notes:  
VOL  
IOL = 6.0 mA  
IOL = 3.2 mA  
V
V
OL  
1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT, and CE ports Interrupts.  
2. IRQ_OUT and MCP_OUT are open drain pins, thus VOH is not relevant for those pins.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
53  
IPIC AC Timing Specifications  
15.2 IPIC AC Timing Specifications  
This table provides the IPIC input and output AC timing specifications.  
1
Table 54. IPIC Input AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Unit  
IPIC inputs—minimum pulse width  
tPIWID  
20  
ns  
Notes:  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are  
measured at the pin.  
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any  
external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when  
working in edge triggered mode.  
16 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8360E/58E.  
16.1 SPI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device SPI.  
Table 55. SPI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
0 V VIN OVDD  
±10  
μA  
16.2 SPI AC Timing Specifications  
This table and provide the SPI input and output AC timing specifications.  
1
Table 56. SPI AC Timing Specifications  
Characteristic  
Symbol2  
tNIKHOX  
Min  
Max  
Unit  
SPI outputs—Master mode (internal clock) delay  
0.3  
8
ns  
tNIKHOV  
SPI outputs—Slave mode (external clock) delay  
tNEKHOX  
tNEKHOV  
2
8
ns  
SPI inputs—Master mode (internal clock) input setup time  
SPI inputs—Master mode (internal clock) input hold time  
SPI inputs—Slave mode (external clock) input setup time  
tNIIVKH  
tNIIXKH  
tNEIVKH  
8
0
4
ns  
ns  
ns  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
54  
Freescale Semiconductor  
SPI AC Timing Specifications  
1
Table 56. SPI AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Max  
Unit  
SPI inputs—Slave mode (external clock) input hold time  
tNEIXKH  
2
ns  
Notes:  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI  
outputs internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are  
valid (V).  
This figure provides the AC test load for the SPI.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 41. SPI AC Test Load  
These figures represent the AC timing from Table 56. Note that although the specifications generally reference the rising edge  
of the clock, these AC timing diagrams also apply when the falling edge is the active edge.  
This figure shows the SPI timing in slave mode (external clock).  
SPICLK (Input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 42. SPI AC Timing in Slave Mode (External Clock) Diagram  
This figure shows the SPI timing in Master mode (internal clock).  
SPICLK (Output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 43. SPI AC Timing in Master Mode (Internal Clock) Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
55  
TDM/SI DC Electrical Characteristics  
17 TDM/SI  
This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the  
MPC8360E/58E.  
17.1 TDM/SI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device TDM/SI.  
Table 57. TDM/SI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
VIH  
VIL  
IOH = –2.0 mA  
IOL = 3.2 mA  
2.4  
0.5  
V
V
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
IIN  
0 V VIN OVDD  
±10  
μA  
17.2 TDM/SI AC Timing Specifications  
This table provides the TDM/SI input and output AC timing specifications.  
1
Table 58. TDM/SI AC Timing Specifications  
Characteristic  
TDM/SI outputs—External clock delay  
Symbol2  
Min  
Max3  
Unit  
tSEKHOV  
tSEKHOX  
tSEIVKH  
tSEIXKH  
2
2
5
2
10  
10  
ns  
ns  
ns  
ns  
TDM/SI outputs—External clock high impedance  
TDM/SI inputs—External clock input setup time  
TDM/SI inputs—External clock input hold time  
Notes:  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSEKHOX symbolizes the TDM/SI  
outputs external timing (SE) for the time tTDM/SI memory clock reference (K) goes from the high state (H) until outputs (O)  
are invalid (X).  
3. Timings are measured from the positive or negative edge of the clock, according to SIxMR [CE] and SITXCEI[TXCEIx].  
Refer MPC8360E Integrated Communications Processor Reference Manual for more details.  
This figure provides the AC test load for the TDM/SI.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 44. TDM/SI AC Test Load  
Figure 45 represents the AC timing from Table 56. Note that although the specifications generally reference the rising edge of  
the clock, these AC timing diagrams also apply when the falling edge is the active edge.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
56  
Freescale Semiconductor  
UTOPIA/POS  
This figure shows the TDM/SI timing with external clock.  
TDM/SICLK (Input)  
tSEIXKH  
tSEIVKH  
Input Signals:  
TDM/SI  
(See Note)  
tSEKHOV  
Output Signals:  
TDM/SI  
(See Note)  
tSEKHOX  
Note: The clock edge is selectable on TDM/SI  
Figure 45. TDM/SI AC Timing (External Clock) Diagram  
17.3 UTOPIA/POS  
This section describes the DC and AC electrical specifications for the UTOPIA/POS of the MPC8360E/58E.  
17.4 UTOPIA/POS DC Electrical Characteristics  
This table provides the DC electrical characteristics for the device UTOPIA.  
Table 59. UTOPIA DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
VIH  
VIL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
IIN  
0 V VIN OVDD  
±10  
μA  
17.5 UTOPIA/POS AC Timing Specifications  
This table provides the UTOPIA input and output AC timing specifications.  
1
Table 60. UTOPIA AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Max  
Unit  
Notes  
UTOPIA outputs—Internal clock delay  
tUIKHOV  
tUEKHOV  
tUIKHOX  
tUEKHOX  
tUIIVKH  
0
1
0
1
6
4
11.5  
11.6  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
3
UTOPIA outputs—External clock delay  
UTOPIA outputs—Internal clock high impedance  
UTOPIA outputs—External clock high impedance  
UTOPIA inputs—Internal clock input setup time  
UTOPIA inputs—External clock input setup time  
10.0  
tUEIVKH  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
57  
UTOPIA/POS AC Timing Specifications  
1
Table 60. UTOPIA AC Timing Specifications (continued)  
Characteristic  
Symbol2  
Min  
Max  
Unit  
Notes  
UTOPIA inputs—Internal clock input hold time  
UTOPIA inputs—External clock input hold time  
Notes:  
tUIIXKH  
2.4  
1
ns  
ns  
3
tUEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUIKHOX symbolizes the UTOPIA  
outputs internal timing (UI) for the time tUTOPIA memory clock reference (K) goes from the high state (H) until outputs (O)  
are invalid (X).  
3. In rev. 2.0 silicon, due to errata, tUEIVKH minimum is 4.3 ns and tUEIXKH minimum is 1.4 ns under specific conditions. Refer  
to Errata QE_UPC3 in Chip Errata for the MPC8360E, Rev. 1.  
This figure provides the AC test load for the UTOPIA.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 46. UTOPIA AC Test Load  
These figures represent the AC timing from Table 56. Note that although the specifications generally reference the rising edge  
of the clock, these AC timing diagrams also apply when the falling edge is the active edge.  
This figure shows the UTOPIA timing with external clock.  
UtopiaCLK (Input)  
tUEIXKH  
tUEIVKH  
Input Signals:  
UTOPIA  
tUEKHOV  
Output Signals:  
UTOPIA  
tUEKHOX  
Figure 47. UTOPIA AC Timing (External Clock) Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
58  
Freescale Semiconductor  
HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics  
This figure shows the UTOPIA timing with internal clock.  
UtopiaCLK (Output)  
tUIIXKH  
tUIIVKH  
Input Signals:  
UTOPIA  
tUIKHOV  
Output Signals:  
UTOPIA  
tUIKHOX  
Figure 48. UTOPIA AC Timing (Internal Clock) Diagram  
18 HDLC, BISYNC, Transparent, and Synchronous  
UART  
This section describes the DC and AC electrical specifications for the high level data link control (HDLC), BISYNC,  
transparent, and synchronous UART protocols of the MPC8360E/58E.  
18.1 HDLC, BISYNC, Transparent, and Synchronous UART DC  
Electrical Characteristics  
This table provides the DC electrical characteristics for the device HDLC, BISYNC, transparent, and synchronous UART  
protocols.  
Table 61. HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
VIH  
VIL  
IOH = –2.0 mA  
IOL = 3.2 mA  
2.4  
0.5  
V
V
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
IIN  
0 V VIN OVDD  
±10  
μA  
18.2 HDLC, BISYNC, Transparent, and Synchronous UART AC Timing  
Specifications  
These tables provide the input and output AC timing specifications for HDLC, BISYNC, transparent, and synchronous UART  
protocols.  
1
Table 62. HDLC, BISYNC, and Transparent AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Max  
Unit  
Outputs—Internal clock delay  
Outputs—External clock delay  
tHIKHOV  
tHEKHOV  
0
1
11.2  
10.8  
ns  
ns  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
59  
HDLC, BISYNC, Transparent, and Synchronous UART AC Timing Specifications  
1
Table 62. HDLC, BISYNC, and Transparent AC Timing Specifications (continued)  
Characteristic  
Symbol2  
Min  
Max  
Unit  
Outputs—Internal clock high impedance  
Outputs—External clock high impedance  
Inputs—Internal clock input setup time  
Inputs—External clock input setup time  
Inputs—Internal clock input hold time  
Inputs—External clock input hold time  
Notes:  
tHIKHOX  
tHEKHOX  
tHIIVKH  
-0.5  
1
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
8.5  
4
tHEIVKH  
tHIIXKH  
1.4  
1
tHEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tHIKHOX symbolizes the outputs  
internal timing (HI) for the time tserial memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).  
1
Table 63. Synchronous UART AC Timing Specifications  
Characteristic  
Outputs—Internal clock delay  
Symbol2  
Min  
Max  
Unit  
tUAIKHOV  
tUAEKHOV  
tUAIKHOX  
tUAEKHOX  
tUAIIVKH  
0
1
0
1
6
8
1
1
11.3  
14  
11  
14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Outputs—External clock delay  
Outputs—Internal clock high impedance  
Outputs—External clock high impedance  
Inputs—Internal clock input setup time  
Inputs—External clock input setup time  
Inputs—Internal clock input hold time  
Inputs—External clock input hold time  
Notes:  
tUAEIVKH  
tUAIIXKH  
tUAEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tHIKHOX symbolizes the outputs  
internal timing (HI) for the time tserial memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).  
This figure provides the AC test load.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 49. AC Test Load  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
60  
Freescale Semiconductor  
AC Test Load  
18.3 AC Test Load  
These figures represent the AC timing from Table 62 and Table 63. Note that although the specifications generally reference the  
rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.  
This figure shows the timing with external clock.  
Serial CLK (Input)  
tHEIXKH  
tHEIVKH  
Input Signals:  
(See Note)  
tHEKHOV  
Output Signals:  
(See Note)  
tHEKHOX  
Note: The clock edge is selectable.  
Figure 50. AC Timing (External Clock) Diagram  
This figure shows the timing with internal clock.  
Serial CLK (Output)  
tHIIXKH  
tHIIVKH  
Input Signals:  
(See Note)  
tHIKHOV  
Output Signals:  
(See Note)  
tHIKHOX  
Note: The clock edge is selectable.  
Figure 51. AC Timing (Internal Clock) Diagram  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
61  
USB DC Electrical Characteristics  
19 USB  
This section provides the AC and DC electrical specifications for the USB interface of the MPC8360E/58E.  
19.1 USB DC Electrical Characteristics  
This table provides the DC electrical characteristics for the USB interface.  
Table 64. USB DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
High-level output voltage, IOH = –100 μA  
Low-level output voltage, IOL = 100 μA  
Input current  
VOH  
VOL  
IIN  
OVDD – 0.4  
V
0.2  
±10  
V
μA  
19.2 USB AC Electrical Specifications  
This table describes the general timing parameters of the USB interface of the device.  
Table 65. USB General Timing Parameters  
Parameter  
USB clock cycle time  
Symbol1  
Min  
Max  
Unit  
Notes  
Note  
tUSCK  
tUSCK  
20.83  
166.67  
ns  
ns  
ns  
ns  
ns  
Full speed 48 MHz  
Low speed 6 MHz  
2
USB clock cycle time  
Skew between TXP and TXN  
Skew among RXP, RXN, and RXD  
Skew among RXP, RXN, and RXD  
Notes:  
tUSTSPN  
tUSRSPND  
tUSRPND  
5
10  
100  
Full speed transitions  
Low speed transitions  
2
2
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(state)(signal) for  
receive signals and t(first two letters of functional block)(state)(signal) for transmit signals. For example, tUSRSPND  
symbolizes USB timing (US) for the USB receive signals skew (RS) among RXP, RXN, and RXD (PND). Also,  
tUSTSPN symbolizes USB timing (US) for the USB transmit signals skew (TS) between TXP and TXN (PN).  
2. Skew measurements are done at OVDD/2 of the rising or falling edge of the signals.  
This figure provide the AC test load for the USB.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 52. USB AC Test Load  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
62  
Freescale Semiconductor  
Package Parameters for the TBGA Package  
20 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8360E/58E is available in a tape ball grid  
array (TBGA), see Section 20.1, “Package Parameters for the TBGA Package,” and Section 20.2, “Mechanical Dimensions of  
the TBGA Package,” for information on the package.  
20.1 Package Parameters for the TBGA Package  
The package parameters for rev. 2.0 silicon are as provided in the following list. The package type is 37.5 mm × 37.5 mm, 740  
tape ball grid array (TBGA).  
Package outline  
Interconnects  
Pitch  
37.5 mm × 37.5 mm  
740  
1.00 mm  
Module height (typical)  
Solder Balls  
1.46 mm  
62 Sn/36 Pb/2 Ag (ZU package)  
95.5 Sn/0.5 Cu/4Ag (VV package)  
0.64 mm  
Ball diameter (typical)  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
63  
Mechanical Dimensions of the TBGA Package  
20.2 Mechanical Dimensions of the TBGA Package  
This figure depicts the mechanical dimensions and bottom surface nomenclature of the device, 740-TBGA package.  
Figure 53. Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
64  
Freescale Semiconductor  
Pinout Listings  
20.3 Pinout Listings  
Refer to AN3097, “MPC8360/MPC8358E PowerQUICC Design Checklist,” for proper pin termination and usage.  
This table shows the pin list of the MPC8360E TBGA package.  
Table 66. MPC8360E TBGA Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
Primary DDR SDRAM Memory Controller Interface  
MEMC1_MDQ[0:31]  
AJ34, AK33, AL33, AL35, AJ33, AK34, AK32,  
AM36, AN37, AN35, AR34, AT34, AP37, AP36,  
AR36, AT35, AP34, AR32, AP32, AM31, AN33,  
AM34, AM33, AM30, AP31, AM27, AR30, AT32,  
AN29, AP29, AN27, AR29  
I/O  
GVDD  
MEMC1_MDQ[32:63]/  
MEMC2_MDQ[0:31]  
AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6,  
AP6, AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5,  
AP3, AN3, AN5, AL5, AN4, AM2, AL2, AH5, AK3,  
AJ2, AJ3, AH4, AK4, AH3  
I/O  
GVDD  
MEMC1_MECC[0:4]/  
MSRCID[0:4]  
AP24, AN22, AM19, AN19, AM24  
I/O  
I/O  
GVDD  
GVDD  
MEMC1_MECC[5]/  
MDVAL  
AM23  
MEMC1_MECC[6:7]  
MEMC1_MDM[0:3]  
AM22, AN18  
I/O  
O
GVDD  
GVDD  
GVDD  
AL36, AN34, AP33, AN28  
AT9, AU4, AM3, AJ6  
MEMC1_MDM[4:7]/  
MEMC2_MDM[0:3]  
O
MEMC1_MDM[8]  
AP27  
O
GVDD  
GVDD  
GVDD  
MEMC1_MDQS[0:3]  
AK35, AP35, AN31, AM26  
AT8, AU3, AL4, AJ5  
I/O  
I/O  
MEMC1_MDQS[4:7]/  
MEMC2_MDQS[0:3]  
MEMC1_MDQS[8]  
MEMC1_MBA[0:1]  
MEMC1_MBA[2]  
MEMC1_MA[0:14]  
AP26  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
AU29, AU30  
AT30  
O
AU21, AP22, AP21, AT21, AU25, AU26, AT23,  
AR26, AU24, AR23, AR28, AU23, AR22, AU20,  
AR18  
O
MEMC1_MODT[0:1]  
AG33, AJ36  
AT1, AK2  
O
O
GVDD  
GVDD  
6
6
MEMC1_MODT[2:3]/  
MEMC2_MODT[0:1]  
MEMC1_MWE  
MEMC1_MRAS  
MEMC1_MCAS  
MEMC1_MCS[0:1]  
AT26  
O
O
O
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
AT29  
AT24  
AU27, AT27  
AU8, AU7  
MEMC1_MCS[2:3]/  
MEMC2_MCS[0:1]  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
65  
Pinout Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Package Pin Number Pin Type  
Power  
Supply  
Signal  
Notes  
MEMC1_MCKE[0:1]  
MEMC1_MCK[0:1]  
AL32, AU33  
AK37, AT37  
AN1, AR2  
O
O
O
GVDD  
GVDD  
GVDD  
3
MEMC1_MCK[2:3]/  
MEMC2_MCK[0:1]  
MEMC1_MCK[4:5]/  
MEMC2_MCKE[0:1]  
AN25, AK1  
O
GVDD  
MEMC1_MCK[0:1]  
AL37, AT36  
AP2, AT2  
O
O
GVDD  
GVDD  
MEMC1_MCK[2:3]/  
MEMC2_MCK[0:1]  
MEMC1_MCK[4]/  
MEMC2_MDM[8]  
AN24  
O
O
GVDD  
GVDD  
GVDD  
10  
MEMC1_MCK[5]/  
MEMC2_MDQS[8]  
AL1  
MDIC[0:1]  
AH6, AP30  
I/O  
Secondary DDR SDRAM Memory Controller Interface  
MEMC2_MECC[0:7]  
AN16, AP18, AM16, AM17, AN17, AP13, AP15,  
AN13  
I/O  
GVDD  
MEMC2_MBA[0:2]  
MEMC2_MA[0:14]  
AU12, AU15, AU13  
O
O
GVDD  
GVDD  
AT12, AP11, AT13, AT14, AR13, AR15, AR16,  
AT16, AT18, AT17, AP10, AR20, AR17, AR14,  
AR11  
MEMC2_MWE  
MEMC2_MRAS  
MEMC2_MCAS  
AU10  
AT11  
AU11  
O
O
O
GVDD  
GVDD  
GVDD  
PCI  
PCI_INTA/IRQ_OUT/CE_PF[5]  
PCI_RESET_OUT/CE_PF[6]  
PCI_AD[31:30]/CE_PG[31:30]  
PCI_AD[29:25]/CE_PG[29:25]  
PCI_AD[24]/CE_PG[24]  
A20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVDD  
LVDD  
LVDD  
2
2
2
2
E19  
D20, D21  
A24, B23, C23, E23, A26  
B21  
OVDD  
LVDD  
2
PCI_AD[23:0]/CE_PG[23:0]  
C24, C25, D25, B25, E24, F24, A27, A28, F27, A30,  
C30, D30, E29, B31, C31, D31, D32, A32, C33,  
B33, F30, E31, A34, D33  
OVDD  
PCI_C/BE[3:0]/CE_PF[10:7]  
PCI_PAR/CE_PF[11]  
E22, B26, E28, F28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
5
D28  
D26  
C27  
C28  
B28  
PCI_FRAME/CE_PF[12]  
PCI_TRDY/CE_PF[13]  
PCI_IRDY/CE_PF[14]  
PCI_STOP/CE_PF[15]  
5
5
5
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
66  
Freescale Semiconductor  
Pinout Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI_DEVSEL/CE_PF[16]  
PCI_IDSEL/CE_PF[17]  
PCI_SERR/CE_PF[18]  
PCI_PERR/CE_PF[19]  
PCI_REQ[0]/CE_PF[20]  
E26  
F22  
B29  
A29  
F19  
A21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
5
5
5
LVDD  
2
2
PCI_REQ[1]/CPCI_HS_ES/  
CE_PF[21]  
LVDD  
PCI_REQ[2]/CE_PF[22]  
PCI_GNT[0]/CE_PF[23]  
C21  
E20  
B20  
I/O  
I/O  
I/O  
LVDD  
LVDD  
LVDD  
2
2
2
PCI_GNT[1]/CPCI1_HS_LED/  
CE_PF[24]  
PCI_GNT[2]/CPCI1_HS_ENUM/  
CE_PF[25]  
C20  
I/O  
LVDD  
2
PCI_MODE  
D36  
B37  
I
OVDD  
OVDD  
M66EN/CE_PF[4]  
I/O  
Local Bus Controller Interface  
LAD[0:31]  
N32, N33, N35, N36, P37, P32, P34, R36, R35,  
R34, R33, T37, T35, T34, T33, U37, T32, U36, U34,  
V36, V35, W37, W35, V33, V32, W34, Y36, W32,  
AA37, Y33, AA35, AA34  
I/O  
OVDD  
LDP[0]/CKSTOP_OUT  
LDP[1]/CKSTOP_IN  
LDP[2]/LCS[6]  
AB37  
I/O  
I/O  
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
AB36  
AB35  
LDP[3]/LCS[7]  
AA33  
LA[27:31]  
AC37, AA32, AC36, AC34, AD36  
LCS[0:5]  
AD33, AG37, AF34, AE33, AD32, AH37  
O
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]  
LBCTL  
AG35, AG34, AH36, AE32  
O
AD35  
M37  
O
LALE  
O
LGPL0/LSDA10/cfg_reset_source0  
LGPL1/LSDWE/cfg_reset_source1  
LGPL2/LSDRAS/LOE  
LGPL3/LSDCAS/cfg_reset_source2  
LGPL4/LGTA/LUPWAIT/LPBSE  
LGPL5/cfg_clkin_div  
LCKE  
AB32  
AE37  
AC33  
AD34  
AE35  
AF36  
G36  
I/O  
I/O  
O
I/O  
I/O  
I/O  
O
LCLK[0]  
J33  
O
LCLK[1]/LCS[6]  
J34  
O
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
67  
Pinout Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
LCLK[2]/LCS[7]  
LSYNC_OUT  
LSYNC_IN  
G37  
F34  
G35  
O
O
I
OVDD  
OVDD  
OVDD  
Programmable Interrupt Controller  
MCP_OUT  
E34  
C37  
F35  
O
I
OVDD  
OVDD  
OVDD  
2
IRQ0/MCP_IN  
IRQ[1]/M1SRCID[4]/M2SRCID[4]/  
LSRCID[4]  
I/O  
IRQ[2]/M1DVAL/M2DVAL/LDVAL  
IRQ[3]/CORE_SRESET  
IRQ[4:5]  
F36  
H34  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
G33, G32  
E35  
IRQ[6]/LCS[6]/CKSTOP_OUT  
IRQ[7]/LCS[7]/CKSTOP_IN  
H36  
DUART  
UART1_SOUT/M1SRCID[0]/  
M2SRCID[0]/LSRCID[0]  
E32  
B34  
C34  
A35  
O
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
UART1_SIN/M1SRCID[1]/  
M2SRCID[1]/LSRCID[1]  
UART1_CTS/M1SRCID[2]/  
M2SRCID[2]/LSRCID[2]  
UART1_RTS/M1SRCID[3]/  
M2SRCID[3]/LSRCID[3]  
I2C Interface  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
D34  
B35  
E33  
C35  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
2
2
2
2
QUICC Engine Block  
CE_PA[0]  
F8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVDD0  
OVDD  
CE_PA[1:2]  
CE_PA[3:7]  
CE_PA[8]  
AH1, AG5  
F6, D4, C3, E5, A3  
LVDD0  
AG3  
OVDD  
LVDD0  
OVDD  
LVDD0  
OVDD  
LVDD1  
CE_PA[9:12]  
CE_PA[13:14]  
CE_PA[15]  
CE_PA[16]  
CE_PA[17:21]  
F7, B3, E6, B4  
AG1, AF6  
B2  
AF4  
B16, A16, E17, A17, B17  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
68  
Freescale Semiconductor  
Pinout Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Package Pin Number Pin Type  
Power  
Supply  
Signal  
Notes  
CE_PA[22]  
AF3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
LVDD1  
OVDD  
CE_PA[23:26]  
CE_PA[27:28]  
CE_PA[29]  
C18, D18, E18, A18  
AF2, AE6  
B19  
LVDD  
1
CE_PA[30]  
AE5  
OVDD  
LVDD1  
OVDD  
CE_PA[31]  
F16  
CE_PB[0:27]  
AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2,  
AC1, AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4,  
Y3, Y2, Y1, W6, W5, W2, V5, V3, V2  
CE_PC[0:1]  
CE_PC[2:3]  
CE_PC[4:6]  
CE_PC[7]  
V1, U6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
C16, A15  
U4, U3, T6  
C19  
LVDD1  
OVDD  
LVDD2  
LVDD0  
OVDD  
CE_PC[8:9]  
CE_PC[10:30]  
A4, C5  
T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10,  
C10, E12, A9, B8, D10, A14, E15, B14, D15, AH2  
CE_PD[0:27]  
CE_PE[0:31]  
CE_PF[0:3]  
E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8,  
B5, A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1,  
F2, G3, H4  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6,  
P6, P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6,  
L1, L2, L4, E14, C13, C14, B13  
F14, D13, A12, A11  
Clocks  
PCI_CLK_OUT[0]/CE_PF[26]  
PCI_CLK_OUT[1:2]/CE_PF[27:28]  
CLKIN  
B22  
I/O  
I/O  
I
LVDD  
2
3
D22, A23  
E37  
OVDD  
OVDD  
OVDD  
OVDD  
PCI_CLOCK/PCI_SYNC_IN  
PCI_SYNC_OUT/CE_PF[29]  
M36  
I
D37  
I/O  
JTAG  
TCK  
TDI  
K33  
K34  
H37  
J36  
L32  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
4
TDO  
TMS  
TRST  
O
I
3
4
I
4
Test  
TEST  
L35  
I
I
OVDD  
GVDD  
7
7
TEST_SEL  
AU34  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
69  
Pinout Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
PMC  
Pin Type  
Notes  
QUIESCE  
B36  
O
OVDD  
System Control  
PORESET  
HRESET  
SRESET  
L37  
L36  
M33  
I
OVDD  
OVDD  
OVDD  
1
I/O  
I/O  
2
Thermal Management  
THERM0  
THERM1  
AP19  
AT31  
I
I
GVDD  
GVDD  
Power and Ground Signals  
AVDD  
AVDD  
AVDD  
AVDD  
GND  
1
2
5
6
K35  
Power for  
LBIU DLL  
(1.2 V)  
AVDD  
AVDD  
AVDD  
AVDD  
1
2
5
6
K36  
Power for  
CE PLL  
(1.2 V)  
AM29  
K37  
Power for  
e300 PLL  
(1.2 V)  
Power for  
system  
PLL (1.2 V)  
A2, A8, A13, A19, A22, A25, A31, A33, A36, B7,  
B12, B24, B27, B30, C4, C6, C9, C15, C26, C32,  
D3, D8, D11, D14, D17, D19, D23, D27, E7, E13,  
E25, E30, E36, F4, F37, G34, H1, H5, H32, H33, J4,  
J32, J37, K1, L3, L5, L33, L34, M1, M34, M35, N37,  
P2, P5, P35, P36, R4, T3, U1, U5, U35, V37, W1,  
W4, W33, W36, Y34, AA3, AA5, AC3, AC32, AC35,  
AD1, AD37, AE4, AE34, AE36, AF33, AG4, AG6,  
AG32, AH35, AJ1, AJ4, AJ32, AJ35, AJ37, AK36,  
AL3, AL34, AM4, AN6, AN23, AN30, AP8, AP12,  
AP14, AP16, AP17, AP20, AP25, AR6, AR8, AR9,  
AR19, AR24, AR31, AR35, AR37, AT4, AT10, AT19,  
AT20, AT25, AU14, AU22, AU28, AU35  
GVDD  
AD4, AE3, AF1, AF5, AF35, AF37, AG2, AG36,  
AH33, AH34, AK5, AM1, AM35, AM37, AN2, AN10,  
AN11, AN12, AN14, AN32, AN36, AP5, AP23,  
AP28, AR1, AR7, AR10, AR12, AR21, AR25, AR27,  
AR33, AT15, AT22, AT28, AT33, AU2, AU5, AU16,  
AU31, AU36  
Power for  
DDR  
DRAM I/O  
voltage  
(2.5 or  
GVDD  
1.8 V)  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
70  
Freescale Semiconductor  
Pinout Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Package Pin Number Pin Type  
Power  
Supply  
Signal  
Notes  
LVDD  
0
1
D5, D6  
Power for  
UCC1  
Ethernet  
interface  
(2.5 V,  
LVDD  
0
3.3 V)  
LVDD  
C17, D16  
Power for  
UCC2  
Ethernet  
interface  
option 1  
(2.5 V,  
LVDD  
1
9
9
3.3 V)  
LVDD2  
B18, E21  
Power for  
UCC2  
LVDD  
2
Ethernet  
interface  
option 2  
(2.5 V,  
3.3 V)  
VDD  
C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, Power for  
VDD  
F21, F23, F25, F26, F29, F31, F32, F33, G6, J6,  
K32, M32, N6, P33, R6, R32, U32, V6, Y5, Y32,  
AB6, AB33, AD6, AF32, AK6, AL6, AM7, AM9,  
AM10, AM11, AM12, AM13, AM14, AM15, AM18,  
AM21, AM25, AM28, AM32, AN15, AN21, AN26,  
AU9, AU17  
core  
(1.2 V)  
OVDD  
A10, B9, B15, B32, C1, C12, C22, C29, D24, E3,  
E10, E27, G4, H35, J1, J35, K2, M4, N3, N34, R2,  
R37, T36, U2, U33, V4, V34, W3, Y35, Y37, AA1,  
AA36, AB2, AB34  
PCI,  
10/100  
Ethernet,  
and other  
standard  
(3.3 V)  
OVDD  
MVREF1  
MVREF2  
AN20  
AU32  
I
DDR  
reference  
voltage  
I
DDR  
reference  
voltage  
SPARE1  
SPARE3  
SPARE4  
SPARE5  
B11  
I/O  
OVDD  
GVDD  
GVDD  
GVDD  
8
8
7
8
AH32  
AU18  
AP1  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
71  
Pinout Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
No Connect  
Pin Type  
Notes  
NC  
AM20, AU19  
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OVDD  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OVDD  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
.
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.  
7. This pin must always be tied to GND.  
8. This pin must always be left not connected.  
9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on “RGMII Pins,”  
for information about the two UCC2 Ethernet interface options.  
10.It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω  
resistor for DDR2.  
This table shows the pin list of the MPC8358E TBGA package.  
Table 67. MPC8358E TBGA Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
DDR SDRAM Memory Controller Interface  
MEMC1_MDQ[0:63]  
AJ34, AK33, AL33, AL35, AJ33, AK34, AK32,  
AM36, AN37, AN35, AR34, AT34, AP37, AP36,  
AR36, AT35, AP34, AR32, AP32, AM31, AN33,  
AM34, AM33, AM30, AP31, AM27, AR30, AT32,  
AN29, AP29, AN27, AR29, AN8, AN7, AM8, AM6,  
AP9, AN9, AT7, AP7, AU6, AP6, AR4, AR3, AT6,  
AT5, AR5, AT3, AP4, AM5, AP3, AN3, AN5, AL5,  
AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4, AK4,  
AH3  
I/O  
GVDD  
MEMC_MECC[0:4]/MSRCID[0:4]  
MEMC_MECC[5]/MDVAL  
MEMC_MECC[6:7]  
AP24, AN22, AM19, AN19, AM24  
I/O  
I/O  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
AM23  
AM22, AN18  
MEMC_MDM[0:8]  
AL36, AN34, AP33, AN28,AT9, AU4, AM3,  
AJ6,AP27  
MEMC_MDQS[0:8]  
AK35, AP35, AN31, AM26,AT8, AU3, AL4, AJ5,  
AP26  
I/O  
GVDD  
MEMC_MBA[0:1]  
MEMC_MBA[2]  
MEMC_MA[0:14]  
AU29, AU30  
AT30  
O
O
O
GVDD  
GVDD  
GVDD  
AU21, AP22, AP21, AT21, AU25, AU26, AT23,  
AR26, AU24, AR23, AR28, AU23, AR22, AU20,  
AR18  
MEMC_MODT[0:3]  
AG33, AJ36, AT1, AK2  
O
GVDD  
6
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
72  
Freescale Semiconductor  
Pinout Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Package Pin Number Pin Type  
Power  
Supply  
Signal  
Notes  
MEMC_MWE  
MEMC_MRAS  
MEMC_MCAS  
AT26  
AT29  
AT24  
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
3
O
MEMC_MCS[0:3]  
MEMC_MCKE[0:1]  
MEMC_MCK[0:5]  
MEMC_MCK[0:5]  
MDIC[0:1]  
AU27, AT27, AU8, AU7  
AL32, AU33  
O
O
AK37, AT37, AN1, AR2, AN25, AK1  
AL37, AT36, AP2, AT2, AN24, AL1  
AH6, AP30  
O
11  
O
I/O  
PCI  
PCI_INTA/IRQ_OUT/CE_PF[5]  
PCI_RESET_OUT/CE_PF[6]  
PCI_AD[31:30]/CE_PG[31:30]  
PCI_AD[29:25]/CE_PG[29:25]  
PCI_AD[24]/CE_PG[24]  
A20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVDD  
LVDD  
LVDD  
2
2
2
2
E19  
D20, D21  
A24, B23, C23, E23, A26  
B21  
OVDD  
LVDD  
2
PCI_AD[23:0]/CE_PG[23:0]  
C24, C25, D25, B25, E24, F24, A27, A28, F27, A30,  
C30, D30, E29, B31, C31, D31, D32, A32, C33,  
B33, F30, E31, A34, D33  
OVDD  
PCI_C/BE[3:0]/CE_PF[10:7]  
PCI_PAR/CE_PF[11]  
E22, B26, E28, F28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
5
D28  
D26  
C27  
C28  
B28  
E26  
F22  
B29  
A29  
F19  
A21  
PCI_FRAME/CE_PF[12]  
PCI_TRDY/CE_PF[13]  
PCI_IRDY/CE_PF[14]  
PCI_STOP/CE_PF[15]  
PCI_DEVSEL/CE_PF[16]  
PCI_IDSEL/CE_PF[17]  
PCI_SERR/CE_PF[18]  
PCI_PERR/CE_PF[19]  
PCI_REQ[0]/CE_PF[20]  
5
5
5
5
5
5
LVDD  
2
2
PCI_REQ[1]/CPCI_HS_ES/  
CE_PF[21]  
LVDD  
PCI_REQ[2]/CE_PF[22]  
PCI_GNT[0]/CE_PF[23]  
C21  
E20  
B20  
I/O  
I/O  
I/O  
LVDD  
LVDD  
LVDD  
2
2
2
PCI_GNT[1]/CPCI1_HS_LED/  
CE_PF[24]  
PCI_GNT[2]/CPCI1_HS_ENUM/  
CE_PF[25]  
C20  
I/O  
LVDD  
2
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
73  
Pinout Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI_MODE  
D36  
B37  
I
OVDD  
OVDD  
M66EN/CE_PF[4]  
I/O  
Local Bus Controller Interface  
LAD[0:31]  
N32, N33, N35, N36, P37, P32, P34, R36, R35,  
R34, R33, T37, T35, T34, T33, U37, T32, U36, U34,  
V36, V35, W37, W35, V33, V32, W34, Y36, W32,  
AA37, Y33, AA35, AA34  
I/O  
OVDD  
LDP[0]/CKSTOP_OUT  
LDP[1]/CKSTOP_IN  
LDP[2]/LCS[6]  
AB37  
I/O  
I/O  
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
AB36  
AB35  
LDP[3]/LCS[7]  
AA33  
LA[27:31]  
AC37, AA32, AC36, AC34, AD36  
LCS[0:5]  
AD33, AG37, AF34, AE33, AD32, AH37  
O
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]  
LBCTL  
AG35, AG34, AH36, AE32  
O
AD35  
M37  
AB32  
AE37  
AC33  
AD34  
AE35  
AF36  
G36  
O
LALE  
O
LGPL0/LSDA10/cfg_reset_source0  
LGPL1/LSDWE/cfg_reset_source1  
LGPL2/LSDRAS/LOE  
LGPL3/LSDCAS/cfg_reset_source2  
LGPL4/LGTA/LUPWAIT/LPBSE  
LGPL5/cfg_clkin_div  
LCKE  
I/O  
I/O  
O
I/O  
I/O  
I/O  
O
LCLK[0]  
J33  
O
LCLK[1]/LCS[6]  
J34  
O
LCLK[2]/LCS[7]  
G37  
O
LSYNC_OUT  
F34  
O
LSYNC_IN  
G35  
I
Programmable Interrupt Controller  
MCP_OUT  
E34  
C37  
F35  
O
I
OVDD  
OVDD  
OVDD  
2
IRQ0/MCP_IN  
IRQ[1]/M1SRCID[4]/M2SRCID[4]/  
LSRCID[4]  
I/O  
IRQ[2]/M1DVAL/M2DVAL/LDVAL  
IRQ[3]/CORE_SRESET  
F36  
H34  
I/O  
I/O  
OVDD  
OVDD  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
74  
Freescale Semiconductor  
Pinout Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Package Pin Number Pin Type  
Power  
Supply  
Signal  
Notes  
IRQ[4:5]  
G33, G32  
E35  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
IRQ[6]/LCS[6]/CKSTOP_OUT  
IRQ[7]/LCS[7]/CKSTOP_IN  
H36  
DUART  
UART1_SOUT/M1SRCID[0]/  
M2SRCID[0]/LSRCID[0]  
E32  
B34  
C34  
A35  
O
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
UART1_SIN/M1SRCID[1]/  
M2SRCID[1]/LSRCID[1]  
UART1_CTS/M1SRCID[2]/  
M2SRCID[2]/LSRCID[2]  
UART1_RTS/M1SRCID[3]/  
M2SRCID[3]/LSRCID[3]  
I2C Interface  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
D34  
B35  
E33  
C35  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
2
2
2
2
QUICC Engine  
CE_PA[0]  
F8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVDD0  
OVDD  
LVDD0  
OVDD  
CE_PA[1:2]  
CE_PA[3:7]  
CE_PA[8]  
AH1, AG5  
F6, D4, C3, E5, A3  
AG3  
CE_PA[9:12]  
CE_PA[13:14]  
CE_PA[15]  
CE_PA[16]  
CE_PA[17:21]  
CE_PA[22]  
CE_PA[23:26]  
CE_PA[27:28]  
CE_PA[29]  
CE_PA[30]  
CE_PA[31]  
F7, B3, E6, B4  
LVDD  
OVDD  
LVDD  
0
AG1, AF6  
B2  
0
AF4  
OVDD  
LVDD1  
OVDD  
B16, A16, E17, A17, B17  
AF3  
C18, D18, E18, A18  
LVDD  
OVDD  
LVDD  
1
AF2, AE6  
B19  
1
AE5  
OVDD  
F16  
LVDD1  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
75  
Pinout Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
CE_PB[0:27]  
AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2,  
AC1, AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4,  
Y3, Y2, Y1, W6, W5, W2, V5, V3, V2  
I/O  
OVDD  
CE_PC[0:1]  
CE_PC[2:3]  
CE_PC[4:6]  
CE_PC[7]  
V1, U6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
C16, A15  
U4, U3, T6  
C19  
LVDD  
1
OVDD  
LVDD  
2
0
CE_PC[8:9]  
CE_PC[10:30]  
A4, C5  
LVDD  
T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10,  
C10, E12, A9, B8, D10, A14, E15, B14, D15, AH2  
OVDD  
CE_PD[0:27]  
CE_PE[0:31]  
CE_PF[0:3]  
E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8,  
B5, A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1,  
F2, G3, H4  
I/O  
I/O  
I/O  
OVDD  
K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6,  
P6, P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6,  
L1, L2, L4, E14, C13, C14, B13  
OVDD  
OVDD  
F14, D13, A12, A11  
Clocks  
PCI_CLK_OUT[0]/CE_PF[26]  
PCI_CLK_OUT[1:2]/CE_PF[27:28]  
CLKIN  
B22  
I/O  
I/O  
I
LVDD2  
OVDD  
OVDD  
OVDD  
OVDD  
3
D22, A23  
E37  
PCI_CLOCK/PCI_SYNC_IN  
PCI_SYNC_OUT/CE_PF[29]  
M36  
I
D37  
I/O  
JTAG  
TCK  
TDI  
K33  
K34  
H37  
J36  
L32  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
4
TDO  
TMS  
TRST  
O
I
3
4
I
4
Test  
TEST  
L35  
I
I
OVDD  
GVDD  
7
TEST_SEL  
AU34  
10  
PMC  
QUIESCE  
B36  
O
OVDD  
System Control  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
76  
Freescale Semiconductor  
Pinout Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PORESET  
HRESET  
SRESET  
L37  
L36  
M33  
I
OVDD  
OVDD  
OVDD  
1
I/O  
I/O  
2
Thermal Management  
THERM0  
THERM1  
AP19  
AT31  
I
I
GVDD  
GVDD  
Power and Ground Signals  
AVDD1  
AVDD2  
AVDD5  
AVDD6  
GND  
K35  
Power for  
LBIU DLL  
(1.2 V)  
AVDD1  
K36  
Power for  
CE PLL  
(1.2 V)  
AVDD  
AVDD  
AVDD  
2
5
6
AM29  
K37  
Power for  
e300 PLL  
(1.2 V)  
Power for  
system  
PLL (1.2 V)  
A2, A8, A13, A19, A22, A25, A31, A33, A36, B7,  
B12, B24, B27, B30, C4, C6, C9, C15, C26, C32,  
D3, D8, D11, D14, D17, D19, D23, D27, E7, E13,  
E25, E30, E36, F4, F37, G34, H1, H5, H32, H33, J4,  
J32, J37, K1, L3, L5, L33, L34, M1, M34, M35, N37,  
P2, P5, P35, P36, R4, T3, U1, U5, U35, V37, W1,  
W4, W33, W36, Y34, AA3, AA5, AC3, AC32, AC35,  
AD1, AD37, AE4, AE34, AE36, AF33, AG4, AG6,  
AG32, AH35, AJ1, AJ4, AJ32, AJ35, AJ37, AK36,  
AL3, AL34, AM4, AN6, AN23, AN30, AP8, AP12,  
AP14, AP16, AP17, AP20, AP25, AR6, AR8, AR9,  
AR19, AR24, AR31, AR35, AR37, AT4, AT10, AT19,  
AT20, AT25, AU14, AU22, AU28, AU35  
GVDD  
AD4, AE3, AF1, AF5, AF35, AF37, AG2, AG36,  
AH33, AH34, AK5, AM1, AM35, AM37, AN2, AN10,  
AN11, AN12, AN14, AN32, AN36, AP5, AP23,  
AP28, AR1, AR7, AR10, AR12, AR21, AR25, AR27,  
AR33, AT15, AT22, AT28, AT33, AU2, AU5, AU16,  
AU31, AU36  
Power for  
DDR  
DRAM I/O  
voltage  
(2.5 or  
GVDD  
1.8 V)  
LVDD  
0
D5, D6  
Power for  
UCC1  
LVDD0  
Ethernet  
interface  
(2.5 V,  
3.3 V)  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
77  
Pinout Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Package Pin Number Pin Type  
Power  
Supply  
Signal  
Notes  
LVDD  
1
C17, D16  
Power for  
UCC2  
LVDD  
1
9
Ethernet  
interface  
option 1  
(2.5 V,  
3.3 V)  
LVDD2  
B18, E21  
Power for  
UCC2  
LVDD  
2
9
Ethernet  
interface  
option 2  
(2.5 V,  
3.3 V)  
VDD  
C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, Power for  
VDD  
F21, F23, F25, F26, F29, F31, F32, F33, G6, J6,  
K32, M32, N6, P33, R6, R32, U32, V6, Y5, Y32,  
AB6, AB33, AD6, AF32, AK6, AL6, AM7, AM9,  
AM10, AM11, AM12, AM13, AM14, AM15, AM18,  
AM21, AM25, AM28, AM32, AN15, AN21, AN26,  
AU9, AU17  
core  
(1.2 V)  
OVDD  
A10, B9, B15, B32, C1, C12, C22, C29, D24, E3,  
E10, E27, G4, H35, J1, J35, K2, M4, N3, N34, R2,  
R37, T36, U2, U33, V4, V34, W3, Y35, Y37, AA1,  
AA36, AB2, AB34  
PCI,  
10/100  
Ethernet,  
and other  
standard  
(3.3 V)  
OVDD  
MVREF1  
MVREF2  
AN20  
AU32  
I
DDR  
reference  
voltage  
I
DDR  
reference  
voltage  
SPARE1  
SPARE3  
SPARE4  
SPARE5  
B11  
I/O  
OVDD  
GVDD  
GVDD  
GVDD  
8
8
7
8
AH32  
AU18  
AP1  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
78  
Freescale Semiconductor  
Pinout Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
No Connect  
Pin Type  
Notes  
NC  
AM16, AM17, AM20, AN13, AN16, AN17, AP10,  
AP11, AP13, AP15, AP18, AR11, AR13, AR14,  
AR15, AR16, AR17, AR20, AT11, AT12, AT13,  
AT14, AT16, AT17, AT18, AU10, AU11, AU12,  
AU13, AU15, AU19  
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OVDD.  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OVDD  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
.
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.  
7. This pin must always be tied to GND.  
8. This pin must always be left not connected.  
9. Refer to MPC8360E PowerQUICC II Pro Integrated Communications Processor Reference Manual section on “RGMII Pins,”  
for information about the two UCC2 Ethernet interface options.  
10.This pin must always be tied to GVDD  
.
11.It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω  
resistor for DDR2.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
79  
Pinout Listings  
21 Clocking  
This figure shows the internal distribution of clocks within the MPC8360E.  
MPC8360E  
e300 Core  
Core PLL  
core_clk  
csb_clk  
ce_clk to QUICC Engine Block  
DDRC1  
/2  
DDRC1  
Memory  
Device  
MEMC1_MCK[0:5]  
MEMC1_MCK[0:5]  
ddr1_clk  
MEMC2_MCK[0:1] DDRC2  
Memory  
DDRC2  
/2  
QUICC  
Engine  
PLL  
Clock  
Unit  
MEMC2_MCK[0:1]  
Device  
System  
PLL  
lb_clk  
/n  
LCLK[0:2]  
To Local  
Bus/DDRC2  
Controller  
Local Bus  
Memory  
Device  
LSYNC_OUT  
LSYNC_IN  
LBIU  
DLL  
csb_clk to Rest  
of the Device  
PCI_CLK/  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
PCI_SYNC_OUT  
PCI Clock  
Divider  
PCI_CLK_OUT[0:2]  
Figure 54. MPC8360E Clock Subsystem  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
80  
Freescale Semiconductor  
Pinout Listings  
This figure shows the internal distribution of clocks within the MPC8358E.  
MPC8358E  
e300 Core  
Core PLL  
core_clk  
csb_clk  
ce_clk to QUICC Engine Block  
DDRC  
/2  
DDRC  
Memory  
Device  
MEMC1_MCK[0:5]  
MEMC1_MCK[0:5]  
ddr1_clk  
QUICC  
Engine  
PLL  
Clock  
Unit  
System  
PLL  
lb_clk  
/n  
LCLK[0:2]  
Local Bus  
Memory  
Device  
LSYNC_OUT  
LSYNC_IN  
LBIU  
DLL  
csb_clk to Rest  
of the Device  
PCI_CLK/  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
PCI_SYNC_OUT  
PCI Clock  
Divider  
PCI_CLK_OUT[0:2]  
Figure 55. MPC8358E Clock Subsystem  
The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is  
configured in PCI host or PCI agent mode. Note that in PCI host mode, the primary clock input also depends on whether PCI  
clock outputs are selected with RCWH[PCICKDRV]. When the device is configured as a PCI host device (RCWH[PCIHOST]  
= 1) and PCI clock output is selected (RCWH[PCICKDRV] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock  
divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input  
selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCIOENn] parameters enable  
the PCI_CLK_OUTn, respectively.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subystem to synchronize to the system  
PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the  
system, to allow the device to function. When the device is configured as a PCI agent device, PCI_CLK is the primary input  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
81  
Pinout Listings  
clock. When the device is configured as a PCI agent device the CLKIN and the CFG_CLKIN_DIV signals should be tied to  
GND.  
When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is disabled  
(RCWH[PCICKDRV] = 0), clock distribution and balancing done externally on the board. Therefore, PCI_SYNC_IN is the  
primary input clock.  
As shown in Figure 54 and Figure 55, the primary clock input (frequency) is multiplied by the QUICC Engine block  
phase-locked loop (PLL), the system PLL, and the clock unit to create the QUICC Engine clock (ce_clk), the coherent system  
bus clock (csb_clk), the internal DDRC1 controller clock (ddr1_clk), and the internal clock for the local bus interface unit and  
DDR2 memory controller (lb_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following equation:  
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is the CLKIN frequency; in PCI agent mode, CFG_CLKIN_DIV  
must be pulled down (low), so PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is the PCI_CLK frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up the csb_clk frequency  
to create the internal clock for the e300 core (core_clk). The system and core PLL multipliers are selected by the SPMF and  
COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded  
reset options. See Chapter 4, “Reset, Clocking, and Initialization,” in the MPC8360E PowerQUICC II Pro Integrated  
Communications Processor Reference Manual for more information on the clock subsystem.  
The ce_clk frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF) and the QUICC Engine  
PLL division factor (RCWL[CEPDF]) according to the following equation:  
ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)  
The internal ddr1_clk frequency is determined by the following equation:  
ddr1_clk = csb_clk × (1 + RCWL[DDR1CM])  
Note that the lb_clk clock frequency (for DDRC2) is determined by RCWL[LBCM]. The internal ddr1_clk frequency is not the  
external memory bus frequency; ddr1_clk passes through the DDRC1 clock divider (÷2) to create the differential DDRC1  
memory bus clock outputs (MEMC1_MCK and MEMC1_MCK). However, the data rate is the same frequency as ddr1_clk.  
The internal lb_clk frequency is determined by the following equation:  
lb_clk = csb_clk × (1 + RCWL[LBCM])  
Note that lb_clk is not the external local bus or DDRC2 frequency; lb_clk passes through the a LB clock divider to create the  
external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LB clock divider ratio is controlled by LCRR[CLKDIV].  
Additionally, some of the internal units may be required to be shut off or operate at lower frequency than the csb_clk frequency.  
Those units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset.  
This table specifies which units have a configurable clock frequency.  
Table 68. Configurable Clock Units  
Default  
Frequency  
Unit  
Options  
Security core  
csb_clk/3  
Off, csb_clk1, csb_clk/2,  
csb_clk/3  
PCI and DMA complex  
csb_clk  
Off, csb_clk  
1
With limitation, only for slow csb_clk rates, up to 166 MHz.  
This table provides the operating frequencies for the TBGA package under recommended operating conditions (see Table 2).  
All frequency combinations shown in the table below may not be available. Maximum operating frequencies depend on the part  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
82  
Freescale Semiconductor  
System PLL Configuration  
ordered, see Section 24.1, “Part Numbers Fully Addressed by this Document,” for part ordering details and contact your  
Freescale sales representative or authorized distributor for more information.  
Table 69. Operating Frequencies for the TBGA Package  
Characteristic1  
e300 core frequency (core_clk)  
400 MHz  
533 MHz  
667 MHz2  
Unit  
266–400  
266–533  
133–333  
266–500  
100–166.67  
16.67–133  
25–66.67  
133  
266–667  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Coherent system bus frequency (csb_clk)  
QUICC Engine frequency3 (ce_clk)  
DDR and DDR2 memory bus frequency (MCLK)4  
Local bus frequency (LCLKn)5  
PCI input frequency (CLKIN or PCI_CLK)  
Security core maximum internal operating frequency  
Notes:  
133  
166  
1. The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting csb_clk,  
MCLK, LCLK[0:2], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies.  
2. The 667 MHz core frequency is based on a 1.3 V VDD supply voltage.  
3. The 500 MHz QE frequency is based on a 1.3 V VDD supply voltage.  
4. The DDR data rate is 2x the DDR memory bus frequency.  
5. The local bus frequency is 1/2, 1/4, or 1/8 of the lb_clk frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2×  
the csb_clk frequency (depending on RCWL[LBCM]).  
21.1 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] and RCWL[SVCOD] parameters. This table shows the multiplication  
factor encodings for the system PLL.  
Table 70. System PLL Multiplication Factors  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
× 16  
Reserved  
× 2  
× 3  
× 4  
× 5  
× 6  
× 7  
× 8  
× 9  
× 10  
× 11  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
83  
System PLL Configuration  
Table 70. System PLL Multiplication Factors (continued)  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
1100  
1101  
1110  
1111  
× 12  
× 13  
× 14  
× 15  
The RCWL[SVCOD] denotes the system PLL VCO internal frequency as shown in this table.  
Table 71. System PLL VCO Divider  
RCWL[SVCOD]  
VCO Divider  
00  
01  
10  
11  
4
8
2
Reserved  
NOTE  
The VCO divider must be set properly so that the system VCO frequency is in the range of  
600–1400 MHz.  
The system VCO frequency is derived from the following equations:  
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF  
System VCO Frequency = csb_clk × VCO divider (if both RCWL[DDRCM] and RCWL[LBCM] are cleared)  
OR  
System VCO frequency = 2 × csb_clk × VCO divider (if either RCWL[DDRCM] or RCWL[LBCM] are set).  
As described in Section 21, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset configuration word low and  
the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and  
the internal coherent system bus clock (csb_clk). This table shows the expected frequency values for the CSB frequency for  
select csb_clk to CLKIN/PCI_SYNC_IN ratios.  
Table 72. CSB Frequency Options  
Input Clock Frequency (MHz)2  
CFG_CLKIN_DIV  
at Reset1  
csb_clk:  
SPMF  
16.67  
25  
33.33  
66.67  
Input Clock Ratio2  
csb_clk Frequency (MHz)  
Low  
Low  
Low  
Low  
0010  
0011  
0100  
0101  
2:1  
3:1  
4:1  
5:1  
133  
200  
266  
333  
100  
100  
125  
133  
166  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
84  
Freescale Semiconductor  
System PLL Configuration  
Table 72. CSB Frequency Options (continued)  
Input Clock Frequency (MHz)2  
CFG_CLKIN_DIV  
at Reset1  
csb_clk:  
SPMF  
16.67  
25  
33.33  
66.67  
Input Clock Ratio2  
csb_clk Frequency (MHz)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
6:1  
7:1  
100  
150  
175  
200  
225  
250  
275  
300  
325  
200  
233  
266  
300  
333  
116  
133  
150  
166  
183  
200  
216  
8:1  
9:1  
10:1  
11:1  
12:1  
13:1  
14:1  
15:1  
16:1  
2:1  
233  
250  
266  
133  
200  
266  
333  
3:1  
100  
133  
166  
200  
233  
4:1  
5:1  
6:1  
7:1  
8:1  
9:1  
10:1  
11:1  
12:1  
13:1  
14:1  
15:1  
16:1  
1
2
CFG_CLKIN_DIV is only used for host mode; CLKIN must be tied low and CFG_CLKIN_DIV must be pulled down (low) in  
agent mode.  
CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
85  
Core PLL Configuration  
21.2 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300 core clock  
(core_clk). This table shows the encodings for RCWL[COREPLL]. COREPLL values not listed in this table should be  
considered reserved.  
Table 73. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk:csb_clk  
VCO divider  
Ratio  
0–1  
nn  
2–5  
6
0000  
n
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk  
(PLL off, csb_clk  
clocks core directly) clocks core directly)  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
0011  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1:1  
1:1  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
1:1  
1:1  
1.5:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
3:1  
NOTE  
Core VCO frequency = Core frequency × VCO divider. The VCO divider  
(RCWL[COREPLL[0:1]]) must be set properly so that the core VCO frequency is in the  
range of 800–1800 MHz. Having a core frequency below the CSB frequency is not a  
possible option because the core frequency must be equal to or greater than the CSB  
frequency.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
86  
Freescale Semiconductor  
QUICC Engine Block PLL Configuration  
21.3 QUICC Engine Block PLL Configuration  
The QUICC Engine block PLL is controlled by the RCWL[CEPMF], RCWL[CEPDF], and RCWL[CEVCOD] parameters.  
This table shows the multiplication factor encodings for the QUICC Engine block PLL.  
Table 74. QUICC Engine Block PLL Multiplication Factors  
QUICC Engine PLL  
RCWL[CEPMF] RCWL[CEPDF] Multiplication Factor = RCWL[CEPMF]/  
(1 + RCWL[CEPDF])  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
× 16  
Reserved  
× 2  
× 3  
× 4  
× 5  
× 6  
× 7  
× 8  
× 9  
× 10  
× 11  
× 12  
× 13  
× 14  
× 15  
× 16  
× 17  
× 18  
× 19  
× 20  
× 21  
× 22  
× 23  
× 24  
× 25  
× 26  
× 27  
× 28  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
87  
QUICC Engine Block PLL Configuration  
Table 74. QUICC Engine Block PLL Multiplication Factors (continued)  
QUICC Engine PLL  
RCWL[CEPMF] RCWL[CEPDF] Multiplication Factor = RCWL[CEPMF]/  
(1 + RCWL[CEPDF])  
11101  
11110  
11111  
00011  
00101  
00111  
01001  
01011  
01101  
01111  
10001  
10011  
10101  
10111  
11001  
11011  
11101  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
× 29  
× 30  
× 31  
× 1.5  
× 2.5  
× 3.5  
× 4.5  
× 5.5  
× 6.5  
× 7.5  
× 8.5  
× 9.5  
× 10.5  
× 11.5  
× 12.5  
× 13.5  
× 14.5  
Note:  
1. Reserved modes are not listed.  
The RCWL[CEVCOD] denotes the QUICC Engine Block PLL VCO internal frequency as shown in this table.  
Table 75. QUICC Engine Block PLL VCO Divider  
RCWL[CEVCOD]  
VCO Divider  
00  
01  
10  
11  
4
8
2
Reserved  
NOTE  
The VCO divider (RCWL[CEVCOD]) must be set properly so that the QUICC Engine  
block VCO frequency is in the range of 600–1400 MHz. The QUICC Engine block  
frequency is not restricted by the CSB and core frequencies. The CSB, core, and QUICC  
Engine block frequencies should be selected according to the performance requirements.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
88  
Freescale Semiconductor  
Suggested PLL Configurations  
The QUICC Engine block VCO frequency is derived from the following equations:  
ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)  
QE VCO Frequency = ce_clk × VCO divider × (1 + CEPDF)  
21.4 Suggested PLL Configurations  
To simplify the PLL configurations, the device might be separated into two clock domains. The first domain contains the CSB  
PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second  
clock domain has the QUICC Engine block PLL. The clock domains are independent, and each of their PLLs are configured  
separately. Both of the domains has one common input clock. This table shows suggested PLL configurations for 33 and  
66 MHz input clocks and illustrates each of the clock domains separately. Any combination of clock domains setting with same  
input clock are valid. Refer to Section 21, “Clocking,” for the appropriate operating frequencies for your device.  
Table 76. Suggested PLL Configurations  
Input  
CEPMF CEPDF ClockFreq  
(MHz)  
QUICC  
Engine  
Freq (MHz)  
Conf  
No.1  
CORE  
PLL  
CSBFreq CoreFreq  
(MHz) (MHz)  
400  
533  
667  
SPMF  
(MHz) (MHz) (MHz)  
33 MHz CLKIN/PCI_SYNC_IN Options  
s1  
s2  
0100  
0100  
0101  
0101  
0110  
0110  
0111  
0111  
0111  
1000  
1000  
1000  
1001  
1001  
1001  
1010  
1010  
1010  
æ
0000100  
0000101  
0000100  
0000101  
0000100  
0000110  
0000011  
0000100  
0000101  
0000011  
0000100  
0000101  
0000010  
0000011  
0000100  
0000010  
0000011  
0000100  
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
0
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
133  
133  
166  
166  
200  
200  
233  
233  
233  
266  
266  
266  
300  
300  
300  
333  
333  
333  
266  
333  
333  
416  
400  
600  
350  
466  
583  
400  
533  
667  
300  
450  
600  
333  
500  
667  
s3  
æ
s4  
æ
s5  
æ
s6  
æ
s7  
æ
s8  
æ
s9  
æ
s10  
s11  
s12  
s13  
s14  
s15  
s16  
s17  
s18  
c1  
æ
æ
æ
æ
æ
æ
æ
æ
æ
01001  
01100  
01110  
01111  
300  
400  
466  
500  
c2  
æ
æ
0
c3  
æ
æ
0
c4  
æ
æ
0
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
89  
Suggested PLL Configurations  
Table 76. Suggested PLL Configurations (continued)  
Input  
CEPMF CEPDF ClockFreq  
(MHz)  
QUICC  
Engine  
Freq (MHz)  
Conf  
No.1  
CORE  
PLL  
CSBFreq CoreFreq  
400  
533  
667  
SPMF  
(MHz)  
(MHz)  
(MHz) (MHz) (MHz)  
c5  
c6  
æ
æ
æ
æ
10000  
10001  
0
0
33  
33  
533  
566  
66 MHz CLKIN/PCI_SYNC_IN Options  
s1h  
s2h  
s3h  
s4h  
s5h  
s6h  
s7h  
s8h  
s9h  
c1h  
c2h  
c3h  
c4h  
c5h  
Note:  
0011  
0011  
0011  
0100  
0100  
0100  
0101  
0101  
0101  
æ
0000110  
0000101  
0000110  
0000011  
0000100  
0000101  
0000010  
0000011  
0000100  
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
0
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
200  
200  
200  
266  
266  
266  
333  
333  
333  
400  
500  
600  
400  
533  
667  
333  
500  
667  
æ
æ
æ
æ
æ
æ
æ
00101  
00110  
00111  
01000  
01001  
333  
400  
466  
533  
600  
æ
æ
0
æ
æ
0
æ
æ
0
æ
æ
0
1. The Conf No. consist of prefix, an index and a postfix. The prefix “s” and “c” stands for “syset” and “ce” respectively. The  
postfix “h” stands for “high input clock.”The index is a serial number.  
The following steps describe how to use above table. See Example 1.  
2. Choose the up or down sections in the table according to input clock rate 33 MHz or 66 MHz.  
3. Select a suitable CSB and core clock rates from Table 76. Copy the SPMF and CORE PLL configuration bits.  
4. Select a suitable QUICC Engine block clock rate from Table 76. Copy the CEPMF and CEPDF configuration bits.  
5. Insert the chosen SPMF, COREPLL, CEPMF and CEPDF to the RCWL fields, respectively.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
90  
Freescale Semiconductor  
Thermal Characteristics  
Example 1. Sample Table Use  
Input Clock CSB Freq CoreFreq  
QUICC  
EngineFreq  
(MHz)  
CORE  
PLL  
400  
533  
667  
Index SPMF  
CEPMF CEPDF  
(MHz)  
(MHz)  
(MHz)  
(MHz) (MHz) (MHz)  
A
B
1000  
0100  
0000011 01001  
0000100 00110  
0
0
33  
66  
266  
266  
400  
533  
300  
400  
Example A. To configure the device with CSB clock rate of 266 MHz, core rate of 400 MHz, and QUICC Engine  
clock rate 300 MHz while the input clock rate is 33 MHz. Conf No. ‘s10’ and ‘c1’ are selected from Table 76. SPMF  
is 1000, CORPLL is 0000011, CEPMF is 01001, and CEPDF is 0.  
Example B. To configure the device with CSBCSB clock rate of 266 MHz, core rate of 533 MHz and QUICC Engine  
clock rate 400 MHz while the input clock rate is 66 MHz. Conf No. ‘s5h’ and ‘c2h’ are selected from Table 76. SPMF  
is 0100, CORPLL is 0000100, CEPMF is 00110, and CEPDF is 0.  
22 Thermal  
This section describes the thermal specifications of the MPC8360E/58E.  
22.1 Thermal Characteristics  
This table provides the package thermal characteristics for the 37.5 mm × 37.5 mm 740-TBGA package.  
Table 77. Package Thermal Characteristics for the TBGA Package  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient natural convection on single-layer board (1s)  
Junction-to-ambient natural convection on four-layer board (2s2p)  
Junction-to-ambient (@1 m/s) on single-layer board (1s)  
Junction-to-ambient (@ 1 m/s) on four-layer board (2s2p)  
Junction-to-ambient (@ 2 m/s) on single-layer board (1s)  
Junction-to-ambient (@ 2 m/s) on four-layer board (2s2p)  
Junction-to-board thermal  
RθJA  
RθJA  
15  
11  
10  
8
° C/W  
° C/W  
° C/W  
° C/W  
° C/W  
° C/W  
° C/W  
° C/W  
1, 2  
1, 3  
1, 3  
1, 3  
1, 3  
1, 3  
4
RθJMA  
RθJMA  
RθJMA  
RθJMA  
RθJB  
9
7
4.5  
1.1  
Junction-to-case thermal  
RθJC  
5
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
91  
Thermal Management Information  
Table 77. Package Thermal Characteristics for the TBGA Package (continued)  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-package natural convection on top  
ψ
1
° C/W  
6
JT  
Notes  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 and SEMI G38-87 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal. 1 m/sec is approximately equal to 200 linear feet per minute (LFM).  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JT.  
22.2 Thermal Management Information  
For the following sections, P = (V × I ) + P where P is the power dissipation of the I/O drivers. See Table 6 for  
D
DD  
DD  
I/O  
I/O  
typical power dissipations values.  
22.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = junction temperature (° C)  
J
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. As a general statement, the value obtained on a single-layer board is appropriate for a tightly packed  
printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power  
dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity  
T – T ) are possible.  
J
A
22.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The  
thermal performance of any component is strongly dependent on the power dissipation of surrounding components.  
Additionally, the ambient temperature varies widely within the application. For many natural convection and especially closed  
box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air  
temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise  
description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the  
junction temperature is estimated using the following equation:  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
92  
Freescale Semiconductor  
Thermal Management Information  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
T = junction temperature (° C)  
J
T = board temperature at the package perimeter (° C)  
B
R
= junction to board thermal resistance (°C/W) per JESD51-8  
θJA  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.  
22.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the Thermal  
Characterization Parameter (Ψ ) can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
T = junction temperature (° C)  
J
T = thermocouple temperature on top of package (°C)  
T
Ψ
= junction-to-ambient thermal resistance (°C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
22.2.4 Heat Sinks and Junction-to-Ambient Thermal Resistance  
In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a  
heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to ambient  
thermal resistance:  
R
= R  
+ R  
θJC θCA  
θJA  
where:  
R
R
R
= junction-to-ambient thermal resistance (°C/W)  
= junction-to-case thermal resistance (°C/W)  
= case-to-ambient thermal resistance (° C/W)  
θJA  
θJC  
θCA  
Rθ is device related and cannot be influenced by the user. The user controls the thermal environment to change the  
JC  
case-to-ambient thermal resistance, Rθ . For instance, the user can change the size of the heat sink, the airflow around the  
CA  
device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the  
printed-circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been simulated with a few  
commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, airflow,  
adjacent component power dissipation) and the physical space available. Because there is not a standard application  
environment, a standard heat sink is not required.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
93  
Thermal Management Information  
This table shows heat sinks and junction-to-ambient thermal resistance for TBGA package.  
Table 78. Heat Sinks and Junction-to-Ambient Thermal Resistance of TBGA Package  
35 × 35 mm TBGA  
Heat Sink Assuming Thermal Grease  
Airflow  
Junction-to-Ambient  
Thermal Resistance  
AAVID 30 × 30 × 9.4 mm pin fin  
Natural convention  
1 m/s  
10.7  
6.2  
5.3  
8.1  
4.4  
3.7  
5.4  
3.2  
2.4  
6.4  
3.8  
2.5  
2.8  
AAVID 30 × 30 × 9.4 mm pin fin  
AAVID 30 × 30 × 9.4 mm pin fin  
2 m/s  
AAVID 31 × 35 × 23 mm pin fin  
Natural convention  
1 m/s  
AAVID 31 × 35 × 23 mm pin fin  
AAVID 31 × 35 × 23 mm pin fin  
2 m/s  
Wakefield, 53 × 53 × 25 mm pin fin  
Natural convention  
1 m/s  
Wakefield, 53 × 53 × 25 mm pin fin  
Wakefield, 53 × 53 × 25 mm pin fin  
2 m/s  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 no adjacent board, extrusion  
MEI, 75 × 85 × 12 mm, adjacent board, 40 mm side bypass  
Natural convention  
1 m/s  
2 m/s  
1 m/s  
Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics  
software which can model both the conduction cooling and the convection cooling of the air moving through the application.  
Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal  
resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.  
Heat sink vendors include the following:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
603-224-9988  
408-749-7601  
818-842-7277  
Alpha Novatech  
473 Sapena Ct. #15  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC)  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
94  
Freescale Semiconductor  
Heat Sink Attachment  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
408-436-8770  
800-522-6752  
603-635-5102  
Internet: www.mei-millennium.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105-3668  
Internet: www.chipcoolers.com  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
77 Dragon Ct.  
Woburn, MA 01888-4014  
Internet: www.chomerics.com  
781-935-4850  
800-248-2481  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
2200 W. Salzburg Rd.  
Midland, MI 48686-0997  
Internet: www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
Phoenix, AZ 85044  
888-642-7674  
800-347-4572  
Internet: www.microsi.com  
The Bergquist Company  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
22.3 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use thermal grease and a  
spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board,  
or to a plastic stiffener. Avoid attachment forces which would lift the edge of the package or peel the package from the board.  
Such peeling forces reduce the solder joint lifetime of the package. Recommended maximum force on the top of the package is  
10 lb force (4.5 kg force). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or  
plastic surfaces and its performance verified under the application requirements.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
95  
System Clocking  
22.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case  
of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of  
the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to  
the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature  
and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this  
case temperature, the junction temperature is determined from the junction-to-case thermal resistance.  
T = T + (R  
× P )  
D
J
C
θJC  
where:  
T = junction temperature (° C)  
J
T = case temperature of the package (°C)  
C
R
= junction to case thermal resistance (°C/W)  
θJC  
P = power dissipation (W)  
D
23 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the MPC8360E/58E.  
Additional information can be found in MPC8360E/MPC8358E PowerQUICC Design Checklist (AN3097).  
23.1 System Clocking  
The device includes two PLLs, as follows.  
The platform PLL (AV 1) generates the platform clock from the externally supplied CLKIN input. The frequency  
DD  
ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in  
Section 21.1, “System PLL Configuration.”  
The e300 core PLL (AV 2) generates the core clock as a slave to the platform clock. The frequency ratio between  
DD  
the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in  
Section 21.2, “Core PLL Configuration.”  
23.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins (AV 1, AV 2, respectively).  
DD  
DD  
The AV level should always be equivalent to V , and preferably these voltages are derived directly from V through a  
DD  
DD  
DD  
low frequency filter scheme such as the following.  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide five independent  
filter circuits as illustrated in Figure 56, one to each of the five AV pins. By providing independent filters to each PLL, the  
DD  
opportunity to cause noise injection from one PLL to the other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built  
with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr.  
Howard Johnson in High Speed Digital Design: A Handbook of Black Magic (Prentice Hall, 1993), multiple small capacitors  
of equal value are recommended over a single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize noise coupled from  
DD  
nearby circuits. It should be possible to route directly from the capacitors to the AV pin, which is on the periphery of package,  
DD  
without the inductance of vias.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
96  
Freescale Semiconductor  
Decoupling Recommendations  
This figure shows the PLL power supply filter circuit.  
10 Ω  
VDD  
AVDDn  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 56. PLL Power Supply Filter Circuit  
23.3 Decoupling Recommendations  
Due to large address and data buses as well as high operating frequencies, the device can generate transient power surges and  
high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from  
reaching other components in the device system, and the device itself requires a clean, tightly regulated source of power.  
Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V , OV , GV , and  
DD  
DD  
DD  
LV pins of the device. These decoupling capacitors should receive their power from separate V , OV , GV , LV , and  
DD  
DD  
DD  
DD  
DD  
GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device  
using a standard escape pattern. Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) capacitors should be  
used to minimize lead inductance, preferably 0402 or 0603 sizes.  
Additionally, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V  
,
DD  
OV , GV , and LV planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have  
DD  
DD  
DD  
a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to  
the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS  
tantalum or Sanyo OSCON).  
23.4 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active  
low inputs should be tied to OV , GV , or LV as required. Unused active high inputs should be connected to GND. All  
DD  
DD  
DD  
NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , GV , LV , OV , and GND pins of the device.  
DD  
DD  
DD  
DD  
23.5 Output Buffer DC Impedance  
The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended  
2
driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to OV or GND. Then, the  
0
DD  
value of each resistor is varied until the pad voltage is OV /2 (see Figure 57). The output impedance is the average of two  
DD  
components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and  
R is trimmed until the voltage at the pad equals OV /2. R then becomes the resistance of the pull-up devices. R and R are  
P
DD  
P
P
N
designed to be close to each other in value. Then, Z = (R + R )/2.  
0
P
N
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
97  
Configuration Pin Muxing  
OVDD  
RN  
SW2  
SW1  
Pad  
Data  
RP  
OGND  
Figure 57. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two measurements. First, the  
output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is  
V = R  
× I  
. Second, the output voltage is measured while driving logic 1 with an external precision differential  
1
source  
source  
termination resistor of value R . The measured voltage is V = 1/(1/R + 1/R )) × I  
gives R  
. Solving for the output impedance  
term  
2
1
2
source  
= R  
× (V /V – 1). The drive current is then I  
= V /R  
.
source  
term  
1
2
source  
1
source  
This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V , nominal OV  
,
DD  
DD  
105° C.  
Table 79. Impedance Characteristics  
Local Bus, Ethernet, DUART,  
Impedance  
Control, Configuration, Power  
Management  
PCI  
DDR DRAM  
Symbol  
Unit  
R
R
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
20 Target  
20 Target  
NA  
Z0  
Z0  
W
W
W
N
P
Differential  
ZDIFF  
Note: Nominal supply voltages. See Table 1, TJ = 105° C.  
23.6 Configuration Pin Muxing  
The device provides the user with power-on configuration options that can be set through the use of external pull-up or  
pull-down resistors of 4.7 kΩon certain output pins (see customer visible configuration pins). These pins are generally used as  
output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is  
asserted, is latched when HRESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal  
function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the  
pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
98  
Freescale Semiconductor  
Pull-Up Resistor Requirements  
23.7 Pull-Up Resistor Requirements  
The device requires high resistance pull-up resistors (10 kΩis recommended) on open drain type pins including I C pins,  
Ethernet Management MDIO pin, and EPIC interrupt pins.  
2
For more information on required pull-up resistors and the connections required for the JTAG interface, see  
MPC8360E/MPC8358E PowerQUICC Design Checklist (AN3097).  
24 Ordering Information  
24.1 Part Numbers Fully Addressed by this Document  
This table provides the Freescale part numbering nomenclature for the MPC8360E/58E. Note that the individual part numbers  
correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office.  
Additionally to the processor frequency, the part numbering scheme also includes an application modifier, which may specify  
special application conditions. Each part number also contains a revision code that refers to the die mask revision number.  
1
Table 80. Part Numbering Nomenclature  
MPC nnnn  
e
t
pp  
aa  
a
a
A
QUICC  
Engine  
Frequency  
Product  
Code Identifier Acceleration  
Part  
Encryption Temperature  
Range  
Processor  
Platform  
Frequency  
Die  
Revision  
Package2  
Frequency3  
MPC  
8358  
8360  
Blank = not Blank = 0° C ZU = TBGA e300 core speed D = 266 MHz E = 300 MHz A = rev. 2.1  
included  
TA to 105° C VV = TBGA AD = 266 MHz  
G = 400 MHz  
silicon  
E = included  
TJ  
(no lead)  
AG = 400 MHz  
C= –40° C TA  
to 105° C TJ  
e300 core speed D = 266 MHz G = 400 MHz A = rev. 2.1  
AG = 400 MHz F = 333 MHz H = 500 MHz  
AJ = 533 MHz  
silicon  
AL = 667 MHz  
MPC  
(rev. 2.0  
silicon  
only)  
8360  
Blank = not  
included  
E = included  
0° C TA to ZU = TBGA e300 core speed F = 333 MHz G = 400 MHz  
70° C TJ VV = TBGA AH = 500 MHz H = 500 MHz  
(no lead) AL = 667 MHz  
Notes:  
1. Not all processor, platform, and QUICC Engine block frequency combinations are supported. For available frequency  
combinations, contact your local Freescale sales office or authorized distributor.  
2. See Section 20, “Package and Pin Listings,for more information on available package types.  
3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by part number specifications may support other  
maximum core frequencies.  
This table shows the SVR settings by device and package type.  
Table 81. SVR Settings  
SVR  
(Rev. 2.0)  
SVR  
(Rev. 2.1)  
Device  
Package  
MPC8360E  
MPC8360  
TBGA  
TBGA  
0x8048_0020  
0x8049_0020  
0x8048_0021  
0x8049_0021  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor  
99  
Part Numbers Fully Addressed by this Document  
Table 81. SVR Settings (continued)  
SVR  
(Rev. 2.0)  
SVR  
(Rev. 2.1)  
Device  
Package  
MPC8358E  
MPC8358  
TBGA  
TBGA  
0x804A_0020  
0x804B_0020  
0x804A_0021  
0x804B_0021  
25 Document Revision History  
This table provides a revision history for this document.  
Table 82. Revision History  
Rev.  
Number  
Date  
Substantive Change(s)  
5
09/2011 • Section 2.2.1, “Power-Up Sequencing”, added the current limitation “3A to 5A” for the excessive current.  
Section 2.1.2, “Power Supply Voltage Specification, Updated the Characteristic for TBGA (MPC8358 &  
MPC8360 Device) with specific frequency for Core and PLL voltages.  
• Added table footnote 3 to Table 2.  
• Applied table footnotes 1 and 2 to Table 10.  
• Removed table footnotes from Table 19.  
• Applied table footnote 8 to the last row of Table 40.  
• Applied table footnotes 8 and 9 to Table 41.  
• Applied table footnotes 2and 3 to Table 45.  
• Removed table footnotes from Table 46.  
• Applied table footnote to last three rows of Table 65.  
4
01/2011 • Updated references to the LCRR register throughout  
• Removed references to DDR DLL mode in Section 6.2.2, “DDR and DDR2 SDRAM Output AC Timing  
Specifications.”  
• Changed “Junction-to-Case” to “Junction-to-Ambient” in Section 22.2.4, “Heat Sinks and  
Junction-to-Ambient Thermal Resistance,and Table 78, “Heat Sinks and Junction-to-Ambient Thermal  
Resistance of TBGA Package,titles.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
100 Freescale Semiconductor  
Part Numbers Fully Addressed by this Document  
Table 82. Revision History (continued)  
Substantive Change(s)  
Rev.  
Number  
Date  
3
03/2010 • Changed references to RCWH[PCICKEN] to RCWH[PCICKDRV].  
• In Table 2, added extended temperature characteristics.  
• Added Figure 6, “DDR Input Timing Diagram.”  
• In Figure 53, “Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package,”  
removed watermark.  
• Updated the title of Table 19,DDR SDRAM Input AC Timing Specifications.”  
• In Table 20, “DDR and DDR2 SDRAM Input AC Timing Specifications Mode,changed table subtitle.  
• In Table 27Table 30, and Table 33Table 34, changed the rise and fall time specifications to reference  
20–80% and 80–20% of the voltage supply, respectively.  
• In Table 38, “IEEE 1588 Timer AC Specifications,changed first parameter to “Timer clock frequency.”  
• In Table 45, “I2C AC Electrical Specifications,changed units to “ns” for tI2DVKH  
.
• In Table 66, “MPC8360E TBGA Pinout Listing,and Table 67 “MPC8358E TBGA Pinout Listing, added  
note 7: “This pin must always be tied to GND” to the TEST pin and added a note to SPARE1 stating: “This  
pin must always be left not connected.”  
• In Section 4, “Clock Input Timing,added note regarding rise/fall time on QUICC Engine block input pins.  
• Added Section 4.3, “Gigabit Reference Clock Input Timing.”  
• Updated Section 8.1.1, “10/100/1000 Ethernet DC Electrical Characteristics.”  
• In Section 20.3, “Pinout Listings,added sentence stating “Refer to AN3097, ‘MPC8360/MPC8358E  
PowerQUICC Design Checklist,’ for proper pin termination and usage.”  
• In Section 21, “Clocking,removed statement: “The OCCR[PCICDn] parameters select whether CLKIN  
or CLKIN/2 is driven out on the PCI_CLK_OUTn signals.”  
• In Section 21.1, “System PLL Configuration,updated the system VCO frequency conditions.  
• In Table 80, added extended temperature characteristics.  
2
12/2007 Initial release.  
MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 5  
Freescale Semiconductor 101  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale, the Freescale logo, and PowerQUICC are trademarks of  
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine is  
a trademark of Freescale Semiconductor, Inc. All other product or service  
names are the property of their respective owners. The Power Architecture  
and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org.  
© 2011 Freescale Semiconductor, Inc.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
1-800 441-2447 or  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Document Number: MPC8360EEC  
Rev. 5  
09/2011  

相关型号:

MPC8360ZUALDHA

PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications
FREESCALE

MPC8360ZUALFGA

PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications
FREESCALE

MPC8360ZUALFHA

PowerQUICC II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications
FREESCALE

MPC8360ZUALFHA

32-BIT, 667MHz, RISC PROCESSOR, PBGA740, 37.50 X 37.50 MM, 1.46 MM HEIGHT, 1 MM PITCH, TBGA-740
NXP

MPC8377CVRAFDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAFFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAFGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAGDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAGFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAGGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAJD

MICROPROCESSOR
NXP

MPC8377CVRAJDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE