MPC8360ZUALFHA [NXP]

32-BIT, 667MHz, RISC PROCESSOR, PBGA740, 37.50 X 37.50 MM, 1.46 MM HEIGHT, 1 MM PITCH, TBGA-740;
MPC8360ZUALFHA
型号: MPC8360ZUALFHA
厂家: NXP    NXP
描述:

32-BIT, 667MHz, RISC PROCESSOR, PBGA740, 37.50 X 37.50 MM, 1.46 MM HEIGHT, 1 MM PITCH, TBGA-740

时钟 外围集成电路
文件: 总112页 (文件大小:1114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8360EEC  
Rev. 2, 12/2007  
Freescale Semiconductor  
Technical Data  
MPC8360E/MPC8358E  
PowerQUICC™ II Pro Processor  
Revision 2.x TBGA Silicon  
Hardware Specifications  
Contents  
This document provides an overview of the MPC8360E/58E  
PowerQUICC II Pro processor revision 2.x TBGA  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . 8  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 13  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 19  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8. UCC Ethernet Controller: Three-Speed Ethernet, MII  
Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
9. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
11. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
12. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
14. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
15. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
16. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
17. TDM/SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
18. UTOPIA/POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
features, including a block diagram showing the major  
functional components. This device is a cost-effective,  
highly integrated communications processor that addresses  
the needs of the networking, wireless infrastructure and  
telecommunications markets. Target applications include  
next generation DSLAMs, network interface cards for 3G  
basestations (Node Bs), routers, media gateways and high  
end IADs. The device extends current PowerQUICC II Pro  
offerings, adding higher CPU performance, additional  
functionality, faster interfaces and robust interworking  
between protocols while addressing the requirements related  
to time-to-market, price, power, and package size. This  
device can be used for the control plane along with data  
plane functionality.  
19. HDLC, BISYNC, Transparent, and Synchronous  
UART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
For functional characteristics of the processor, refer to the  
MPC8360E Integrated Communications Processor Family  
Reference Manual, Rev. 2.  
20. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
21. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . . 68  
22. Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
23. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
24. System Design Information . . . . . . . . . . . . . . . . . . . 104  
25. Document Revision History. . . . . . . . . . . . . . . . . . . 108  
26. Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . 108  
To locate any published errata or updates for this document,  
contact your Freescale sales office.  
© Freescale Semiconductor, Inc., 2007. All rights reserved.  
Overview  
1 Overview  
This section describes a high-level overview including features and general operation of the  
MPC8360E/58E PowerQUICC™ II Pro processor. A major component of this device is the e300 core  
which includes 32 Kbytes of instruction and data cache and is fully compatible with the PowerPC™ 603e  
instruction set. The new QUICC Engine module provides termination, interworking, and switching  
between a wide range of protocols including ATM, Ethernet, HDLC, and POS. The QUICC Engine  
module's enhanced interworking eases the transition and reduces investment costs from ATM to IP based  
systems. The other major features include a dual DDR SDRAM memory controller for the MPC8360E,  
which allows equipment providers to partition system parameters and data in an extremely efficient way,  
such as using one 32-bit DDR memory controller for control plane processing and the other for data plane  
processing. The MPC8358E has a single DDR SDRAM memory controller. The MPC8360E/58E also  
offers a 32-bit PCI controller, a flexible local bus, and a dedicated security engine.  
System Interface Unit  
(SIU)  
e300 Core  
Security Engine  
32KB  
32KB  
Memory Controllers  
GPCM/UPM/SDRAM  
I-Cache  
D-Cache  
DDRC1  
DDRC2  
Classic G2 MMUs  
32/64 DDR Interface Unit  
PCI Bridge  
Power  
FPU  
PCI  
Management  
Local  
JTAG/COP  
Timers  
Local Bus  
Bus Arbitration  
DUART  
QUICC Engine Module  
Multi-User  
Accelerators  
RAM  
Baud Rate  
Generators  
Serial DMA  
&
2 Virtual  
DMAs  
2
Dual I C  
Dual 32-bit RISC CP  
4 Channel DMA  
Interrupt Controller  
Protection & Configuration  
System Reset  
Parallel I/O  
Time Slot Assigner  
Serial Interface  
Clock Synthesizer  
8 MII/  
RMII  
2 GMII/  
RGMII/TBI/RTBI  
2 UTOPIA/POS  
(124 MPHY)  
8 TDM Ports  
Figure 1. MPC8360E Block Diagram  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
2
Freescale Semiconductor  
Overview  
System Interface Unit  
(SIU)  
e300 Core  
Security Engine  
32KB  
32KB  
Memory Controllers  
GPCM/UPM/SDRAM  
I-Cache  
D-Cache  
Classic G2 MMUs  
DDRC  
32/64 DDR Interface Unit  
PCI Bridge  
Power  
PCI  
FPU  
Management  
Local  
JTAG/COP  
Timers  
Local Bus  
Bus Arbitration  
DUART  
QUICC Engine Module  
Multi-User  
Accelerators  
RAM  
Baud Rate  
Generators  
Serial DMA  
&
2 Virtual  
DMAs  
2
Dual I C  
Dual 32-bit RISC CP  
4 Channel DMA  
Interrupt Controller  
Protection & Configuration  
System Reset  
Parallel I/O  
Time Slot Assigner  
Serial Interface  
Clock Synthesizer  
6 MII/  
RMII  
2 GMII/  
RGMII/TBI/RTBI  
1 UTOPIA/POS  
(31/124 MPHY)  
4 TDM Ports  
Figure 2. MPC8358E Block Diagram  
Major features of the MPC8360E/58E are as follows:  
• e300 PowerPC processor core (enhanced version of the MPC603e core)  
— Operates at up to 667 MHz (for the MPC8360E) and 400 MHz (for the MPC8358E)  
— High-performance, superscalar processor core  
— Floating-point, integer, load/store, system register, and branch processing units  
— 32-Kbyte instruction cache, 32-Kbyte data cache  
— Lockable portion of L1 cache  
— Dynamic power management  
— Software-compatible with the Freescale processor families implementing the Power  
Architecture™ technology  
QUICC Engine unit  
— Two 32-bit RISC controllers for flexible support of the communications peripherals, each  
operating up to 500 MHz (for the MPC8360E) and 400 MHz (for the MPC8358E)  
— Serial DMA channel for receive and transmit on all serial channels  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
3
Overview  
— QE peripheral request interface (for SEC, PCI, IEEE® Std 1588™)  
— Eight universal communication controllers (UCCs) on the MPC8360E and six UCCs on the  
MPC8358E supporting the following protocols and interfaces (not all of them simultaneously):  
IEEE Std. 1588 protocol supported  
– 10/100 Mbps Ethernet/IEEE Std. 802.3® CDMA/CS interface through a  
1
media-independent interface (MII, RMII, RGMII)  
– 1000 Mbps Ethernet/IEEE Std. 802.3 CDMA/CS interface through a media-independent  
interface (GMII, RGMII, TBI, RTBI) on UCC1 and UCC2  
– 9.6K jumbo frames  
ATM full-duplex SAR, up to 622 Mbps (OC-12/STM-4), AAL0, AAL1 and AAL5 in  
accordance ITU-T I.363.5  
ATM AAL2 CPS, SSSAR, and SSTED up to 155 Mbps (OC-3/STM-1) Mbps full duplex  
(with 4 CPS packets per cell) in accordance ITU-T I.366.1 and I.363.2  
ATM traffic shaping for CBR, VBR, UBR, and GFR traffic types compatible with ATM  
forum TM4.1 for up to 64K simultaneous ATM channels  
ATM AAL1 structured and unstructured circuit emulation service (CES 2.0) in accordance  
with ITU-T I.163.1 and ATM Forum af-vtoa-00-0078.000  
– IMA (Inverse Multiplexing over ATM) for up to 31 IMA links over 8 IMA groups in  
accordance with the ATM forum AF-PHY-0086.000 (Version 1.0) and AF-PHY-0086.001  
(Version 1.1)  
ATM Transmission Convergence layer support in accordance with ITU-T I.432  
ATM OAM handling features compatible with ITU-T I.610  
– PPP, Multi-Link (ML-PPP), Multi-Class (MC-PPP) and PPP mux in accordance with the  
following RFCs: 1661, 1662, 1990, 2686 and 3153  
– IP support for IPv4 packets including TOS, TTL and header checksum processing  
– Ethernet over first mile IEEE Std. 802.3ah®  
– Shim header  
– Ethernet-to-Ethernet/AAL5/AAL2 inter-working  
– L2 Ethernet switching using MAC address or IEEE Std. 802.1P/Q® VLAN tags  
ATM (AAL2/AAL5) to Ethernet (IP) interworking in accordance with RFC2684 including  
bridging of ATM ports to Ethernet ports  
– Extensive support for ATM statistics and Ethernet RMON/MIB statistics  
– AAL2 protocol rate up to 4 CPS at OC-3/STM-1 rate  
– Packet over Sonet (POS) up to 622-Mbps full-duplex 124 MultiPHY  
– POS hardware; microcode must be loaded as an IRAM package  
– Transparent up to 70-Mbps full-duplex  
– HDLC up to 70-Mbps full-duplex  
– HDLC BUS up to 10 Mbps  
1. SMII or SGMII media-independent interface is not currently supported  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
4
Freescale Semiconductor  
Overview  
– Asynchronous HDLC  
– UART  
– BISYNC up to 2 Mbps  
– User-programmable Virtual FIFO size  
– QUICC Multichannel Controller (QMC) for 64 TDM channels  
— One multichannel communication controller (MCC) only on the MPC8360E supporting the  
following:  
– 256 HDLC or transparent channels  
– 128 SS7 channels  
– Almost any combination of subgroups can be multiplexed to single or multiple TDM  
interfaces  
— Two UTOPIA/POS interfaces on the MPC8360E supporting 124 MultiPHY each (optional  
2*128 MultiPHY with extended address) and one UTOPIA/POS interface on the MPC8358E  
supporting 31/124 MultiPHY  
— Two serial peripheral interfaces (SPI); SPI2 is dedicated to Ethernet PHY management  
— Eight TDM interfaces on the MPC8360E and four TDM interfaces on the MPC8358E with  
1-bit mode for E3/T3 rates in clear channel  
— Sixteen independent baud rate generators and 30 input clock pins for supplying clocks to UCC  
and MCC serial channels (MCC is only available on the MPC8360E)  
— Four independent 16-bit timers that can be interconnected as four 32-bit timers  
— Interworking functionality:  
– Layer 2 10/100-Base T Ethernet switch  
ATM-to-ATM switching (AAL0, 2, 5)  
– Ethernet-to-ATM switching with L3/L4 support  
– PPP interworking  
Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP,  
802.11i, iSCSI, and IKE processing. The security engine contains four crypto-channels, a  
controller, and a set of crypto execution units (EUs).  
— Public key execution unit (PKEU) supporting the following:  
– RSA and Diffie-Hellman  
– Programmable field size up to 2048 bits  
– Elliptic curve cryptography  
– F2m and F(p) modes  
– Programmable field size up to 511 bits  
— Data encryption standard execution unit (DEU)  
– DES, 3DES  
– Two key (K1, K2) or three key (K1, K2, K3)  
– ECB and CBC modes for both DES and 3DES  
— Advanced encryption standard unit (AESU)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
5
Overview  
— Implements the Rinjdael symmetric key cipher  
— Key lengths of 128, 192, and 256 bits, two key  
– ECB, CBC, CCM, and counter modes  
— ARC four execution unit (AFEU)  
– Implements a stream cipher compatible with the RC4 algorithm  
– 40- to 128-bit programmable key  
— Message digest execution unit (MDEU)  
– SHA with 160-, 224-, or 256-bit message digest  
– MD5 with 128-bit message digest  
– HMAC with either SHA or MD5 algorithm  
— Random number generator (RNG)  
— Four crypto-channels, each supporting multi-command descriptor chains  
– Static and/or dynamic assignment of crypto-execution units via an integrated controller  
– Buffer size of 256 bytes for each execution unit, with flow control for large data sizes  
— Storage/NAS XOR parity generation accelerator for RAID applications  
Dual DDR SDRAM memory controllers on the MPC8360E and a single DDR SDRAM memory  
controller on the MPC8358E  
— Programmable timing supporting both DDR1 and DDR2 SDRAM  
— On the MPC8360E, the DDR buses can be configured as two 32-bit buses or one 64-bit bus;  
on the MPC8358E, the DDR bus can be configured as a 32-bit or a 64-bit bus  
— 32- or 64-bit data interface, up to 333 MHz (for the MPC8360E) and 266 MHz (for the  
MPC8358E) data rate  
— Four banks of memory, each up to 1 Gbyte  
— DRAM chip configurations from 64 Mbits to 1 Gigabit with x8/x16 data ports  
— Full ECC support (when the MPC8360E is configured as 2x32 bit DDR memory controllers,  
both support ECC)  
— Page mode support (up to 16 simultaneous open pages for DDR1, up to 32 simultaneous open  
pages for DDR2)  
— Contiguous or discontiguous memory mapping  
— Read-modify-write support  
— Sleep mode support for self refresh SDRAM  
— Supports auto refreshing  
— Supports source clock mode  
— On-the-fly power management using CKE  
— Registered DIMM support  
— 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2  
— External driver impedance calibration  
— On-die termination (ODT)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
6
Freescale Semiconductor  
Overview  
PCI interface  
— PCI Specification Revision 2.3 compatible  
— Data bus widths:  
– Single 32-bit data PCI interface that operates at up to 66 MHz  
— PCI 3.3-V compatible (not 5-V compatible)  
— PCI host bridge capabilities on both interfaces  
— PCI agent mode supported on PCI interface  
— Support for PCI-to-memory and memory-to-PCI streaming  
— Memory prefetching of PCI read accesses and support for delayed read transactions  
— Support for posting of processor-to-PCI and PCI-to-memory writes  
— On-chip arbitration, supporting five masters on PCI  
— Support for accesses to all PCI address spaces  
— Parity support  
— Selectable hardware-enforced coherency  
— Address translation units for address mapping between host and peripheral  
— Dual address cycle supported when the device is the target  
— Internal configuration registers accessible from PCI  
Local bus controller (LBC)  
— Multiplexed 32-bit address and data operating at up to 133 MHz  
— Eight chip selects support eight external slaves  
— Up to eight-beat burst transfers  
— 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller  
— Three protocol engines available on a per chip select basis:  
– General-purpose chip select machine (GPCM)  
– Three user programmable machines (UPMs)  
– Dedicated single data rate SDRAM controller  
— Parity support  
— Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)  
Programmable interrupt controller (PIC)  
— Functional and programming compatibility with the MPC8260 interrupt controller  
— Support for 8 external and 35 internal discrete interrupt sources  
— Support for one external (optional) and seven internal machine checkstop interrupt sources  
— Programmable highest priority request  
— Four groups of interrupts with programmable priority  
— External and internal interrupts directed to communication processor  
— Redirects interrupts to external INTA pin when in core disable mode  
— Unique vector number for each interrupt source  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
7
Electrical Characteristics  
2
Dual industry-standard I C interfaces  
— Two-wire interface  
— Multiple master support  
2
— Master or slave I C mode support  
— On-chip digital filtering rejects spikes on the bus  
2
— System initialization data is optionally loaded from I C-1 EPROM by boot sequencer  
embedded hardware  
DMA controller  
— Four independent virtual channels  
— Concurrent execution across multiple channels with programmable bandwidth control  
— All channels accessible by local core and remote PCI masters  
— Misaligned transfer capability  
— Data chaining and direct mode  
— Interrupt on completed segment and chain  
— DMA external handshake signals: DMA_DREQ[0:3]/DMA_DACK[0:3]/DMA_DONE[0:3].  
There is one set for each DMA channel. The pins are multiplexed to the parallel IO pins with  
other QE functions.  
DUART  
— Two 4-wire interfaces (RxD, TxD, RTS, CTS)  
— Programming model compatible with the original 16450 UART and the PC16550D  
System timers  
— Periodic interrupt timer  
— Real-time clock  
— Software watchdog timer  
— Eight general-purpose timers  
IEEE Std. 1149.1™ compliant, JTAG boundary scan  
Integrated PCI bus and SDRAM clock generation  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8360E/58E. The device is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer  
design specifications.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
8
Freescale Semiconductor  
Electrical Characteristics  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute Maximum Ratings  
Table 1 provides the absolute maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Characteristic Symbol  
Max Value  
Unit  
Notes  
Core supply voltage  
V
V
DD  
–0.3 to 1.32  
–0.3 to 1.37  
For QE frequencies <500 MHz and e300 frequencies <667 MHz  
For a QE frequency of 500 MHz or an e300 frequency of 667 MHz  
PLL supply voltage  
AV  
V
V
DD  
–0.3 to 1.32  
–0.3 to 1.37  
For QE frequencies <500 MHz and e300 frequencies <667 MHz  
For a QE frequency of 500 MHz or an e300 frequency of 667 MHz  
DDR and DDR2 DRAM I/O voltage  
GV  
DD  
–0.3 to 2.75  
–0.3 to 1.89  
DDR  
DDR2  
Three-speed Ethernet I/O, MII management voltage  
LV  
OV  
–0.3 to 3.63  
–0.3 to 3.63  
V
V
DD  
PCI, local bus, DUART, system control and power management,  
DD  
2
I C, SPI, and JTAG I/O voltage  
Input voltage  
DDR DRAM signals  
MV  
–0.3 to (GV + 0.3)  
V
V
V
V
2, 5  
2, 5  
4, 5  
3, 5  
IN  
DD  
DDR DRAM reference  
MV  
–0.3 to (GV + 0.3)  
DD  
REF  
Three-speed Ethernet signals  
Local bus, DUART, CLKIN, system  
LV  
–0.3 to (LV + 0.3)  
DD  
IN  
OV  
–0.3 to (OV + 0.3)  
DD  
IN  
2
control and power management, I C,  
SPI, and JTAG signals  
PCI  
OV  
–0.3 to (OV + 0.3)  
V
6
IN  
DD  
Storage temperature range  
T
–55 to 150  
°C  
STG  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or  
cause permanent damage to the device.  
2. Caution: MV must not exceed GV by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
IN  
DD  
power-on reset and power-down sequences.  
3. Caution: OV must not exceed OV by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
IN  
DD  
power-on reset and power-down sequences.  
4. Caution: LV must not exceed LV by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
IN  
DD  
power-on reset and power-down sequences.  
5. (M,L,O)V and MV may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 3.  
IN  
REF  
6. OV on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation,  
IN  
as shown in Figure 4.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
9
 
Electrical Characteristics  
2.1.2  
Power Supply Voltage Specification  
Table 2 provides the recommended operating conditions for the device. Note that the values in Table 2 are  
the recommended and tested operating conditions. Proper device operation outside of these conditions is  
not guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Characteristic  
Symbol  
Unit  
Notes  
Value  
Core supply voltage  
V
V
1
DD  
1.2 V 60 mV  
1.3 V 50 mV  
For QE frequencies <500 MHz and e300 frequencies <667 MHz  
For a QE frequency of 500 MHz or an e300 frequency of 667 MHz  
PLL supply voltage  
AV  
V
V
1
DD  
1.2 V 60 mV  
1.3 V 50 mV  
For QE frequencies <500 MHz and e300 frequencies <667 MHz  
For a QE frequency of 500 MHz or an e300 frequency of 667 MHz  
DDR and DDR2 DRAM I/O supply voltage  
GV  
DD  
2.5 V 125 mV  
1.8V 90 mV  
DDR  
DDR2  
Three-speed Ethernet I/O supply voltage  
Three-speed Ethernet I/O supply voltage  
Three-speed Ethernet I/O supply voltage  
LV  
LV  
LV  
0
1
2
3.3 V 330 mV  
2.5 V 125 mV  
V
V
DD  
DD  
DD  
3.3 V 330 mV  
2.5 V 125 mV  
3.3 V 330 mV  
2.5 V 125 mV  
V
2
PCI, local bus, DUART, system control and power management, I C, SPI,  
OV  
3.3 V 330 mV  
V
DD  
J
and JTAG I/O voltage  
Junction temperature  
Notes:  
T
0 to 105  
°C  
2
1. GV , LV , OV , AV , and V must track each other and must vary in the same direction—either in the positive or  
DD  
DD  
DD  
DD  
DD  
negative direction.  
2. .The operating conditions for junction temperature, T , on the 600/333/400 MHz and 500/333/500 MHz on rev2.0 silicon is  
J
0 °C to 70 °C. Please refer to General9 in the device errata document.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
10  
Freescale Semiconductor  
 
Electrical Characteristics  
Figure 3 shows the undershoot and overshoot voltages at the interfaces of the device.  
G/L/OV + 20%  
DD  
G/L/OV + 5%  
DD  
G/L/OV  
V
DD  
IH  
GND  
GND – 0.3 V  
V
IL  
GND – 0.7 V  
Not to Exceed 10%  
1
of t  
interface  
Note:  
1. Note that t  
refers to the clock period associated with the bus clock interface.  
interface  
Figure 3. Overshoot/Undershoot Voltage for GV /OV /LV  
DD  
DD  
DD  
Figure 4 shows the undershoot and overshoot voltage of the PCI interface of the device for the 3.3-V  
signals, respectively.  
11 ns  
(Min)  
+7.1 V  
Overvoltage  
Waveform  
7.1 V p-to-p  
(Min)  
0 V  
4 ns  
(Max)  
4 ns  
(Max)  
62.5 ns  
+3.6 V  
7.1 V p-to-p  
(Min)  
Undervoltage  
Waveform  
–3.5 V  
Figure 4. Maximum AC Waveforms on PCI interface for 3.3-V Signaling  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
11  
 
 
Electrical Characteristics  
2.1.3  
Output Driver Characteristics  
Table 3 provides information on the characteristics of the output driver strengths. The values are  
preliminary estimates.  
Table 3. Output Drive Capability  
Driver Type  
Output Impedance (Ω)  
Supply Voltage  
OV = 3.3 V  
Local bus interface utilities signals  
PCI signals  
42  
25  
42  
20  
DD  
PCI output clocks (including PCI_SYNC_OUT)  
DDR signal  
GV = 2.5 V  
DD  
1
36 (half strength mode)  
DDR2 signal  
18  
GV = 1.8 V  
DD  
1
36 (half strength mode)  
10/100/1000 Ethernet signals  
42  
42  
42  
LV = 2.5/3.3 V  
DD  
2
DUART, system control, I C, SPI, JTAG  
OV = 3.3 V  
DD  
GPIO signals  
OV = 3.3 V  
DD  
LV = 2.5/3.3 V  
DD  
1
DDR output impedance values for half strength mode are verified by design and not tested  
2.2  
Power Sequencing  
This section details the power sequencing considerations for the MPC8360E/58E.  
2.2.1  
Power-Up Sequencing  
MPC8360E/58E does not require the core supply voltage (V and AV ) and I/O supply voltages  
DD  
DD  
(GV , LV , and OV ) to be applied in any particular order. During the power ramp up, before the  
DD  
DD  
DD  
power supplies are stable and if the I/O voltages are supplied before the core voltage, there may be a period  
of time that all input and output pins will actively be driven and cause contention and excessive current.  
In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core  
voltage (V ) before the I/O voltage (GV , LV , and OV ) and assert PORESET before the power  
DD  
DD  
DD  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
12 Freescale Semiconductor  
 
 
Power Characteristics  
supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise  
to 90% of its nominal value before the I/O supplies reach 0.7 V, see Figure 5.  
Figure 5. Power Sequencing Example  
Voltage  
I/O Voltage (GV , LV , OV  
)
DD  
DD  
DD  
Core Voltage (V , AV  
)
DD  
DD  
0.7 V  
90%  
Time  
I/O voltage supplies (GV , LV , and OV ) do not have any ordering requirements with respect to one  
DD  
DD  
DD  
another.  
2.2.2  
Power-Down Sequencing  
The MPC8360E/58E does not require the core supply voltage and I/O supply voltages to be powered-down  
in any particular order.  
3 Power Characteristics  
The estimated typical power dissipation values are shown in Table 4 and Table 5.  
1
Table 4. MPC8360E TBGA Core Power Dissipation  
Core  
CSB  
QUICC Engine  
Typical  
Maximum  
Unit  
Notes  
Frequency (MHz) Frequency (MHz) Frequency (MHz)  
266  
400  
533  
667  
500  
266  
266  
266  
333  
333  
500  
400  
400  
400  
500  
5.0  
4.5  
4.8  
5.8  
5.9  
5.6  
5.0  
5.3  
6.3  
6.4  
W
W
W
W
W
2, 3, 5  
2, 3, 4  
2, 3, 4  
3, 6, 7, 8  
3, 6, 7, 8  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 13  
 
 
Power Characteristics  
Core  
1
Table 4. MPC8360E TBGA Core Power Dissipation (continued)  
CSB  
QUICC Engine  
Typical  
Maximum  
Unit  
Notes  
Frequency (MHz) Frequency (MHz) Frequency (MHz)  
667 333 500  
6.1  
6.8  
W
2, 3, 5, 9  
Notes:  
1. The values do not include I/O supply power (OV , LV , GV ) or AV . For I/O power values, see Table 6.  
DD  
DD  
DD  
DD  
2. Typical power is based on a voltage of V = 1.2 V or 1.3 V, a junction temperature of T = 105°C, and a Dhrystone  
DD  
J
benchmark application.  
3. Thermal solutions will likely need to design to a value higher than typical power on the end application, T target, and I/O  
A
power.  
4. Maximum power is based on a voltage of V = 1.2 V, WC process, a junction T = 105°C, and an artificial smoke test.  
DD  
J
5. Maximum power is based on a voltage of V = 1.3 V for applications that use 667MHz(CPU)/500(QE) with WC process,  
DD  
a junction T = 105°C, and an artificial smoke test.  
J
6. Typical power is based on a voltage of V = 1.3 V, a junction temperature of T = 70°C, and a Dhrystone benchmark  
DD  
J
application.  
7. Maximum power is based on a voltage of V = 1.3 V for applications that use 667MHz(CPU) or 500(QE) with WC  
DD  
process, a junction T = 70°C, and an artificial smoke test.  
J
8. This frequency combination is only available for rev2.0 silicon.  
9. This frequency combination is not available for rev2.0 silicon.  
1
Table 5. MPC8358E TBGA Core Power Dissipation  
Core  
CSB  
QUICC Engine  
Typical  
Maximum  
Unit  
Notes  
Frequency (MHz) Frequency (MHz) Frequency (MHz)  
266  
400  
266  
266  
300  
400  
4.1  
4.5  
4.5  
5.0  
W
W
2, 3, 4  
2, 3, 4  
Notes:  
1. The values do not include I/O supply power (OV , LV , GV ) or AV . For I/O power values, see Table 6.  
DD  
DD  
DD  
DD  
2. Typical power is based on a voltage of V = 1.2 V, a junction temperature of T = 105°C, and a Dhrystone benchmark  
DD  
J
application.  
3. Thermal solutions will likely need to design to a value higher than typical power on the end application, T target, and I/O  
A
power.  
4. Maximum power is based on a voltage of V = 1.2 V, WC process, a junction T = 105°C, and an artificial smoke test.  
DD  
J
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
14 Freescale Semiconductor  
Clock Input Timing  
Table 6 shows the estimated typical I/O power dissipation for the device.  
Table 6. Estimated Typical I/O Power Dissipation  
GV  
GV  
OV  
LV  
LV  
DD  
DD  
DD  
DD  
DD  
Interface  
DDR I/O  
Parameter  
Unit  
Comments  
(1.8 V) (2.5 V) (3.3 V) (3.3 V) (2.5 V)  
200 MHz, 1x32 bits  
200 MHz, 1x64 bits  
200 MHz, 2x32 bits  
266 MHz, 1x32 bits  
266 MHz, 1x64 bits  
266 MHz, 2x32 bits  
333 MHz, 1x32 bits  
333 MHz, 1x64 bits  
333 MHz, 2x32 bits  
0.3  
0.4  
0.46  
0.58  
0.92  
0.56  
0.7  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
65% utilization  
R = 20 Ω  
s
0.6  
R = 50 Ω  
t
2 pairs of  
clocks  
0.35  
0.46  
0.7  
1.11  
0.65  
0.82  
1.3  
0.4  
0.53  
0.81  
Local Bus I/O 133 MHz, 32 bits  
0.22  
0.14  
0.12  
0.09  
0.05  
0.07  
Load = 25 pf  
83 MHz, 32 bits  
3 pairs of  
clocks  
66 MHz, 32 bits  
50 MHz, 32 bits  
33 MHz, 32 bits  
66 MHz, 32 bits  
MII or RMII  
PCI I/O  
Load = 30 pf  
10/100/1000  
Ethernet I/O  
0.01  
0.04  
Multiply by number  
of interfaces used.  
GMII or TBI  
Load = 20 pf  
RGMII or RTBI  
0.04  
Other I/O  
0.1  
4 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8360E/58E.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
15  
 
RESET Initialization  
4.1  
DC Electrical Characteristics  
Table 7 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the device.  
Table 7. CLKIN DC Electrical Characteristics  
Parameter  
Condition  
Symbol  
Min  
Max  
Unit  
Input high voltage  
V
2.7  
–0.3  
OV + 0.3  
V
V
IH  
DD  
Input low voltage  
V
I
0.4  
10  
10  
IL  
CLKIN input current  
PCI_SYNC_IN input current  
0 V V OV  
μA  
μA  
IN  
DD  
IN  
IN  
0 V V 0.5V or  
I
IN  
OV – 0.5V V OV  
DD  
IN  
DD  
PCI_SYNC_IN input current  
0.5 V V OV – 0.5 V  
I
100  
μA  
IN  
DD  
IN  
4.2  
AC Electrical Characteristics  
The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on  
whether the device is configured in PCI host or PCI agent mode. Table 8 provides the clock input  
(CLKIN/PCI_CLK) AC timing specifications for the device.  
Table 8. CLKIN AC Timing Specifications  
Parameter/Condition  
CLKIN/PCI_CLK frequency  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
f
t
15  
0.6  
40  
66.67  
MHz  
ns  
1
2
CLKIN  
CLKIN  
CLKIN/PCI_CLK cycle time  
CLKIN/PCI_CLK rise and fall time  
CLKIN/PCI_CLK duty cycle  
CLKIN/PCI_CLK jitter  
Notes:  
t
, t  
1.0  
2.3  
ns  
KH KL  
t
/t  
60  
%
3
KHK CLKIN  
150  
ps  
4, 5  
1. Caution: The system, core, USB, security, and 10/100/1000 Ethernet must not exceed their respective maximum or  
minimum operating frequencies.  
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set  
low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.  
5 RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the MPC8360E/58E.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
16  
Freescale Semiconductor  
 
 
RESET Initialization  
5.1  
RESET DC Electrical Characteristics  
Table 9 provides the DC electrical characteristics for the RESET pins of the device.  
Table 9. RESET Pins DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
V
2.0  
OV + 0.3  
V
V
IH  
DD  
Input low voltage  
Input current  
V
I
–0.3  
0.8  
10  
IL  
μA  
V
IN  
Output high voltage  
Output low voltage  
Output low voltage  
Notes:  
V
I
= –8.0 mA  
OH  
2.4  
OH  
V
I
= 8.0 mA  
= 3.2 mA  
OL  
0.5  
0.4  
V
OL  
OL  
V
I
V
OL  
1. This table applies for pins PORESET, HRESET, SRESET and QUIESCE.  
2. HRESET and SRESET are open drain pins, thus V is not relevant for those pins.  
OH  
5.2  
RESET AC Electrical Characteristics  
This section describes the AC electrical specifications for the reset initialization timing requirements of  
the device. Table 10 provides the reset initialization AC timing specifications for the DDR SDRAM  
component(s).  
Table 10. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET or SRESET  
(input) to activate reset flow  
32  
t
1
PCI_SYNC_IN  
Required assertion time of PORESET with stable  
clock applied to CLKIN when the device is in PCI host  
mode  
32  
32  
t
2
1
CLKIN  
Required assertion time of PORESET with stable  
clock applied to PCI_SYNC_IN when the device is in  
PCI agent mode  
t
PCI_SYNC_IN  
HRESET/SRESET assertion (output)  
512  
16  
4
t
t
1
1
2
PCI_SYNC_IN  
HRESET negation to SRESET negation (output)  
PCI_SYNC_IN  
Input setup time for POR config signals  
(CFG_RESET_SOURCE[0:2] and  
t
CLKIN  
CFG_CLKIN_DIV) with respect to negation of  
PORESET when the device is in PCI host mode  
Input setup time for POR config signals  
(CFG_RESET_SOURCE[0:2] and  
CFG_CLKIN_DIV) with respect to negation of  
PORESET when the device is in PCI agent mode  
4
0
t
1
PCI_SYNC_IN  
Input hold time for POR config signals with respect to  
negation of HRESET  
ns  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 17  
 
 
RESET Initialization  
Table 10. RESET Initialization Timing Specifications (continued)  
Time for the device to turn off POR config signals with  
4
ns  
3
respect to the assertion of HRESET  
Time for the device to turn on POR config signals with  
respect to the negation of HRESET  
1
t
1, 3  
PCI_SYNC_IN  
Notes:  
1. t  
is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode  
PCI_SYNC_IN  
the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of  
CFG_CLKIN_DIV. See the MPC8360E Integrated Communications Processor Reference Manual, Rev. 2 for more  
details.  
2. t  
is the clock period of the input clock applied to CLKIN. It is only valid when the device is in PCI host mode.  
CLKIN  
See the MPC8360E Integrated Communications Processor Reference Manual, Rev. 2 for more details.  
3. POR config signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.  
Table 11 provides the PLL and DLL lock times.  
Table 11. PLL and DLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
PLL lock times  
DLL lock times  
Notes:  
100  
μs  
7680  
122,880  
csb_clk cycles  
1, 2  
1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk).  
A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.  
2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 22, “Clocking,for more information.  
5.3  
QE Operating Frequency Limitations  
This section specify the limits of the AC electrical characteristics for the operation of the QE’s  
communication interfaces.  
NOTE  
The settings listed below are required for correct hardware interface  
operation. Each protocol by itself requires a minimal QE operating  
frequency setting for meeting the performance target. Because the  
performance is a complex function of all the QE settings, the user should  
make use of the QE performance utility tool provided by Freescale to  
validate their system.  
Table 12 lists the maximal QE I/O frequencies and the minimal QE core frequency for each interface.  
Table 12. QE Operating Frequency Limitations  
Interface Operating  
Frequency (MHz)  
Max interface  
Bit Rate (Mbps) Frequency (MHz)  
Min QE Operating  
Interface  
Notes  
1
Ethernet Management:  
MDC/MDIO  
10 (max)  
10  
20  
50  
MII  
25 (typ)  
100  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
18 Freescale Semiconductor  
 
 
DDR and DDR2 SDRAM  
Table 12. QE Operating Frequency Limitations (continued)  
Interface Operating  
Frequency (MHz)  
Max interface  
Bit Rate (Mbps) Frequency (MHz)  
Min QE Operating  
Interface  
Notes  
1
RMII  
50 (typ)  
125 (typ)  
10 (max)  
50 (max)  
25 (max)  
50 (max)  
50 (max)  
10 (max)  
50 (max)  
100  
1000  
10  
50  
250  
GMII/RGMII/TBI/RTBI  
SPI (master/slave)  
UCC through TDM  
MCC  
20  
70  
8 × F  
16 × F  
2 × F  
2 × F  
20  
2
2, 4  
2
16.67  
800  
UTOPIA L2  
POS-PHY L2  
800  
2
HDLC Bus  
10  
HDLC/Transparent  
UART/Async HDLC  
50  
8/3 × F  
20  
2, 3  
3.68 (max internal ref  
clock)  
115 (Kbps)  
BISYNC  
USB  
2 (max)  
2
20  
96  
48 (ref clock)  
12  
Note:  
1. The QE needs to run at a frequency higher than or equal to what is listed in this table.  
2. ‘F’ is the actual interface operating frequency.  
3. The bit rate limit is independent of the data bus width (i.e. the same for serial, nibble, or octal  
interfaces).  
4. TDM in high-speed mode for serial data interface.  
6 DDR and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR and DDR2 SDRAM interface  
of the MPC8360E/58E.  
6.1  
DDR and DDR2 SDRAM DC Electrical Characteristics  
Table 13 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the  
device when GV (typ) = 1.8 V.  
DD  
Table 13. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GV  
MV  
1.71  
1.89  
V
V
V
V
V
1
2
3
DD  
I/O reference voltage  
I/O termination voltage  
Input high voltage  
0.49 × GV  
0.51 × GV  
DD  
REF  
TT  
DD  
V
MV  
– 0.04  
MV  
+ 0.04  
REF  
REF  
REF  
V
MV  
+ 0.125  
GV + 0.3  
DD  
IH  
Input low voltage  
V
–0.3  
MV  
– 0.125  
REF  
IL  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 19  
 
DDR and DDR2 SDRAM  
Table 13. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V (continued)  
DD  
Output leakage current  
Output high current (V  
I
–13.4  
13.4  
10  
μA  
mA  
mA  
μA  
4
OZ  
= 1.420 V)  
I
OH  
OUT  
Output low current (V  
= 0.280 V)  
I
OUT  
OL  
MV  
input leakage current  
I
10  
REF  
VREF  
Input current (0 V V OV  
)
I
10  
μA  
IN  
DD  
IN  
Notes:  
1. GV is expected to be within 50 mV of the DRAM GV at all times.  
DD  
DD  
2. MV  
is expected to equal 0.5 × GV , and to track GV DC variations as measured at the receiver. Peak-to-peak noise  
DD DD  
REF  
REF  
on MV  
cannot exceed 2% of the DC value.  
3. V is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal  
TT  
MV . This rail should track variations in the DC level of MV  
.
REF  
REF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GV  
.
DD  
Table 14 provides the DDR2 capacitance when GVDD(typ) = 1.8 V.  
Table 14. DDR2 SDRAM Capacitance for GV (typ)=1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
Note:  
C
6
8
pF  
pF  
1
1
IO  
C
0.5  
DIO  
1. This parameter is sampled. GV = 1.8 V 0.090 V, f = 1 MHz, T = 25°C, V  
= GV /2, V  
(peak-to-peak) = 0.2 V.  
DD  
A
OUT  
DD  
OUT  
Table 15 provides the recommended operating conditions for the DDR SDRAM component(s) of the  
device when GV (typ) = 2.5 V.  
DD  
Table 15. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GV  
MV  
2.375  
2.625  
V
V
1
2
3
DD  
I/O reference voltage  
I/O termination voltage  
Input high voltage  
0.49 × GV  
0.51 × GV  
DD  
REF  
TT  
DD  
V
MV  
– 0.04  
+ 0.18  
MV  
+ 0.04  
REF  
V
REF  
REF  
V
MV  
GV + 0.3  
V
IH  
DD  
Input low voltage  
V
I
–0.3  
MV  
– 0.18  
REF  
V
IL  
Output leakage current  
–15.2  
15.2  
10  
μA  
mA  
mA  
μA  
4
OZ  
OH  
Output high current (V  
= 1.95 V)  
I
10  
OUT  
Output low current (V  
= 0.35 V)  
I
OL  
OUT  
MV  
input leakage current  
I
VREF  
REF  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
20 Freescale Semiconductor  
 
 
DDR and DDR2 SDRAM  
Table 15. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V (continued)  
DD  
Input current (0 V V OV  
)
I
IN  
10  
μA  
IN  
DD  
Notes:  
1. GV is expected to be within 50 mV of the DRAM GV at all times.  
DD  
DD  
2. MV  
is expected to be equal to 0.5 × GV , and to track GV DC variations as measured at the receiver.  
DD DD  
REF  
Peak-to-peak noise on MV  
may not exceed 2% of the DC value.  
REF  
3. V is not applied directly to the device. It is the supply to which far end signal termination is made and is expected  
TT  
to be equal to MV  
. This rail should track variations in the DC level of MV  
.
REF  
REF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GV  
.
DD  
Table 16 provides the DDR capacitance when GV (typ) = 2.5 V.  
DD  
Table 16. DDR SDRAM Capacitance for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
C
6
8
pF  
pF  
1
1
IO  
C
0.5  
DIO  
1. This parameter is sampled. GV = 2.5 V 0.125 V, f = 1 MHz, T = 25°C, V  
= GV /2, V  
(peak to peak) =  
DD  
A
OUT  
DD  
OUT  
0.2 V.  
6.2  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.  
6.2.1  
DDR and DDR2 SDRAM Input AC Timing Specifications  
Table 17 provides the input AC timing specifications for the DDR2 SDRAM interface when  
GV (typ) = 1.8 V.  
DD  
Table 17. DDR2 SDRAM Input AC Timing Specifications for GV (typ) = 1.8 V  
DD  
At recommended operating conditions with GVDD of 1.8 V 5%.  
Parameter Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
V
MV  
– 0.25  
REF  
V
V
IL  
V
MV  
+ 0.25  
IH  
REF  
Table 18 provides the input AC timing specifications for the DDR SDRAM interface when  
GV (typ) = 2.5 V.  
DD  
Table 18. DDR SDRAM Input AC Timing Specifications Mode for GV (typ) = 2.5 V  
DD  
At recommended operating conditions with GVDD of 2.5 V 5%.  
Parameter Symbol  
AC input low voltage  
Min  
Max  
– 0.31  
REF  
Unit  
Notes  
V
MV  
V
IL  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 21  
 
 
 
DDR and DDR2 SDRAM  
Table 18. DDR SDRAM Input AC Timing Specifications Mode for GV (typ) = 2.5 V (continued)  
DD  
At recommended operating conditions with GVDD of 2.5 V 5%.  
AC input high voltage  
V
MV  
+ 0.31  
V
IH  
REF  
Notes:  
1. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if  
0 n 7) or ECC (MECC[{0...7}] if n = 8).  
Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications Mode for GV (typ) = 2.5 V  
DD  
At recommended operating conditions with GVDD of 2.5 V 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MDQS—MDQ/MECC input skew per byte  
t
ps  
1, 2  
DISKEW  
-750  
-1125  
-1250  
750  
1125  
1250  
333 MHz  
266 MHz  
200 MHz  
Notes:  
1. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.  
2. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if  
0 n 7) or ECC (MECC[{0...7}] if n = 8).  
6.2.2  
DDR and DDR2 SDRAM Output AC Timing Specifications  
Table 20 and Table 21 provide the output AC timing specifications and measurement conditions for the  
DDR and DDR2 SDRAM interface.  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode  
At recommended operating conditions with GVDD of (1.8 V or 2.5 V) 5%.  
8
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)  
Skew between any MCK to ADDR/CMD  
t
6
10  
ns  
ns  
2
3
MCK  
t
AOSKEW  
-1.0  
-1.1  
-1.2  
0.2  
0.3  
0.4  
333 MHz  
266 MHz  
200 MHz  
ADDR/CMD output setup with respect to MCK  
t
ns  
ns  
4
4
DDKHAS  
2.1  
2.8  
3.5  
333 MHz  
266 MHz  
200 MHz  
ADDR/CMD output hold with respect to MCK  
t
DDKHAX  
2.0  
2.72.8  
3.5  
333 MHz  
266 MHz - DDR1  
266 MHz - DDR2  
200 MHz  
MCS(n) output setup with respect to MCK  
t
ns  
4
DDKHCS  
2.1  
2.8  
3.5  
333 MHz  
266 MHz  
200 MHz  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
22 Freescale Semiconductor  
 
DDR and DDR2 SDRAM  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode  
(continued)  
8
1
Parameter  
MCS(n) output hold with respect to MCK  
Symbol  
Min  
Max  
Unit  
Notes  
t
ns  
4
DDKHCX  
2.0  
2.7  
3.5  
333 MHz  
266 MHz  
200 MHz  
MCK to MDQS  
t
–0.8  
0.7  
ns  
ns  
5, 9  
6
DDKHMH  
MDQ/MECC/MDM output setup with respect to MDQS  
t
,
DDKHDS  
t
0.7  
1.0  
1.2  
333 MHz  
266 MHz  
200 MHz  
DDKLDS  
MDQ/MECC/MDM output hold with respect to MDQS  
t
,
ns  
6
DDKHDX  
t
0.7  
1.0  
1.2  
333 MHz  
266 MHz  
200 MHz  
DDKLDX  
MDQS preamble start  
MDQS epilogue end  
Notes:  
t
t
-0.5 × t  
– 0.6 -0.5 × t  
+ 0.6  
ns  
ns  
7
7
DDKHMP  
MCK  
MCK  
–0.6  
0.9  
DDKHME  
1. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state) (reference)(state)  
inputs and t  
for outputs. Output hold time can be read as DDR timing  
(first two letters of functional block)(reference)(state)(signal)(state)  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
symbolizes DDR timing (DD) for the time t memory clock reference (K) goes from the high (H) state until outputs  
t
DDKHAS  
MCK  
(A) are setup (S) or output valid time. Also, t  
symbolizes DDR timing (DD) for the time t  
memory clock reference  
DDKLDX  
MCK  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals 0.1 V.  
3. In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the Clock Control  
Register. For the skew measurements referenced for t  
address/command valid with the rising edge of MCK.  
it is assumed that the clock adjustment is set to align the  
AOSKEW  
4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the  
ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks  
by 1/2 applied cycle.  
5. Note that t  
follows the symbol conventions described in note 1. For example, t  
describes the DDR timing  
DDKHMH  
DDKHMH  
(DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t  
can be modified through  
DDKHMH  
control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this will typically be set to  
the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these  
2 parameters have been set to the same adjustment value. See the MPC8360E Integrated Communications Processor  
Reference Manual, Rev. 2 for a description and understanding of the timing modifications enabled by use of these bits.  
6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the device.  
7. All outputs are referenced to the rising edge of MCK(n) at the pins of the device. Note that t  
conventions described in note 1.  
follows the symbol  
DDKHMP  
8. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.  
9. In rev2.0 silicon, t maximum meets the specification of 0.6ns. In rev 2.0 silicon, due to errata, t  
minimum is  
DDKHMH  
DDKHMH  
-0.9 ns. Please refer to DDR18 in the device errata document.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 23  
DDR and DDR2 SDRAM  
Figure 6 shows the DDR SDRAM output timing for address skew with respect to any MCK.  
MCK[n]  
MCK[n]  
t
MCK  
t
AOSKEW(max)  
ADDR/CMD  
ADDR/CMD  
CMD  
NOOP  
t
AOSKEW(min)  
CMD  
NOOP  
Figure 6. Timing Diagram for t  
Measurement  
AOSKEW  
Figure 7 provides the AC test load for the DDR bus.  
Output  
GV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 7. DDR AC Test Load  
Table 21. DDR and DDR2 SDRAM Measurement Conditions  
Symbol  
DDR  
DDR2  
Unit  
Notes  
V
V
MV  
0.31 V  
MV  
0.25 V  
0.5 × GV  
V
V
1
2
TH  
REF  
REF  
0.5 × GV  
DD  
DD  
OUT  
Notes:  
1. Data input threshold measurement point.  
2. Data output measurement point.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
24 Freescale Semiconductor  
 
 
DDR and DDR2 SDRAM  
Figure 8 shows the DDR SDRAM output timing diagram for source synchronous mode.  
MCK[n]  
MCK[n]  
t
MCK  
t
,t  
DDKHAS DDKHCS  
t
,t  
DDKHAX DDKHCX  
ADDR/CMD  
Write A0  
NOOP  
t
DDKHMP  
t
DDKHMH  
MDQS[n]  
MDQ[x]  
t
DDKHME  
t
DDKHDS  
t
DDKLDS  
D0  
D1  
t
DDKLDX  
t
DDKHDX  
Figure 8. DDR SDRAM Output Timing Diagram for Source Synchronous Mode  
Table 22 provides approximate delay information that can be expected for the address and command  
signals of the DDR controller for various loadings, which can be useful for a system utilizing the DLL.  
These numbers are the result of simulations for one topology. The delay numbers will strongly depend on  
the topology used. These delay numbers show the total delay for the address and command to arrive at the  
DRAM devices. The actual delay could be different than the delays seen in simulation, depending on the  
system topology. If a heavily loaded system is used, the DLL loop may need to be adjusted to meet setup  
requirements at the DRAM.  
Table 22. Expected Delays for Address/Command  
Load  
Delay  
Unit  
4 devices (12 pF)  
9 devices (27 pF)  
3.0  
3.6  
5.0  
5.2  
ns  
ns  
ns  
ns  
36 devices (108 pF) + 40 pF compensation capacitor  
36 devices (108 pF) + 80 pF compensation capacitor  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 25  
 
 
DUART  
7 DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the  
MPC8360E/58E.  
7.1  
DUART DC Electrical Characteristics  
Table 23 provides the DC electrical characteristics for the DUART interface of the device.  
Table 23. DUART DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
Unit  
Notes  
V
2
OV + 0.3  
V
V
V
IH  
DD  
Low-level input voltage OV  
V
–0.3  
0.8  
DD  
IL  
High-level output voltage,  
V
OV – 0.4  
OH  
DD  
I
= –100 μA  
OH  
Low-level output voltage,  
= 100 μA  
V
0.2  
10  
V
OL  
I
OL  
Input current  
I
μA  
1
IN  
(0 V V OV  
)
DD  
IN  
Note:  
1. Note that the symbol V , in this case, represents the OV symbol referenced in Table 1 and Table 2.  
IN  
IN  
7.2  
DUART AC Electrical Specifications  
Table 24 provides the AC timing parameters for the DUART interface of the device.  
Table 24. DUART AC Timing Specifications  
Parameter  
Minimum baud rate  
Value  
Unit  
Notes  
256  
> 1,000,000  
16  
baud  
baud  
Maximum baud rate  
Oversample rate  
Notes:  
1
2
1. Actual attainable baud rate will be limited by the latency of interrupt processing.  
th  
2. The middle of a start bit is detected as the 8 sampled 0 after the 1-to-0 transition  
th  
of the start bit. Subsequent bit values are sampled each 16 sample.  
8 UCC Ethernet Controller: Three-Speed Ethernet, MII  
Management  
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII  
management.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
26  
Freescale Semiconductor  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
8.1  
Three-Speed Ethernet Controller (10/100/1000 Mbps)—  
GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics  
The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII  
(media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface),  
RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except  
MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII and  
TBI interfaces are only defined for 3.3V, while the RGMII and RTBI interfaces are only defined for 2.5 V.  
The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit  
Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for  
the MDIO and MDC are specified in Section 8.3, “Ethernet Management Interface Electrical  
Characteristics.”  
8.1.1  
10/100/1000 Ethernet DC Electrical Characteristics  
All GMII, MII, RMII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric  
attributes specified in Table 25 and Table 26. The potential applied to the input of a GMII, MII, RMII, TBI,  
RGMII, or RTBI receiver may exceed the potential of the receiver’s power supply (i.e., a RGMII driver  
powered from a 3.6-V supply driving V into a RGMII receiver powered from a 2.5 V supply). Tolerance  
OH  
for dissimilar RGMII driver and receiver supply potentials is implicit in these specifications. The RGMII  
and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.  
Table 25. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Notes  
Supply voltage 3.3 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
LV  
2.97  
2.40  
GND  
2.0  
3.63  
V
V
1
DD  
V
IOH = –4.0 mA  
LV = Min  
LV + 0.3  
OH  
DD  
DD  
V
IOL = 4.0 mA  
LV = Min  
0.50  
V
OL  
DD  
V
LV + 0.3  
V
IH  
DD  
V
I
–0.3  
0.90  
10  
V
IL  
0 V V LV  
DD  
μA  
IN  
IN  
Note:  
1. GMII/MII pins that are not needed for RGMII, RMII or RTBI operation are powered by the OV supply.  
DD  
Table 26. RGMII/RTBI DC Electrical Characteristics (when operating at 2.5 V)  
Parameters  
Symbol  
LV  
Conditions  
Min  
Max  
Unit  
Supply voltage 2.5 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
2.37  
2.00  
2.63  
V
V
DD  
V
IOH = –1.0 mA  
LV = Min  
LV + 0.3  
OH  
DD  
DD  
V
I
= 1.0 mA  
LV = Min  
GND – 0.3  
1.7  
0.40  
V
OL  
OL  
DD  
V
LV = Min  
LV + 0.3  
V
IH  
DD  
DD  
V
LV = Min  
–0.3  
0.70  
10  
V
IL  
DD  
I
0 V V LV  
DD  
μA  
IN  
IN  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 27  
 
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
8.2  
GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications  
The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.  
8.2.1  
GMII Timing Specifications  
This sections describe the GMII transmit and receive AC timing specifications.  
8.2.1.1  
GMII Transmit AC Timing Specifications  
Table 27 provides the GMII transmit AC timing specifications.  
Table 27. GMII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit Notes  
GTX_CLK clock period  
t
8.0  
ns  
%
GTX  
GTX_CLK duty cycle  
t
40  
60  
GTXH/tGTX  
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay  
t
t
0.5  
5.0  
ns  
3
GTKHDX  
GTKHDV  
GTX_CLK clock rise time, VIL(min) to VIH(max)  
GTX_CLK clock fall time, VIH(max) to VIL(min)  
GTX_CLK125 clock period  
t
45  
1.0  
1.0  
ns  
ns  
ns  
%
GTXR  
t
GTXF  
t
8.0  
2
2
G125  
GTX_CLK125 reference clock duty cycle measured at LV  
t
/t  
55  
DD/2  
G125H G125  
Notes:  
1. The symbols used for timing specifications herein follow the pattern t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example, t  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
GTKHDV  
symbolizes GMII transmit timing (GT) with respect to the t  
clock reference (K) going to the high state (H) relative to the  
GTX  
time date input signals (D) reaching the valid state (V) to state or setup time. Also, t  
symbolizes GMII transmit  
GTKHDX  
timing (GT) with respect to the t  
clock reference (K) going to the high state (H) relative to the time date input signals  
GTX  
(D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters  
representing the clock of a particular functional. For example, the subscript of t represents the GMII(G) transmit (TX)  
GTX  
clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. This symbol is used to represent the external GTX_CLK125 signal and does not follow the original symbol naming  
convention.  
3. In rev 2.0 silicon, due to errata, t  
minimum and t  
maximum are not supported when the GTX_CLK is  
GTKHDX  
GTKHDV  
selected. Please refer to QE_ENET18 in the device errata document.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
28  
Freescale Semiconductor  
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 9 shows the GMII transmit AC timing diagram.  
t
t
GTX  
GTXR  
GTX_CLK  
t
t
GTXF  
GTXH  
TXD[7:0]  
TX_EN  
TX_ER  
t
GTKHDX  
Figure 9. GMII Transmit AC Timing Diagram  
8.2.1.2  
GMII Receive AC Timing Specifications  
Table 28 provides the GMII receive AC timing specifications.  
Table 28. GMII Receive AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
Parameter/Condition Symbol  
RX_CLK clock period  
1
Min  
Typ  
Max  
Unit  
Notes  
t
40  
2.0  
0.2  
8.0  
60  
ns  
%
GRX  
RX_CLK duty cycle  
t
/t  
GRXH GRX  
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise time, VIL(min) to VIH(max)  
RX_CLK clock fall time, VIH(max) to VIL(min)  
Note:  
t
ns  
ns  
ns  
ns  
GRDVKH  
t
2
GRDXKH  
t
1.0  
1.0  
GRXR  
t
GRXF  
1. The symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional block)(signal)(state) (reference)(state)  
for inputs and t  
for outputs. For example, t  
symbolizes GMII  
(first two letters of functional block)(reference)(state)(signal)(state)  
GRDVKH  
receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t clock reference  
RX  
(K) going to the high state (H) or setup time. Also, t  
symbolizes GMII receive timing (GR) with respect to the time data  
GRDXKL  
input signals (D) went invalid (X) relative to the t  
clock reference (K) going to the low (L) state or hold time. Note that, in  
GRX  
general, the clock reference symbol representation is based on three letters representing the clock of a particular functional.  
For example, the subscript of t represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is  
GRX  
used with the appropriate letter: R (rise) or F (fall).  
2. In rev 2.0 silicon, due to errata, t  
in the device errata document.  
minimum is 0.5 which is not compliant with the standard. Please refer to QE_ENET18  
GRDXKH  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 29  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 10 shows the GMII receive AC timing diagram.  
t
t
GRXR  
GRX  
RX_CLK  
t
t
GRXF  
GRXH  
RXD[7:0]  
RX_DV  
RX_ER  
t
GRDXKH  
t
GRDVKH  
Figure 10. GMII Receive AC Timing Diagram  
8.2.2  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
8.2.2.1  
MII Transmit AC Timing Specifications  
Table 29 provides the MII transmit AC timing specifications.  
Table 29. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
Parameter/Condition Symbol  
TX_CLK clock period 10 Mbps  
1
Min  
Typ  
Max  
Unit  
t
t
35  
400  
40  
5
65  
ns  
ns  
%
MTX  
MTX  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
t
/t  
MTXH MTX  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
t
1
ns  
MTKHDX  
t
15  
MTKHDV  
TX_CLK data clock rise time, VIL(min) to VIH(max)  
TX_CLK data clock fall time, VIH(max) to VIL(min)  
Note:  
t
1.0  
1.0  
4.0  
4.0  
ns  
ns  
MTXR  
t
MTXF  
1. The symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes MII transmit timing (MT) for the time t  
clock reference (K) going high (H) until data outputs  
MTKHDX  
MTX  
(D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters  
representing the clock of a particular functional. For example, the subscript of t represents the MII(M) transmit  
MTX  
(TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
30  
Freescale Semiconductor  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 11 shows the MII transmit AC timing diagram.  
t
t
MTXR  
MTX  
TX_CLK  
t
t
MTXF  
MTXH  
TXD[3:0]  
TX_EN  
TX_ER  
t
MTKHDX  
Figure 11. MII Transmit AC Timing Diagram  
8.2.2.2  
MII Receive AC Timing Specifications  
Table 30 provides the MII receive AC timing specifications.  
Table 30. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
RX_CLK clock period 10 Mbps  
RX_CLK clock period 100 Mbps  
t
t
400  
40  
ns  
ns  
%
MRX  
MRX  
RX_CLK duty cycle  
t
/t  
35  
65  
MRXH MRX  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise time, VIL(min) to VIH(max)  
RX_CLK clock fall time, VIH(max) to VIL(min)  
Note:  
t
10.0  
10.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
MRDVKH  
MRDXKH  
t
t
4.0  
4.0  
MRXR  
t
MRXF  
1. The symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example, t  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
MRDVKH  
symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to  
the t clock reference (K) going to the high (H) state or setup time. Also, t symbolizes MII receive timing  
MRX  
MRDXKL  
(GR) with respect to the time data input signals (D) went invalid (X) relative to the t  
clock reference (K) going to  
MRX  
the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three  
letters representing the clock of a particular functional. For example, the subscript of t represents the MII (M)  
MRX  
receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 12 provides the AC test load.  
Output  
LV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 12. AC Test Load  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 31  
 
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 13 shows the MII receive AC timing diagram.  
t
t
MRXR  
MRX  
RX_CLK  
t
t
MRXH  
MRXF  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
t
MRDVKH  
t
MRDXKH  
Figure 13. MII Receive AC Timing Diagram  
8.2.3  
RMII AC Timing Specifications  
This section describes the RMII transmit and receive AC timing specifications.  
8.2.3.1  
RMII Transmit AC Timing Specifications  
Table 31 provides the RMII transmit AC timing specifications.  
Table 31. RMII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
1
Parameter/Condition Symbol  
Min  
Typ  
Max  
Unit  
REF_CLK clock  
t
20  
65  
ns  
%
RMX  
REF_CLK duty cycle  
t
/t  
35  
RMXH RMX  
REF_CLK to RMII data TXD[1:0], TX_EN delay  
t
t
2
10  
ns  
RMTKHDX  
RMTKHDV  
REF_CLK data clock rise time, VIL(min) to VIH(max)  
REF_CLK data clock fall time, VIH(max) to VIL(min)  
Note:  
t
1.0  
1.0  
4.0  
4.0  
ns  
ns  
RMXR  
t
RMXF  
1. The symbols used for timing specifications herein follow the pattern of t  
(first three letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes RMII transmit timing (RMT) for the time t  
clock reference (K) going high (H) until data  
RMX  
RMTKHDX  
outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three  
letters representing the clock of a particular functional. For example, the subscript of t represents the RMII(RM)  
RMX  
reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
32  
Freescale Semiconductor  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 14 shows the RMII transmit AC timing diagram.  
t
t
RMXR  
RMX  
REF_CLK  
t
t
RMXF  
RMXH  
TXD[1:0]  
TX_EN  
t
RMTKHDX  
Figure 14. RMII Transmit AC Timing Diagram  
8.2.3.2  
RMII Receive AC Timing Specifications  
Table 32 provides the RMII receive AC timing specifications.  
Table 32. RMII Receive AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
REF_CLK clock period  
t
20  
65  
ns  
%
RMX  
REF_CLK duty cycle  
t
/t  
35  
RMXH RMX  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK  
REF_CLK clock rise time, VIL(min) to VIH(max)  
REF_CLK clock fall time, VIH(max) to VIL(min)  
Note:  
t
4.0  
2.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
RMRDVKH  
RMRDXKH  
t
t
4.0  
4.0  
RMXR  
t
RMXF  
1. The symbols used for timing specifications herein follow the pattern of t  
(first three letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state  
RMRDVKH  
(V) relative to the t  
clock reference (K) going to the high (H) state or setup time. Also, t  
symbolizes RMII  
RMX  
RMRDXKL  
receive timing (RMR) with respect to the time data input signals (D) went invalid (X) relative to the t  
clock  
RMX  
reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation  
is based on three letters representing the clock of a particular functional. For example, the subscript of t  
RMX  
represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
Figure 15 provides the AC test load.  
Output  
LV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 15. AC Test Load  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 33  
 
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 16 shows the RMII receive AC timing diagram.  
t
t
RMXR  
RMX  
REF_CLK  
t
t
RMXH  
RMXF  
RXD[1:0]  
CRS_DV  
RX_ER  
Valid Data  
t
RMRDVKH  
t
RMRDXKH  
Figure 16. RMII Receive AC Timing Diagram  
8.2.4  
TBI AC Timing Specifications  
This section describes the TBI transmit and receive AC timing specifications.  
8.2.4.1  
TBI Transmit AC Timing Specifications  
Table 33 provides the TBI transmit AC timing specifications.  
Table 33. TBI Transmit AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
Parameter/Condition Symbol  
GTX_CLK clock period  
1
Min  
Typ  
Max  
Unit  
Notes  
t
8.0  
ns  
%
TTX  
GTX_CLK duty cycle  
t
/t  
40  
60  
TTXH TTX  
GTX_CLK to TBI data TCG[9:0] delay  
t
t
1.0  
5.0  
ns  
3
TTKHDX  
TTKHDV  
GTX_CLK clock rise time, VIL(min) to VIH(max)  
GTX_CLK clock fall time, VIH(max) to VIL(min)  
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Notes:  
t
45  
1.0  
1.0  
ns  
ns  
ns  
ns  
TTXR  
t
TTXF  
t
8.0  
2
G125  
t
/t  
55  
G125H G125  
1. The symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional block)(signal)(state  
for inputs and t  
for outputs. For example, t  
)(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
TTKHDV  
symbolizes the TBI transmit timing (TT) with respect to the time from t  
(K) going high (H) until the referenced data  
TTX  
signals (D) reach the valid state (V) or setup time. Also, t  
symbolizes the TBI transmit timing (TT) with respect to  
TTKHDX  
the time from t  
(K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note  
TTX  
that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular  
functional. For example, the subscript of t represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter  
TTX  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
3. In rev 2.0 silicon, due to errata, t  
document.  
minimum is 0.7 ns for UCC1. Please refer to QE_ENET19 in the device errata  
TTKHDX  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
34 Freescale Semiconductor  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 17 shows the TBI transmit AC timing diagram.  
t
t
TTX  
TTXR  
GTX_CLK  
t
TTXH  
t
TTXF  
TXD[7:0]  
TX_EN  
TX_ER  
t
TTKHDX  
Figure 17. TBI Transmit AC Timing Diagram  
8.2.4.2  
TBI Receive AC Timing Specifications  
Table 34 provides the TBI receive AC timing specifications.  
Table 34. TBI Receive AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
Parameter/Condition Symbol  
PMA_RX_CLK clock period  
1
Min  
Typ  
Max  
Unit  
Notes  
t
16.0  
ns  
ns  
%
TRX  
PMA_RX_CLK skew  
t
7.5  
40  
8.5  
60  
SKTRX  
RX_CLK duty cycle  
t
/t  
TRXH TRX  
RCG[9:0] setup time to rising PMA_RX_CLK  
2.5  
ns  
2
2
t
TRDVKH  
TRDXKH  
RCG[9:0] hold time to rising PMA_RX_CLK  
1.0  
ns  
t
RX_CLK clock rise time, VIL(min) to VIH(max)  
RX_CLK clock fall time, VIH(max) to VIL(min)  
Notes:  
t
0.7  
0.7  
2.4  
2.4  
ns  
ns  
TRXR  
t
TRXF  
1. The symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example, t  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
TRDVKH  
symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the  
clock reference (K) going to the high (H) state or setup time. Also, t symbolizes TBI receive timing (TR) with  
t
TRX  
TRDXKH  
respect to the time data input signals (D) went invalid (X) relative to the t  
clock reference (K) going to the high (H) state.  
TRX  
Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a  
particular functional. For example, the subscript of t represents the TBI (T) receive (RX) clock. For rise and fall times,  
TRX  
the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript  
is skew (SK) followed by the clock that is being skewed (TRX).  
2. Setup and hold time of even numbered RCG are measured from riding edge of PMA_RX_CLK1. Setup and hold time of  
odd numbered RCG are measured from riding edge of PMA_RX_CLK0.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
35  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Figure 18 shows the TBI receive AC timing diagram.  
t
t
TRXR  
TRX  
PMA_RX_CLK1  
t
t
TRXH  
TRXF  
RCG[9:0]  
Even RCG  
Odd RCG  
t
TRDVKH  
t
TRDXKH  
t
SKTRX  
PMA_RX_CLK0  
t
t
TRDXKH  
TRXH  
t
TRDVKH  
Figure 18. TBI Receive AC Timing Diagram  
8.2.5  
RGMII and RTBI AC Timing Specifications  
Table 35 presents the RGMII and RTBI AC timing specifications.  
Table 35. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions with LVDD of 2.5 V 5%.  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
Data to clock output skew (at transmitter)  
t
t
–0.5  
0.5  
ns  
7
SKRGTKHDX  
SKRGTKHDV  
Data to clock input skew (at receiver)  
t
t
1.0  
2.6  
ns  
2
SKRGDXKH  
SKRGDVKH  
Clock cycle duration  
t
7.2  
45  
40  
8.0  
50  
50  
8.8  
55  
ns  
%
3
RGT  
Duty cycle for 1000Base-T  
Duty cycle for 10BASE-T and 100BASE-TX  
Rise time (20%–80%)  
t
t
/t  
4, 5  
3, 5  
RGTH RGT  
/t  
60  
%
RGTH RGT  
t
0.75  
0.75  
ns  
ns  
ns  
RGTR  
Fall time (20%–80%)  
t
RGTF  
GTX_CLK125 reference clock period  
t
8.0  
6
G125  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
36 Freescale Semiconductor  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Table 35. RGMII and RTBI AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 2.5 V 5%.  
GTX_CLK125 reference clock duty cycle  
t
/t  
47  
53  
%
G125H G125  
Notes:  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent  
RGMII and RTBI timing. For example, the subscript of t represents the TBI (T) receive (RX) clock. Note also that the  
RGT  
notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews,  
the subscript is skew (SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns  
will be added to the associated clock signal.  
3. For 10 and 100 Mbps, t  
scales to 400 ns 40 ns and 40 ns 4 ns, respectively.  
RGT  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long  
as the minimum duty cycle is not violated and stretching occurs for no more than three t  
between.  
of the lowest speed transitioned  
RGT  
5. Duty cycle reference is LV /2.  
DD  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
7. In rev 2.0 silicon, due to errata, t  
minimum is -2.3 ns and t  
maximum is 1 ns for UCC1, 1.2 ns for UCC2  
minimum is -0.65 ns for UCC2 option 1 and  
SKRGTKHDX  
SKRGTKHDV  
option 1, and 1.8 for UCC2 option 2. In rev2.1 silicon, due to errata, t  
-0.9 for UCC2 option 2, and t  
SKRGTKHDX  
maximum is 0.75 ns for UCC1 and UCC2 option 1 and 0.85 for UCC2 option 2.  
SKRGTKHDV  
Please refer to QE_ENET10 in the device errata document. UCC1 does meet t  
minimum for rev2.1 silicon.  
SKRGTKHDX  
Figure 19 shows the RGMII and RTBI AC timing and multiplexing diagrams.  
t
RGT  
t
RGTH  
GTX_CLK  
(At Transmitter)  
t
SKRGTKHDX  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
t
SKRGTKHDX  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
t
SKRGTKHDX  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
t
SKRGTKHDX  
RX_CLK  
(At PHY)  
Figure 19. RGMII and RTBI AC Timing and Multiplexing Diagrams  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 37  
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
8.3  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock). The electrical characteristics for  
GMII, RGMII, TBI and RTBI are specified in Section 8.1, “Three-Speed Ethernet Controller  
(10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics.”  
8.3.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics  
for MDIO and MDC are provided in Table 36.  
Table 36. MII Management DC Electrical Characteristics when powered at 3.3V  
Parameter  
Symbol  
OV  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
2.97  
2.10  
GND  
2.00  
3.63  
V
V
DD  
V
I
= -1.0 mA  
= 1.0 mA  
OV = Min  
OV + 0.3  
OH  
OH  
DD  
DD  
V
I
OV = Min  
0.50  
V
OL  
OL  
DD  
V
V
IH  
V
I
0.80  
10  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
8.3.2  
MII Management AC Electrical Specifications  
Table 37 provides the MII management AC timing specifications.  
Table 37. MII Management AC Timing Specifications  
At recommended operating conditions with LVDD is 3.3 V 10%  
1
Parameter/Condition  
MDC frequency  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
f
t
32  
2.5  
400  
MHz  
ns  
2
MDC  
MDC period  
MDC  
MDC clock pulse width high  
MDC to MDIO delay  
t
ns  
MDCH  
t
t
10  
110  
ns  
3
MDTKHDX  
MDTKHDV  
MDRDVKH  
MDRDXKH  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
t
t
10  
0
10  
ns  
ns  
ns  
t
MDCR  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
38 Freescale Semiconductor  
 
 
UCC Ethernet Controller: Three-Speed Ethernet, MII Management  
Table 37. MII Management AC Timing Specifications (continued)  
At recommended operating conditions with LVDD is 3.3 V 10%  
1
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
MDC fall time  
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t  
t
10  
ns  
MDHF  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes management data timing (MD) for the time t  
from clock reference (K) high (H) until data  
MDKHDX  
MDC  
outputs (D) are invalid (X) or data hold time. Also, t  
symbolizes management data timing (MD) with respect  
MDRDVKH  
to the time data input signals (D) reach the valid state (V) relative to the t  
clock reference (K) going to the high  
MDC  
(H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F  
(fall).  
2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is  
8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz  
and the minimum frequency is 1.7 MHz).  
3. This parameter is dependent on the ce_clk speed (that is, for a ce_clk of 200 MHz, the delay is 90 ns and for a ce_clk  
of 300 MHz, the delay is 63 ns).  
Figure 20 shows the MII management AC timing diagram.  
t
t
MDCR  
MDC  
MDC  
t
t
MDHF  
MDCH  
MDIO  
(Input)  
t
MDRDVKH  
t
MDRDXKH  
MDIO  
(Output)  
t
MDTKHDX  
Figure 20. MII Management Interface Timing Diagram  
8.3.3  
IEEE Std. 1588™ Timer AC Specifications  
Table 38 provides the IEEE Std. 1588 timer AC specifications.  
Table 38. 1588 Timer AC Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Timer clock cycle time  
t
0
0
70  
6
MHz  
1
TMRCK  
Input Setup to timer clock  
Input Hold from timer clock  
Output clock to output valid  
t
2,3  
2,3  
TMRCKS  
TMRCKH  
t
t
ns  
GCLKNV  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 39  
 
 
Local Bus  
Table 38. 1588 Timer AC Specifications (continued)  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Timer alarm to output valid  
t
2
TMRAL  
Notes:  
1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected. Min and  
Max requirement for both rtc_clock and tmr_clock are the same.  
2. These are asynchronous signals.  
3. Inputs need to be stable at least one TMR clock.  
9 Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the  
MPC8360E/58E.  
9.1  
Local Bus DC Electrical Characteristics  
Table 39 provides the DC electrical characteristics for the local bus interface.  
Table 39. Local Bus DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
High-level output voltage,  
V
2
OV + 0.3  
V
V
V
IH  
DD  
V
–0.3  
0.8  
IL  
V
OV – 0.4  
OH  
DD  
I
= –100 μA  
OH  
Low-level output voltage,  
= 100 μA  
V
0.2  
10  
V
OL  
IN  
I
OL  
Input current  
I
μA  
9.2  
Local Bus AC Electrical Specifications  
Table 40 describes the general timing parameters of the local bus interface of the device.  
Table 40. Local Bus General Timing Parameters—DLL Enabled  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
t
7.5  
1.7  
1.9  
1.0  
1.0  
1.5  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
LBK  
Input setup to local bus clock (except LUPWAIT)  
LUPWAIT input setup to local bus clock  
t
t
t
t
3, 4  
3, 4  
3, 4  
3, 4  
5
LBIVKH1  
LBIVKH2  
LBIXKH1  
LBIXKH2  
Input hold from local bus clock (except LUPWAIT)  
LUPWAIT Input hold from local bus clock  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
t
t
LBOTOT1  
LBOTOT2  
6
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
40 Freescale Semiconductor  
 
 
Local Bus  
Table 40. Local Bus General Timing Parameters—DLL Enabled (continued)  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to LALE rise  
t
2.5  
4.5  
4.5  
4.5  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
LBOTOT3  
t
LBKHLR  
LBKHOV1  
LBKHOV2  
LBKHOV3  
LBKHOX1  
LBKHOX2  
Local bus clock to output valid (except LAD/LDP and LALE)  
Local bus clock to data valid for LAD/LDP  
Local bus clock to address valid for LAD  
Output hold from local bus clock (except LAD/LDP and LALE)  
Output hold from local bus clock for LAD/LDP  
Local bus clock to output high impedance for LAD/LDP  
Notes:  
t
t
t
t
t
3
3
3
3
1.0  
1.0  
t
3.8  
LBKHOZ  
1. The symbols used for timing specifications herein follow the pattern of t  
(First two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example, t  
(reference)(state)  
(First two letters of functional block)(reference)(state)(signal)(state)  
LBIXKH1  
symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t  
clock reference (K) goes  
clock reference (K) to go  
LBK  
LBK  
high (H), in this case for clock one(1). Also, t  
symbolizes local bus timing (LB) for the t  
LBKHOX  
high (H), with respect to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to rising edge of LSYNC_IN.  
3. All signals are measured from OV /2 of the rising edge of LSYNC_IN to 0.4 × OV of the signal in question for 3.3-V  
DD  
DD  
signaling levels.  
4. Input timings are measured at the pin.  
5.t  
6.t  
7.t  
should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10pF less than  
the load on LAD output pins.  
LBOTOT1  
should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10pF less than the  
load on LAD output pins.  
LBOTOT2  
should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output  
LBOTOT3  
pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
Table 41 describes the general timing parameters of the local bus interface of the device.  
Table 41. Local Bus General Timing Parameters—DLL Bypass Mode  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
t
15  
7
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
5
LBK  
Input setup to local bus clock  
t
LBIVKH  
LBIXKH  
Input hold from local bus clock  
t
1.0  
1.5  
3
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
Local bus clock to output valid  
t
LBOTOT1  
t
6
LBOTOT2  
t
2.5  
7
LBOTOT3  
t
3
LBKHOV  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 41  
 
Local Bus  
Table 41. Local Bus General Timing Parameters—DLL Bypass Mode (continued)  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Local bus clock to output high impedance for LAD/LDP  
Notes:  
t
4
ns  
LBKHOZ  
1. The symbols used for timing specifications herein follow the pattern of t  
(First two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example, t  
(reference)(state)  
(First two letters of functional block)(reference)(state)(signal)(state)  
LBIXKH1  
symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t  
clock reference (K) goes  
clock reference (K) to go  
LBK  
LBK  
high (H), in this case for clock one(1). Also, t  
symbolizes local bus timing (LB) for the t  
LBKHOX  
high (H), with respect to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from OV /2 of the rising/falling edge of LCLK0 to 0.4 × OV of the signal in question for 3.3-V  
DD  
DD  
signaling levels.  
4. Input timings are measured at the pin.  
5.t  
6.t  
7.t  
should be used when RCWH[LALE] is not set and when the load on LALE output pin is at least 10pF less than  
the load on LAD output pins.  
LBOTOT1  
should be used when RCWH[LALE] is set and when the load on LALE output pin is at least 10pF less than the  
load on LAD output pins.  
LBOTOT2  
should be used when RCWH[LALE] is set and when the load on LALE output pin equals to the load on LAD output  
LBOTOT3  
pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
9. DLL bypass mode is not recommended for use at frequencies above 66MHz.  
Figure 21 provides the AC test load for the local bus.  
Output  
OV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 21. Local Bus C Test Load  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
42 Freescale Semiconductor  
 
Local Bus  
Figure 22 through Figure 27 show the local bus signals.  
LSYNC_IN  
t
t
LBIXKH  
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
t
t
t
t
t
LBKHOX  
LBKHOV  
LBKHOV  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE/  
t
LBKHOZ  
LBKHOX  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
t
LBKHOZ  
LBKHOX  
t
LBKHOV  
Output (Address) Signal:  
LAD[0:31]  
t
LBOTOT  
t
LBKHLR  
LALE  
Figure 22. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 43  
 
Local Bus  
LCLK[n]  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
t
LBIXKH  
t
LBIVKH  
Input Signal:  
LGTA  
t
LBIXKH  
t
LBKHOV  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE/  
t
LBKHOZ  
t
LBKHOV  
Output Signals:  
LAD[0:31]/LDP[0:3]  
t
LBOTOT  
LALE  
Figure 23. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)  
LSYNC_IN  
T1  
T3  
t
LBKHOZ1  
t
LBKHOV1  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
t
LBIXKH2  
t
t
LBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
LBIXKH1  
LBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
t
LBKHOZ1  
t
LBKHOV1  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
44  
Freescale Semiconductor  
Local Bus  
LCLK  
T1  
T3  
t
LBKHOZ  
t
LBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
LBIXKH  
t
LBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
t
LBKHOZ  
t
LBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
45  
Local Bus  
LCLK  
T1  
T2  
T3  
T4  
t
LBKHOZ  
t
LBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
LBIXKH  
t
LBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
t
LBKHOZ  
t
LBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 26. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
46  
Freescale Semiconductor  
JTAG  
LSYNC_IN  
T1  
T2  
T3  
T4  
t
LBKHOZ1  
t
LBKHOV1  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
t
t
LBIXKH2  
t
t
LBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
LBIXKH1  
LBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
t
LBKHOZ1  
t
LBKHOV1  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 27. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Enabled)  
10 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface  
of the MPC8360E/58E.  
10.1 JTAG DC Electrical Characteristics  
Table 42 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the device.  
Table 42. JTAG interface DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
V
I
= -6.0 mA  
= 6.0 mA  
= 3.2 mA  
2.4  
V
V
OH  
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
0.5  
0.4  
OL  
OL  
V
I
V
OL  
OL  
V
2.5  
–0.3  
OV + 0.3  
V
IH  
DD  
V
0.8  
10  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 47  
 
JTAG  
This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the  
device.  
Table 43 provides the JTAG AC timing specifications as defined in Figure 29 through Figure 32.  
1
Table 43. JTAG AC Timing Specifications (Independent of CLKIN)  
At recommended operating conditions (see Table 2).  
2
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock duty cycle  
JTAG external clock rise and fall times  
TRST assert time  
f
0
33.3  
MHz  
ns  
JTG  
t
30  
45  
0
JTG  
t
/t  
55  
2
%
JTKHKL JTG  
t
& t  
ns  
JTGR  
JTGF  
t
25  
ns  
3
4
TRST  
Input setup times:  
ns  
t
t
4
4
Boundary-scan data  
JTDVKH  
t
TMS, TDI  
JTIVKH  
Input hold times:  
Valid times:  
ns  
ns  
ns  
ns  
10  
10  
4
5
5
Boundary-scan data  
TMS, TDI  
JTDXKH  
t
JTIXKH  
t
t
2
2
11  
11  
Boundary-scan data  
TDO  
JTKLDV  
JTKLOV  
Output hold times:  
t
t
2
2
Boundary-scan data  
TDO  
JTKLDX  
JTKLOX  
JTAG external clock to output high impedance:  
Boundary-scan data  
TDO  
t
t
2
2
19  
9
5, 6  
6
JTKLDZ  
JTKLOZ  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of t  
to the midpoint of the signal  
TCLK  
in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load  
(see Figure 21). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state  
JTDVKH  
(V) relative to the t  
clock reference (K) going to the high (H) state or setup time. Also, t  
symbolizes JTAG  
JTG  
JTDXKH  
timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t  
clock reference (K)  
JTG  
going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters  
representing the clock of a particular functional. For rise and fall times, the latter convention is used with the  
appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to t  
.
TCLK  
5. Non-JTAG signal output timing with respect to t  
6. Guaranteed by design and characterization.  
.
TCLK  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
48 Freescale Semiconductor  
 
JTAG  
Figure 28 provides the AC test load for TDO and the boundary-scan outputs of the device.  
Z = 50 Ω  
OV /2  
Output  
0
DD  
R = 50 Ω  
L
Figure 28. AC Test Load for the JTAG Interface  
Figure 29 provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
t
VM  
VM  
t
JTGR  
JTKHKL  
t
t
JTG  
JTGF  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 29. JTAG Clock Input Timing Diagram  
Figure 30 provides the TRST timing diagram.  
TRST  
VM  
VM  
t
TRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 30. TRST Timing Diagram  
Figure 31 provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
t
JTDVKH  
t
JTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
t
JTKLDV  
t
JTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
t
JTKLDZ  
Boundary  
Data Outputs  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 31. Boundary-Scan Timing Diagram  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 49  
 
 
 
 
I2C  
Figure 32 provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
t
JTIVKH  
t
JTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
t
JTKLOV  
t
JTKLOX  
Output Data Valid  
t
JTKLOZ  
TDO  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 32. Test Access Port Timing Diagram  
11 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the  
MPC8360E/58E.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
50  
Freescale Semiconductor  
 
I2C  
2
11.1 I C DC Electrical Characteristics  
2
Table 44 provides the DC electrical characteristics for the I C interface of the device.  
2
Table 44. I C DC Electrical Characteristics  
At recommended operating conditions with OVDD of 3.3 V 10%.  
Parameter  
Input high voltage level  
Symbol  
Min  
Max  
Unit  
Notes  
V
0.7 × OV  
–0.3  
0
OV + 0.3  
V
V
IH  
DD  
DD  
Input low voltage level  
V
0.3 × OV  
IL  
DD  
Low level output voltage  
V
0.4  
V
1
2
OL  
I2KLKV  
Output fall time from V (min) to V (max) with a  
t
20 + 0.1 × C  
B
250  
ns  
IH  
IL  
bus capacitance from 10 to 400 pF  
Pulse width of spikes which must be suppressed  
by the input filter  
t
0
50  
ns  
3
4
I2KHKL  
Capacitance for each I/O pin  
Input current  
C
I
10  
10  
pF  
I
μA  
IN  
(0 V V OV  
)
DD  
IN  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. C = capacitance of one bus line in pF.  
B
3. Refer to the MPC8360E Integrated Communications Processor Reference Manual, Rev. 2 for information on the  
digital filter used.  
4. I/O pins will obstruct the SDA and SCL lines if OV is switched off.  
DD  
2
11.2 I C AC Electrical Specifications  
2
Table 45 provides the AC timing parameters for the I C interface of the device.  
2
Table 45. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 44).  
1
Parameter  
Symbol  
Min  
Max  
Unit  
SCL clock frequency  
f
0
400  
kHz  
μs  
I2C  
Low period of the SCL clock  
t
t
1.3  
0.6  
0.6  
0.6  
I2CL  
High period of the SCL clock  
μs  
I2CH  
Setup time for a repeated START condition  
t
μs  
I2SVKH  
Hold time (repeated) START condition (after this period, the  
first clock pulse is generated)  
t
μs  
I2SXKL  
Data setup time  
t
100  
νσ  
I2DVKH  
Data hold time:  
t
μs  
I2DXKL  
CBUS compatible masters  
2
3
2
0
0.9  
I C bus devices  
4
Rise time of both SDA and SCL signals  
t
20 + 0.1 C  
300  
ns  
I2CR  
b
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 51  
 
 
I2C  
2
Table 45. I C AC Electrical Specifications (continued)  
All values refer to VIH (min) and VIL (max) levels (see Table 44).  
1
Parameter  
Symbol  
Min  
Max  
Unit  
4
Fall time of both SDA and SCL signals  
Set-up time for STOP condition  
t
20 + 0.1 C  
0.6  
300  
ns  
μs  
μs  
V
I2CF  
b
t
I2PVKH  
Bus free time between a STOP and START condition  
t
1.3  
I2KHDX  
Noise margin at the LOW level for each connected device  
(including hysteresis)  
V
0.1 × OV  
NL  
DD  
DD  
Noise margin at the HIGH level for each connected device  
(including hysteresis)  
V
0.2 × OV  
V
NH  
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example, t  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
I2DVKH  
2
symbolizes I C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t  
clock reference (K) going to the high (H) state or setup time. Also, t  
I2C  
2
symbolizes I C timing (I2) for the time that  
I2SXKL  
the data with respect to the start condition (S) went invalid (X) relative to the t  
clock reference (K) going to the low  
I2C  
2
(L) state or hold time. Also, t  
symbolizes I C timing (I2) for the time that the data with respect to the stop  
I2PVKH  
condition (P) reaching the valid state (V) relative to the t  
clock reference (K) going to the high (H) state or setup  
I2C  
time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. The device provides a hold time of at least 300 ns for the SDA signal (referred to the V  
bridge the undefined region of the falling edge of SCL.  
of the SCL signal) to  
IHmin  
3. The maximum t  
has only to be met if the device does not stretch the LOW period (t  
) of the SCL signal.  
I2DVKH  
I2CL  
4. C = capacitance of one bus line in pF.  
B
2
Figure 33 provides the AC test load for the I C.  
Output  
OV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
2
Figure 33. I C AC Test Load  
2
Figure 34 shows the AC timing diagram for the I C bus.  
SDA  
t
t
t
t
I2CF  
I2CF  
I2DVKH  
I2KHKL  
t
t
t
I2CR  
I2CL  
I2SXKL  
SCL  
t
t
t
t
I2PVKH  
I2SXKL  
I2CH  
I2SVKH  
t
I2DXKL  
S
Sr  
P
S
2
Figure 34. I C Bus AC Timing Diagram  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
52 Freescale Semiconductor  
 
 
PCI  
12 PCI  
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8360E/58E.  
12.1 PCI DC Electrical Characteristics  
Table 46 provides the DC electrical characteristics for the PCI interface of the device.  
Table 46. PCI DC Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input current  
V
V
V (min) or  
0.5 × OV  
-0.5  
OV + 0.5  
V
V
IH  
OUT  
OH  
DD  
DD  
V
V
V (max)  
0.3 × OV  
IL  
OUT  
OL  
DD  
V
I
= –500 μA  
0.9 × OV  
V
OH  
OH  
DD  
V
I
= 1500 μA  
0.1 × OV  
V
OL  
OL  
DD  
1
I
0 V V  
OV  
DD  
10  
μA  
IN  
IN  
Notes:  
1. Note that the symbol V , in this case, represents the OV symbol referenced in Table 1 and Table 2.  
IN  
IN  
12.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus of the device. Note that the  
PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the device is  
configured as a host or agent device. Table 47 provides the PCI AC timing specifications at 66 MHz.  
.
Table 47. PCI AC Timing Specifications at 66 MHz  
1
Parameter  
Clock to output valid  
Symbol  
Min  
Max  
Unit  
Notes  
t
t
t
1
6.0  
ns  
ns  
ns  
ns  
2, 5  
2
PCKHOV  
PCKHOX  
PCKHOZ  
Output hold from Clock  
Clock to output high impedance  
Input setup to Clock  
3.0  
14  
2, 3  
2, 4  
t
PCIVKH  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 53  
 
 
PCI  
Table 47. PCI AC Timing Specifications at 66 MHz (continued)  
1
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input hold from Clock  
Notes:  
1. Note that the symbols used for timing specifications herein follow the pattern of t  
t
0.3  
ns  
2, 4, 6  
PCIXKH  
(first two letters of functional  
for inputs and t  
for outputs. For  
block)(signal)(state) (reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
example, t  
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V)  
PCIVKH  
relative to the PCI_SYNC_IN clock, t  
, reference (K) going to the high (H) state or setup time. Also, t  
SYS  
PCRHFV  
symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going  
to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current  
delivered through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
5. In rev 2.0 silicon, due to errata, t  
6. In rev 2.0 silicon, due to errata, t  
maximum is 6.6ns. Please refer to PCI21 in the device errata document.  
minimum is 1 ns. Please refer to PCI17 in the device errata document.  
PCIHOV  
PCIXKH  
Table 48. PCI AC Timing Specifications at 33 MHz  
1
Parameter  
Clock to output valid  
Symbol  
Min  
Max  
Unit  
Notes  
t
t
t
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
2
PCKHOV  
PCKHOX  
PCKHOZ  
Output hold from Clock  
Clock to output high impedance  
Input setup to Clock  
Input hold from Clock  
Notes:  
2, 3  
2, 4  
2, 4, 5  
t
7.0  
0.3  
PCIVKH  
t
PCIXKH  
1. Note that the symbols used for timing specifications herein follow the pattern of t  
(first two letters of functional  
for inputs and t  
for outputs. For  
block)(signal)(state) (reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
example, t  
symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V)  
PCIVKH  
relative to the PCI_SYNC_IN clock, t  
, reference (K) going to the high (H) state or setup time. Also, t  
SYS  
PCRHFV  
symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going  
to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current  
delivered through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
5. In rev 2.0 silicon, due to errata, t  
minimum is 1 ns. Please refer to PCI17 in the device errata document.  
PCIXKH  
Figure 35 provides the AC test load for PCI.  
OV /2  
Output  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 35. PCI AC Test Load  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
54 Freescale Semiconductor  
 
Timers  
Figure 36 shows the PCI input AC timing conditions.  
CLK  
t
PCIVKH  
t
PCIXKH  
Input  
Figure 36. PCI Input AC Timing Measurement Conditions  
Figure 37 shows the PCI output AC timing conditions.  
CLK  
t
PCKHOV  
t
PCKHOX  
Output Delay  
t
PCKHOZ  
High-Impedance  
Output  
Figure 37. PCI Output AC Timing Measurement Condition  
13 Timers  
This section describes the DC and AC electrical specifications for the timers of the MPC8360E/58E.  
13.1 Timers DC Electrical Characteristics  
Table 49 provides the DC electrical characteristics for the device timer pins, including TIN, TOUT,  
TGATE and RTC_CLK.  
Table 49. Timers DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
0.8  
10  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 55  
 
 
 
GPIO  
13.2 Timers AC Timing Specifications  
Table 50 provides the timer input and output AC timing specifications.  
1
Table 50. Timers Input AC Timing Specifications  
2
Characteristic  
Symbol  
Typ  
Unit  
Timers inputs—minimum pulse width  
Notes:  
t
20  
ns  
TIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use  
by any external synchronous logic. Timers inputs are required to be valid for at least t  
operation.  
ns to ensure proper  
TIWID  
Figure 38 provides the AC test load for the timers.  
OV /2  
Output  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 38. Timers AC Test Load  
14 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of the MPC8360E/58E.  
14.1 GPIO DC Electrical Characteristics  
Table 51 provides the DC electrical characteristics for the device GPIO.  
Table 51. GPIO DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
Notes  
V
I
2.4  
V
V
1
1
1
1
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
0.8  
10  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
Note: This specification applies when operating from 3.3V supply.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
56 Freescale Semiconductor  
 
 
 
IPIC  
14.2 GPIO AC Timing Specifications  
Table 52 provides the GPIO input and output AC timing specifications.  
1
Table 52. GPIO Input AC Timing Specifications  
2
Characteristic  
Symbol  
Typ  
Unit  
GPIO inputs—minimum pulse width  
Notes:  
t
20  
ns  
PIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use  
by any external synchronous logic. GPIO inputs are required to be valid for at least t  
operation.  
ns to ensure proper  
PIWID  
Figure 39 provides the AC test load for the GPIO.  
OV /2  
Output  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 39. GPIO AC Test Load  
15 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins of the  
MPC8360E/58E.  
15.1 IPIC DC Electrical Characteristics  
Table 53 provides the DC electrical characteristics for the external interrupt pins of the IPIC.  
Table 53. IPIC DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
V
2.0  
OV + 0.3  
V
V
IH  
DD  
Input low voltage  
Input current  
V
I
–0.3  
0.8  
10  
IL  
μA  
V
IN  
Output low voltage  
Output low voltage  
Notes:  
V
I
= 6.0 mA  
= 3.2 mA  
OL  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT, and CE ports Interrupts.  
2. IRQ_OUT and MCP_OUT are open drain pins, thus V is not relevant for those pins.  
OH  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 57  
 
 
 
SPI  
15.2 IPIC AC Timing Specifications  
Table 54 provides the IPIC input and output AC timing specifications.  
1
Table 54. IPIC Input AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Unit  
IPIC inputs—minimum pulse width  
Notes:  
t
20  
ns  
PIWID  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2.IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by  
any external synchronous logic. IPIC inputs are required to be valid for at least t  
when working in edge triggered mode.  
ns to ensure proper operation  
PIWID  
16 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8360E/58E.  
16.1 SPI DC Electrical Characteristics  
Table 55 provides the DC electrical characteristics for the device SPI.  
Table 55. SPI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –6.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 6.0 mA  
= 3.2 mA  
0.5  
0.4  
OL  
OL  
V
I
V
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
0.8  
10  
V
IL  
I
0 V V OV  
DD  
μA  
IN  
IN  
16.2 SPI AC Timing Specifications  
Table 56 and provide the SPI input and output AC timing specifications.  
1
Table 56. SPI AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
SPI outputs—Master mode (internal clock) delay  
t
t
0.3  
8
ns  
NIKHOX  
NIKHOV  
SPI outputs—Slave mode (external clock) delay  
t
t
2
8
ns  
NEKHOX  
NEKHOV  
SPI inputs—Master mode (internal clock) input setup time  
SPI inputs—Master mode (internal clock) input hold time  
t
8
0
ns  
ns  
NIIVKH  
t
NIIXKH  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
58 Freescale Semiconductor  
 
 
 
SPI  
1
Table 56. SPI AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
SPI inputs—Slave mode (external clock) input setup time  
SPI inputs—Slave mode (external clock) input hold time  
Notes:  
t
t
4
2
ns  
ns  
NEIVKH  
NEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes the NMSI outputs internal timing (NI) for the time t  
memory clock reference (K) goes from the  
NIKHOV  
SPI  
high state (H) until outputs (O) are valid (V).  
Figure 40 provides the AC test load for the SPI.  
Output  
OV /2  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 40. SPI AC Test Load  
Figure 41 through Figure 42 represent the AC timing from Table 56. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 41 shows the SPI timing in slave mode (external clock).  
SPICLK (input)  
t
NEIXKH  
t
NEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
t
NEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 41. SPI AC Timing in Slave mode (External Clock) Diagram  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
59  
 
 
TDM/SI  
Figure 42 shows the SPI timing in Master mode (internal clock).  
SPICLK (output)  
t
NIIXKH  
t
NIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
t
NIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 42. SPI AC Timing in Master mode (Internal Clock) Diagram  
17 TDM/SI  
This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial  
interface of the MPC8360E/58E.  
17.1 TDM/SI DC Electrical Characteristics  
Table 57 provides the DC electrical characteristics for the device TDM/SI.  
Table 57. TDM/SI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –2.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.5  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
I
0.8  
10  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
17.2 TDM/SI AC Timing Specifications  
Table 58 provides the TDM/SI input and output AC timing specifications.  
1
Table 58. TDM/SI AC Timing Specifications  
2
3
Characteristic  
Symbol  
Min  
Max  
Unit  
TDM/SI outputs—External clock delay  
t
t
2
2
5
10  
10  
ns  
ns  
ns  
SEKHOV  
SEKHOX  
TDM/SI outputs—External clock high impedance  
TDM/SI inputs—External clock input setup time  
t
SEIVKH  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
60 Freescale Semiconductor  
 
 
 
TDM/SI  
1
Table 58. TDM/SI AC Timing Specifications (continued)  
2
3
Characteristic  
Symbol  
Min  
Max  
Unit  
TDM/SI inputs—External clock input hold time  
t
2
ns  
SEIXKH  
Notes:  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes the TDM/SI outputs external timing (SE) for the time t  
memory clock reference (K) goes  
SEKHOX  
TDM/SI  
from the high state (H) until outputs (O) are invalid (X).  
3. Timings are measured from the positive or negative edge of the clock, according to SIxMR [CE] and  
SITXCEI[TXCEIx]. See the MPC8360E Integrated Communications Processor Reference Manual, Rev. 2 for more  
details.  
Figure 43 provides the AC test load for the TDM/SI.  
OV /2  
Output  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 43. TDM/SI AC Test Load  
Figure 44 represents the AC timing from Table 56. Note that although the specifications generally  
reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the  
active edge.  
Figure 44 shows the TDM/SI timing with external clock.  
TDM/SICLK (input)  
t
SEIXKH  
t
SEIVKH  
Input Signals:  
TDM/SI  
(See Note)  
t
SEKHOV  
Output Signals:  
TDM/SI  
(See Note)  
tSEKHOX  
Note: The clock edge is selectable on TDM/SI  
Figure 44. TDM/SI AC Timing (External Clock) Diagram  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 61  
 
 
UTOPIA/POS  
18 UTOPIA/POS  
This section describes the DC and AC electrical specifications for the UTOPIA/POS of the  
MPC8360E/58E.  
18.1 UTOPIA/POS DC Electrical Characteristics  
Table 59 provides the DC electrical characteristics for the device UTOPIA.  
Table 59. UTOPIA DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –8.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 8.0 mA  
0.5  
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
I
0.8  
10  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
18.2 Utopia/POS AC Timing Specifications  
Table 60 provides the UTOPIA input and output AC timing specifications.  
1
Table 60. UTOPIA AC Timing Specifications  
2
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
UTOPIA outputs—Internal clock delay  
UTOPIA outputs—External clock delay  
UTOPIA outputs—Internal clock High Impedance  
UTOPIA outputs—External clock High Impedance  
UTOPIA inputs—Internal clock input setup time  
UTOPIA inputs—External clock input setup time  
UTOPIA inputs—Internal clock input Hold time  
UTOPIA inputs—External clock input hold time  
Notes:  
t
0
1
11.5  
11.6  
8.0  
10.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
UIKHOV  
t
UEKHOV  
t
0
UIKHOX  
t
1
UEKHOX  
t
6
UIIVKH  
t
4
3
3
UEIVKH  
t
2.4  
1
UIIXKH  
t
UEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
for  
(first two letters of functional block)(signal)(state) (reference)(state)  
inputs and t  
for outputs. For example, t  
symbolizes the UTOPIA  
(first two letters of functional block)(reference)(state)(signal)(state)  
UIKHOX  
outputs internal timing (UI) for the time t  
invalid (X).  
memory clock reference (K) goes from the high state (H) until outputs (O) are  
UTOPIA  
3. In rev 2.0 silicon, due to errata, t  
minimum is 4.3 ns and t  
minimum is 1.4 ns under specific conditions. Please  
UEIVKH  
UEIXKH  
refer to QE_UPC3 in the device errata document.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
62 Freescale Semiconductor  
 
 
HDLC, BISYNC, Transparent, and Synchronous UART  
Figure 45 provides the AC test load for the UTOPIA.  
Output  
OV /2  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 45. UTOPIA AC Test Load  
Figure 46 and Figure 47 represent the AC timing from Table 56. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 46 shows the UTOPIA timing with external clock.  
UtopiaCLK (input)  
t
UEIXKH  
t
UEIVKH  
Input Signals:  
UTOPIA  
t
UEKHOV  
Output Signals:  
UTOPIA  
tUEKHOX  
Figure 46. UTOPIA AC Timing (External Clock) Diagram  
Figure 47 shows the UTOPIA timing with internal clock.  
UtopiaCLK (output)  
t
UIIXKH  
t
UIIVKH  
Input Signals:  
UTOPIA  
t
UIKHOV  
Output Signals:  
UTOPIA  
t
UIKHOX  
Figure 47. UTOPIA AC Timing (Internal Clock) Diagram  
19 HDLC, BISYNC, Transparent, and Synchronous UART  
This section describes the DC and AC electrical specifications for the high level data link control (HDLC),  
BiSync, transparent, and synchronous UART protocols of the MPC8360E/58E.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
63  
 
 
 
HDLC, BISYNC, Transparent, and Synchronous UART  
19.1 HDLC, BISYNC, Transparent, and Synchronous UART DC  
Electrical Characteristics  
Table 61 provides the DC electrical characteristics for the device HDLC, BISYNC, transparent, and  
synchronous UART protocols.  
Table 61. HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
= –2.0 mA  
OH  
Min  
Max  
Unit  
V
I
2.4  
V
V
OH  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
0.5  
OL  
OL  
V
2.0  
–0.3  
OV + 0.3  
V
IH  
DD  
V
I
0.8  
10  
V
IL  
0 V V OV  
DD  
μA  
IN  
IN  
19.2 HDLC, BISYNC, Transparent, and Synchronous UART AC Timing  
Specifications  
Table 62 and Table 63 provide the input and output AC timing specifications for HDLC, BiSync,  
transparent, and synchronous UART protocols.  
1
Table 62. HDLC, BISYNC, and Transparent AC Timing Specifications  
2
Characteristic  
Outputs—Internal clock delay  
Symbol  
Min  
Max  
Unit  
t
0
1
11.2  
10.8  
5.5  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HIKHOV  
Outputs—External clock delay  
t
HEKHOV  
Outputs—Internal clock High Impedance  
Outputs—External clock High Impedance  
Inputs—Internal clock input setup time  
Inputs—External clock input setup time  
Inputs—Internal clock input Hold time  
Inputs—External clock input hold time  
Notes:  
t
-0.5  
1
HIKHOX  
t
HEKHOX  
t
8.5  
4
HIIVKH  
t
HEIVKH  
t
1.4  
1
HIIXKH  
t
HEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes the outputs internal timing (HI) for the time t  
memory clock reference (K) goes from the high  
HIKHOX  
serial  
state (H) until outputs (O) are invalid (X).  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
64 Freescale Semiconductor  
 
 
HDLC, BISYNC, Transparent, and Synchronous UART  
1
Table 63. Synchronous UART AC Timing Specifications  
2
Characteristic  
Outputs—Internal clock delay  
Symbol  
Min  
Max  
Unit  
t
0
1
0
1
6
8
1
1
11.3  
14  
11  
14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
UAIKHOV  
Outputs—External clock delay  
t
UAEKHOV  
Outputs—Internal clock High Impedance  
Outputs—External clock High Impedance  
Inputs—Internal clock input setup time  
Inputs—External clock input setup time  
Inputs—Internal clock input Hold time  
Inputs—External clock input hold time  
Notes:  
t
UAIKHOX  
UAEKHOX  
t
t
UAIIVKH  
t
UAEIVKH  
t
UAIIXKH  
t
UAEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t  
(first two letters of functional block)(signal)(state)  
for inputs and t  
for outputs. For example,  
(reference)(state)  
(first two letters of functional block)(reference)(state)(signal)(state)  
t
symbolizes the outputs internal timing (HI) for the time t  
memory clock reference (K) goes from the high  
HIKHOX  
serial  
state (H) until outputs (O) are invalid (X).  
Figure 48 provides the AC test load.  
Output  
OV /2  
Z = 50 Ω  
DD  
0
R = 50 Ω  
L
Figure 48. AC Test Load  
19.3 AC Test Load  
Figure 49 and Figure 50 represent the AC timing from Table 62 and Table 63. Note that although the  
specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when  
the falling edge is the active edge.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
65  
 
 
HDLC, BISYNC, Transparent, and Synchronous UART  
Figure 49 shows the timing with external clock.  
Serial CLK (input)  
t
HEIXKH  
t
HEIVKH  
Input Signals:  
(See Note)  
t
HEKHOV  
Output Signals:  
(See Note)  
tHEKHOX  
Note: The clock edge is selectable.  
Figure 49. AC Timing (External Clock) Diagram  
Figure 50 shows the timing with internal clock.  
Serial CLK (output)  
t
HIIXKH  
t
HIIVKH  
Input Signals:  
(See Note)  
t
HIKHOV  
Output Signals:  
(See Note)  
t
HIKHOX  
Note: The clock edge is selectable.  
Figure 50. AC Timing (Internal Clock) Diagram  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
66  
Freescale Semiconductor  
 
 
USB  
20 USB  
This section provides the AC and DC electrical specifications for the USB interface of the  
MPC8360E/58E.  
20.1 USB DC Electrical Characteristics  
Table 64 provides the DC electrical characteristics for the USB interface.  
Table 64. USB DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
Unit  
V
2
OV + 0.3  
V
V
V
IH  
DD  
Low-level input voltage  
V
–0.3  
0.8  
IL  
High-level output voltage,  
V
OV – 0.4  
OH  
DD  
I
= –100 μA  
OH  
Low-level output voltage,  
= 100 μA  
V
I
0.2  
10  
V
OL  
I
OL  
Input current  
μA  
IN  
Note:  
1. Note that the symbol V , in this case, represents the OV symbol referenced in Table 1 and  
IN  
IN  
Table 2.  
20.2 USB AC Electrical Specifications  
Table 65 describes the general timing parameters of the USB interface of the device.  
Table 65. USB General Timing Parameters  
1
Parameter  
usb clock cycle time  
Symbol  
Min  
Max  
Unit  
Notes  
t
t
20.83  
166.67  
ns  
ns  
ns  
ns  
ns  
full speed 48MHz  
low speed 6MHz  
USCK  
USCK  
usb clock cycle time  
skew between TXP and TXN  
skew among RXP, RXN and RXD  
skew among RXP, RXN and RXD  
Notes:  
t
5
USTSPN  
t
10  
100  
full speed transitions  
low speed transitions  
USRSPND  
t
USRPND  
1. The symbols used for timing specifications herein follow the pattern of t  
(First two letters of functional block)(state)  
for receive signals and t  
for transmit signals. For example,  
(signal)  
(First two letters of functional block)(state)(signal)  
t
symbolizes usb timing (US) for the usb receive signals skew (RS) among RXP, RXN, and RXD  
USRSPND  
(PND). Also, t  
TXN (PN).  
symbolizes usb timing (US) for the usb transmit signals skew (TS) between TXP and  
USTSPN  
2.Skew measurements are done at OV /2 of the rising or falling edge of the signals.  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 67  
 
 
Package and Pin Listings  
Figure 51 provide the AC test load for the USB.  
Output  
OV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 51. USB AC Test Load  
21 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8360E/58E is  
available in a tape ball grid array (TBGA), see Section 21.1, “Package Parameters for the TBGA Package  
and Section 21.2, “Mechanical Dimensions of the TBGA Package,” for information on the package.  
21.1 Package Parameters for the TBGA Package  
The package parameters for rev 2.0 silicon are as provided in the following list. The package type is 37.5  
mm × 37.5 mm, 740 tape ball grid array (TBGA).  
Package outline  
Interconnects  
Pitch  
37.5 mm × 37.5 mm  
740  
1.00 mm  
Module height (typical)  
Solder Balls  
1.46 mm  
62 Sn/36 Pb/2 Ag (ZU package)  
95.5 Sn/0.5 Cu/4Ag (VV package)  
0.64 mm  
Ball diameter (typical)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
68 Freescale Semiconductor  
 
 
 
Package and Pin Listings  
21.2 Mechanical Dimensions of the TBGA Package  
Figure 52 depicts the mechanical dimensions and bottom surface nomenclature of the device, 740-TBGA  
package.  
Figure 52. Mechanical Dimensions and Bottom Surface Nomenclature of the TBGA Package  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
69  
 
Package and Pin Listings  
21.3 Pinout Listings  
Table 66 shows the pin list of the MPC8360E TBGA package.  
Table 66. MPC8360E TBGA Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
Primary DDR SDRAM Memory Controller Interface  
MEMC1_MDQ[0:31]  
AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36,  
AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35,  
AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30,  
AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29  
I/O  
GV  
DD  
DD  
MEMC1_MDQ[32:63]/  
MEMC2_MDQ[0:31]  
AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6,  
AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3,  
AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4,  
AK4, AH3  
I/O  
GV  
MEMC1_MECC[0:4]/  
MSRCID[0:4]  
AP24, AN22, AM19, AN19, AM24  
I/O  
I/O  
GV  
GV  
DD  
MEMC1_MECC[5]/  
MDVAL  
AM23  
DD  
MEMC1_MECC[6:7]  
MEMC1_MDM[0:3]  
AM22, AN18  
I/O  
O
GV  
GV  
GV  
DD  
DD  
DD  
AL36, AN34, AP33, AN28  
AT9, AU4, AM3, AJ6  
MEMC1_MDM[4:7]/  
MEMC2_MDM[0:3]  
O
MEMC1_MDM[8]  
AP27  
O
GV  
GV  
GV  
DD  
DD  
DD  
MEMC1_MDQS[0:3]  
AK35, AP35, AN31, AM26  
AT8, AU3, AL4, AJ5  
I/O  
I/O  
MEMC1_MDQS[4:7]/  
MEMC2_MDQS[0:3]  
MEMC1_MDQS[8]  
MEMC1_MBA[0:1]  
MEMC1_MBA[2]  
MEMC1_MA[0:14]  
AP26  
I/O  
O
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
AU29, AU30  
AT30  
O
AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26,  
AU24, AR23, AR28, AU23, AR22, AU20, AR18  
O
MEMC1_MODT[0:1]  
AG33, AJ36  
AT1, AK2  
O
O
GV  
GV  
6
6
DD  
MEMC1_MODT[2:3]/  
MEMC2_MODT[0:1]  
DD  
MEMC1_MWE  
AT26  
O
O
O
O
O
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
MEMC1_MRAS  
MEMC1_MCAS  
MEMC1_MCS[0:1]  
AT29  
AT24  
AU27, AT27  
AU8, AU7  
MEMC1_MCS[2:3]/  
MEMC2_MCS[0:1]  
MEMC1_MCKE[0:1]  
MEMC1_MCK[0:1]  
AL32, AU33  
AK37, AT37  
AN1, AR2  
O
O
O
GV  
GV  
GV  
3
DD  
DD  
DD  
MEMC1_MCK[2:3]/  
MEMC2_MCK[0:1]  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
70 Freescale Semiconductor  
 
Package and Pin Listings  
Power  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Signal  
MEMC1_MCK[4:5]/  
Package Pin Number  
Pin Type  
Notes  
Supply  
AN25, AK1  
O
GV  
DD  
MEMC2_MCKE[0:1]  
MEMC1_MCK[0:1]  
AL37, AT36  
AP2, AT2  
O
O
GV  
GV  
DD  
MEMC1_MCK[2:3]/  
MEMC2_MCK[0:1]  
DD  
MEMC1_MCK[4]/  
MEMC2_MDM[8]  
AN24  
AL1  
O
O
GV  
GV  
GV  
DD  
DD  
DD  
MEMC1_MCK[5]/  
MEMC2_MDQS[8]  
MDIC[0:1]  
AH6, AP30  
I/O  
10  
Secondary DDR SDRAM Memory Controller Interface  
MEMC2_MECC[0:7]  
MEMC2_MBA[0:2]  
MEMC2_MA[0:14]  
AN16, AP18, AM16, AM17, AN17, AP13, AP15, AN13  
AU12, AU15, AU13  
I/O  
O
GV  
GV  
GV  
DD  
DD  
DD  
AT12, AP11, AT13, AT14, AR13, AR15, AR16, AT16,  
AT18, AT17, AP10, AR20, AR17, AR14, AR11  
O
MEMC2_MWE  
MEMC2_MRAS  
MEMC2_MCAS  
AU10  
AT11  
AU11  
O
O
O
GV  
GV  
GV  
DD  
DD  
DD  
PCI  
PCI_INTA/  
IRQ_OUT/  
CE_PF[5]  
A20  
I/O  
LV  
2
2
DD  
PCI_RESET_OUT/  
CE_PF[6]  
E19  
I/O  
I/O  
I/O  
I/O  
I/O  
LV  
LV  
2
2
DD  
PCI_AD[31:30]/  
CE_PG[31:30]  
D20, D21  
DD  
PCI_AD[29:25]/  
CE_PG[29:25]  
A24, B23, C23, E23, A26  
B21  
OV  
DD  
PCI_AD[24]/  
CE_PG[24]  
LV  
2
DD  
PCI_AD[23:0]/  
CE_PG[23:0]  
C24, C25, D25, B25, E24, F24, A27, A28, F27, A30, C30,  
D30, E29, B31, C31, D31, D32, A32, C33, B33, F30, E31,  
A34, D33  
OV  
DD  
PCI_C/  
E22, B26, E28, F28  
I/O  
OV  
DD  
BE[3:0]/  
CE_PF[10:7]  
PCI_PAR/  
CE_PF[11]  
D28  
D26  
C27  
I/O  
I/O  
I/O  
OV  
OV  
OV  
DD  
DD  
DD  
PCI_FRAME/  
CE_PF[12]  
5
5
PCI_TRDY/  
CE_PF[13]  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 71  
Package and Pin Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI_IRDY/  
CE_PF[14]  
C28  
I/O  
OV  
OV  
OV  
OV  
OV  
OV  
5
DD  
DD  
DD  
DD  
DD  
DD  
PCI_STOP/  
CE_PF[15]  
B28  
E26  
F22  
B29  
A29  
F19  
A21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
5
5
PCI_DEVSEL/  
CE_PF[16]  
PCI_IDSEL/  
CE_PF[17]  
PCI_SERR/  
CE_PF[18]  
5
5
PCI_PERR/  
CE_PF[19]  
PCI_REQ[0]/  
CE_PF[20]  
LV  
LV  
2
2
DD  
DD  
PCI_REQ[1]/  
CPCI_HS_ES/  
CE_PF[21]  
PCI_REQ[2]/  
CE_PF[22]  
C21  
E20  
B20  
I/O  
I/O  
I/O  
LV  
LV  
LV  
2
2
2
DD  
DD  
DD  
PCI_GNT[0]/  
CE_PF[23]  
PCI_GNT[1]/  
CPCI1_HS_LED/  
CE_PF[24]  
PCI_GNT[2]/  
C20  
I/O  
LV  
2
DD  
CPCI1_HS_ENUM/  
CE_PF[25]  
PCI_MODE  
D36  
B37  
I
OV  
OV  
DD  
M66EN/  
I/O  
DD  
CE_PF[4]  
Local Bus Controller Interface  
LAD[0:31]  
N32, N33, N35, N36, P37, P32, P34, R36, R35, R34,  
R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35,  
W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35,  
AA34  
I/O  
OV  
DD  
LDP[0]/  
CKSTOP_OUT  
AB37  
AB36  
AB35  
AA33  
I/O  
I/O  
I/O  
I/O  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
LDP[1]/  
CKSTOP_IN  
LDP[2]/  
LCS[6]  
LDP[3]/  
LCS[7]  
LA[27:31]  
LCS[0:5]  
AC37, AA32, AC36, AC34, AD36  
O
O
OV  
OV  
DD  
AD33, AG37, AF34, AE33, AD32, AH37  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
72 Freescale Semiconductor  
Package and Pin Listings  
Power  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Notes  
Supply  
LWE[0:3]/  
AG35, AG34, AH36, AE32  
O
OV  
DD  
LSDDQM[0:3]/  
LBS[0:3]  
LBCTL  
LALE  
AD35  
M37  
O
O
OV  
OV  
OV  
DD  
DD  
DD  
LGPL0/  
AB32  
I/O  
LSDA10/  
cfg_reset_source0  
LGPL1/  
LSDWE/  
cfg_reset_source1  
AE37  
AC33  
AD34  
AE35  
I/O  
O
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
LGPL2/  
LSDRAS/  
LOE  
LGPL3/  
LSDCAS/  
cfg_reset_source2  
I/O  
I/O  
LGPL4/  
LGTA/  
LUPWAIT/  
LPBSE  
LGPL5/  
AF36  
I/O  
OV  
DD  
cfg_clkin_div  
LCKE  
G36  
J33  
J34  
O
O
O
OV  
OV  
OV  
DD  
DD  
DD  
LCLK[0]  
LCLK[1]/  
LCS[6]  
LCLK[2]/  
LCS[7]  
G37  
O
OV  
DD  
LSYNC_OUT  
LSYNC_IN  
F34  
G35  
O
I
OV  
OV  
DD  
DD  
Programmable Interrupt Controller  
MCP_OUT  
E34  
C37  
O
I
OV  
OV  
2
DD  
IRQ0/  
DD  
MCP_IN  
IRQ[1]/  
F35  
F36  
H34  
I/O  
I/O  
I/O  
OV  
OV  
OV  
DD  
DD  
DD  
M1SRCID[4]/  
M2SRCID[4]/  
LSRCID[4]  
IRQ[2]/  
M1DVAL/  
M2DVAL/  
LDVAL  
IRQ[3]/  
CORE_SRESET  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 73  
Package and Pin Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Package Pin Number  
Power  
Supply  
Signal  
Pin Type  
Notes  
IRQ[4:5]  
G33, G32  
E35  
I/O  
I/O  
OV  
OV  
DD  
IRQ[6]/  
DD  
LCS[6]/  
CKSTOP_OUT  
IRQ[7]/  
H36  
I/O  
OV  
DD  
LCS[7]/  
CKSTOP_IN  
DUART  
UART1_SOUT/  
M1SRCID[0]/  
M2SRCID[0]/  
LSRCID[0]  
E32  
O
I/O  
I/O  
O
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
UART1_SIN/  
M1SRCID[1]/  
M2SRCID[1]/  
LSRCID[1]  
B34  
C34  
A35  
UART1_CTS/  
M1SRCID[2]/  
M2SRCID[2]/  
LSRCID[2]  
UART1_RTS  
M1SRCID[3]/  
M2SRCID[3]/  
LSRCID[3]  
2
I C Interface  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
D34  
B35  
E33  
C35  
I/O  
I/O  
I/O  
I/O  
OV  
OV  
OV  
OV  
2
2
2
2
DD  
DD  
DD  
DD  
TM  
QUICC Engine  
CE_PA[0]  
F8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LV  
DD0  
CE_PA[1:2]  
CE_PA[3:7]  
CE_PA[8]  
AH1, AG5  
OV  
DD  
F6, D4, C3, E5, A3  
AG3  
LV  
0
DD  
OV  
DD  
CE_PA[9:12]  
CE_PA[13:14]  
CE_PA[15]  
F7, B3, E6, B4  
AG1, AF6  
LV  
0
DD  
OV  
DD  
B2  
LV  
0
DD  
CE_PA[16]  
AF4  
OV  
DD  
CE_PA[17:21]  
CE_PA[22]  
B16, A16, E17, A17, B17  
AF3  
LV  
1
DD  
OV  
DD  
CE_PA[23:26]  
CE_PA[27:28]  
C18, D18, E18, A18  
AF2, AE6  
LV  
1
DD  
OV  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
74 Freescale Semiconductor  
Package and Pin Listings  
Power  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Package Pin Number  
Signal  
Pin Type  
Notes  
Supply  
CE_PA[29]  
CE_PA[30]  
CE_PA[31]  
CE_PB[0:27]  
B19  
AE5  
F16  
I/O  
I/O  
I/O  
I/O  
LV  
1
DD  
OV  
DD  
LV  
1
DD  
AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2, AC1,  
AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4, Y3, Y2,  
Y1, W6, W5, W2, V5, V3, V2  
OV  
DD  
CE_PC[0:1]  
CE_PC[2:3]  
CE_PC[4:6]  
CE_PC[7]  
V1, U6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OV  
DD  
C16, A15  
U4, U3, T6  
C19  
LV  
1
DD  
OV  
DD  
LV  
LV  
2
0
DD  
DD  
CE_PC[8:9]  
CE_PC[10:30]  
A4, C5  
T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10, C10,  
E12, A9, B8, D10, A14, E15, B14, D15, AH2  
OV  
DD  
CE_PD[0:27]  
CE_PE[0:31]  
CE_PF[0:3]  
E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8, B5,  
A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1, F2, G3,  
H4  
I/O  
I/O  
I/O  
OV  
DD  
K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6, P6,  
P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6, L1, L2, L4,  
E14, C13, C14, B13  
OV  
OV  
DD  
F14, D13, A12, A11  
DD  
Clocks  
PCI_CLK_OUT[0]/  
CE_PF[26]  
B22  
I/O  
I/O  
LV  
2
DD  
PCI_CLK_OUT[1:2]/  
CE_PF[27:28]  
D22, A23  
OV  
DD  
CLKIN  
E37  
M36  
I
I
OV  
OV  
DD  
PCI_CLOCK/  
DD  
PCI_SYNC_IN  
PCI_SYNC_OUT/  
CE_PF[29]  
D37  
I/O  
OV  
3
DD  
JTAG  
TCK  
TDI  
K33  
K34  
H37  
J36  
L32  
I
I
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
4
3
4
4
TDO  
TMS  
TRST  
O
I
I
Test  
TEST  
L35  
I
I
OV  
GV  
7
7
DD  
TEST_SEL  
AU34  
DD  
PMC  
QUIESCE  
B36  
O
OV  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 75  
Package and Pin Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
System Control  
Pin Type  
Notes  
PORESET  
HRESET  
SRESET  
L37  
L36  
M33  
I
OV  
OV  
OV  
DD  
DD  
DD  
I/O  
I/O  
1
2
Thermal Management  
THERM0  
THERM1  
AP19  
AT31  
I
I
GV  
GV  
DD  
DD  
Power and Ground Signals  
AV  
AV  
AV  
AV  
1
2
5
6
K35  
Power for AV  
LBIU DLL  
(1.2 V)  
1
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
K36  
Power for AV  
CE PLL  
(1.2 V)  
2
5
6
AM29  
K37  
Power for AV  
e300 PLL  
(1.2 V)  
Power for AV  
system  
PLL (1.2  
V)  
GND  
A2, A8, A13, A19, A22, A25, A31, A33, A36, B7, B12,  
B24, B27, B30, C4, C6, C9, C15, C26, C32, D3, D8, D11,  
D14, D17, D19, D23, D27, E7, E13, E25, E30, E36, F4,  
F37, G34, H1, H5, H32, H33, J4, J32, J37, K1, L3, L5,  
L33, L34, M1, M34, M35, N37, P2, P5, P35, P36, R4, T3,  
U1, U5, U35, V37, W1, W4, W33, W36, Y34, AA3, AA5,  
AC3, AC32, AC35, AD1, AD37, AE4, AE34, AE36, AF33,  
AG4, AG6, AG32, AH35, AJ1, AJ4, AJ32, AJ35, AJ37,  
AK36, AL3, AL34, AM4, AN6, AN23, AN30, AP8, AP12,  
AP14, AP16, AP17, AP20, AP25, AR6, AR8, AR9, AR19,  
AR24, AR31, AR35, AR37, AT4, AT10, AT19, AT20,  
AT25, AU14, AU22, AU28, AU35  
GV  
AD4, AE3, AF1, AF5, AF35, AF37, AG2, AG36, AH33,  
AH34, AK5, AM1, AM35, AM37, AN2, AN10, AN11,  
AN12, AN14, AN32, AN36, AP5, AP23, AP28, AR1, AR7,  
AR10, AR12, AR21, AR25, AR27, AR33, AT15, AT22,  
AT28, AT33, AU2, AU5, AU16, AU31, AU36  
Power for  
DDR  
DRAM  
I/O  
Voltage  
(2.5 V or  
1.8 V)  
GV  
DD  
DD  
LV  
0
D5, D6  
Power for LV  
UCC1  
0
DD  
DD  
Ethernet  
Interface  
(2.5V,  
3.3V)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
76 Freescale Semiconductor  
Package and Pin Listings  
Power  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Notes  
Supply  
LV  
LV  
1
2
C17, D16  
Power for  
UCC2  
Ethernet  
Interface  
option 1  
(2.5V,  
LV  
9
DD  
DD1  
3.3V)  
B18, E21  
Power for LV  
UCC2  
2
DD  
9
DD  
Ethernet  
Interface  
Option 2  
(2.5V,  
3.3V)  
V
C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, F21, Power for  
V
DD  
DD  
F23, F25, F26, F29, F31, F32, F33, G6, J6, K32, M32,  
N6, P33, R6, R32, U32, V6, Y5, Y32, AB6, AB33, AD6,  
AF32, AK6, AL6, AM7, AM9, AM10, AM11, AM12, AM13,  
AM14, AM15, AM18, AM21, AM25, AM28, AM32, AN15,  
AN21, AN26, AU9, AU17  
Core  
(1.2 V)  
OV  
A10, B9, B15, B32, C1, C12, C22, C29, D24, E3, E10,  
E27, G4, H35, J1, J35, K2, M4, N3, N34, R2, R37, T36,  
PCI,  
10/100  
OV  
DD  
DD  
U2, U33, V4, V34, W3, Y35, Y37, AA1, AA36, AB2, AB34 Ethernet,  
and other  
Standard  
(3.3 V)  
MVREF1  
MVREF2  
AN20  
AU32  
I
DDR  
Referenc  
e
Voltage  
I
DDR  
Referenc  
e
Voltage  
SPARE1  
SPARE3  
SPARE4  
SPARE5  
B11  
I/O  
OV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
AH32  
AU18  
AP1  
8
7
8
No Connect  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 77  
Package and Pin Listings  
Table 66. MPC8360E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
NC  
AM20, AU19  
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV  
DD  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
.
DD  
5.This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance  
7. This pin must always be tied to GND.  
8. This pin must always be left not connected.  
9. Refers to MPC8360E PowerQUICC II™ Pro Integrated Communications Processor Reference Manual section on "RGMII  
Pins" for information about the two UCC2 Ethernet interface options.  
10. It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω  
resistor for DDR2.  
Table 67 shows the pin list of the MPC8358E TBGA package.  
Table 67. MPC8358E TBGA Pinout Listing  
Power  
Signal  
Package Pin Number  
Pin Type  
Notes  
Supply  
DDR SDRAM Memory Controller Interface  
MEMC1_MDQ[0:63]  
AJ34, AK33, AL33, AL35, AJ33, AK34, AK32, AM36,  
AN37, AN35, AR34, AT34, AP37, AP36, AR36, AT35,  
AP34, AR32, AP32, AM31, AN33, AM34, AM33, AM30,  
AP31, AM27, AR30, AT32, AN29, AP29, AN27, AR29,  
AN8, AN7, AM8, AM6, AP9, AN9, AT7, AP7, AU6, AP6,  
AR4, AR3, AT6, AT5, AR5, AT3, AP4, AM5, AP3, AN3,  
AN5, AL5, AN4, AM2, AL2, AH5, AK3, AJ2, AJ3, AH4,  
AK4, AH3  
I/O  
GV  
DD  
MEMC_MECC[0:4]/  
MSRCID[0:4]  
AP24, AN22, AM19, AN19, AM24  
I/O  
I/O  
GV  
GV  
DD  
MEMC_MECC[5]/  
MDVAL  
AM23  
DD  
MEMC_MECC[6:7]  
MEMC_MDM[0:8]  
MEMC_MDQS[0:8]  
MEMC_MBA[0:1]  
MEMC_MBA[2]  
AM22, AN18  
I/O  
O
GV  
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
DD  
AL36, AN34, AP33, AN28,AT9, AU4, AM3, AJ6,AP27  
AK35, AP35, AN31, AM26,AT8, AU3, AL4, AJ5, AP26  
I/O  
O
AU29, AU30  
AT30  
O
MEMC_MA[0:14]  
AU21, AP22, AP21, AT21, AU25, AU26, AT23, AR26,  
AU24, AR23, AR28, AU23, AR22, AU20, AR18  
O
MEMC_MODT[0:3]  
MEMC_MWE  
AG33, AJ36, AT1, AK2  
O
O
O
O
GV  
GV  
GV  
GV  
6
DD  
DD  
DD  
DD  
AT26  
AT29  
AT24  
MEMC_MRAS  
MEMC_MCAS  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
78 Freescale Semiconductor  
 
Package and Pin Listings  
Power  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Package Pin Number  
Signal  
MEMC_MCS[0:3]  
Pin Type  
Notes  
Supply  
AU27, AT27, AU8, AU7  
AL32, AU33  
O
O
GV  
GV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
DD  
MEMC_MCKE[0:1]  
MEMC_MCK[0:5]  
MEMC_MCK[0:5]  
MDIC[0:1]  
3
AK37, AT37, AN1, AR2, AN25, AK1  
AL37, AT36, AP2, AT2, AN24, AL1  
AH6, AP30  
O
O
I/O  
11  
2
PCI  
PCI_INTA/  
IRQ_OUT/  
CE_PF[5]  
A20  
I/O  
LV  
2
DD  
PCI_RESET_OUT/  
CE_PF[6]  
E19  
I/O  
I/O  
I/O  
I/O  
I/O  
LV  
LV  
2
2
DD  
PCI_AD[31:30]/  
CE_PG[31:30]  
D20, D21  
DD  
PCI_AD[29:25]/  
CE_PG[29:25]  
A24, B23, C23, E23, A26  
B21  
OV  
DD  
PCI_AD[24]/  
CE_PG[24]  
LV  
2
DD  
PCI_AD[23:0]/  
CE_PG[23:0]  
C24, C25, D25, B25, E24, F24, A27, A28, F27, A30, C30,  
D30, E29, B31, C31, D31, D32, A32, C33, B33, F30, E31,  
A34, D33  
OV  
DD  
PCI_C/  
E22, B26, E28, F28  
I/O  
OV  
DD  
BE[3:0]/  
CE_PF[10:7]  
PCI_PAR/  
CE_PF[11]  
D28  
D26  
C27  
C28  
B28  
E26  
F22  
B29  
A29  
F19  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
PCI_FRAME/  
CE_PF[12]  
5
5
5
5
5
PCI_TRDY/  
CE_PF[13]  
PCI_IRDY/  
CE_PF[14]  
PCI_STOP/  
CE_PF[15]  
PCI_DEVSEL/  
CE_PF[16]  
PCI_IDSEL/  
CE_PF[17]  
PCI_SERR/  
CE_PF[18]  
5
5
PCI_PERR/  
CE_PF[19]  
PCI_REQ[0]/  
CE_PF[20]  
LV  
2
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 79  
Package and Pin Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
PCI_REQ[1]/  
CPCI_HS_ES/  
CE_PF[21]  
A21  
I/O  
LV  
2
DD  
PCI_REQ[2]/  
CE_PF[22]  
C21  
E20  
B20  
I/O  
I/O  
I/O  
LV  
LV  
LV  
2
2
2
DD  
DD  
DD  
PCI_GNT[0]/  
CE_PF[23]  
PCI_GNT[1]/  
CPCI1_HS_LED/  
CE_PF[24]  
PCI_GNT[2]/  
C20  
I/O  
LV  
2
DD  
CPCI1_HS_ENUM/  
CE_PF[25]  
PCI_MODE  
D36  
B37  
I
OV  
OV  
DD  
M66EN/CE_PF[4]  
I/O  
DD  
Local Bus Controller Interface  
LAD[0:31]  
N32, N33, N35, N36, P37, P32, P34, R36, R35, R34,  
R33, T37, T35, T34, T33, U37, T32, U36, U34, V36, V35,  
W37, W35, V33, V32, W34, Y36, W32, AA37, Y33, AA35,  
AA34  
I/O  
OV  
DD  
LDP[0]/  
CKSTOP_OUT  
AB37  
AB36  
AB35  
AA33  
I/O  
I/O  
I/O  
I/O  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
LDP[1]/  
CKSTOP_IN  
LDP[2]/  
LCS[6]  
LDP[3]/  
LCS[7]  
LA[27:31]  
LCS[0:5]  
AC37, AA32, AC36, AC34, AD36  
AD33, AG37, AF34, AE33, AD32, AH37  
AG35, AG34, AH36, AE32  
O
O
O
OV  
OV  
OV  
DD  
DD  
DD  
LWE[0:3]/  
LSDDQM[0:3]/  
LBS[0:3]  
LBCTL  
LALE  
AD35  
M37  
O
O
OV  
OV  
OV  
DD  
DD  
DD  
LGPL0/  
AB32  
I/O  
LSDA10/  
cfg_reset_source0  
LGPL1/  
LSDWE/  
cfg_reset_source1  
AE37  
AC33  
I/O  
O
OV  
OV  
DD  
LGPL2/  
LSDRAS/  
LOE  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
80 Freescale Semiconductor  
Package and Pin Listings  
Power  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Notes  
Supply  
LGPL3/  
LSDCAS/  
cfg_reset_source2  
AD34  
I/O  
I/O  
OV  
DD  
LGPL4/  
LGTA/  
AE35  
OV  
DD  
LUPWAIT/  
LPBSE  
LGPL5/  
AF36  
I/O  
OV  
DD  
cfg_clkin_div  
LCKE  
G36  
J33  
J34  
O
O
O
OV  
OV  
OV  
DD  
DD  
DD  
LCLK[0]  
LCLK[1]/  
LCS[6]  
LCLK[2]/  
LCS[7]  
G37  
O
OV  
DD  
LSYNC_OUT  
LSYNC_IN  
F34  
G35  
O
I
OV  
OV  
DD  
DD  
Programmable Interrupt Controller  
MCP_OUT  
E34  
C37  
O
I
OV  
OV  
2
DD  
IRQ0/  
DD  
MCP_IN  
IRQ[1]/  
F35  
F36  
H34  
I/O  
I/O  
I/O  
OV  
OV  
OV  
DD  
DD  
DD  
M1SRCID[4]/  
M2SRCID[4]/  
LSRCID[4]  
IRQ[2]/  
M1DVAL/  
M2DVAL/  
LDVAL  
IRQ[3]/  
CORE_SRESET  
IRQ[4:5]  
G33, G32  
E35  
I/O  
I/O  
OV  
OV  
DD  
IRQ[6]/  
DD  
LCS[6]/  
CKSTOP_OUT  
IRQ[7]/  
LCS[7]/  
CKSTOP_IN  
H36  
I/O  
O
OV  
DD  
DD  
DUART  
UART1_SOUT/  
M1SRCID[0]/  
M2SRCID[0]/  
LSRCID[0]  
E32  
OV  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 81  
Package and Pin Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
UART1_SIN/  
M1SRCID[1]/  
M2SRCID[1]/  
LSRCID[1]  
B34  
I/O  
OV  
OV  
OV  
DD  
DD  
DD  
UART1_CTS/  
M1SRCID[2]/  
M2SRCID[2]/  
LSRCID[2]  
C34  
A35  
I/O  
O
UART1_RTS/  
M1SRCID[3]/  
M2SRCID[3]/  
LSRCID[3]  
2
I C Interface  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
D34  
B35  
E33  
C35  
I/O  
I/O  
I/O  
I/O  
OV  
OV  
OV  
OV  
2
2
2
2
DD  
DD  
DD  
DD  
TM  
QUICC Engine  
CE_PA[0]  
F8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LV  
DD0  
CE_PA[1:2]  
CE_PA[3:7]  
CE_PA[8]  
AH1, AG5  
OV  
DD  
F6, D4, C3, E5, A3  
LV  
0
DD  
AG3  
OV  
DD  
CE_PA[9:12]  
CE_PA[13:14]  
CE_PA[15]  
CE_PA[16]  
CE_PA[17:21]  
CE_PA[22]  
CE_PA[23:26]  
CE_PA[27:28]  
CE_PA[29]  
CE_PA[30]  
CE_PA[31]  
CE_PB[0:27]  
F7, B3, E6, B4  
LV  
0
DD  
AG1, AF6  
OV  
DD  
B2  
LV  
0
DD  
AF4  
OV  
DD  
B16, A16, E17, A17, B17  
LV  
1
DD  
AF3  
OV  
DD  
C18, D18, E18, A18  
LV  
1
DD  
AF2, AE6  
B19  
OV  
DD  
LV  
1
DD  
AE5  
OV  
DD  
F16  
LV  
1
DD  
AE2, AE1, AD5, AD3, AD2, AC6, AC5, AC4, AC2, AC1,  
AB5, AB4, AB3, AB1, AA6, AA4, AA2, Y6, Y4, Y3, Y2,  
Y1, W6, W5, W2, V5, V3, V2  
OV  
DD  
CE_PC[0:1]  
CE_PC[2:3]  
CE_PC[4:6]  
CE_PC[7]  
V1, U6  
I/O  
I/O  
I/O  
I/O  
I/O  
OV  
DD  
C16, A15  
U4, U3, T6  
C19  
LV  
1
DD  
OV  
DD  
LV  
LV  
2
0
DD  
DD  
CE_PC[8:9]  
A4, C5  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
82 Freescale Semiconductor  
Package and Pin Listings  
Power  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Package Pin Number  
Signal  
Pin Type  
Notes  
Supply  
CE_PC[10:30]  
CE_PD[0:27]  
T5, T4, T2, T1, R5, R3, R1, C11, D12, F13, B10, C10,  
E12, A9, B8, D10, A14, E15, B14, D15, AH2  
I/O  
I/O  
OV  
DD  
E11, D9, C8, F11, A7, E9, C7, A6, F10, B6, D7, E8, B5,  
OV  
DD  
A5, C2, E4, F5, B1, D2, G5, D1, E2, H6, F3, E1, F2, G3,  
H4  
CE_PE[0:31]  
CE_PF[0:3]  
K3, J2, F1, G2, J5, H3, G1, H2, K6, J3, K5, K4, L6, P6,  
P4, P3, P1, N4, N5, N2, N1, M2, M3, M5, M6, L1, L2, L4,  
E14, C13, C14, B13  
I/O  
I/O  
OV  
OV  
DD  
F14, D13, A12, A11  
DD  
Clocks  
PCI_CLK_OUT[0]/  
CE_PF[26]  
B22  
I/O  
I/O  
LV  
2
DD  
PCI_CLK_OUT[1:2]/  
CE_PF[27:28]  
D22, A23  
OV  
DD  
CLKIN  
E37  
M36  
I
I
OV  
OV  
DD  
PCI_CLOCK/  
DD  
PCI_SYNC_IN  
PCI_SYNC_OUT/  
CE_PF[29]  
D37  
I/O  
OV  
3
DD  
JTAG  
TCK  
TDI  
K33  
K34  
H37  
J36  
L32  
I
I
OV  
OV  
OV  
OV  
OV  
DD  
DD  
DD  
DD  
DD  
4
3
4
4
TDO  
TMS  
TRST  
O
I
I
Test  
TEST  
L35  
I
I
OV  
GV  
7
DD  
TEST_SEL  
AU34  
10  
DD  
PMC  
QUIESCE  
B36  
O
OV  
DD  
System Control  
PORESET  
HRESET  
SRESET  
L37  
L36  
M33  
I
OV  
OV  
OV  
DD  
DD  
DD  
I/O  
I/O  
1
2
Thermal Management  
THERM0  
THERM1  
AP19  
AT31  
I
I
GV  
GV  
DD  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 83  
Package and Pin Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Package Pin Number  
Power  
Supply  
Signal  
Pin Type  
Notes  
Power and Ground Signals  
AV  
AV  
AV  
AV  
1
2
5
6
K35  
Power for AV  
LBIU DLL  
(1.2 V)  
1
2
5
6
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
K36  
Power for AV  
CE PLL  
(1.2 V)  
AM29  
K37  
Power for AV  
e300 PLL  
(1.2 V)  
Power for AV  
system  
PLL (1.2  
V)  
GND  
A2, A8, A13, A19, A22, A25, A31, A33, A36, B7, B12,  
B24, B27, B30, C4, C6, C9, C15, C26, C32, D3, D8, D11,  
D14, D17, D19, D23, D27, E7, E13, E25, E30, E36, F4,  
F37, G34, H1, H5, H32, H33, J4, J32, J37, K1, L3, L5,  
L33, L34, M1, M34, M35, N37, P2, P5, P35, P36, R4, T3,  
U1, U5, U35, V37, W1, W4, W33, W36, Y34, AA3, AA5,  
AC3, AC32, AC35, AD1, AD37, AE4, AE34, AE36, AF33,  
AG4, AG6, AG32, AH35, AJ1, AJ4, AJ32, AJ35, AJ37,  
AK36, AL3, AL34, AM4, AN6, AN23, AN30, AP8, AP12,  
AP14, AP16, AP17, AP20, AP25, AR6, AR8, AR9, AR19,  
AR24, AR31, AR35, AR37, AT4, AT10, AT19, AT20,  
AT25, AU14, AU22, AU28, AU35  
GV  
AD4, AE3, AF1, AF5, AF35, AF37, AG2, AG36, AH33,  
AH34, AK5, AM1, AM35, AM37, AN2, AN10, AN11,  
AN12, AN14, AN32, AN36, AP5, AP23, AP28, AR1, AR7,  
AR10, AR12, AR21, AR25, AR27, AR33, AT15, AT22,  
AT28, AT33, AU2, AU5, AU16, AU31, AU36  
Power for  
DDR  
DRAM  
I/O  
Voltage  
(2.5 V or  
1.8 V)  
GV  
DD  
DD  
LV  
LV  
0
1
D5, D6  
Power for LV  
UCC1  
Ethernet  
Interface  
(2.5V,  
0
1
DD  
DD  
DD  
3.3V)  
C17, D16  
Power for LV  
UCC2  
9
DD  
Ethernet  
Interface  
option 1  
(2.5V,  
3.3V)  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
84 Freescale Semiconductor  
Package and Pin Listings  
Power  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Notes  
Supply  
LV  
2
B18, E21  
Power for LV  
UCC2  
2
DD  
9
DD  
Ethernet  
Interface  
Option 2  
(2.5V,  
3.3V)  
V
C36, D29, D35, E16, F9, F12, F15, F17, F18, F20, F21, Power for  
V
DD  
DD  
F23, F25, F26, F29, F31, F32, F33, G6, J6, K32, M32,  
N6, P33, R6, R32, U32, V6, Y5, Y32, AB6, AB33, AD6,  
AF32, AK6, AL6, AM7, AM9, AM10, AM11, AM12, AM13,  
AM14, AM15, AM18, AM21, AM25, AM28, AM32, AN15,  
AN21, AN26, AU9, AU17  
Core  
(1.2 V)  
OV  
A10, B9, B15, B32, C1, C12, C22, C29, D24, E3, E10,  
E27, G4, H35, J1, J35, K2, M4, N3, N34, R2, R37, T36,  
PCI,  
10/100  
OV  
DD  
DD  
U2, U33, V4, V34, W3, Y35, Y37, AA1, AA36, AB2, AB34 Ethernet,  
and other  
Standard  
(3.3 V)  
MVREF1  
MVREF2  
AN20  
AU32  
I
DDR  
Referenc  
e
Voltage  
I
DDR  
Referenc  
e
Voltage  
SPARE1  
SPARE3  
SPARE4  
SPARE5  
B11  
I/O  
OV  
GV  
GV  
GV  
DD  
DD  
DD  
DD  
AH32  
AU18  
AP1  
8
7
8
No Connect  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 85  
Package and Pin Listings  
Table 67. MPC8358E TBGA Pinout Listing (continued)  
Package Pin Number  
Power  
Supply  
Signal  
Pin Type  
Notes  
NC  
AM16, AM17, AM20, AN13, AN16, AN17, AP10, AP11,  
AP13, AP15, AP18, AR11, AR13, AR14, AR15, AR16,  
AR17, AR20, AT11, AT12, AT13, AT14, AT16, AT17,  
AT18, AU10, AU11, AU12, AU13, AU15, AU19  
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 kΩ) should be placed on this pin to OV  
DD.  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
.
DD  
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. These are On Die Termination pins, used to control DDR2 memories internal termination resistance.  
7. This pin must always be tied to GND.  
8. This pin must always be left not connected.  
9. Refers to MPC8360E PowerQUICC II™ Pro Integrated Communications Processor Reference Manual section on "RGMII  
Pins" for information about the two UCC2 Ethernet interface options.  
10. This pin must always be tied to GV  
.
DD  
11. It is recommended that MDIC0 be tied to GND using an 18.2 Ω resistor and MDIC1 be tied to DDR power using an 18.2 Ω  
resistor for DDR2.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
86  
Freescale Semiconductor  
Clocking  
22 Clocking  
Figure 53 shows the internal distribution of clocks within the MPC8360E.  
MPC8360E  
e300 core  
core_clk  
Core PLL  
csb_clk  
ce_clk to QUICC Engine block  
DDRC1  
DDRC1  
Memory  
Device  
MEMC1_MCK[0:5]  
MEMC1_MCK[0:5]  
/2  
ddr1_clk  
lb_clk  
DDRC2  
Memory  
Device  
DDRC2  
/2  
MEMC2_MCK[0:1]  
MEMC2_MCK[0:1]  
QUICC  
Clock  
Engine  
PLL  
Unit  
System  
PLL  
/n  
LCLK[0:2]  
to local bus/  
Local Bus  
Memory  
Device  
DDRC2  
LBIU  
DLL  
LSYNC_OUT  
LSYNC_IN  
controller  
csb_clk to rest  
of the device  
PCI_CLK/  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
PCI_SYNC_OUT  
PCI Clock  
Divider  
PCI_CLK_OUT[0:2]  
Figure 53. MPC8360E Clock Subsystem  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 87  
 
 
Clocking  
Figure 54 shows the internal distribution of clocks within the MPC8358E.  
MPC8358E  
e300 core  
core_clk  
Core PLL  
csb_clk  
ce_clk to QUICC Engine block  
DDRC  
/2  
DDRC  
Memory  
Device  
MEMC1_MCK[0:5]  
MEMC1_MCK[0:5]  
ddr1_clk  
lb_clk  
QUICC  
Engine  
PLL  
Clock  
Unit  
System  
PLL  
/n  
LCLK[0:2]  
Local Bus  
Memory  
Device  
LBIU  
DLL  
LSYNC_OUT  
LSYNC_IN  
csb_clk to rest  
of the device  
PCI_CLK/  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
PCI_SYNC_OUT  
PCI Clock  
Divider  
PCI_CLK_OUT[0:2]  
Figure 54. MPC8358E Clock Subsystem  
The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on  
whether the device is configured in PCI host or PCI agent mode. Note that in PCI host mode, the primary  
clock input also depends on whether PCI clock outputs are selected with RCWH[PCICKEN]. When the  
device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is selected  
(RCWH[PCICKEN] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and  
the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input  
selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICDn]  
parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUTn signals.The  
OCCR[PCIOENn] parameters enable the PCI_CLK_OUTn respectively.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
88  
Freescale Semiconductor  
 
Clocking  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device  
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured  
as a PCI agent device the CLKIN and the CFG_CLKIN_DIV signals should be tied to GND.  
When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is  
disabled (RCWH[PCICKEN] = 0), clock distribution and balancing done externally on the board.  
Therefore, PCI_SYNC_IN is the primary input clock.  
As shown in Figure 53, the primary clock input (frequency) is multiplied by the QUICC Engine block  
phase-locked loop (PLL), the system PLL, and the clock unit to create the QUICC Engine clock (ce_clk),  
the coherent system bus clock (csb_clk), the internal DDRC1 controller clock (ddr1_clk), and the internal  
clock for the local bus interface unit and DDR2 memory controller (lb_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is the CLKIN frequency; in PCI agent  
mode, CFG_CLKIN_DIV must be pulled down (low), so PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is  
the PCI_CLK frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up  
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL  
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL)  
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset,  
Clocking, and Initialization,” in the MPC8360E Integrated Communications Processor Reference  
Manual, Rev. 2 for more information on the clock subsystem.  
The ce_clk frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF)  
and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:  
ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)  
The internal ddr1_clk frequency is determined by the following equation:  
ddr1_clk = csb_clk × (1 + RCWL[DDR1CM])  
Note that the lb_clk clock frequency (for DDRC2) is determined by RCWL[LBCM]. The internal  
ddr1_clk frequency is not the external memory bus frequency; ddr1_clk passes through the DDRC1 clock  
divider (÷2) to create the differential DDRC1 memory bus clock outputs (MEMC1_MCK and  
MEMC1_MCK). However, the data rate is the same frequency as ddr1_clk.  
The internal lb_clk frequency is determined by the following equation:  
lb_clk = csb_clk × (1 + RCWL[LBCM])  
Note that lb_clk is not the external local bus or DDRC2 frequency; lb_clk passes through the a LB clock  
divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LB clock  
divider ratio is controlled by LCCR[CLKDIV].  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
89  
Clocking  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset. Table 68 specifies which units have a configurable clock  
frequency.  
Table 68. Configurable Clock Units  
Default  
Frequency  
Unit  
Security Core  
Options  
csb_clk/3  
Off, csb_clk 1, csb_clk/2,  
csb_clk/3  
PCI and DMA complex  
csb_clk  
Off, csb_clk  
1
with limitation, only for slow csb_clk rates, up to 166MHz  
Table 69 provides the operating frequencies for the TBGA package under recommended operating  
conditions (see Table 2). All frequency combinations shown in the table below may not be available.  
Maximum operating frequencies depend on the part ordered, see Section 26.1, “Part Numbers Fully  
Addressed by this Document” for part ordering details and contact your Freescale Sales Representative or  
authorized distributor for more information.  
Table 69. Operating Frequencies for the TBGA Package  
1
2
Characteristic  
400 MHz  
533 MHz  
667 MHz  
Unit  
e300 core frequency (core_clk)  
266–400  
266–533  
133–333  
266–667  
MHz  
MHz  
Coherent system bus frequency  
(csb_clk)  
3
QUICC Engine frequency  
266–500  
100–166.67  
16.67–133  
MHz  
MHz  
MHz  
(ce_clk)  
DDR and DDR2 memory bus frequency  
4
(MCLK)  
Local bus frequency  
5
(LCLKn)  
PCI input frequency (CLKIN or PCI_CLK)  
25–66.67  
133  
MHz  
MHz  
Security core maximum internal operating frequency  
133  
166  
1
The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting csb_clk, MCLK,  
LCLK[0:2], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies.  
2
3
4
5
The 667 MHz core frequency is based on a 1.3 V V supply voltage.  
DD  
The 500 MHz QE frequency is based on a 1.3 V V supply voltage.  
DD  
The DDR data rate is 2x the DDR memory bus frequency.  
The local bus frequency is 1/2, 1/4, or 1/8 of the lb_clk frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the  
csb_clk frequency (depending on RCWL[LBCM]).  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
90  
Freescale Semiconductor  
 
 
Clocking  
22.1 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] and RCWL[SVCOD] parameters. Table 70 shows the  
multiplication factor encodings for the system PLL.  
Table 70. System PLL Multiplication Factors  
System PLL Multiplication  
RCWL[SPMF]  
Factor  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
× 16  
Reserved  
× 2  
× 3  
× 4  
× 5  
× 6  
× 7  
× 8  
× 9  
× 10  
× 11  
× 12  
× 13  
× 14  
× 15  
The RCWL[SVCOD] denotes the system PLL VCO internal frequency as shown in Table 71.  
Table 71. System PLL VCO Divider  
RCWL[SVCOD]  
VCO Divider  
00  
01  
10  
11  
4
8
2
Reserved  
NOTE  
The VCO divider must be set properly so that the system VCO frequency is  
in the range of 600-1400 MHz.  
The system VCO frequency is derived from the following equations:  
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
91  
 
 
 
Clocking  
System VCO Frequency = csb_clk × VCO divider  
As described in Section 22, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the  
primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (csb_clk). Table 72  
shows the expected frequency values for the CSB frequency for select csb_clk to CLKIN/PCI_SYNC_IN  
ratios.  
Table 72. CSB Frequency Options  
2
Input Clock Frequency (MHz)  
csb_clk :  
CFG_CLKIN_DIV  
SPMF  
Input Clock  
16.67  
25  
33.33  
66.67  
1
at reset  
2
Ratio  
csb_clk Frequency (MHz)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
2 : 1  
3 : 1  
133  
200  
266  
333  
100  
4 : 1  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
133  
166  
200  
233  
266  
300  
333  
5 : 1  
6 : 1  
100  
7 : 1  
116  
133  
150  
166  
183  
200  
216  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
233  
250  
266  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
92 Freescale Semiconductor  
 
Clocking  
Table 72. CSB Frequency Options (continued)  
Input Clock Frequency (MHz)  
2
csb_clk :  
CFG_CLKIN_DIV  
SPMF  
Input Clock  
16.67  
25  
33.33  
66.67  
1
at reset  
2
Ratio  
csb_clk Frequency (MHz)  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
2 : 1  
3 : 1  
133  
200  
266  
333  
100  
133  
166  
200  
233  
4 : 1  
5 : 1  
6 : 1  
7 : 1  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
1
2
CFG_CLKIN_DIV is only used for host mode; CLKIN must be tied low and CFG_CLKIN_DIV must be  
pulled down (low) in agent mode.  
CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
22.2 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). Table 73 shows the encodings for RCWL[COREPLL]. COREPLL values not listed  
in Table 73 should be considered reserved.  
Table 73. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk : csb_clk Ratio  
VCO divider  
0-1  
nn  
2-5  
6
0000  
n
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks core (PLL off, csb_clk clocks core  
directly)  
directly)  
00  
01  
0001  
0001  
0
0
1:1  
÷2  
1:1  
÷4  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 93  
 
 
Clocking  
Table 73. e300 Core PLL Configuration (continued)  
RCWL[COREPLL]  
core_clk : csb_clk Ratio  
VCO divider  
0-1  
2-5  
6
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
0011  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1:1  
1:1  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
÷2  
÷4  
÷8  
÷8  
1.5:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
3:1  
NOTE  
Core VCO frequency = Core frequency × VCO divider. VCO divider  
(RCWL[COREPLL[0:1]]) must be set properly so that the core VCO  
frequency is in the range of 800–1800 MHz. Having a core frequency below  
the CSB frequency is not a possible option because the core frequency must  
be equal to or greater than the CSB frequency.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
94 Freescale Semiconductor  
Clocking  
22.3 QUICC Engine PLL Configuration  
The QUICC Engine PLL is controlled by the RCWL[CEPMF], RCWL[CEPDF], and RCWL[CEVCOD]  
parameters. Table 74 shows the multiplication factor encodings for the QUICC Engine PLL.  
Table 74. QUICC Engine PLL Multiplication Factors  
QUICC Engine PLL Multiplication  
RCWL[CEPMF]  
RCWL[CEPDF]  
Factor = RCWL[CEPMF] /  
(1+RCWL[CEPDF])  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
× 16  
Reserved  
× 2  
× 3  
× 4  
× 5  
× 6  
× 7  
× 8  
× 9  
× 10  
× 11  
× 12  
× 13  
× 14  
× 15  
× 16  
× 17  
× 18  
× 19  
× 20  
× 21  
× 22  
× 23  
× 24  
× 25  
× 26  
× 27  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 95  
 
Clocking  
Table 74. QUICC Engine PLL Multiplication Factors (continued)  
QUICC Engine PLL Multiplication  
RCWL[CEPMF]  
RCWL[CEPDF]  
Factor = RCWL[CEPMF] /  
(1+RCWL[CEPDF])  
11100  
11101  
11110  
11111  
00011  
00101  
00111  
01001  
01011  
01101  
01111  
10001  
10011  
10101  
10111  
11001  
11011  
11101  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
× 28  
× 29  
× 30  
× 31  
× 1.5  
× 2.5  
× 3.5  
× 4.5  
× 5.5  
× 6.5  
× 7.5  
× 8.5  
× 9.5  
× 10.5  
× 11.5  
× 12.5  
× 13.5  
× 14.5  
Notes  
1. Reserved modes are not listed.  
The RCWL[CEVCOD] denotes the QE PLL VCO internal frequency as shown in Table 75.  
Table 75. QE PLL VCO Divider  
RCWL[CEVCOD]  
VCO Divider  
00  
01  
10  
11  
4
8
2
Reserved  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
96 Freescale Semiconductor  
 
Clocking  
NOTE  
The VCO divider (RCWL[CEVCOD]) must be set properly so that the QE  
VCO frequency is in the range of 600–1400 MHz. The QE frequency is not  
restricted by the CSB and core frequencies. The CSB, core, and QE  
frequencies should be selected according to the performance requirements.  
The QE VCO frequency is derived from the following equations:  
ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)  
QE VCO Frequency = ce_clk × VCO divider × (1 + CEPDF)  
22.4 Suggested PLL Configurations  
To simplify the PLL configurations, the device might be separated into two clock domains. The first  
domain contains the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and  
has the csb_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock  
domains are independent, and each of their PLLs are configured separately. Both of the domains has one  
common input clock. Table 76 shows suggested PLL configurations for 33 MHz and 66 MHz input clocks  
and illustrates each of the clock domains separately. Any combination of clock domains setting with same  
input clock are valid. Refer to Section 22, “Clocking,” for the appropriate operating frequencies for your  
device.  
Table 76. Suggested PLL Configurations  
Input  
CEPMF CEPDF Clock Freq  
(MHz)  
QUICC  
Engine  
Freq (MHz)  
Conf  
No.  
CORE  
PLL  
CSBFreq CoreFreq  
(MHz) (MHz)  
400  
533  
667  
SPMF  
1
(MHz) (MHz) (MHz)  
33 MHz CLKIN / PCI_SYNC_IN Options  
s1  
s2  
0100  
0100  
0101  
0101  
0110  
0110  
0111  
0111  
0111  
1000  
1000  
1000  
1001  
1001  
1001  
0000100  
0000101  
0000100  
0000101  
0000100  
0000110  
0000011  
0000100  
0000101  
0000011  
0000100  
0000101  
0000010  
0000011  
0000100  
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
133  
133  
166  
166  
200  
200  
233  
233  
233  
266  
266  
266  
300  
300  
300  
266  
333  
333  
416  
400  
600  
350  
466  
583  
400  
533  
667  
300  
450  
600  
s3  
s4  
s5  
s6  
s7  
s8  
s9  
s10  
s11  
s12  
s13  
s14  
s15  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 97  
 
Clocking  
Conf  
Table 76. Suggested PLL Configurations (continued)  
Input  
CEPMF CEPDF Clock Freq  
(MHz)  
QUICC  
Engine  
Freq (MHz)  
CORE  
PLL  
CSBFreq CoreFreq  
400  
533  
667  
SPMF  
1
No.  
(MHz)  
(MHz)  
(MHz) (MHz) (MHz)  
s16  
s17  
s18  
c1  
1010  
1010  
1010  
æ
0000010  
æ
æ
æ
æ
0
33  
33  
33  
33  
33  
33  
33  
33  
33  
333  
333  
333  
333  
500  
667  
0000011  
æ
0000100  
æ
æ
æ
æ
æ
æ
æ
01001  
01100  
01110  
01111  
10000  
10001  
300  
400  
466  
500  
533  
566  
c2  
æ
0
c3  
æ
0
c4  
æ
0
c5  
æ
0
c6  
æ
0
66 MHz CLKIN / PCI_SYNC_IN Options  
s1h  
s2h  
s3h  
s4h  
s5h  
s6h  
s7h  
s8h  
s9h  
c1h  
c2h  
c3h  
c4h  
0011  
0011  
0011  
0100  
0100  
0100  
0101  
0101  
0101  
æ
0000110  
0000101  
0000110  
0000011  
0000100  
0000101  
0000010  
0000011  
0000100  
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
0
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
200  
200  
200  
266  
266  
266  
333  
333  
333  
400  
500  
600  
400  
533  
667  
333  
500  
667  
æ
æ
æ
æ
æ
æ
æ
00101  
00110  
00111  
01000  
01001  
333  
400  
466  
533  
600  
æ
æ
0
æ
æ
0
æ
æ
0
c5h  
æ
æ
0
1
The Conf No. consist of prefix, an index and a postfix. The prefix ‘s’ and ‘c’ stands for ‘syset’ and ‘ce’ respectively. the postfix  
‘h’ stands for ‘high input clock.’ The index is a serial number.  
The following steps describe how to use Table 76. See the example that follows:  
1. Choose the up or down sections in the table according to input clock rate 33 MHz or 66 MHz.  
2. Select a suitable CSB and core clock rates from Table 76. Copy the SPMF and CORE PLL  
configuration bits.  
3. Select a suitable QUICC Engine clock rate from Table 76. Copy the CEPMF and CEPDF  
configuration bits.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
98  
Freescale Semiconductor  
Thermal  
4. Insert the chosen SPMF, COREPLL, CEPMF and CEPDF to the RCWL fields respectively.  
Example:  
QUICC  
EngineFreq  
(MHz)  
CORE  
PLL  
Input Clock CSB Freq Core Freq  
400  
533  
667  
Index SPMF  
CEPMF CEPDF  
(MHz)  
(MHz)  
(MHz)  
(MHz) (MHz) (MHz)  
A
B
1000  
0100  
0000011 01001  
0000100 00110  
0
0
33  
66  
266  
266  
400  
533  
300  
400  
Example A. To configure the device with CSB clock rate of 266 MHz, core rate of 400 MHz, and  
QUICC Engine clock rate 300 MHz while the input clock rate is 33 MHz. Conf No. “s10” and “c1”  
are selected from Table 76. SPMF is “1000,” CORPLL is “0000011,” CEPMF is “01001,” and  
CEPDF is “0.”  
Example B. To configure the device with CSBCSB clock rate of 266 MHz, core rate of 533 MHz  
and QUICC Engine clock rate 400 MHz while the input clock rate is 66 MHz. Conf No. “s5h” and  
“c2h” are selected from Table 76. SPMF is “0100,” CORPLL is “0000100,” CEPMF is “00110”  
and CEPDF is “0.”  
23 Thermal  
This section describes the thermal specifications of the MPC8360E/58E.  
23.1 Thermal Characteristics  
Table 77 provides the package thermal characteristics for the 740 37.5 mm x 37.5 mm TBGA package.  
Table 77. Package Thermal Characteristics for the TBGA Package  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient Natural Convection on single layer board (1s)  
Junction-to-ambient Natural Convection on four layer board (2s2p)  
Junction-to-ambient (@1 m/s) on single layer board (1s)  
Junction-to-ambient (@ 1 m/s) on four layer board (2s2p)  
Junction-to-ambient (@ 2 m/s) on single layer board (1s)  
Junction-to-ambient (@ 2 m/s) on four layer board (2s2p)  
Junction-to-board thermal  
R
R
15  
11  
10  
8
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
1, 3  
1, 3  
4
θJA  
θJA  
R
R
R
R
θJMA  
θJMA  
θJMA  
θJMA  
9
7
R
4.5  
1.1  
θJB  
θJC  
Junction-to-case thermal  
R
5
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 99  
 
Thermal  
Table 77. Package Thermal Characteristics for the TBGA Package (continued)  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-Package Natural Convection on Top  
ψ
1
°C/W  
6
JT  
Notes  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 and SEMI G38-87with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal. 1 m/sec is approximately equal to 200 linear feet per minute (LFM).  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written as Psi-JT.  
23.2 Thermal Management Information  
For the following sections, P = (V X I ) + P where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
See Table 6 for typical power dissipations values.  
23.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where:  
T = junction temperature (°C)  
J
T = ambient temperature for the package (°C)  
A
R
= junction to ambient thermal resistance (°C/W)  
θJA  
P = power dissipation in the package (W)  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
appropriate for a tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T - T ) are possible.  
J
A
23.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction to ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
100  
Freescale Semiconductor  
Thermal  
many natural convection and especially closed box applications, the board temperature at the perimeter  
(edge) of the package will be approximately the same as the local air temperature near the device.  
Specifying the local ambient conditions explicitly as the board temperature provides a more precise  
description of the local ambient conditions that determine the temperature of the device. At a known board  
temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
T = junction temperature (°C)  
J
T = board temperature at the package perimeter (°C)  
B
R
= junction to board thermal resistance (°C/W) per JESD51-8  
θJA  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
23.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
T = junction temperature (°C)  
J
T = thermocouple temperature on top of package (°C)  
T
Ψ = junction to ambient thermal resistance (°C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
In some application environments, a heat sink will be required to provide the necessary thermal  
management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a  
junction to case thermal resistance and a case to ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
where:  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 101  
Thermal  
R
R
R
= junction to ambient thermal resistance (°C/W)  
= junction to case thermal resistance (°C/W)  
= case to ambient thermal resistance (°C/W)  
θJA  
θJC  
θCA  
Rθ is device related and cannot be influenced by the user. The user controls the thermal environment to  
JC  
change the case to ambient thermal resistance, Rθ . For instance, the user can change the size of the heat  
CA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been  
simulated with a few commercially available heat sinks. The heat sink choice is determined by the  
application environment (temperature, air flow, adjacent component power dissipation) and the physical  
space available. Because there is not a standard application environment, a standard heat sink is not  
required.  
Table 78 shows heat sinks and junction-to-case thermal resistance for TBGA package.  
Table 78. Heat Sinks and Junction-to-Case Thermal Resistance of TBGA Package  
35x35 mm TBGA  
Heat Sink Assuming Thermal Grease  
Air Flow  
Junction-to-Ambient  
Thermal Resistance  
AAVID 30x30x9.4 mm Pin Fin  
AAVID 30x30x9.4 mm Pin Fin  
Natural Convention  
1 m/s  
10.7  
6.2  
5.3  
8.1  
4.4  
3.7  
5.4  
3.2  
2.4  
6.4  
3.8  
2.5  
2.8  
AAVID 30x30x9.4 mm Pin Fin  
2 m/s  
AAVID 31x35x23 mm Pin Fin  
Natural Convention  
1 m/s  
AAVID 31x35x23 mm Pin Fin  
AAVID 31x35x23 mm Pin Fin  
2 m/s  
Wakefield, 53x53x25 mm Pin Fin  
Natural Convention  
1 m/s  
Wakefield, 53x53x25 mm Pin Fin  
Wakefield, 53x53x25 mm Pin Fin  
2 m/s  
MEI, 75x85x12 no adjacent board, extrusion  
MEI, 75x85x12 no adjacent board, extrusion  
MEI, 75x85x12 no adjacent board, extrusion  
MEI, 75x85x12 mm, adjacent board, 40 mm Side bypass  
Natural Convention  
1 m/s  
2 m/s  
1 m/s  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More  
detailed thermal models can be made available on request.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
102  
Freescale Semiconductor  
 
Thermal  
Heat sink vendors include the following:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
Alpha Novatech  
603-224-9988  
408-749-7601  
473 Sapena Ct. #15  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC)  
413 North Moss St.  
Burbank, CA 91502  
818-842-7277  
408-436-8770  
Internet: www.ctscorp.com  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
Internet: www.mei-millennium.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105-3668  
Internet: www.chipcoolers.com  
800-522-6752  
603-635-5102  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
77 Dragon Ct.  
Woburn, MA 01888-4014  
Internet: www.chomerics.com  
781-935-4850  
800-248-2481  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
2200 W. Salzburg Rd.  
Midland, MI 48686-0997  
Internet: www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
888-642-7674  
Phoenix, AZ 85044  
Internet: www.microsi.com  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 103  
System Design Information  
The Bergquist Company  
800-347-4572  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
23.3 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use  
thermal grease and a spring clip. The spring clip should connect to the printed circuit board, either to the  
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would  
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint  
lifetime of the package. Recommended maximum force on the top of the package is 10 lb force (4.5 kg  
force). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or  
plastic surfaces and its performance verified under the application requirements.  
23.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction to case  
thermal resistance.  
T = T + (R  
× P )  
D
J
C
θJC  
where:  
T = junction temperature (°C)  
J
T = case temperature of the package (°C)  
C
R
= junction to case thermal resistance (°C/W)  
θJC  
P = power dissipation (W)  
D
24 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8360E/58E. Additional information can be found in AN3097, MPC8360E/MPC8358E  
PowerQUICC™ Design Checklist, Rev. 1.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
104  
Freescale Semiconductor  
System Design Information  
24.1 System Clocking  
The device includes two PLLs.  
1. The platform PLL (AV 1) generates the platform clock from the externally supplied CLKIN  
DD  
input. The frequency ratio between the platform and CLKIN is selected using the platform PLL  
ratio configuration bits as described in Section 22.1, “System PLL Configuration.”  
2. The e300 core PLL (AV 2) generates the core clock as a slave to the platform clock. The  
DD  
frequency ratio between the e300 core clock and the platform clock is selected using the e300  
PLL ratio configuration bits as described in Section 22.2, “Core PLL Configuration.”  
24.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins (AV 1,  
DD  
AV 2 respectively). The AV level should always be equivalent to V , and preferably these voltages  
DD  
DD  
DD  
will be derived directly from V through a low frequency filter scheme such as the following.  
DD  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide five independent filter circuits as illustrated in Figure 55, one to each of the five AV pins. By  
DD  
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
Figure 55 shows the PLL power supply filter circuit.  
10 Ω  
V
AV  
n
DD  
DD  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 55. PLL Power Supply Filter Circuit  
24.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the device can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the device system, and the device itself  
requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer  
place at least one decoupling capacitor at each V , OV , GV , and LV pins of the device. These  
DD  
DD  
DD  
DD  
decoupling capacitors should receive their power from separate V , OV , GV , LV , and GND  
DD  
DD  
DD  
DD  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 105  
 
System Design Information  
power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly  
under the device using a standard escape pattern. Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , OV , GV , and LV planes, to enable quick recharging of the smaller chip  
DD  
DD  
DD  
DD  
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the  
quick response time necessary. They should also be connected to the power and ground planes through two  
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo  
OSCON).  
24.4 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to OV , GV , or LV as required. Unused active high  
DD  
DD  
DD  
inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , GV , LV , OV , and GND pins of  
DD  
DD  
DD  
DD  
the device.  
24.5 Output Buffer DC Impedance  
The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a  
2
push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to OV  
0
DD  
or GND. Then, the value of each resistor is varied until the pad voltage is OV /2 (see Figure 56). The  
DD  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open) and R is trimmed until the voltage at the pad equals  
P
OV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
106 Freescale Semiconductor  
System Design Information  
OV  
DD  
R
N
SW2  
SW1  
Pad  
Data  
R
P
OGND  
Figure 56. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
× I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = 1/(1/R + 1/R )) × I  
. Solving for the output impedance gives R  
= R  
2
1
2
source  
source term  
× (V /V – 1). The drive current is then I  
= V /R  
.
1
2
source  
1
source  
Table 79 summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal OV , 105°C.  
DD  
Table 79. Impedance Characteristics  
Local Bus, Ethernet,  
DUART, Control,  
Configuration, Power  
Management  
Impedance  
PCI  
DDR DRAM Symbol  
Unit  
R
N
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
20 Target  
20 Target  
NA  
Z
Z
W
W
W
0
0
R
P
Differential  
Z
DIFF  
Note: Nominal supply voltages. See Table 1, T = 105°C.  
J
24.6 Configuration Pin Muxing  
The device provides the user with power-on configuration options which can be set through the use of  
external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible configuration  
pins). These pins are generally used as output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor  
107  
 
Document Revision History  
and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these  
pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize  
the disruption of signal quality or speed for output pins thus configured.  
24.7 Pull-Up Resistor Requirements  
The device requires high resistance pull-up resistors (10 kΩ is recommended) on open drain type pins  
2
including I C pins, Ethernet Management MDIO pin, and EPIC interrupt pins.  
For more information on required pull-up resistors and the connections required for the JTAG interface,  
see AN3097, MPC8360E/MPC8358E PowerQUICC™ Design Checklist, Rev. 1.  
25 Document Revision History  
Table 80 provides a revision history for this hardware specification.  
Table 80. Document Revision History  
Rev.  
Number  
Date  
Substantive Change(s)  
0
12/07/2007 Initial release.  
26 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in  
Section 26.1, “Part Numbers Fully Addressed by this Document.”  
26.1 Part Numbers Fully Addressed by this Document  
Table 81 provides the Freescale part numbering nomenclature for the MPC8360E/58E. Note that the  
individual part numbers correspond to a maximum processor core frequency. For available frequencies,  
contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme  
also includes an application modifier which may specify special application conditions. Each part number  
also contains a revision code which refers to the die mask revision number.  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
108  
Freescale Semiconductor  
 
Ordering Information  
1
Table 81. Part Numbering Nomenclature  
MPC  
nnnn  
Part  
e
t
pp  
aa  
a
a
A
QUICC  
Engine  
Frequency  
Product  
Code Identifier Acceleration  
Encryption Temperature  
Processor  
Frequency  
Platform  
Frequency  
Die  
Revision  
2
Package  
3
Range  
MPC  
8358  
Blank = Not  
included  
E = included  
0°C T to  
ZU = TBGA  
e300  
core speed  
AD = 266 MHz  
AG = 400 MHz  
D = 266 MHz E = 300 MHz A=revision  
G = 400 MHz 2.1 silicon  
A
105°C T  
VV=TBGA  
(no lead)  
J
8360  
e300  
D = 266 MHz G = 400 MHz A=revision  
core speed  
F = 333 MHz H = 500 MHz  
2.1 silicon  
AG = 400 MHz  
AJ = 533 MHz  
AL = 667 MHz  
MPC  
(rev2.0  
silicon  
only)  
8360  
Blank = Not  
included  
E = included  
0°C T to  
ZU = TBGA  
e300  
core speed  
AH = 500 MHz  
AL = 667 MHz  
F = 333 MHz G = 400 MHz  
H = 500 MHz  
A
70°C T  
VV=TBGA  
(no lead)  
J
1
Not all processor, platform, and QUICC Engine frequency combinations are supported. For available frequency combinations,  
contact your local Freescale Sales Office or authorized distributor.  
2
3
See Section 21, “Package and Pin Listings,” for more information on available package types.  
Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other  
maximum core frequencies.  
Table 82 shows the SVR settings by device and package type.  
Table 82. SVR Settings  
SVR  
(Rev 2.0)  
SVR  
(Rev 2.1)  
Device  
MPC8360E  
Package  
TBGA  
TBGA  
TBGA  
TBGA  
0x8048_0020  
0x8049_0020  
0x804A_0020  
0x804B_0020  
0x8048_0021  
0x8049_0021  
0x804A_0021  
0x804B_0021  
MPC8360  
MPC8358E  
MPC8358  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 109  
 
Ordering Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
110 Freescale Semiconductor  
Ordering Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC8360E/MPC8358E PowerQUICC™ II Pro Processor Revision 2.x TBGA Silicon Hardware Specifications, Rev. 2  
Freescale Semiconductor 111  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Semiconductor was negligent regarding the design or manufacture of the part.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org. The  
PowerPC name is a trademark of IBM Corp. and is used under license. IEEE 1588,  
802.1, 802.3, and 1149.1 are registered trademarks of the Institute of Electrical and  
Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the  
IEEE. All other product or service names are the property of their respective owners.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
+1-800 441-2447 or  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
© Freescale Semiconductor, Inc., 2007. Printed in the United States of  
America. All rights reserved.  
Document Number: MPC8360EEC  
Rev. 2  
12/2007  

相关型号:

MPC8377CVRAFDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAFFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAFGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAGDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAGFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAGGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAJD

MICROPROCESSOR
NXP

MPC8377CVRAJDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAJFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRAJFA

PowerQUICC, 32 Bit Power Arch SoC, 533MHz, DDR1/2, PCI/PCIe, 1GbE, USB, SATA, -40 to 105C, Rev 1
NXP

MPC8377CVRAJGA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8377CVRALD

MICROPROCESSOR
NXP