MRF5015 [FREESCALE]

N-CHANNEL BROADBAND RF POWER FET; N沟道宽带射频功率场效应管
MRF5015
型号: MRF5015
厂家: Freescale    Freescale
描述:

N-CHANNEL BROADBAND RF POWER FET
N沟道宽带射频功率场效应管

晶体 晶体管 射频 CD 放大器 局域网
文件: 总8页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRF5015/D  
SEMICONDUCTOR TECHNICAL DATA  
The RF MOSFET Line  
N–Channel Enhancement–Mode  
Designed for broadband commercial and industrial applications at frequen-  
cies to 520 MHz. The high gain and broadband performance of this device  
makes it ideal for large–signal, common source amplifier applications in 12.5  
volt mobile, and base station FM equipment.  
Guaranteed Performance at 512 MHz, 12.5 Volts  
Output Power — 15 Watts  
15 W, 512 MHz, 12.5 VOLTS  
N–CHANNEL BROADBAND  
RF POWER FET  
Power Gain — 10 dB Min  
Efficiency — 50% Min  
Characterized with Series Equivalent Large–Signal Impedance Parameters  
S–Parameter Characterization at High Bias Levels  
Excellent Thermal Stability  
All Gold Metal for Ultra Reliability  
Capable of Handling 20:1 VSWR, @ 15.5 Vdc, 512 MHz, 2 dB Overdrive  
Circuit board photomaster available upon request by contacting  
RF Tactical Marketing in Phoenix, AZ.  
CASE 319–07, STYLE 3  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
36  
Unit  
Drain–Source Voltage  
V
DSS  
Vdc  
Vdc  
Vdc  
Adc  
Drain–Gate Voltage (RGS = 1 M)  
Gate–Source Voltage  
V
DGR  
36  
V
GS  
± 20  
6
Drain Current — Continuous  
I
D
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
50  
0.29  
Watts  
W/°C  
C
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
– 65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted.)  
Symbol  
Max  
Unit  
R
3.5  
°C/W  
θJC  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage (V  
= 0, I = 5 mAdc)  
V
(BR)DSS  
36  
5
Vdc  
mAdc  
GS  
D
Zero Gate Voltage Drain Current (V  
= 15 Vdc, V  
= 0)  
I
DS  
= 20 Vdc, V  
GS  
= 0)  
DS  
DSS  
GSS  
Gate–Source Leakage Current (V  
I
2
µAdc  
GS  
(continued)  
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 6  
Motorola, Inc. 1994  
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted.)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
Gate Threshold Voltage  
(V = 10 Vdc, I = 10 mAdc)  
V
1.25  
2.3  
3.5  
0.375  
Vdc  
Vdc  
S
GS(th)  
DS  
Drain–Source On–Voltage  
(V = 10 Vdc, I = 1 Adc)  
D
V
DS(on)  
GS  
Forward Transconductance  
(V = 10 Vdc, I = 1 Adc )  
D
g
fs  
1.2  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
7
33  
74  
pF  
pF  
pF  
iss  
(V  
DS  
= 12.5 Vdc, V  
= 0, f = 1 MHz)  
GS  
GS  
Output Capacitance  
(V = 12.5 Vdc, V  
C
oss  
= 0, f = 1 MHz)  
DS  
Reverse Transfer Capacitance  
(V = 12.5 Vdc, V = 0, f = 1 MHz)  
C
8.8  
10.8  
rss  
DS  
GS  
FUNCTIONAL TESTS (In Motorola Test Fixture)  
Common–Source Amplifier Power Gain  
G
dB  
%
ps  
(V  
DD  
= 12.5 Vdc, P  
= 100 mA)  
= 15 W,  
f = 512 MHz  
f = 175 MHz  
10  
11.5  
15  
out  
I
DQ  
Drain Efficiency  
(V = 12.5 Vdc, P  
η
= 15 W,  
f = 512 MHz  
f = 175 MHz  
50  
55  
55  
DD  
= 100 mA)  
out  
I
DQ  
Load Mismatch  
(V = 15.5 Vdc, 2 dB Overdrive, f = 512 MHz,  
ψ
No Degradation in Output Power  
DD  
Load VSWR = 20:1, All Phase Angles at Frequency of Test)  
R1  
B1  
V
V
DD  
GG  
+
+
C1  
C12  
C13  
C2  
R3  
R2  
B1  
C3  
Socket  
C11  
L1  
Z4  
Z5  
L2  
DUT  
C4  
N2  
N1  
Z1  
Z2  
C5  
Z6  
Z7  
Z8  
Z9  
Z10 C10  
Z11  
Z3  
RF  
RF  
Input  
Output  
C8  
C7  
C9  
C6  
B1, B2  
C1, C13  
C2, C12  
Ferrite Bead, Fair Rite Products  
10 µF, 50 V, Electrolytic  
0.1 µF, Chip Capacitor  
R3  
Z1, Z11  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7, Z8  
Z9  
Z10  
Board  
160 , 0.1 W Chip  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Transmission Line+  
Transmission Line*  
Transmission Line*  
Glass Teflon 0.060″  
C3, C4, C10, C11 120 pF, Chip Capacitor  
C5, C9  
C6  
C7  
C8  
L1, L2  
N1, N2  
R1  
0 to 20 pF, Trimmer Capacitor  
36 pF, Chip Capacitor  
43 pF, Chip Capacitor  
30 pF, Chip Capacitor  
7 Turns, 24 AWG 0.116ID  
Type N Flange Mount  
1 k, 1/4 W, Carbon  
R2  
470 k, 1/4 W, Carbon  
+ Part of Capacitor Mount Socket  
*See Photomaster  
Figure 1. 512 MHz Narrowband Test Circuit Electrical Schematic  
MRF5015  
2
MOTOROLA RF DEVICE DATA  
TYPICAL CHARACTERISTICS  
25  
20  
15  
10  
5
25  
P = 1.5 W  
in  
I
= 100 mA  
DQ  
f = 520 MHz  
f = 400 MHz  
470 MHz  
520 MHz  
20  
15  
10  
1 W  
0.5 W  
V
I
= 12.5 V  
= 100 mA  
DD  
DQ  
5
0
0
0
0.5  
1
1.5  
2
2.5  
6
8
10  
12  
14  
16  
P
, INPUT POWER (WATTS)  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
in  
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Supply Voltage  
25  
2
V
P
= 12.5 V  
1.8  
1.6  
DD  
= 1.5 W  
V
= 10 V  
DS  
in  
f = 520 MHz  
20  
1.4  
1.2  
1
Typical Device Shown  
15  
10  
5
0.8  
0.6  
0.4  
0.2  
Typical Device Shown  
0
0
1
2
3
4
5
6
0
1
2
3
4
V
, GATE–SOURCE VOLTAGE (VOLTS)  
V , GATE–SOURCE VOLTAGE (VOLTS)  
GS  
GS  
Figure 4. Output Power versus Gate Voltage  
Figure 5. Drain Current versus Gate Voltage  
200  
150  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
V
= 0  
I
= 1.5 A  
V
= 12.5 V  
GS  
f = 1 MHz  
D
DD  
I
= 1 A  
D
C
oss  
100  
50  
0
C
I
= 0.5 A  
iss  
D
I
= 0.05 A  
D
C
I
= 0.25 A  
rss  
D
0
5
10  
15  
20  
25  
30  
– 25  
0
25  
50  
, CASE TEMPERATURE (  
C
75  
100  
125  
150  
175  
V
, DRAIN–SOURCE VOLTAGE (VOLTS)  
T
°C)  
DS  
Figure 6. Capacitance versus Voltage  
Figure 7. Gate–Source Voltage  
versus Case Temperature  
MOTOROLA RF DEVICE DATA  
MRF5015  
3
TYPICAL CHARACTERISTICS  
10  
T
= 25  
°C  
C
1
0.1  
1
10  
100  
V
, DRAIN–SOURCE VOLTAGE (VOLTS)  
DS  
Figure 8. DC Safe Operating Area  
V
= 12.5 V, I  
= 100 mA, P  
= 15 W  
out  
DD  
DQ  
f
Z
()  
Z
OL  
()  
*
in  
(MHz)  
400  
420  
440  
460  
480  
500  
520  
2.0 – j6.1  
1.8 – j5.3  
1.6 – j4.7  
1.5 – j4.2  
1.4 – j3.8  
1.3 – j3.6  
1.2 – j3.5  
1.3 – j0.4  
1.4 – j0.4  
1.5 – j0.4  
1.5 – j0.3  
1.5 – j0.2  
1.4 – j0.1  
1.3 + j0.1  
520  
Z
*
OL  
460  
f = 400 MHz  
Z
= 10  
o
Z
Z
= Conjugate of source impedance with  
parallel 160 resistor and 36 pF capacitor  
in series with gate.  
in  
520  
460  
= Conjugate of the load impedance at given  
output power, voltage and frequency that  
produces maximum gain.  
OL*  
Z
in  
f = 400 MHz  
Figure 9. Series Equivalent Input and Output Impedance  
MRF5015  
4
MOTOROLA RF DEVICE DATA  
Table 1. Common Source Scattering Parameters (V  
= 12.5 V)  
DS  
I
D
= 50 mA  
f
S
11  
S
11  
S
11  
S
11  
S
S
S
S
S
S
S
S
S
22  
S
22  
S
22  
S
22  
21  
12  
MHz  
|S  
|
φ
|S  
|
φ
|S  
|
φ
|S  
|
φ
11  
21  
12  
22  
50  
100  
200  
300  
400  
500  
700  
850  
1000  
0.63  
0.62  
0.70  
0.78  
0.84  
0.88  
0.93  
0.95  
0.96  
–123  
–142  
–152  
–157  
–162  
–165  
–171  
–175  
–178  
8
4
1.8  
1.1  
0.70  
0.49  
0.28  
0.20  
0.15  
100  
82  
61  
47  
36  
28  
17  
13  
10  
0.063  
0.063  
0.056  
0.046  
0.037  
0.029  
0.016  
0.010  
0.007  
11  
– 6  
0.79  
0.82  
0.86  
0.90  
0.93  
0.94  
0.97  
0.97  
0.98  
–149  
–162  
–169  
–171  
–174  
–175  
–179  
179  
– 23  
– 35  
– 42  
– 46  
– 45  
– 31  
11  
178  
I
D
= 100 mA  
f
21  
12  
12  
12  
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|S  
12  
|
φ
|S  
22  
|
φ
50  
100  
200  
300  
400  
500  
700  
850  
1000  
0.67  
0.66  
0.71  
0.77  
0.82  
0.86  
0.91  
0.93  
0.95  
–136  
–153  
–160  
–163  
–165  
–168  
–173  
–176  
–179  
9.1  
4.6  
2.2  
1.3  
0.89  
0.64  
0.37  
0.27  
0.20  
99  
84  
66  
54  
44  
36  
25  
20  
16  
0.047  
0.048  
0.043  
0.037  
0.031  
0.025  
0.015  
0.010  
0.009  
10  
–3  
0.82  
0.85  
0.87  
0.90  
0.92  
0.94  
0.96  
0.97  
0.98  
–158  
–168  
–172  
–174  
–175  
–177  
–179  
179  
–17  
– 26  
– 32  
– 35  
– 30  
–11  
25  
177  
I
D
= 500 mA  
f
21  
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|S  
12  
|
φ
|S  
22  
|
φ
50  
100  
200  
300  
400  
500  
700  
850  
1000  
0.81  
0.81  
0.82  
0.84  
0.86  
0.88  
0.91  
0.93  
0.94  
–150  
–164  
–170  
–173  
–174  
–175  
–178  
180  
11.1  
5.6  
2.7  
1.7  
1.2  
0.92  
0.57  
0.43  
0.33  
98  
86  
73  
63  
55  
47  
35  
29  
23  
0.027  
0.027  
0.025  
0.023  
0.020  
0.018  
0.013  
0.013  
0.014  
11  
2
0.85  
0.87  
0.88  
0.89  
0.91  
0.92  
0.94  
0.95  
0.96  
–168  
–174  
–176  
–177  
–178  
–179  
180  
– 5  
– 9  
– 9  
– 7  
7
26  
44  
178  
177  
178  
I
D
= 2.5 A  
f
21  
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|S  
12  
|
φ
|S  
22  
|
φ
50  
100  
200  
300  
400  
500  
700  
850  
1000  
0.86  
0.85  
0.86  
0.87  
0.89  
0.91  
0.93  
0.94  
0.95  
–144  
–161  
–170  
–173  
–175  
–176  
–179  
179  
10.1  
5.2  
2.5  
1.6  
1.1  
0.84  
0.52  
0.39  
0.30  
101  
88  
74  
64  
55  
48  
37  
30  
26  
0.022  
0.022  
0.021  
0.019  
0.017  
0.015  
0.013  
0.014  
0.016  
15  
5
–1  
– 4  
– 2  
2
22  
39  
52  
0.85  
0.87  
0.89  
0.90  
0.91  
0.93  
0.95  
0.96  
0.96  
–171  
–175  
–177  
–178  
–178  
–179  
179  
178  
176  
177  
MOTOROLA RF DEVICE DATA  
MRF5015  
5
DESIGN CONSIDERATIONS  
GATE CHARACTERISTICS  
The MRF5015 is a common–source, RF power, N–Chan-  
nel enhancement mode, Metal–Oxide Semiconductor Field–  
Effect Transistor (MOSFET). Motorola RF MOSFETs feature  
a vertical structure with a planar design. Motorola Application  
Note AN211A, “FETs in Theory and Practice,” is suggested  
reading for those not familiar with the construction and char-  
acteristics of FETs.  
The gate of the RF MOSFET is a polysilicon material, and  
is electrically isolated from the source by a layer of oxide.  
The input resistance is very high, on the order of 10 , re-  
sulting in a leakage current of a few nanoamperes.  
Gate control is achieved by applying a positive voltage to  
the gate greater than the gate–to–source threshold voltage,  
9
This device was designed primarily for 12.5 volt VHF and  
UHF power amplifier applications. The major advantages of  
RF power MOSFETs include high gain, simple bias systems,  
relative immunity from thermal runaway, and the ability to  
withstand severely mismatched loads without suffering dam-  
age.  
V
.
GS(th)  
Gate Voltage Rating – Never exceed the gate voltage rat-  
ing. Exceeding the rated V can result in permanent dam-  
GS  
age to the oxide layer in the gate region.  
Gate Termination – The gates of these devices are es-  
sentially capacitors. Circuits that leave the gate open–cir-  
cuited or floating must be avoided. These conditions can  
result in turn–on of the devices due to voltage build–up on  
the input capacitor due to leakage currents or pickup.  
Gate Protection – These devices do not have an internal  
monolithic zener diode from gate–to–source. If gate protec-  
tion is required, an external zener diode is recommended  
with appropriate RF decoupling networks.  
Using a resistor to keep the gate–to–source impedance  
low also helps dampen transients and serves another impor-  
tant function. Voltage transients on the drain can be coupled  
to the gate through the parasitic gate–drain capacitance. If  
the gate–to–source impedance and the rate of voltage  
change on the drain are both high, then the signal coupled to  
the gate may be large enough to exceed the gate–threshold  
voltage and turn the device on.  
MOSFET CAPACITANCES  
The physical structure of a MOSFET results in capacitors  
between all three terminals. The metal oxide gate structure  
determines the capacitors from gate–to–drain (C ), and  
gd  
gate–to–source (C ). The PN junction formed during fab-  
gs  
rication of the RF MOSFET results in a junction capacitance  
from drain–to–source (C ). These capacitances are charac-  
ds  
terized as input (C ), output (C  
iss  
) and reverse transfer  
oss  
(C ) capacitances on data sheets. The relationships be-  
rss  
tween the inter–terminal capacitances and those given on  
data sheets are shown below. The C  
two ways:  
can be specified in  
iss  
1. Drain shorted to source and positive voltage at the gate.  
2. Positive voltage of the drain in respect to source and  
2. zero volts at the gate.  
In the latter case, the numbers are lower. However, neither  
method represents the actual operating conditions in RF ap-  
plications.  
DC BIAS  
Since the MRF5015 is an enhancement mode FET, drain  
current flows only when the gate is at a higher potential than  
the source. See Figure 5 for a typical plot of drain current  
versus gate voltage. RF power FETs operate optimally with a  
Drain  
quiescent drain current (I  
), whose value is application de-  
C
DQ  
pendent. The MRF5015 was characterized at I  
gd  
= 100 mA,  
DQ  
C
C
C
= C + C  
gd  
which is the suggested value of bias current for typical ap-  
plications. For special applications such as linear amplifica-  
Gate  
iss  
gs  
ds  
= C + C  
C
oss  
rss  
gd  
gd  
ds  
= C  
tion, I  
parameters.  
may have to be selected to optimize the critical  
DQ  
C
gs  
The gate is a dc open circuit and draws essentially no cur-  
rent. Therefore, the gate bias circuit may generally be just a  
simple resistive divider network. Some special applications  
may require a more elaborate bias system.  
Source  
DRAIN CHARACTERISTICS  
GAIN CONTROL  
One critical figure of merit for a FET is its static resistance  
in the full–on condition. This on–resistance, R , occurs  
in the linear region of the output characteristic and is speci-  
fied at a specific gate–source voltage and drain current. The  
drain–source voltage under these conditions is termed  
Power output of the MRF5015 may be controlled to some  
degree with a low power dc control signal applied to the gate,  
thus facilitating applications such as manual gain control,  
ALC/AGC and modulation systems. Figure 4 is an example  
of output power variation with gate–source bias voltage with  
ds(on)  
V
. For MOSFETs, V  
ds(on)  
has a positive temperature  
ds(on)  
P
held constant. This characteristic is very dependent on  
coefficient at high temperatures because it contributes to the  
power dissipation within the device.  
in  
frequency and load line.  
MRF5015  
6
MOTOROLA RF DEVICE DATA  
yield a device quite capable of self oscillation. Stability may  
be achieved by techniques such as drain loading, input shunt  
resistive loading, or output to input feedback. Different  
stabilizing techniques may be required depending on the  
desired gain and bandwidth of the application. The RF test  
fixture implements a parallel resistor and capacitor in series  
with the gate to improve stability and input impedance Q.  
Two port stability analysis with the MRF5015 S–parame-  
ters provides a useful tool for selection of loading or feed-  
back circuitry to assure stable operation. See Motorola  
Application Note AN215A, “RF Small–Signal Design Using  
Two–Port Parameters,” for a discussion of two port network  
theory and stability.  
AMPLIFIER DESIGN  
Impedance matching networks similar to those used with  
bipolar transistors are suitable for the MRF5015. For exam-  
ples see Motorola Application Note AN721, “Impedance  
Matching Networks Applied to RF Power Transistors.” Both  
small–signal S–parameters and large–signal impedances  
are provided. While the S–parameters will not produce an  
exact design solution for high power operation, they do yield  
a good first approximation. This is an additional advantage of  
RF power MOSFETs.  
Since RF power MOSFETs are triode devices, they are not  
unilateral. This coupled with the very high gain of MRF5015  
MOTOROLA RF DEVICE DATA  
MRF5015  
7
PACKAGE DIMENSIONS  
Q 2 PL  
-A-  
L
M
M
M
0.15 (0.006)  
T
A
N
IDENTIFICATION  
NOTCH  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
6
1
5
4
3
-N-  
INCHES  
MIN  
MILLIMETER  
DIM  
A
B
C
D
E
F
H
J
MAX  
0.985  
0.375  
0.260  
0.125  
0.114  
0.085  
0.170  
0.006  
0.110  
MIN  
24.52  
9.02  
5.85  
2.93  
2.59  
1.91  
4.07  
0.11  
2.29  
MAX  
25.01  
9.52  
6.60  
3.17  
2.90  
2.15  
4.31  
0.15  
2.79  
0.965  
0.355  
0.230  
0.115  
0.102  
0.075  
0.160  
0.004  
0.090  
2
K
F
D 2 PL  
0.38 (0.015)  
M
M
M
T
A
N
K
L
0.725 BSC  
18.42 BSC  
M
M
M
B
0.38 (0.015)  
T
A
N
N
Q
0.225  
0.125  
0.241  
0.135  
5.72  
3.18  
6.12  
3.42  
J
STYLE 3:  
PIN 1. SOURCE (COMMON)  
2. GATE (INPUT)  
3. SOURCE (COMMON)  
4. SOURCE (COMMON)  
5. DRAIN (OUTPUT)  
C
H
E
SEATING  
PLANE  
-T-  
6. SOURCE (COMMON)  
CASE 319–07  
ISSUE M  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecificallydisclaimsanyandallliability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MRF5015/D  

相关型号:

MRF502

TRANSISTOR | BJT | NPN | 15V V(BR)CEO | 50MA I(C) | TO-72
ETC

MRF5035

N-CHANNEL BROADBAND RF POWER FET
MOTOROLA

MRF5035

N-CHANNEL BROADBAND RF POWER FET
FREESCALE

MRF511

VHF BAND, Si, NPN, RF POWER TRANSISTOR, TO-117
MOTOROLA

MRF515

UHF BAND, Si, NPN, RF SMALL SIGNAL TRANSISTOR, TO-39
MOTOROLA

MRF5160HX

UHF BAND, Si, PNP, RF SMALL SIGNAL TRANSISTOR, TO-39
MOTOROLA

MRF5160HXV

RF Small Signal Bipolar Transistor, 0.4A I(C), 1-Element, Ultra High Frequency Band, Silicon, PNP, TO-39
MOTOROLA

MRF517

RF & MICROWAVE DISCRETE LOW POWER TRANSISTORS
MICROSEMI

MRF517

NPN SILICON HIGH FREQUENCY TRANSISTOR
ASI

MRF5174

NPN RF POWER TRANSISTOR
ASI

MRF5175

1NPN SILICON RF POWER TRANSISTOR
ASI

MRF5176

RF POWER TRANSISTOR NPN SILICON
MOTOROLA