MRF6V12250HSR3 [FREESCALE]

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs; 射频功率场效应晶体管N - 沟道增强 - 模式横向的MOSFET
MRF6V12250HSR3
型号: MRF6V12250HSR3
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
射频功率场效应晶体管N - 沟道增强 - 模式横向的MOSFET

晶体 晶体管 功率场效应晶体管 射频
文件: 总13页 (文件大小:1274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6V12250H  
Rev. 2, 4/2010  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
MRF6V12250HR3  
MRF6V12250HSR3  
N--Channel Enhancement--Mode Lateral MOSFETs  
RF Power transistors designed for applications operating at frequencies  
between 960 and 1215 MHz. These devices are suitable for use in pulsed  
applications.  
Typical Pulsed Performance: VDD = 50 Volts, IDQ = 100 mA, Pout =  
960--1215 MHz, 275 W, 50 V  
PULSED  
LATERAL N--CHANNEL  
RF POWER MOSFETs  
275 Watts Peak (27.5 Watts Avg.), f = 1030 MHz, Pulse Width = 128 μsec,  
Duty Cycle = 10%  
Power Gain — 20.3 dB  
Drain Efficiency — 65.5%  
Capable of Handling 10:1 VSWR, @ 50 Vdc, 1030 MHz, 275 Watts Peak  
Power  
Typical Broadband Performance: VDD = 50 Volts, IDQ = 100 mA, Pout  
250 Watts Peak (25 Watts Avg.), f = 960--1215 MHz, Pulse Width =  
128 μsec, Duty Cycle = 10%  
=
Power Gain — 19.8 dB  
CASE 465--06, STYLE 1  
NI--780  
Drain Efficiency — 58%  
Features  
MRF6V12250HR3  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
Internally Matched for Ease of Use  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
RoHS Compliant  
CASE 465A--06, STYLE 1  
NI--780S  
MRF6V12250HSR3  
In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +100  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1,2)  
T
J
225  
°C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 80°C, 275 W Pulsed, 128 μsec Pulse Width, 10% Duty Cycle  
Z
θ
0.08  
°C/W  
JC  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
© Freescale Semiconductor, Inc., 2009--2010. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2 (Minimum)  
B (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Gate--Source Leakage Current  
I
110  
10  
μAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 100 mA)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
10  
μAdc  
μAdc  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
100  
(V = 90 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 662 μAdc)  
V
V
0.9  
1.7  
1.7  
2.4  
2.4  
3.2  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 100 mAdc, Measured in Functional Test)  
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 1.6 Adc)  
V
0.25  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
0.46  
352  
695  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 100 mA, P = 275 W Peak (27.5 W Avg.), f = 1030 MHz,  
DD  
DQ  
out  
Pulsed, 128 μsec Pulse Width, 10% Duty Cycle  
Power Gain  
G
19  
20.3  
65.5  
-- 1 4  
22  
-- 9  
dB  
%
ps  
D
Drain Efficiency  
η
63  
Input Return Loss  
IRL  
dB  
Typical Broadband Performance — 960--1215 MHz (In Freescale 960--1215 MHz Test Fixture, 50 ohm system) V = 50 Vdc,  
DD  
I
= 100 mA, P = 250 W Peak (25 W Avg.), f = 960--1215 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle  
DQ  
out  
Power Gain  
G
19.8  
58  
dB  
%
ps  
D
Drain Efficiency  
η
1. Part internally matched both on input and output.  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
2
V
SUPPLY  
+
+
R4  
R3  
V
BIAS  
C12  
C13  
C14  
C15  
C8  
C7  
C6  
Z14  
RF  
OUTPUT  
Z11  
Z10  
Z13  
Z16 Z17 Z18 Z19 Z20 Z21 Z22  
Z23  
RF  
INPUT  
C5  
C9  
Z1  
Z2 Z3 Z4 Z5 Z6 Z7  
Z8  
R2  
Z9  
Z15  
C1  
DUT  
C4  
Z12  
R1  
C10  
C11  
C2  
C3  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
1.055x 0.082Microstrip  
0.100x 0.082Microstrip  
0.084x 0.395Microstrip  
0.419x 0.040Microstrip  
0.498x 0.466Microstrip  
0.110x 1.060Microstrip  
0.050x 1.300Microstrip  
0.092x 1.300Microstrip  
0.219x 1.420Microstrip  
0.087x 1.420Microstrip  
0.187x 0.050Microstrip  
Z13  
Z14, Z15  
Z16  
Z17  
Z18  
Z19  
Z20  
Z21  
Z22  
0.190x 1.250Microstrip  
0.517x 0.080Microstrip  
0.225x 1.250Microstrip  
0.860x 0.975Microstrip  
0.140x 0.950Microstrip  
0.028x 0.110Microstrip  
0.397x 0.040Microstrip  
0.264x 0.480Microstrip  
0.100x 0.082Microstrip  
0.521x 0.082Microstrip  
Z9  
Z10  
Z11, Z12  
Z23  
PCB  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
Figure 1. MRF6V12250HR3(HSR3) Test Circuit Schematic  
Table 5. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
ATC100B1R5BT500XT  
G2225X7R225KT3AB  
ATC100B330JT500XT  
TPSD226M025R0200  
ATC100B9R1CT500XT  
MCGPA63V477M13X26--RH  
CRCW12060000Z0EA  
Manufacturer  
ATC  
C1, C4, C5  
1.5 pF Chip Capacitors  
C2, C7, C11, C13  
C3, C6, C10, C12  
C8  
2.2 μF, 100 V Chip Capacitors  
33 pF Chip Capacitors  
ATC  
ATC  
22 μF, 25 V Chip Capacitor  
9.1 pF Chip Capacitor  
AVX  
C9  
ATC  
C14, C15  
470 μF, 63 V Electrolytic Capacitors  
0 , 3.5 A Chip Resistors  
Multicomp  
Vishay  
R1, R2, R3, R4  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
3
MRF6V12250H  
Rev. 0  
R4  
C8  
C7  
C15  
C14  
C13  
R3  
C6  
C5  
C4  
C12  
C10  
C1  
C9  
C3  
R2  
C11  
C2  
R1  
Figure 2. MRF6V12250HR3(HSR3) Test Circuit Component Layout  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
160  
140  
C
oss  
C
iss  
120  
100  
80  
P
= 250 W  
out  
P
= 275 W  
out  
10  
1
P
= 200 W  
out  
60  
40  
V
= 50 Vdc, I = 100 mA  
DQ  
DD  
C
rss  
20  
0
Measured with ±30 mV(rms)ac @ 1 MHz  
f = 1030 MHz, Pulse Width = 128 μsec  
V
= 0 Vdc  
GS  
0.1  
0
5
10  
15  
20  
25  
30  
35  
40  
0
10  
V
20  
30  
40  
50  
DUTY CYCLE (%)  
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
Figure 4. Safe Operating Area  
Figure 3. Capacitance versus Drain--Source Voltage  
24  
70  
60  
59  
58  
Ideal  
P3dB = 55.29 dBm (338 W)  
22  
20  
P1dB = 54.76 dBm (299 W)  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
60  
50  
40  
30  
G
ps  
Actual  
η
D
18  
16  
V
= 50 Vdc, I = 100 mA, f = 1030 MHz  
DQ  
V
= 50 Vdc, I = 100 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 μsec, Duty Cycle = 10%  
DD  
DD  
Pulse Width = 128 μsec, Duty Cycle = 10%  
50  
100  
400  
28  
30  
32  
34  
36  
38  
40  
P
, OUTPUT POWER (WATTS) PULSED  
P , INPUT POWER (dBm) PULSED  
in  
out  
Figure 5. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 6. Pulsed Output Power versus  
Input Power  
22  
21  
20  
19  
18  
17  
22  
21  
I
= 100 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 μsec  
I
= 400 mA  
DQ  
Duty Cycle = 10%  
20  
19  
18  
17  
16  
15  
300 mA  
200 mA  
100 mA  
50 V  
45 V  
V
= 50 Vdc, f = 1030 MHz  
40 V  
DD  
V
= 30 V 35 V  
DD  
Pulse Width = 128 μsec, Duty Cycle = 10%  
50  
100  
400  
50  
100  
, OUTPUT POWER (WATTS) PULSED  
400  
P
, OUTPUT POWER (WATTS) PULSED  
P
out  
out  
Figure 8. Pulsed Power Gain versus  
Output Power  
Figure 7. Pulsed Power Gain versus  
Output Power  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
400  
300  
200  
100  
0
24  
72  
60  
-- 3 0 _C  
85_C  
T
= --30_C  
C
25_C  
55_C  
85_C  
25_C  
55_C  
G
22  
20  
18  
16  
ps  
T
= --30_C  
C
25_C  
48  
36  
55_C  
85_C  
V
= 50 Vdc, I = 100 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 μsec, Duty Cycle = 10%  
DD  
V
= 50 Vdc, I = 100 mA, f = 1030 MHz  
DQ  
Pulse Width = 128 μsec, Duty Cycle = 10%  
DD  
η
D
24  
0
1
2
3
4
5
6
50  
100  
400  
P , INPUT POWER (WATTS) PULSED  
in  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 9. Pulsed Output Power versus  
Input Power  
Figure 10. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
9
10  
8
10  
7
10  
6
10  
5
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 275 W Peak, Pulse Width = 128 μsec,  
DD  
out  
Duty Cycle = 10%, and η = 65.5%.  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 11. MTTF versus Junction Temperature  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
6
Z = 5 Ω  
o
Z
load  
f = 1030 MHz  
Z
source  
f = 1030 MHz  
V
= 50 Vdc, I = 100 mA, P = 275 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
1030  
2.30 -- j3.51  
4.0 -- j2.14  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured from  
drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 12. Series Equivalent Source and Load Impedance  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
7
C8  
C6  
C4  
C14  
C13  
C10  
C2  
C12  
R1  
C1  
C11  
MRF6V12250H  
960--1215 MHz  
Rev. 0  
C3  
C5  
C9  
C7  
R2  
Figure 13. MRF6V12250HR3(HSR3) Test Circuit Component Layout — 960--1215 MHz  
Table 6. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values — 960--1215 MHz  
Part  
Description  
Part Number  
ATC100B2R7BT500XT  
ATC100B330JT500XT  
ATC100B102JT50XT  
G2225X7R225KT3AB  
ATC100B9R1CT500XT  
TPSD226M025R0200  
MCGPR63V477M13X26--RH  
CRCW120647R0FKEA  
AD255A  
Manufacturer  
C1  
2.7 pF Chip Capacitor  
ATC  
C2, C3, C4, C5  
C6, C7  
33 pF Chip Capacitors  
ATC  
1000 pF Chip Capacitors  
ATC  
C8, C9, C10  
C11  
2.2 μF, 100 V Chip Capacitors  
9.1 pF Chip Capacitor  
ATC  
ATC  
C12  
22 μF, 25 V Tantalum Capacitor  
470 μF, 63 V Electrolytic Capacitors  
47 , 1/4 W Chip Resistors  
AVX  
C13, C14  
R1, R2  
Multicomp  
Vishay  
Arlon  
PCB  
0.030, ε = 2.55  
r
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
8
TYPICAL CHARACTERISTICS — 960--1215 MHz  
26  
70  
V
= 50 Vdc  
f = 1215 MHz  
DD  
I
= 100 mA  
1150 MHz  
DQ  
24 Pulse Width = 128 μsec  
60  
50  
40  
Duty Cycle = 10%  
1030 MHz  
1150 MHz  
960 MHz  
22  
η
D
1215 MHz  
20  
G
ps  
960 MHz  
18  
16  
30  
20  
1030 MHz  
0
50  
100  
150  
200  
250  
300  
350  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 14. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
68  
21  
20  
19  
18  
17  
16  
15  
14  
13  
66  
64  
62  
60  
58  
0
G
ps  
η
D
IRL  
-- 5  
-- 1 0  
V
= 50 Vdc, I = 100 mA, P = 250 W Peak (25 W Avg.)  
DQ out  
Pulse Width = 128 μsec, Duty Cycle = 10%  
DD  
12  
11  
-- 1 5  
-- 2 0  
950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225  
f, FREQUENCY (MHz)  
Figure 15. Broadband Performance @ Pout = 250 Watts Peak  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
9
Z = 10 Ω  
o
Z
load  
f = 960 MHz  
f = 1215 MHz  
f = 1215 MHz  
f = 960 MHz  
Z
source  
V
= 50 Vdc, I = 100 mA, P = 250 W Peak  
V
= 50 Vdc, I = 100 mA, P = 250 W Peak  
DD DQ out  
DD  
DQ  
out  
f
Z
Z
load  
f
Z
Z
load  
source  
source  
MHz  
MHz  
1100  
1110  
1120  
1130  
1140  
1150  
1160  
1170  
1180  
1190  
1200  
1210  
1215  
960  
4.00 -- j4.14  
4.05 -- j3.99  
4.16 -- j3.86  
4.33 -- j3.71  
4.49 -- j3.57  
4.61 -- j3.43  
4.66 -- j3.33  
4.68 -- j3.26  
4.72 -- j3.20  
4.83 -- j3.13  
5.02 -- j3.06  
5.24 -- j2.99  
5.42 -- j2.96  
5.51 -- j2.99  
3.96 -- j1.70  
3.90 -- j1.67  
3.83 -- j1.66  
3.75 -- j1.66  
3.70 -- j1.65  
3.68 -- j1.62  
3.69 -- j1.59  
3.69 -- j1.54  
3.67 -- j1.52  
3.59 -- j1.53  
3.48 -- j1.53  
3.38 -- j1.53  
3.32 -- j1.51  
3.30 -- j1.47  
5.49 -- j3.04  
5.47 -- j3.07  
5.52 -- j3.09  
5.68 -- j3.13  
5.89 -- j3.20  
6.06 -- j3.32  
6.09 -- j3.47  
5.98 -- j3.60  
5.85 -- j3.69  
5.78 -- j3.76  
5.81 -- j3.87  
5.89 -- j4.02  
5.91 -- j4.11  
3.32 -- j1.43  
3.31 -- j1.42  
3.24 -- j1.40  
3.12 -- j1.39  
2.99 -- j1.36  
2.88 -- j1.30  
2.83 -- j1.23  
2.83 -- j1.19  
2.80 -- j1.15  
2.75 -- j1.11  
2.65 -- j1.07  
2.52 -- j1.01  
2.47 -- j0.97  
970  
980  
990  
1000  
1010  
1020  
1030  
1040  
1050  
1060  
1070  
1080  
1090  
Z
Z
=
=
Test circuit impedance as measured from gate to ground.  
Test circuit impedance as measured from drain to ground.  
source  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 16. Series Equivalent Source and Load Impedance — 960--1215 MHz  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
10  
PACKAGE DIMENSIONS  
B
G
2X  
Q
1
2
M
M
M
bbb  
T
A
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M--1994.  
3
2. CONTROLLING DIMENSION: INCH.  
3. DELETED  
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY  
FROM PACKAGE BODY.  
K
B
(FLANGE)  
D
INCHES  
DIM MIN MAX  
A
B
C
D
MILLIMETERS  
M
M
M
bbb  
T
A
B
MIN  
33.91  
9.65  
MAX  
34.16  
9.91  
1.335  
0.380  
0.125  
0.495  
0.035  
0.003  
1.345  
0.390  
0.170  
0.505  
0.045  
0.006  
3.18  
4.32  
(LID)  
R
(INSULATOR)  
M
N
12.57  
0.89  
0.08  
12.83  
1.14  
0.15  
E
M
M
M
M
M
M
M
M
bbb  
T
A
B
ccc  
aaa  
T
T
A
A
B
F
G
1.100 BSC  
27.94 BSC  
(INSULATOR)  
S
(LID)  
H
K
M
N
0.057  
0.170  
0.774  
0.772  
.118  
0.067  
0.210  
0.786  
0.788  
.138  
1.45  
4.32  
19.66  
19.60  
3.00  
1.70  
5.33  
19.96  
20.00  
3.51  
M
M
M
M
B
ccc  
T
A
B
H
Q
R
S
0.365  
0.365  
0.375  
0.375  
9.27  
9.27  
9.53  
9.52  
C
aaa  
bbb  
ccc  
0.005 REF  
0.010 REF  
0.015 REF  
0.127 REF  
0.254 REF  
0.381 REF  
F
SEATING  
PLANE  
E
A
T
STYLE 1:  
PIN 1. DRAIN  
A
(FLANGE)  
2. GATE  
3. SOURCE  
CASE 465--06  
ISSUE G  
NI--780  
MRF6V12250HR3  
4X U  
(FLANGE)  
4X Z  
(LID)  
B
1
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M--1994.  
2. CONTROLLING DIMENSION: INCH.  
3. DELETED  
2X K  
2
B
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY  
FROM PACKAGE BODY.  
(FLANGE)  
D
INCHES  
DIM MIN MAX  
MILLIMETERS  
M
M
M
bbb  
T
A
B
MIN  
20.45  
9.65  
3.18  
12.57  
0.89  
0.08  
1.45  
4.32  
19.61  
19.61  
9.27  
9.27  
-- -- --  
MAX  
20.70  
9.91  
4.32  
12.83  
1.14  
0.15  
1.70  
5.33  
20.02  
20.02  
9.53  
9.52  
1 . 0 2  
0 . 7 6  
A
B
0.805  
0.380  
0.125  
0.495  
0.035  
0.003  
0.057  
0.170  
0.774  
0.772  
0.365  
0.365  
-- -- --  
0.815  
0.390  
0.170  
0.505  
0.045  
0.006  
0.067  
0.210  
0.786  
0.788  
0.375  
0.375  
0 . 0 4 0  
0 . 0 3 0  
C
D
E
F
H
K
M
N
(LID)  
N
(LID)  
R
S
M
M
M
M
ccc  
T
A
B
M
M
M
M
ccc  
aaa  
T
T
A
A
B
(INSULATOR)  
(INSULATOR)  
M
M
M
M
M
B
bbb  
T
A
B
R
S
H
U
Z
-- -- --  
-- -- --  
C
aaa  
bbb  
ccc  
0.005 REF  
0.010 REF  
0.015 REF  
0.127 REF  
0.254 REF  
0.381 REF  
3
F
SEATING  
PLANE  
E
A
STYLE 1:  
T
PIN 1. DRAIN  
A
2. GATE  
5. SOURCE  
(FLANGE)  
CASE 465A--06  
ISSUE H  
NI--780S  
MRF6V12250HSR3  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
11  
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following documents, tools and software to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &  
Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
May 2009  
July 2009  
Initial Release of Data Sheet  
Updated Typical Broadband Performance bullet to include V , I and Pulsed information. Provided  
DD DQ  
specific values for Power Gain and Drain Efficiency, p. 1  
Added Typical Performance table for 960--1215 MHz application, p. 2  
Changed “EKMG630ELL471MK25S” part number to “MCGPA63V477M13X26--RH”, Table 5, Test Circuit  
Component Designations and Values, p. 3  
Added Fig. 5, Safe Operating Area, p. 5  
Added Fig. 13, Test Circuit Component Layout -- 960--1215 MHz and Table 6, Test Circuit Component  
Designations and Values -- 960--1215 MHz, p. 8  
Added Fig. 14, Power Gain and Drain Efficiency versus Output Power -- 960--1215 MHz, p. 9  
Added Fig 15, Broadband Performance @ Pout = 250 Watts Peak -- 960--1215 MHz, p. 9  
Added Fig. 16, Series Equivalent Source and Load Impedance -- 960--1215 MHz, p. 10  
2
Apr. 2010  
Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related  
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1  
Reporting of pulsed thermal data now shown using the Z  
symbol, p. 1  
JC  
θ
Added RF High Power Model availability to Product Software, p. 12  
MRF6V12250HR3 MRF6V12250HSR3  
RF Device Data  
Freescale Semiconductor  
12  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2009--2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6V12250H  
Rev. 2,4/2010

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY