PC34709VK [FREESCALE]

Power Management Integrated Circuit (PMIC) for i.MX50/53 Families; 功率管理集成电路(PMIC ),用于i.MX50 / 53族
PC34709VK
型号: PC34709VK
厂家: Freescale    Freescale
描述:

Power Management Integrated Circuit (PMIC) for i.MX50/53 Families
功率管理集成电路(PMIC ),用于i.MX50 / 53族

集成电源管理电路
文件: 总142页 (文件大小:5056K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC34709  
Rev. 1.0, 8/2012  
Freescale Semiconductor  
Product Preview  
Power Management Integrated  
Circuit (PMIC) for i.MX50/53  
Families  
34709  
The 34709 is the Power Management Integrated Circuit (PMIC)  
designed primarily for use with the Freescale i.MX50 and i.MX53  
families. It offers a lower cost alternative to the MC34708, targeting  
embedded applications that do not require a battery charger. However,  
it can be easily combined with an external charger, allowing flexibility  
for either single or multi-cell Li-Ion battery configurations. It supports  
both consumer and industrial applications with a single 130-pin 8x8  
MAPBGA 0.5 mm pitch package that is easily routable in low cost  
board designs.  
POWER MANAGEMENT  
VK SUFFIX (PB-FREE)  
98ASA00333D  
130 MAPBGA  
8.0 X 8.0 (0.5 MM PITCH)  
Features  
• Five buck converters configurable to provide up to six independent  
outputs for direct supply of the processor core, memory, and  
peripherals.  
Applications  
Tablets  
• Boost regulator for USB PHY domain on i.MX processors.  
• Seven LDO regulators with internal and external pass devices for  
thermal budget optimization  
Smart Mobile Devices  
Patient Monitors  
• One low current, high accuracy, voltage reference for DDR memory  
• 10-bit ADC for monitoring battery and other inputs  
• Real time clock and crystal oscillator circuitry with a coin cell  
backup/charger  
Digital Signage  
Human Machine Interfaces (HMI)  
• SPI/I2C bus for control and register interface  
• Four general purpose low-voltage I/Os with interrupt capability  
• Two PWM outputs  
ꢅꢆꢇꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢄꢁ  
ꢓꢓꢔ  
ꢓꢊꢋꢌꢋꢜ  
ꢂꢜꢑꢇꢖꢉꢋꢈꢝꢋꢌꢖ  
ꢍꢏꢐꢑꢒ  
ꢓꢀ  
ꢑꢔꢋꢕ  
ꢍꢖꢖꢗꢇꢎꢄꢒꢘꢃꢗꢗꢒꢄ  
ꢅꢕꢖꢉꢗꢈꢘ  
ꢒꢕꢢꢏꢔꢟꢉꢑꢊ  
ꢓꢊꢋꢌꢋꢜ  
ꢞꢋꢈꢇꢉꢞꢜꢟꢋꢖ  
ꢙꢜꢠꢋꢌ  
ꢓꢙꢔꢚꢔꢛꢀ  
ꢃꢬꢊꢋꢌꢟꢈꢗ  
ꢀꢞꢈꢌꢭꢋꢌ  
ꢙꢜꢠꢋꢌ  
ꢁꢇꢈꢉꢊꢋꢌ  
ꢎꢀꢙꢚꢛꢜꢝ  
ꢎꢋꢓꢀ  
ꢂꢕꢏꢔꢜꢟꢏꢡꢈꢊꢊꢋꢌꢘ  
ꢍꢜꢑꢢꢞ  
ꢓꢢꢌꢋꢋꢟ  
ꢀꢜꢕꢟꢏꢀꢋꢗꢗ  
ꢡꢈꢊꢊꢋꢌꢘ  
ꢣꢛ  
ꢀꢁꢂꢃꢄꢅꢁꢆ  
ꢣꢣ  
ꢣꢪ  
ꢆꢍꢀ  
Figure 1. Simplified Application Diagram  
*This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2012. All rights reserved.  
Table of Contents  
1
2
Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Part Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.2 Format and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Simplified Internal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
4
5
5.2.1  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.3.1  
5.3.2  
General PMIC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6
7
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.1 Start-up Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.2 Bias and References Block Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.3 Clocking and Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.3.1  
7.3.2  
7.3.3  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SRTC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Coin Cell Battery Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.4 Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.4.1  
7.4.2  
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Interrupt Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.5 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
Power Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Buck Switching Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Boost Switching Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Linear Regulators (LDOs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.6 Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
Input Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Dedicated Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Touch Screen Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
ADC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
7.7 Auxiliary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
7.7.1  
7.7.2  
General Purpose I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
PWM Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
7.8 Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
7.8.1  
7.8.2  
7.8.3  
SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
SPI/I2C Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
2
7.9 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
Register Set structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Specific Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
SPI/I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
SPI Register’s Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
8
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
8.1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
8.2 Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
8.3 34709 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
General board recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
General Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Parallel Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Switching Regulator Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
8.4 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
8.4.1  
8.4.2  
Rating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Estimation of Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
9
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
9.1 Package Mechanical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
10 Reference Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
34709  
Analog Integrated Circuit Device Data  
3
Freescale Semiconductor  
Orderable Parts  
1
Orderable Parts  
This section describes the part numbers available to be purchased, along with their differences. Valid orderable part numbers  
are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform  
a part number search for the following device numbers.  
Table 1. Orderable Part Variations  
Part Number (1)  
Temperature (T )  
Package  
A
PC34709VK  
Notes  
-40 to 85 °C  
130 MAPBGA - 8.0 x 8.0 mm - 0.5 mm Pitch  
1. To Order parts in Tape & Reel, add the R2 suffix to the part number.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
Part Identification  
2
Part Identification  
This section provides an explanation of the part numbers and their alpha numeric breakdown.  
2.1  
Description  
Part numbers for the chips have fields that identify the specific part configuration. You can use the values of these fields to  
determine the specific part you have received.  
2.2  
Format and Examples  
Part numbers for a given device have the following format, followed by a device example:  
Table 2 - Part Numbering - Analog:  
PC tt xxx r v PPP RR - PC34709VKR2  
2.3  
Fields  
These tables list the possible values for each field in the part number (not all combinations are valid).  
Table 2: Part Numbering - Analog  
FIELD  
PC  
DESCRIPTION  
VALUES  
• MC- Qualified Standard  
• PC- Prototype Device  
Product Category  
• 33 = -40 °C to > 105 °C  
• 34 = -40 °C to 105 °C  
• 35 = -55 °C to 125 °C  
tt  
Temperature Range  
xxx  
r
Product Number  
Revision  
• Assigned by Marketing  
• (default blank)  
v
Variation  
• (default blank)  
PPP  
RR  
Package Identifier  
Tape and Reel Indicator  
• Varies by package  
• R2 = 13 inch reel hub size  
34709  
Analog Integrated Circuit Device Data  
5
Freescale Semiconductor  
Internal Block Diagram  
3
Internal Block Diagram  
3.1  
Simplified Internal Diagram  
SW1IN  
SW1ALX  
GNDSW1A  
SW1FB  
O/P  
Drive  
SW1  
Dual Phase  
GP  
2000 mA  
Buck  
SW1CFG  
SW1VSSSNS  
GNDADC  
SW1BLX  
O/P  
10 Bit GP  
ADC  
Drive  
GNDSW1B  
A/D Result  
DVS  
CONTROL  
ADIN9  
SW1PWGD  
ADIN10  
ADIN11  
A/D  
Control  
SW2IN  
SW2LX  
GNDSW2  
SW2FB  
SW2PWGD  
MUX  
O/P  
Drive  
SW2  
ADIN12/TSX1  
ADIN13/TSX2  
ADIN14/TSY1  
LP  
`
1000 mA  
Buck  
Touch  
Screen  
ADIN15/TSY2  
TSREF  
Interface  
Die Temp &  
Thermal Warning  
Detection  
SW3IN  
To Interrupt  
Section  
SW3  
INT MEM  
500 mA  
Buck  
O/P  
Drive  
SW3LX  
GNDSW3  
SW3FB  
SW4AIN  
SW4ALX  
GNDSW4A  
SW4FBA  
O/P  
Drive  
SW4  
Dual Phase  
DDR  
SW4CFG  
1000 mA  
Buck  
Package Pin Legend  
SW4BIN  
SW4BLX  
GNDSW4B  
SW4BFB  
O/P  
Drive  
Output Pin  
Input Pin  
SPIVCC  
Shift Register  
Bi-directional Pin  
CS  
SPI  
Interface  
+
Muxed  
I2C  
Optional  
Interface  
SW5IN  
CLK  
SW5  
I/O  
1000 mA  
Buck  
O/P  
Drive  
SW5LX  
GNDSW5  
SW5FB  
SPI  
MOSI  
MISO  
To Enables & Control  
Registers  
GNDSPI  
Shift Register  
SWBSTIN  
SWBSTLX  
SWBSTFB  
O/P  
Drive  
SWBST  
380 mA  
Boost  
GNDSWBST  
VCORE  
VCOREDIG  
VDDLP  
Reference  
Generation  
VINREFDDR  
VHALF  
VCOREREF  
VREFDDR  
10mA  
GNDCORE  
GNDREF  
VREFDDR  
BP  
VINPLL  
VPLL  
VPLL  
50 mA  
Pass  
FET  
VUSB2DRV  
VUSB2  
Pass  
FET  
VUSB2  
250mA  
VDACDRV  
VDAC  
VDAC  
250mA  
To  
Trimmed  
Circuits  
SPI  
Trim-In-Package  
Control  
Logic  
VINGEN1  
VGEN1  
VGEN1  
250mA  
Pass  
FET  
Startup  
Sequencer  
Decode  
Trim  
Control  
Logic  
VGEN2DRV  
VGEN2  
PUMSx  
PLL  
Switchers  
Pass  
FET  
VGEN2  
250mA  
VINUSB  
Monitor  
Timer  
VUSB  
Regulator  
VUSB  
RTC +  
Calibration  
32 KHz  
Internal  
Osc  
LDOVDD  
GNDUSB  
SPI Result  
Registers  
Interrupt  
Inputs  
Enables &  
Control  
32 KHz  
Buffers  
Best  
of  
Supply  
GNDREG1  
GNDREG2  
GNDREF1  
GNDREF2  
BP  
LCELL  
Switch  
LICELL  
PWM  
Outputs  
32 KHz  
Crystal  
Osc  
GPIO Control  
Li Cell  
Charger  
Digital Core  
VSRTC  
Figure 2. Simplified Internal Block Diagram  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
6
Pin Connections  
4
Pin Connections  
4.1  
Pinout Diagram  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
A
B
C
D
E
F
MISO  
CS  
GNDSPI  
MOSI  
SPIVCC  
INT  
GLBRST  
RESETB  
PWRON1  
GNDCTRL  
PWM2  
PWM1  
ICTEST  
GPIOLV2  
GNDGPIO  
SW2LX  
GNDSW2  
SW2FB  
GNDREF2  
SW2PWGD  
SW3FB  
NC_2  
CLK  
GNDUSB  
VINUSB  
XTAL1  
GPIOLV1  
GPIOLV0  
SW2IN  
NC_3  
GPIOVDD  
VUSB  
RESETBMCU  
PWRON2  
PUMS4  
SDWNB  
PUMS5  
PUMS3  
PUMS1  
ADIN9  
GNDSW3  
SW3IN  
SW3LX  
CLK32K  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSGND  
SUBSREF  
GPIOLV3  
SUBSANA2  
SUBSPWR3  
SUBSLDO  
SUBSPWR2  
GNDRTC  
XTAL2  
CLK32KVCC  
CLK32KMCU  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR1  
SUBSPWR  
GNDSWBST  
SWBSTLX  
VINGEN1  
VINREFDDR  
VPLL  
SWBSTIN  
G
H
J
PUMS2  
GNDCORE  
VCOREDIG  
VCOREREF  
VDDLP  
VSRTC  
VCORE  
GNDADC  
ADIN10  
VGEN1  
GNDREG2  
SUBSANA1  
SW1CFG  
SWBSTFB  
VHALF  
ADIN11  
TSREF  
TSY1  
K
L
WDI  
TSX1  
SW1PWGD  
VREFDDR  
VINPLL  
TSY2  
TSX2  
VGEN2DRV  
GNDREG1  
VDACDRV  
VUSB2DRV  
VUSB2  
M
N
P
R
GNDREF  
BP  
LICELL  
SW4AFB  
SW4BFB  
SW4CFG  
SW5FB  
VGEN2  
GNDREF1  
GNDSW1A  
SW1ALX  
LDOVDD  
VDAC  
STANDBY  
NC_1  
GNDSW4A  
SW4ALX  
SW4AIN  
SW4BIN  
GNDSW4B  
SW4BLX  
SW5IN  
GNDSW5  
SW5LX  
SW1IN  
SW1IN  
GNDSW1B  
SW1FB  
SW1BLX  
SW1VSSSNS  
Figure 3. Top View Ballmap  
34709  
Analog Integrated Circuit Device Data  
7
Freescale Semiconductor  
Pin Connections  
4.2  
Pin Definitions  
Table 3. Pin Definitions  
Pin  
Function  
Rating  
[V]  
Pin Number  
Supply  
N1  
Pin Name  
# Balls  
Definition  
1. Application supply point  
BP  
I
5.5  
3.6  
1
1
2. Input supply to the IC core circuitry  
Indication of imminent system shutdown  
D6  
IC Core  
J2  
SDWNB  
O
Regulated supply for the IC analog core circuitry  
Regulated supply for the IC digital core circuitry  
Main bandgap reference  
VCORE  
VCOREDIG  
VCOREREF  
VDDLP  
O
O
-
-
-
-
-
-
1
1
1
1
1
1
J1  
K1  
O
VDDLP reference  
L1  
O
Ground for the IC core circuitry  
H1  
GNDCORE  
GNDREF  
GND  
GND  
Ground reference for IC core circuitry  
M1  
Switching Regulators  
P10  
Regulator 1 input  
SW1IN  
I
5.5  
2
P11  
R9  
Regulator 1A switch node connection  
Regulator 1 feedback  
SW1ALX  
SW1FB  
O
5.5  
3.6  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
P13  
P9  
I
Ground for Regulator 1A  
Regulator 1 sense  
GNDSW1A  
SW1VSSSNS  
SW1PWGD  
SW1BLX  
GNDSW1B  
SW1CFG  
SW2IN  
GND  
R13  
K10  
R11  
P12  
L12  
B11  
A10  
A12  
B10  
A13  
E14  
D15  
B13  
D14  
B12  
P4  
GND  
-
Power good signal for SW1  
Regulator 1B switch node connection  
Ground for Regulator 1B  
Regulator 1A/B mode configuration  
Regulator 2 input  
O
3.6  
5.5  
-
O
GND  
I
3.6  
5.5  
5.5  
3.6  
-
I
Regulator 2 switch node connection  
Regulator 2 feedback  
SW2LX  
O
SW2FB  
I
Ground for Regulator 2  
GNDSW2  
SW2PWGD  
SW3IN  
GND  
Power good signal for SW2  
Regulator 3 input  
O
3.6  
5.5  
5.5  
3.6  
-
I
Regulator 3 switch node connection  
Regulator 3 feedback  
SW3LX  
O
SW3FB  
I
Ground for Regulator 3  
GNDSW3  
GNDREF2  
SW4AIN  
GND  
Ground reference for Regulators  
Regulator 4A input  
GND  
-
I
O
I
5.5  
5.5  
3.6  
Regulator 4A switch node connection  
Regulator 4A feedback  
R3  
SW4ALX  
SW4AFB  
N2  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
8
Pin Connections  
Table 3. Pin Definitions (continued)  
Pin  
Rating  
[V]  
Pin Number  
Pin Name  
# Balls  
Definition  
Function  
Ground for Regulator 4A  
Regulator 4B input  
P3  
GNDSW4A  
SW4BIN  
GND  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
P5  
I
5.5  
5.5  
3.6  
-
Regulator 4B switch node connection  
Regulator 4B feedback  
R6  
SW4BLX  
SW4BFB  
GNDSW4B  
SW4CFG  
SW5IN  
O
P2  
I
Ground for Regulator 4B  
Regulator 4A/B mode configuration  
Regulator 5 input  
P6  
GND  
M6  
I
3.6  
5.5  
5.5  
3.6  
-
P7  
I
Regulator 5 output  
R8  
SW5LX  
O
Regulator 5 feedback  
M8  
SW5FB  
I
GND  
GND  
I
Ground for Regulator 5  
P8  
GNDSW5  
GNDREF1  
SWBSTIN  
SWBSTLX  
SWBSTFB  
GNDSWBST  
Ground reference for regulators  
Boost Regulator BP supply  
SWBST switch node connection  
Boost Regulator feedback  
Ground for regulator boost  
N9  
-
F15  
5.5  
7.5  
5.5  
-
G14  
O
H15  
I
F14  
GND  
LDO Regulators  
VREFDDR input supply  
J14  
K15  
J15  
L15  
K14  
N14  
P15  
N15  
D2  
VINREFDDR  
VREFDDR  
VHALF  
I
3.6  
1.5  
1.5  
5.5  
2.5  
5.5  
3.6  
5.5  
3.6  
5.5  
-
1
1
1
1
1
1
1
1
1
1
1
VREFDDR regulator output  
O
Half supply reference for VREFDDR  
VPLL input supply  
O
VINPLL  
I
VPLL regulator output  
VPLL  
O
Drive output for VDAC regulator using an external PNP device  
VDAC regulator output  
VDACDRV  
VDAC  
O
O
Supply pin for VUSB2, VDAC, and VGEN2  
USB transceiver regulator output  
VUSB input supply  
LDOVDD  
VUSB  
I
O
D1  
VINUSB  
GNDUSB  
I
Ground for VUSB LDO  
C1  
GND  
1. VUSB2 input using internal PMOS FET  
2. Drive output for VUSB2 regulator using an external PNP device  
VUSB2 regulator output  
I
O
P14  
VUSB2DRV  
5.5  
1
R14  
H14  
H12  
VUSB2  
VINGEN1  
VGEN1  
O
3.6  
2.5  
2.5  
1
1
1
VGEN1 input supply  
I
VGEN1 regulator output  
O
1. VGEN2 input using internal PMOS FET  
2. Drive output for VGEN2 regulator using an external PNP device  
VGEN2 regulator output  
I
L14  
VGEN2DRV  
5.5  
1
O
M15  
H2  
VGEN2  
VSRTC  
O
3.6  
2.5  
-
1
1
1
Output regulator for SRTC module on processor  
Ground for Regulator 1  
O
M14  
GNDREG1  
GND  
34709  
Analog Integrated Circuit Device Data  
9
Freescale Semiconductor  
Pin Connections  
Table 3. Pin Definitions (continued)  
Pin  
Rating  
[V]  
Pin Number  
Pin Name  
# Balls  
Definition  
Function  
Ground for Regulator 2  
Supply for GPIOLV pins  
J12  
C8  
C7  
B7  
GNDREG2  
GPIOVDD  
GPIOLV0  
GPIOLV1  
GPIOLV2  
GPIOLV3  
PWM1  
GND  
I
-
1
1
1
1
1
1
1
1
1
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
-
General purpose input/output 1  
General purpose input/output 2  
General purpose input/output 3  
General purpose input/output 4  
PWM output 1  
I/O  
I/O  
I/O  
I/O  
O
B9  
E10  
A8  
PWM output 2  
A7  
PWM2  
O
GPIO ground  
C9  
GNDGPIO  
GND  
Clock/RTC/Coin Cell  
1. Coin cell supply input  
I
M2  
LICELL  
3.6  
1
2. Coin cell charger output  
O
32.768 kHz Oscillator crystal connection 1  
32.768 kHz Oscillator crystal connection 2  
Ground for the RTC block  
E1  
XTAL1  
XTAL2  
I
2.5  
2.5  
-
1
1
1
1
1
1
G1  
I
GND  
I
F1  
GNDRTC  
CLK32KVCC  
CLK32K  
Supply voltage for 32 k buffer  
F3  
3.6  
3.6  
3.6  
32 kHz Clock output for peripherals  
32 kHz Clock output for processor  
E3  
O
G3  
CLK32KMCU  
O
Control Logic  
Reset output for peripherals  
Reset output for processor  
Watchdog input  
B5  
D5  
K3  
P1  
B4  
A6  
E5  
A5  
G6  
G5  
F6  
F5  
E6  
A9  
B6  
A4  
B2  
B1  
RESETB  
RESETBMCU  
WDI  
O
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
O
I
Standby input signal from processor  
Interrupt to processor  
STANDBY  
INT  
I
O
Power on/off button connection 1  
Power on/off button connection 2  
Global Reset  
PWRON1  
PWRON2  
GLBRST  
PUMS1  
PUMS2  
PUMS3  
PUMS4  
PUMS5  
ICTEST  
GNDCTRL  
SPIVCC  
CS  
I
I
I
Power up mode supply setting 1  
Power up mode supply setting 2  
Power up mode supply setting 3  
Power up mode supply setting 4  
Power up mode supply setting 5  
Normal mode, test mode selection, & anti-fuse bias  
Ground for control logic  
I
I
I
I
I
I
GND  
Supply for SPI bus  
I
I
I
3.6  
3.6  
3.6  
Primary SPI select input  
Primary SPI clock input  
CLK  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
10  
Pin Connections  
Table 3. Pin Definitions (continued)  
Pin  
Rating  
[V]  
Pin Number  
Pin Name  
# Balls  
Definition  
Function  
Primary SPI write input  
Primary SPI read output  
Ground for SPI interface  
B3  
MOSI  
MISO  
I
3.6  
3.6  
-
1
1
1
A2  
O
A3  
GNDSPI  
GND  
A to D Converter  
ADC generic input channel 9  
H6  
J5  
ADIN9  
ADIN10  
ADIN11  
TSX1  
I
4.8  
4.8  
4.8  
4.8  
4.8  
4.8  
4.8  
4.8  
-
1
1
1
1
1
1
1
1
1
ADC generic input channel 10  
I
ADC generic input channel 11  
J6  
I
Touch Screen Interface X1 or ADC generic input channel 12  
Touch Screen Interface X2 or ADC generic input channel 13  
Touch Screen Interface Y1 or ADC generic input channel 14  
Touch Screen Interface Y2 or ADC generic input channel 15  
Touch screen reference  
K5  
L4  
L6  
L3  
K6  
H5  
I
TSX2  
I
TSY1  
I
I
TSY2  
TSREF  
GNDADC  
O
Ground for A to D circuitry  
GND  
Substrate Grounds  
Substrate ground connection  
Substrate ground connection  
K8  
K9  
SUBSREF  
GND  
GND  
-
-
1
1
SUBSPWR  
E8  
F8  
F9  
G8  
G9  
H8  
H9  
J9  
Substrate ground connection  
SUBSPWR1  
GND  
-
8
Substrate ground connection  
Substrate ground connection  
Substrate ground connection  
Substrate ground connection  
Substrate ground connection  
Substrate ground connection  
E11  
G10  
SUBSPWR2  
SUBSPWR3  
SUBSLDO  
GND  
GND  
GND  
GND  
GND  
GND  
-
-
-
-
-
-
1
1
1
1
1
1
H10  
K12  
SUBSANA1  
SUBSANA2  
SUBSGND  
F10  
J8  
No connects  
A14  
B15  
R1  
Do not connect  
NC  
-
-
3
34709  
Analog Integrated Circuit Device Data  
11  
Freescale Semiconductor  
General Product Characteristics  
5
General Product Characteristics  
5.1  
Maximum Ratings  
Table 4. Maximum Ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
ELECTRICAL RATINGS  
-
-
-
ICTEST Pin Voltage  
V
V
V
V
VICTEST  
VBP  
1.8  
4.5  
3.6  
BP Voltage  
Coin Cell Voltage  
VLICELL  
ESD Ratings  
(2)  
(2)  
-
-
• Human Body Model All pins  
• Charge Device Model All pins  
VESD  
2000  
500  
Notes  
2. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge Device  
Model (CDM), Robotic (CZAP = 4.0 pF).  
5.2  
Thermal Characteristics  
Table 5. Thermal Ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
THERMAL RATINGS  
Ambient Operating Temperature Range  
Operating Junction Temperature Range  
-
-
-
-
°C  
°C  
TA  
TJ  
-40 to 85  
-40 to 125  
-65 to 150  
Note 3  
Storage Temperature Range  
°C  
°C  
TST  
(3), (4)  
Peak Package Reflow Temperature During Reflow  
TPPRT  
THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
(5), (6)  
(5), (7)  
(5), (7)  
(5), (7)  
Junction to Ambient Natural Convection  
RθJA  
-
-
-
-
93  
53  
80  
49  
°C/W  
°C/W  
°C/W  
°C/W  
• Single layer board (1s)  
Junction to Ambient Natural Convection  
RθJMA  
• Four layer board (2s2p)  
Junction to Ambient (@200 ft/min.)  
RθJMA  
• Single layer board (1s)  
Junction to Ambient (@200 ft/min.)  
RθJMA  
• Four layer board (2s2p)  
(8)  
(9)  
Junction to Board  
RθJB  
-
-
34  
25  
°C/W  
°C/W  
Junction to Case  
RθJC  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
12  
General Product Characteristics  
Table 5. Thermal Ratings (continued)  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent  
damage to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS (CONTINUED)  
(10)  
Junction to Package Top  
-
JT  
6.0  
°C/W  
• Natural Convection  
Notes  
3. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause a malfunction or permanent damage to the device.  
4. Freescale's Package Reflow capability meets the Pb-free requirements for JEDEC standard J-STD-020C, for Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL).  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
6. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
7. Per JEDEC JESD51-6 with the board horizontal.  
8. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top  
surface of the board near the package.  
9. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
10. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per  
JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
5.2.1  
Power Dissipation  
During operation, the temperature of the die should not exceed the maximum junction temperature. To optimize the thermal  
management scheme and avoid overheating, the 34709 PMIC provides a thermal management system. The thermal protection  
is based on a circuit with a voltage output that is proportional to the absolute temperature. This voltage can be read out via the  
ADC for specific temperature readouts, see Serial Interfaces.  
This voltage is monitored by an integrated comparator. Interrupts THERM110, THERM120, THERM125, and THERM130 will be  
generated when respectively crossing in either direction of the thresholds specified in Table 6. The temperature range can be  
determined by reading the THERMxxxS bits.  
Thermal protection is integrated to power off the 34709 PMIC, in case of over dissipation. This thermal protection will act above  
the maximum junction temperature to avoid any unwanted power downs. The protection is debounced for 8.0 ms in order to  
suppress any (thermal) noise. This protection should be considered as a fail-safe mechanism and therefore the application  
design should be dimensioned such that this protection is not tripped under normal conditions. The temperature thresholds and  
the sense bit assignment are listed in Table 6.  
Table 6. Thermal Protection Thresholds  
Parameter  
Thermal 110 °C threshold (THERM110)  
Min  
Typ  
Max  
Units  
Notes  
105  
115  
120  
125  
2.0  
110  
120  
125  
130  
-
115  
125  
130  
135  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal 120 °C threshold (THERM120)  
Thermal 125 °C threshold (THERM125)  
Thermal 130 °C threshold (THERM130)  
Thermal warning hysteresis  
(11)  
Thermal protection threshold  
130  
140  
150  
Notes  
11. Equivalent to approx. 30 mW min, 60 mW max  
34709  
Analog Integrated Circuit Device Data  
13  
Freescale Semiconductor  
General Product Characteristics  
5.3  
Electrical Characteristics  
General PMIC Specifications  
5.3.1  
Table 7. General Electrical Characteristic  
Internal  
Pin Name  
Max (19)  
Parameter  
Load Condition  
Min  
Unit  
Notes  
Termination (16)  
(13)  
(13)  
(18)  
(18)  
Input Low  
Input High  
47 kOhm  
1.0 MOhm  
-
0.0  
0.3  
VCOREDIG  
0.3  
V
V
V
V
V
V
V
V
V
PWRON1, PWRON2,  
GLBRST  
Pull-up  
1.0  
Input Low  
0.0  
STANDBY, WDI  
CLK32K  
Weak Pull-down  
CMOS  
Input High  
Output Low  
Output High  
Output Low  
Output High  
Output Low  
-
0.9  
3.6  
-100 A  
100 A  
-100 A  
100 A  
-2.0 mA  
0.0  
CLK32KVCC - 0.2  
0.0  
0.2  
CLK32KVCC  
0.2  
CLK32KMCU  
CMOS  
VSRTC - 0.2  
0.0  
VSRTC  
0.4  
(17)  
(17)  
RESETB,  
Open-drain  
RESETBMCU,  
SDWNB, SW1PWGD,  
SW2PWGD  
Output High  
Open-drain  
-
-
3.6  
V
V
Off /Coin cell mode  
1.15  
1.28  
PUMS[4 :0] =  
(0110, 0111, 1000,  
1001)  
1.2 V setting  
1.3 V setting  
1.15  
1.25  
1.25  
1.35  
V
V
VSRTC  
Voltage Output  
PUMS[4 :0] =  
(0110, 0111, 1000,  
1001)  
Input Low  
-
0.0  
0.3 * GPIOVDD  
GPIOVDD + 0.3  
0.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Input High  
Output Low  
Output High  
Output Low  
Output High  
Output Low  
Output High  
Input Low  
-
0.7 * GPIOVDD  
CMOS  
-
0.0  
GPIOLV1,2,3,4  
-
GPIOVDD - 0.2  
GPIOVDD  
0.4  
-2.0 mA  
0.0  
Open-drain  
CMOS  
Open-drain  
-
GPIOVDD + 0.3  
0.2  
-
-
-
-
-
-
-
-
0.0  
PWM1, PWM2  
CLK, MOSI  
CS  
GPIOVDD - 0.2  
GPIOVDD  
0.3 * SPIVCC  
SPIVCC + 0.3  
0.4  
(12)  
(12)  
(12)  
(12)  
0.0  
Input High  
Input Low  
0.7 * SPIVCC  
0.0  
Weak Pull-down  
Input High  
Input Low  
1.1  
0.0  
SPIVCC + 0.3  
0.3 * VCOREDIG  
VCOREDIG  
(12) (20)  
,
Weak Pull-down  
on CS  
CS, MOSI (at Booting  
for SPI / I2C decoding)  
(12) (20)  
Input High  
0.7 * VCOREDIG  
,
MISO  
Output Low  
Output High  
-100 A  
100 A  
0.0  
0.2  
V
V
(12) (21)  
MISO, INT  
CMOS  
MISO  
SPIVCC - 0.2  
SPIVCC  
(12) (21)  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
14  
General Product Characteristics  
Table 7. General Electrical Characteristic  
Internal  
Pin Name  
Max (19)  
0.3  
Parameter  
Input Low  
Load Condition  
Min  
0.0  
1.0  
Unit  
V
Notes  
Termination (16)  
(14)  
-
-
PUMSxS = 0  
PUMS1,2,3,4,5  
ICTEST  
Input High  
PUMSxS = 1  
(14)  
VCOREDIG  
V
(15)  
(15)  
Input Low  
Input High  
Input Low  
Input Mid  
Input High  
-
-
-
-
-
0.0  
1.1  
0.0  
1.3  
2.5  
0.3  
1.7  
0.3  
2.0  
3.1  
V
V
V
V
V
SW1CFG, SW4CFG  
ADIN8,9,10  
Input must not  
exceed  
-
-
-
-
BP  
V
V
TSX1,TSX2, TSY1,  
TSY2  
Input must not  
exceed  
BP or VCORE  
Notes  
12. SPIVCC is typically connected to the output of buck regulator SW5 and set to 1.800 V  
13. Input has internal pull-up to VCOREDIG equivalent to 200 kOhm  
14. Input state is latched in first phase of cold start, refer to Serial Interfaces for a description of the PUMS configuration  
15. Input state is not latched  
16. A weak pull-down represents a nominal internal pull-down of 100 nA, unless otherwise noted  
17. RESETB, RESETBMCU, SDWNB, SW1PWGD, SW2PWGD have open-drain outputs, external pull-ups are required  
18. SPIVCC needs to remain enabled for proper detection of WDI High to avoid involuntary shutdown  
19. The maximum should never exceed the maximum rating of the pin as given in Pin Connections  
20. The weak pull-down on CS is disabled if a VIH is detected at start-up to avoid extra consumption in I2C mode  
21. The output drive strength is programmable  
34709  
Analog Integrated Circuit Device Data  
15  
Freescale Semiconductor  
General Product Characteristics  
5.3.2  
Current Consumption  
The current consumption of the individual blocks is described in detail throughout this specification. For convenience, a summary  
table follows for standard use cases.  
Table 8. Current Consumption Summary (24)  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Mode  
Description  
Typ  
Max  
Unit  
Notes  
All blocks disabled, BP=0, coin cell is attached to LICELL   
(at 25 °C only)  
• RTC Logic  
RTC / Power  
cut  
• VCORE Module  
• VSRTC  
4.0  
7.0  
A  
• 32 k Oscillator  
• Clk32KMCU buffer active(10 pF load)  
All blocks disabled, BP>3.0 V(at 25 °C only)  
• Digital Core  
• RTC Logic  
• VCORE Module  
OFF (good  
battery)  
20  
55  
A  
• VSRTC  
• 32 k Oscillator  
• CLK32KMCU buffer active (10 pF load)  
• COINCHEN = 0  
Low-power Mode (Standby pin asserted and ON_STBY_LP=1)  
• Digital core  
• RTC logic  
• VCORE module  
• VSRTC  
• CLK32KMCU/CLK32K active (10 pF load)  
ON Standby  
260  
650  
A  
• 32 k oscillator  
• IREF  
• SW1, SW2, SW3, SW4A, SW4B, SW5 in PFM (23),(27)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC  
in low-power mode (22),(25)  
• Digital core  
• RTC logic  
• VCORE module  
• VSRTC  
• CLK32KMCU/CLK32K active (10 pF load)  
• 32 k oscillator  
• Digital  
ON Standby  
370  
750  
A  
• IREF  
• SW1, SW2, SW3, SW4A, SW4B, SW5 in PFM (23),(27)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC on   
in low-power mode (23),(25)  
• PLL  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
16  
General Product Characteristics  
Table 8. Current Consumption Summary (24)  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Mode  
Description  
Typ  
Max  
Unit  
Notes  
Typical use case  
• Digital core  
• RTC logic  
• VCORE module  
• VSRTC CLK32KMCU/CLK32K active (10 pF)  
• 32 k oscillator  
• IREF  
ON  
1600  
3000  
A  
• SW1, SW2, SW3, SW4A, SW4B, SW5 in APS SWBST (23),(26),(27)  
• VDDREF, VPLL, VGEN1, VGEN2, VUSB2, VDAC on   
in low-power mode (22),(25)  
• Digital  
• PLL  
Notes  
22. Equivalent to approx. 30 mW min, 60 mW max  
23. Current in RTC Mode is from LICELL=2.5 V; in all other modes from BP = 3.6 V.  
24. External loads are not included  
25. VUSB2, VGEN2 external pass PNPs  
26. SWBST in auto mode  
27. SW4A output 2.5 V  
34709  
Analog Integrated Circuit Device Data  
17  
Freescale Semiconductor  
General Description  
6
General Description  
The 34709 is the PMIC designed specifically for use with the Freescale i.MX50 and i.MX53 families. As the companion PMIC on  
several i.MX reference designs, it is a proven solution, which enables a faster time to market with fewer resources.  
6.1  
Features  
Power Generation  
• Five buck switching regulators  
• Two single/dual phase buck regulators  
• Three single phase buck regulators  
• Up to six independent outputs  
• PFM/Auto pulse skip/PWM operation mode  
• Dynamic voltage scaling  
• 5 V boost regulator  
• Support for USB physical layer on i.MX processor (USB PHY)  
• Seven LDO regulators  
• Two with selectable internal or external pass devices  
• Four with embedded pass devices  
• One with an external PNP device  
• One voltage reference for DDR memory with internal PMOS device  
Analog to Digital Converter  
• Seven general purpose channels  
• Eight dedicated channels for monitoring the charger  
• Resistive touchscreen interface  
Auxiliary Circuits  
• General purpose I/Os  
• PWM outputs  
Clocking and Oscillators  
• Real time clock  
• Time and day counters  
• Time of day alarm  
• 32.768 kHz crystal oscillator  
• Coin cell battery backup  
• Coin cell charger  
Serial Interface  
• SPI  
• I2C  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
18  
General Description  
6.2  
Block Diagram  
FIVE BUCK  
REGULATORS  
Processor Core  
Split Power Domains  
DDR Memory  
I/O  
10 BIT ADC CORE  
General Purpose  
Resistive Touch  
Screen Interface  
SEVEN LDO  
REGULATORS  
Peripherals  
5.0 V BOOST  
REGULATOR  
CONTROL  
INTERFACE  
SPI/I2C  
POWER CONTROL  
LOGIC  
PC34709  
State Machine  
BIAS &  
REFERENCES  
Trimmed Bandgap  
DDR Memory Voltage  
Reference  
32.768 kHz CRYSTAL OSCILLATOR  
Real Time Clock  
GENERAL PURPOSE  
I/O & PWM OUTPUTS  
SRTC Support  
Coin Cell charger  
Figure 4. Functional Block Diagram  
6.3  
Functional Description  
The 34709 Power Management Integrated Circuit (PMIC) represents a complete system power solution in a single package.  
Designed primarily for use with the Freescale i.MX50/53 families. The 34709 integrates five multi-mode buck regulators and  
seven LDO regulators and one voltage reference for direct supply of the processor core, memory, and peripherals.  
The 34709 also integrates a real time clock, coin cell charger, a 16-channel 10-bit ADC, 5.0 V USB boost regulator, two PWM  
outputs, touch-screen interface, status LED drivers, and four GPIOs.  
34709  
Analog Integrated Circuit Device Data  
19  
Freescale Semiconductor  
Functional Block Description  
7
Functional Block Description  
7.1  
Start-up Requirements  
At power-up, switching and linear regulators are sequentially enabled in time slots of 2.0 ms steps, to limit the inrush current after  
an initial delay of 8.0 ms, in which the core circuitry gets enabled. To ensure a proper power-up sequence, the outputs of the  
switching regulators that are not enabled, are discharged at the beginning of the Cold start with weak pull-downs on the output.  
For that same reason, an 8.0 ms delay allows the outputs of the linear regulators to be fully discharged as well, through the built  
in discharge path. The peak inrush current per event is limited. Any under-voltage detection at BP is masked while the power-up  
sequencer is running. When the switching regulator is enabled, it will start in PWM mode for 3.0 ms. Then it will switch over to  
the mode that it is programmed to in the SPI.  
The Power-up Mode Select pins PUMSx (x = 1,2,3,4,5) are used to configure the start-up characteristics of the regulators. Supply  
enabling and output level options are selected by hardwiring the PUMSx pins for the desired configuration. The recommended  
power-up strategy for end products is to bring up as little of the system as possible at booting, essentially sequestering just the  
bare essentials to allow processor start-up and software to run. With such a strategy, the start-up transients are controlled at  
lower levels, and the rest of the system power tree can be brought up by software. This allows optimization of supply ordering,  
where specific sequences may be required, as well as supply default values. Software code can load up all of the required  
programmable options, to avoid sneak paths, under/over-voltage issues, start-up surges, etc, without any change in hardware.  
The state of the PUMSx pins are latched in before any of the switching or linear regulators are enabled, with the exception of  
VCORE. PUMSx options and start-up configurations will be robust to a PCUT event, whether occurring during normal operation  
or during the 8.0 ms of pre-sequencer initialization, i.e., the system will not end up in an unexpected / undesirable consumption  
state.  
Table 9 shows the initial setup for the voltage level of the switching and linear regulators, and whether they get enabled.  
Table 9. Power-up Defaults  
53  
LPM  
53  
DDR2  
53  
DDR3  
53  
LVDDR3  
53  
LVDDR2  
i.MX  
Reserved  
50  
50  
50  
50  
50  
50  
PUMS[4:1]  
0000-0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
PUMS5=0  
VUSB2  
VGEN2  
Ext PNP Ext PNP Ext PNP  
Ext PNP  
Ext PNP  
Ext PNP Ext PNP Ext PNP Ext PNP Ext PNP Ext PNP  
Reserved  
Reserved  
PUMS5=1  
VUSB2  
VGEN2  
Internal  
Internal  
Internal  
Internal  
PMOS  
Internal  
PMOS  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
PMOS  
SW1A  
(VDDGP)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.1  
1.1  
1.1  
1.1  
1.3  
1.3  
1.8  
1.8  
1.1  
1.1  
1.3  
1.2  
1.5  
1.5  
1.1  
1.1  
1.1  
1.1  
1.3  
1.2  
1.2  
1.2  
1.1  
1.1  
1.2  
1.2  
1.8  
1.8  
1.1  
1.1  
1.2  
1.2  
1.2  
1.2  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.2  
1.2  
3.15  
1.2  
1.1  
1.1  
1.2  
1.2  
3.15  
1.8  
SW1B  
(VDDGP)  
(28)  
SW2  
1.225  
1.2  
1.3  
1.2  
1.2  
(VCC)  
(28)  
SW3  
1.2  
1.2  
1.2  
(VDDA)  
(28)  
SW4A  
1.5  
1.35  
1.35  
3.15  
1.2  
3.15  
1.8  
(DDR/SYS)  
(28)  
SW4B  
1.5  
(DDR/SYS)  
(28)  
SW5  
Reserved  
Reserved  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
1.8  
Off  
(I/O)  
SWBST  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
20  
Functional Block Description  
Table 9. Power-up Defaults  
53  
LPM  
53  
DDR2  
53  
DDR3  
53  
LVDDR3  
53  
LVDDR2  
i.MX  
Reserved  
50  
50  
50  
50  
50  
50  
(29)  
VUSB  
VUSB2  
VSRTC  
VPLL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
3.1  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
2.5  
3.3  
2.5  
1.2  
1.8  
On  
2.5  
1.2  
2.5  
1.2  
1.3  
1.3  
1.3  
1.3  
1.8  
1.8  
1.8  
1.8  
1.8  
VREFDDR  
VDAC  
On  
On  
On  
On  
On  
2.775  
1.2  
2.775  
1.3  
2.775  
1.3  
2.775  
1.3  
2.775  
1.3  
VGEN1  
VGEN2  
Notes  
2.5  
2.5  
2.5  
2.5  
2.5  
28. The SWx node are activated in APS mode when enabled by the start-up sequencer.  
29. VUSB is supplied by SWBST.  
The power-up sequence is shown in Tables 10 and 11. VCOREDIG, VSRTC, and VCORE, are brought up in the pre-sequencer  
start-up.  
Table 10. Power-up Sequence i.MX53  
Tap x 2.0 ms  
PUMS [4:1] = [0101,0110,0111,1000,1001] (i.MX53)  
0
1
2
3
4
5
6
7
8
9
SW2 (VCC)  
VPLL (NVCC_CKIH = 1.8 V)  
VGEN2 (VDD_REG= 2.5 V, external PNP  
SW3 (VDDA)  
SW1A/B (VDDGP)  
SW4A/B, VREFDDR (DDR/SYS)  
SW5 (I/O), VGEN1  
VUSB, VUSB2  
VDAC  
Table 11. Power-up Sequence i.MX50  
Tap x 2.0 ms PUMS [4:1] = [0100, 1011, 1100, 1101, 1110, 1111] (i.MX50/I.MX53)  
0
1
2
3
4
5
6
7
8
9
SW2  
SW3  
SW1A/B  
VDAC  
SW4A/B, VREFDDR  
SW5  
VGEN2, VUSB2  
VPLL  
VGEN1  
VUSB  
34709  
Analog Integrated Circuit Device Data  
21  
Freescale Semiconductor  
Functional Block Description  
7.2  
Bias and References Block Description and Application  
Information  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at REFCORE. The  
bandgap and the rest of the core circuitry is supplied from VCORE. The performance of the regulators is directly dependent on  
the performance of VCOREDIG and the bandgap. No external DC loading is allowed on VCOREDIG or REFCORE. VCOREDIG  
is kept powered as long as there is a valid supply and/or coin cell. Table 12 shows the main characteristics of the core circuitry.  
Table 12. Core Voltages Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VCOREDIG (DIGITAL CORE SUPPLY)  
Output voltage  
V
• ON mode  
VCOREDIG  
-
-
1.5  
0.0  
-
-
(30)  
• OFF with good battery and RTC mode  
VCOREDIG bypass capacitor  
CCOREDIG  
-
1.0  
-
F  
VDDLP (DIGITAL CORE SUPPLY - LOWER POWER)  
Output voltage  
V
• ON mode with good battery  
-
-
-
1.5  
1.2  
1.2  
-
-
-
VDDLP  
(31)  
• OFF mode with good battery  
• RTC mode  
(32)  
VDDLP bypass capacitor  
CDDLP  
-
100  
-
pF  
VCORE (ANALOG CORE SUPPLY)  
Output voltage  
V
• ON mode and charging  
VCORE  
-
-
2.775  
0.0  
-
-
(30)  
• OFF and RTC mode  
VCORE bypass capacitor  
CCORE  
-
1.0  
-
F  
VREFCORE (BANDGAP / REGULATOR REFERENCE)  
(30)  
Output voltage  
VREFCORE  
-
-
-
-
1.2  
0.5  
-
-
-
-
V
Absolute accuracy  
Temperature drift  
%
%
0.25  
100  
VREFCORE bypass capacitor  
CREFCORE  
Notes  
nF  
30. 3.0 V < BP < 4.5 V, no external loading on VCOREDIG, VDDLP, VCORE, or REFCORE. Extended operation down to UVDET, but no  
system malfunction.  
31. Powered by VCOREDIG  
32. Maximum capacitance on VDDLP should not exceed 1000 pF, including the board capacitance.  
7.3  
Clocking and Oscillators  
Clock Generation  
7.3.1  
A system clock is generated for internal digital circuitry as well as for external applications utilizing the clock output pins. A crystal  
oscillator is used for the 32.768 kHz time base and generation of related derivative clocks. If the crystal oscillator is not running  
(for example, if the crystal is not present), an internal 32 kHz oscillator will be used instead.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
22  
Functional Block Description  
Support is also provided for an external Secure Real Time Clock (SRTC), which may be integrated on a companion system  
processor IC. For media protection in compliance with Digital Rights Management (DRM) system requirements, the  
CLK32KMCU can be provided as a reference to the SRTC module where tamper protection is implemented.  
7.3.1.1  
Clocking Scheme  
The internal 32 kHz oscillator is an integrated backup for the crystal oscillator, and provides a 32.768 kHz nominal frequency at  
60% accuracy, if running. The internal oscillator only runs if a valid supply is available at BP, and would not be used as long as  
the crystal oscillator is active. In absence of a valid supply at the BP supply node (for instance due to a dead battery), the crystal  
oscillator continues running supplied from the coin cell battery. All control functions will run off the crystal derived frequency,  
occasionally referred to as “32 kHz” for brevity’s sake.  
During the switchover between the two clock sources (such as when the crystal oscillator is starting up), the output clock is  
maintained at a stable active low or high phase of the internal 32 kHz clock to avoid any clocking glitches. If the XLTAL clock  
source suddenly disappears during operation, the IC will revert back to the internal clock source. Given the unpredictable nature  
of the event and the start-up times involved, the clock may be absent long enough for the application to shut down during this  
transition, such as a sag in the regulator output voltage or absence of a signal on the clock output pins.  
A status bit, CLKS, is available to indicate to the processor which clock is currently selected: CLKS=0 when the internal RC is  
used and CLKS=1 if the crystal source is used. The CLKI interrupt bit will be set whenever a change in the clock source occurs,  
and an interrupt will be generated if the corresponding CLKM mask bit is cleared.  
7.3.1.2  
Oscillator Specifications  
The crystal oscillator has been optimized for use in conjunction with the Micro Crystal CC7V-T1A32.768 kHz-9.0 pF-30 ppm or  
equivalent (such as Micro Crystal CC5V-T1A or Epson FC135) and is capable of handling its parametric variations.  
The electrical characteristics of the 32 kHz Crystal oscillator are given in the following table, taking into account the crystal  
characteristics noted above. The oscillator accuracy depends largely on the temperature characteristics of the used crystal.  
Application circuits can be optimized for required accuracy by adapting the external crystal oscillator network (via component  
accuracy and/or tuning). Additionally, a clock calibration system is provided to adjust the 32,768 cycle counter that generates the  
1.0 Hz timer and RTC registers; see SRTC Support for more detail.  
Table 13. Oscillator and Clock Main Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
OSCILLATOR AND CLOCK OUTPUT  
Operating Voltage  
• Oscillator and RTC Block from BP  
VINRTC  
1.8  
1.8  
-
-
4.5  
3.6  
V
• Oscillator and RTC Block from LICELL  
Operating Current Crystal Oscillator and RTC Module  
IINRTC  
A  
• All blocks disabled, no main battery attached, coin cell is attached  
to LICELL  
-
-
2.0  
-
5.0  
1.0  
RTC oscillator start-up time  
• Upon application of power  
tSTART-RTC  
sec  
Output Low  
• CLK32K Output sink 100 A  
• CLK32KMCU Output source 50 A  
VRTCLO  
V
V
0.0  
-
0.2  
Output High  
• CLK32K Output source 100 A  
-
-
CLK32K  
VCC -0.2  
CLK32K  
VCC  
VRTCHI  
• CLK32KMCU Output sink 50 A  
VSRTC-0.2  
VSRTC  
34709  
Analog Integrated Circuit Device Data  
23  
Freescale Semiconductor  
Functional Block Description  
Table 13. Oscillator and Clock Main Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
OSCILLATOR AND CLOCK OUTPUT (CONTINUED)  
CLK32K Rise and Fall Time, CL = 50 pF  
• CLK32KDRV [1:0] = 00  
-
-
-
-
6.0  
2.5  
3.0  
2.0  
-
-
-
-
• CLK32KDRV [1:0] = 01 (default)  
• CLK32KDRV [1:0] = 10  
tCLK32KET  
ns  
• CLK32KDRV [1:0] = 11  
CLK32KMCU Rise and Fall Time  
• CL = 12 pF  
tCKL32K  
ns  
%
-
45  
-
22  
-
-
MCUET  
CLK32KDC/  
CLK32K  
MCUDC  
CLK32K and CLK32KMCU Output Duty Cycle  
• Crystal on XTAL1, XTAL2 pins  
55  
30  
RMS Output Jitter  
ns  
RMS  
• 1 Sigma for Gaussian distribution  
-
7.3.2  
SRTC Support  
When configured for DRM mode (SPI bit DRM = 1), the CLK32KMCU driver will be kept enabled through all operational states  
to ensure that the SRTC module always has its reference clock. If DRM = 0, the CLK32KMCU driver will not be maintained in the  
Off state.  
It is also necessary to provide a means for the processor to do an RTC initiated wake-up of the system if it has been programmed  
for such capability. This can be accomplished by connecting an open-drain NMOS driver to the PWRON pin of the 34709 PMIC,  
so that it is in effect, a parallel path for the power key. The 34709 PMIC will not be able to discern the turn on event from a normal  
power key initiated turn on, but the processor should have the knowledge, since the RTC initiated turn on is generated locally.  
Open Drain output for RTC wake-up  
32 kHz  
SPIVCC=1.8 V  
GP Domain=1.1 V  
LP Domain=1.2 V  
34709  
Processor  
I/O  
Core Supply  
SOG Supply  
VCOREDIG  
PWRONx  
Vcoredig  
ON  
Detect  
SRTC  
Best Of  
Suppy  
On/Off  
Button  
HP-RTC  
VSRTC = 1.2 V  
CKIL: VSRTC  
Vsrtc &  
Detect  
32 kHz for  
DSM timing  
LP-RTC  
CLK32KMCU  
0.1 u  
Main  
Battery  
Coin Cell  
Battery  
Figure 5. SRTC Block Diagram  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
Functional Block Description  
7.3.2.1  
VSRTC  
The VSRTC regulator provides the CLK32KMCU output level. Additionally, it is used to bias the Low-power SRTC domain of the  
SRTC module integrated on certain FSL processors. The VSRTC regulator is enabled as soon as the RTCPORB is detected.  
The VSRTC cannot be disabled.  
Depending on the configuration of the PUMS[4:0] pins, the VSRTC voltage will be set to 1.3 or 1.2 V. With PUMS[4:0] = (0110,  
0111, 1000, or 1001) VSRTC will be set to 1.3 V in on mode (on, on standby and on standby low-power modes). In off and coin  
cell modes the VSRTC voltage will drop to 1.2 V with the PUMS[4:0] = (0110, 0111, 1000, or 1001). With PUMS[4:0] = (0110,  
0111, 1000, or 1001), VSRTC will be set to 1.2 V for all modes (on, on standby, on standby low-power mode, off, and coin cell).  
Table 14. VSRTC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
Operating Input Voltage Range  
• Valid Coin Cell range  
• Valid BP  
VSRTCIN  
1.8  
1.8  
-
-
3.6  
4.5  
V
Operating Current Load Range  
Bypass Capacitor Value  
ISRTC  
0.0  
-
-
50  
-
A  
F  
COSRTC  
0.1  
VSRTC - ACTIVE MODE - DC  
Output Voltage  
• VSRTCINMIN < VSTRCIN < VSRTCINMAX  
VSRTC  
V
V
• ISRTCMIN < ISRTC < ISRTCMAX  
• Off and coin cell mode  
1.15  
1.15  
1.20  
1.28  
1.25  
VSRTC - ACTIVE MODE - DC (CONTINUED)  
Output Voltage  
• VSRTCINMIN < VSTRCIN < VSRTCINMAX  
• ISRTCMIN < ISRTC < ISRTCMAX  
VSRTC  
1.2  
• PUMS[4:0] (0110, 0111, 1000, 1001)  
• On, Standby, and Standby LPM modes  
Output Voltage  
• VSRTCINMIN < VSTRCIN < VSRTCINMAX  
• ISRTCMIN < ISRTC < ISRTCMAX  
VSRTC  
V
1.25  
1.3  
0.8  
1.35  
• PUMS[4:0] = (0110, 0111, 1000, 1001)  
• On, Standby, and Standby LPM modes  
Active Mode Quiescent Current  
• VSRTCINMIN < VSTRCIN < VSRTCINMAX  
• ISRTC = 0  
ISRTCQ  
A  
-
-
7.3.2.2  
Real Time Clock  
A Real Time Clock (RTC) is provided with time and day counters as well as an alarm function. The RTC utilizes the 32.768 kHz  
crystal oscillator for the time base and is powered by the coin cell backup supply when BP has dropped below operational range.  
In configurations where the SRTC is used, the RTC can be disabled to conserve current drain by setting the RTCDIS bit to a 1  
(defaults on at power up).  
Time and Day Counters  
34709  
Analog Integrated Circuit Device Data  
25  
Freescale Semiconductor  
Functional Block Description  
The 32.768 kHz clock is divided into a 1.0 Hz time tick which drives a 17-bit Time Of Day (TOD) counter. The TOD counter counts  
the seconds during a 24 hour period from 0 to 86,399 and will then roll over to 0. When the roll over occurs, it increments the  
15-bit DAY counter. The DAY counter can count up to 32767 days. The 1.0 Hz time tick can be used to generate a 1HZI interrupt  
if unmasked.  
Time Of Day Alarm  
A Time Of Day Alarm (TODA) function can be used to turn on the application and alert the processor. If the application is already  
on, the processor will be interrupted. The TODA and DAYA registers are used to set the alarm time. When the TOD counter is  
equal to the value in TODA and the DAY counter is equal to the value in DAYA, the TODAI interrupt will be generated.  
Timer Reset  
As long as the supply at BP is valid, the real time clock will be supplied from VCOREDIG. If BP is not valid, the real time clock  
can be backed up from a coin cell via the LICELL pin. When the VSRTC voltage drops to the range of 0.9 to 0.8 V, the RTCPORB  
reset signal is generated and the contents of the RTC will be reset. Additional registers backed up by coin cell will also reset with  
RTCPORB. To inform the processor that the contents of the RTC are no longer valid due to the reset, a timer reset interrupt  
function is implemented with the RTCRSTI bit.  
RTC Timer Calibration  
A clock calibration system is provided to adjust the 32,768 cycle counter that generates the 1.0 Hz timer for RTC timing registers.  
The general implementation relies on the system processor to measure the 32.768 kHz crystal oscillator against a higher  
frequency and more accurate system clock, such as a TCXO. If the RTC timer needs a correction, a 5-bit 2’s complement  
calibration word can be sent via the SPI, to compensate the RTC for inaccuracy in its reference oscillator.  
Table 15. RTC calibration Settings  
Code in RTCCAL[4:0]  
Correction in Counts per 32768 Relative correction in ppm  
01111  
00011  
00001  
00000  
11111  
11101  
10001  
10000  
+15  
+3  
+1  
0
+458  
+92  
+31  
0
-1  
-31  
-3  
-92  
-15  
-16  
-458  
-488  
The available correction range should be sufficient to ensure drift accuracy in compliance with standards for DRM time keeping.  
Note that the 32.768 kHz oscillator is not affected by RTCCAL settings; calibration is only applied to the RTC time base counter.  
Therefore, the frequency at the clock output CLK32K is not affected.  
The RTC system calibration is enabled by programming the RTCCALMODE[1:0] for desired behavior by operational mode.  
Table 16. RTC Calibration Enabling  
RTCCALMODE  
Function  
RTC Calibration disabled (default)  
00  
01  
10  
11  
RTC Calibration enabled in all modes except coin cell only  
Reserved for future use. Do not use.  
RTC Calibration enabled in all modes  
The RTC Calibration circuitry can be automatically disabled when main battery contact is lost or if it is so deeply discharged that  
RTC power draw is switched to the coin cell (configured with RTCCALMODE=01).  
Because of the low RTC consumption, RTC accuracy can be maintained through long periods of the application being shut down,  
even after the main battery has discharged. However, it is noted that the calibration can only be as good as the RTCCAL data  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
26  
Functional Block Description  
that has been provided, so occasional refreshing is recommended to ensure that any drift influencing environmental factors have  
not skewed the clock beyond desired tolerances.  
7.3.3  
Coin Cell Battery Backup  
The LICELL pin provides a connection for a coin cell backup battery or supercap. If the main battery is deeply discharged,  
removed, or contact-bounced (i.e., during a power cut), the RTC system and coin cell maintained logic will switch over to the  
LICELL for backup power. This switch over occurs for a BP below 1.8 V threshold with LICELL greater than BP. A small capacitor  
should be placed from LICELL to ground under all circumstances.  
Upon initial insertion of the coin cell, it is not immediately connected to the on chip circuitry. The cell gets connected when the IC  
powers on, or after enabling the coin cell charger when the IC was already on.  
The coin cell charger circuit will function as a current-limited voltage source, resulting in the CC/CV taper characteristic typically  
used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit. The coin cell voltage is  
programmable through the VCOIN[2:0] bits. The coin cell charger voltage is programmable in the ON state where the charge  
current is fixed at ICOINHI.  
If COINCHEN=1 when the system goes into an Off or User Off state, the coin cell charger will continue to charge to the predefined  
voltage setting, but at a lower maximum current ICOINLO. This compensates for self discharge of the coin cell and ensures that  
if/when the main cell gets depleted, that the coin cell will be topped off for maximum RTC retention. The coin cell charging will  
be stopped for the BP below UVDET. The bit COINCHEN itself is only cleared when an RTCPORB occurs.  
Table 17. Coin Cell Voltage Specifications  
VCOIN[2:0]  
Output Voltage  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Table 18. Coin Cell Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
COIN CELL CHARGER  
Voltage Accuracy  
VLICELLACC  
-
-
100  
60  
-
-
mV  
Coin Cell Charge Current in On and Watchdog modes ICOINHI  
ILICELLON  
A  
Coin Cell Charge Current in Off, cold start/warm start, and Low-power Off  
modes (User Off / Memory Hold) ICOINLO  
ILICELLOFF  
-
10  
-
A  
Current Accuracy  
ILICELACC  
COLICELL  
-
-
-
30  
100  
4.7  
-
-
-
%
nF  
F  
LICELL Bypass Capacitor  
LICELL Bypass Capacitor as coin cell replacement  
34709  
Analog Integrated Circuit Device Data  
27  
Freescale Semiconductor  
Functional Block Description  
7.4  
Interrupt Management  
Control  
7.4.1  
The system is informed about important events, based on interrupts. Unmasked interrupt events are signaled to the processor  
by driving the INT pin high; this is true whether the communication interface is configured for SPI or I2C.  
Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each  
interrupt can be cleared by writing a 1 to the appropriate bit in the Interrupt Status register, which will also cause the interrupt line  
to go low. If a new interrupt occurs while the processor clears an existing interrupt bit, the interrupt line will remain high.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high,  
the interrupt line will not go high. A masked interrupt can still be read from the Interrupt Status register. This gives the processor  
the option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the  
device to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked  
interrupt bit was already high, the interrupt line will go high after unmasking.  
The sense registers contain status and input sense bits, so the system processor can poll the current state of interrupt sources.  
They are read only, and not latched or clearable.  
Interrupts generated by external events are debounced. Therefore, the event needs to be stable throughout the debounce period  
before an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary table following  
later in this section. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
7.4.2  
Interrupt Bit Summary  
Table 19 summarizes all interrupt, mask, and sense bits associated with INT control. For more detailed behavioral descriptions,  
refer to the related chapters.  
Table 19. Interrupt, Mask and Sense Bits  
Debounce  
Time  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
ADCDONEI  
TSDONEI  
ADCDONEM  
TSDONEM  
-
-
-
ADC has finished requested conversions L2H  
0.0  
0.0  
Touch screen has finished conversion  
Touch screen pen detect  
L2H  
TSPENDET  
TSPENDETM  
Dual  
1.0 ms  
Low battery detect  
Programmable  
VBATTDB  
LOWBATT  
SCPI  
LOWBATTM  
SCPM  
-
-
H2L  
Sense is 1 if below LOWBAT threshold  
min. 4.0 ms  
max 8.0 ms  
Regulator short-circuit protection tripped L2H  
1HZI  
1HZM  
-
-
1.0 Hz time tick  
L2H  
L2H  
H2L  
L2H  
H2L  
L2H  
L2H  
L2H  
L2H  
L2H  
L2H  
0.0  
TODAI  
TODAM  
Time of day alarm  
0.0  
30 ms (33)  
30 ms  
30 ms (33)  
30 ms  
0.0  
Power on button 1 event  
PWRON1I  
PWRON2I  
PWRON1M  
PWRON2M  
PWRON1S  
PWRON2S  
Sense is 1 if PWRON1 is high.  
Power on button 2 event  
Sense is 1 if PWRON2 is high.  
SYSRSTI  
WDIRESETI  
PCI  
SYSRSTM  
WDIRESETM  
PCM  
-
-
-
-
-
System reset through PWRONx pins  
WDI silent system restart  
Power cut event  
0.0  
0.0  
WARMI  
WARMM  
Warm Start event  
0.0  
MEMHLDI  
MEMHLDM  
Memory Hold event  
0.0  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
28  
Functional Block Description  
Table 19. Interrupt, Mask and Sense Bits  
Debounce  
Time  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
32 kHz clock source change  
Sense is 1 if source is XTAL  
CLKI  
CLKM  
CLKS  
-
Dual  
0.0  
RTCRSTI  
RTCRSTM  
RTC reset has occurred  
L2H  
0.0  
Thermal 110 °C threshold  
THERM110  
THERM110M  
THERM110S  
THERM120S  
THERM125S  
Dual  
30 ms  
Sense is 1 if above threshold  
Thermal 120 °C threshold  
THERM120  
THERM125  
THERM130  
THERM120M  
THERM125M  
Dual  
Dual  
Dual  
30 ms  
30 ms  
30 ms  
Sense is 1 if above threshold  
Thermal 125 °C threshold  
Sense is 1 if above threshold  
Thermal 130 °C threshold  
THERM130M  
GPIOLVxM  
THERM130S  
GPIOLVxS  
Sense is 1 if above threshold  
GPIOLVxI  
Notes  
General Purpose input interrupt  
Programmable Programmable  
33. Debounce timing for the falling edge can be extended with PWRONxDBNC[1:0]; refer to Serial Interfaces for details.  
34709  
Analog Integrated Circuit Device Data  
29  
Freescale Semiconductor  
Functional Block Description  
7.5  
Power Generation  
The 34709 PMIC provides reference and supply voltages for the application processor as well as peripheral device.  
Six buck (step down) converters and one boost (step up) converters are included. One of the buck regulators can be configured  
in multiphase, single phase mode, or operate as separate independent outputs (in this case, there are six buck converters). The  
buck converters provide the supply to processor cores and to other low-voltage circuits such as IO and memory. Dynamic voltage  
scaling is provided to allow controlled supply rail adjustments for the processor cores and/or other circuitry. The boost converter  
supplies the VUSB regulator for the USB PHY on the processor. The VUSB regulator is powered from the boost to ensure  
sufficient headroom for the LDO through the normal discharge range of the main battery.  
Linear regulators are directly supplied from the battery or from the switching regulator, and include supplies for IO and  
peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. Naming conventions are suggestive of typical or possible use  
case applications, but the switching and linear regulators may be utilized for other system power requirements within the  
guidelines of specified capabilities. Four general purpose I/Os are available, which can be configured as inputs/outputs. As inputs  
they can be configured as interrupts.  
7.5.1  
Power Tree  
Refer to the representative tables and text specifying each supply for information on performance metrics and operating ranges.  
Table 20 summarizes the available power supplies.  
Table 20. Power Tree Summary  
Supply  
Purpose (typical application)  
Buck regulator for processor VDDGP domain  
Buck regulator for processor VCC domain  
Buck regulator for processor VDD domain and peripherals  
Buck regulator for DDR memory and peripherals  
Buck regulator for DDR memory and peripherals  
Buck regulator for I/O domain  
Output Voltage (in V)  
Load Capability (in mA)  
SW1  
SW2  
0.650 – 1.4375  
0.650 – 1.4375  
2000  
1000  
500  
500  
500  
1000  
380  
0.05  
50  
SW3  
0.650 – 1.425  
SW4A  
SW4B  
SW5  
1.200 – 1.85: 2.5/3.15  
1.200 – 1.85: 2.5/3.15  
1.200 – 1.85  
Boost regulator for USB PHY support  
Secure Real Time Clock supply  
SWBST  
VSRTC  
VPLL  
5.00/5.05/5.10/5.15  
1.2  
Quiet Analog supply  
1.2/1.25/1.5/1.8  
DDR Ref supply  
VREFDDR  
VDAC  
0.6 – 0.9  
10  
TV DAC supply, external PNP  
2.5/2.6/2.7/2.775  
2.5/2.6/2.75/3.0  
250  
65  
VUSB/peripherals supply, internal PMOS  
VUSB/peripherals external PNP  
VUSB2  
VGEN1  
VGEN2  
VUSB  
2.5/2.6/2.75/3.0  
350  
250  
50  
General peripherals supply #1  
1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55  
2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3  
2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3  
3.3  
General peripherals supply #2, internal PMOS  
General peripherals supply #2, external PNP  
USB Transceiver supply  
250  
100  
7.5.2  
Modes of Operation  
The 34709 PMIC is fully programmable via the SPI interface and associated register map. Additional communication is provided  
by direct logic interfacing, including interrupt, watchdog, and reset. Default start-up of the device is selectable by hardwiring the  
Power-up Mode Select (PUMS) pins.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
30  
Functional Block Description  
Power cycling of the application is driven by the 34709 PMIC. It has the interfaces for the power buttons and dedicated signaling  
interfacing with the processor. It also ensures the supply of the Real Time Clock (RTC), critical internal logic, and other circuits  
from the coin cell, in case of brief interruptions from the main battery. A charger for the coin cell is included to ensure that it is  
kept topped off until needed.  
The 34709 PMIC provides the timekeeping, based on an integrated low-power oscillator running with a standard watch crystal.  
This oscillator is used for internal clocking, the control logic, and as a reference for the Regulator PLL. The timekeeping includes  
time of day, calendar, and alarm, and is backed up by coin cell. The clock is driven to the processor for reference and deep sleep  
mode clocking.  
34709  
Analog Integrated Circuit Device Data  
31  
Freescale Semiconductor  
Functional Block Description  
Coin cell  
BP < UVDET  
BP > UVDET  
From Any Mode: Loss of Power with PCEN=0,  
Thermal Protection Trip, or System Reset  
PCT[7:0] Expired  
Off  
Unqual’d  
Turn On  
WDI Low,  
WDIRESET=0  
WDI Low,  
WDIRESET=1  
and  
Unqual’d  
Turn On  
Turn On Event  
PCMAXCNT is  
exceeded  
Start Up Modes  
Reset Timer  
Expired  
Reset Timer  
Expired  
Warm  
Start  
Cold  
Start  
WDI Low,  
WDIRESET=1 and  
PCMAXCNT not  
exceeded  
Watchdog  
Watchdog  
Timer Expired  
On  
Turn On Event  
(Warm Boot)  
Turn On Event  
(Warm Start)  
Processor Request  
for User Off:  
USEROFFSPI=1  
Low Power  
Off Modes  
Warm Start  
Not  
Enabled  
Warm Start  
Enabled  
User  
Off  
Memory  
Hold  
User Off  
Wait  
PCUT Timer  
PCT[7:0]  
Expired  
PCUTEXPB  
cleared to 0  
WARMEN=0  
WARMEN=1  
Application of Power  
before PCUT Timer  
PCT[7:0] expiration  
(PCEN=1 and  
PCMAXCNT not  
exceeded)  
From Any Mode: Loss of  
Power with Power Cuts  
enabled (PCEN=1) and  
PCMAXCNT not exceeded  
Internal  
MemHold  
Power Cut  
Figure 6. Power Control State Machine Flow Diagram  
The following are text descriptions of the power states of the system for additional details of the state machine to complement  
the drawing in Figure 6. Note that the SPI control is only possible in the Watchdog, On and User Off Wait states, and that the  
interrupt line INT is kept low in all states except for Watchdog and On.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
32  
Functional Block Description  
7.5.2.1  
Coin Cell  
The RTC module is powered from either the battery or the coin cell, due to insufficient voltage at BP, and the IC is not in a Power  
Cut. No Turn On event is accepted in the Coin Cell state. Transition out (to the Off state) requires BP restoration with a threshold  
above UVDET. RESETB, and RESETBMCU are held low in this mode.  
The RTC module remains active (32 kHz oscillator + RTC timers), along with BP level detection to qualify exit to the Off state.  
VCOREDIG is off and the VDDLP regulator is on, the rest of the system is put into its lowest power configuration.  
If the coin cell is depleted (VSTRC drops to 0.9 V to 0.8 V while in the Coin Cell state), a complete system reset will occur. At  
next power application / Turn On event, the system will start-up reinitialized with all SPI bits including those that reset on  
RTCPORB restored to their default states.  
7.5.2.2  
Off (with good battery)  
If the supply VALWAYS is above the UVDET threshold, only the IC core circuitry at VCOREDIG and the RTC module are  
powered, all other supplies are inactive. To exit the Off mode, a valid turn on event is required. No specific timer is running in this  
mode. RESETB and RESETBMCU are held low in this mode.  
If BP is below the UVDET threshold, no turn on events are accepted. If a valid coin cell is present, the core gets powered from  
LICELL. The only active circuitry is the RTC module and the detection VCORE module powering VCOREDIG at 1.5 V.  
To exit the OFF mode, a valid turn ON event is required.  
7.5.2.3  
Cold Start  
Cold Start is entered upon a Turn On event from Off, Warm Boot, successful PCUT, or a Silent System Restart. The first 8.0 ms  
is used for initialization which includes bias generation, PUMSx configuration latching, and qualification of the input supply level  
BP. The switching and linear regulators are then powered up sequentially to limit the inrush current; see the Power-up section  
for sequencing and default level details. The reset signals RESETB and RESETBMCU are kept low. The Reset timer starts  
running when entering Cold Start. The Cold Start state is exited for the Watchdog state and both RESETB and RESETBMCU  
become high (open-drain output with external pull-ups) when the reset timer is expired. The input control pins WDI, and  
STANDBY are ignored.  
7.5.2.4  
Watchdog  
The system is fully powered and under SPI control. RESETB and RESETBMCU are high. The Watchdog timer starts running  
when entering the Watchdog state. When expired, the system transitions to the On state, where WDI will be checked and  
monitored. The input control pins WDI and STANDBY are ignored while in the Watchdog state.  
7.5.2.5  
On Mode  
The system is fully powered and under SPI control. RESETB and RESETBMCU are high. The WDI pin must be high to stay in  
this mode. The WDI IO supply voltage is referenced to SPIVCC (normally connected to SW5 = 1.8 V); SPIVCC must therefore  
remain enabled to allow for proper WDI detection. If WDI goes low, the system will transition to the Off state or Cold Start  
(depending on the configuration; refer to the section on Silent System Restart with WDI Event for details).  
7.5.2.6  
User Off Wait  
The system is fully powered and under SPI control. The WDI pin no longer has control over the part. The Wait mode is entered  
by a processor request for user off by setting the USEROFFSPI bit high. This is normally initiated by the end user via the power  
key; upon receiving the corresponding interrupt, the system will determine if the product has been configured for User Off or  
Memory Hold states (both of which first require passing through User Off Wait) or just transition to Off.  
The Wait timer starts running when entering User Off Wait mode. This leaves the processor time to suspend or terminate its tasks.  
When expired, the Wait mode is exited for User Off mode or Memory Hold mode depending on warm starts being enabled or not  
via the WARMEN bit. The USEROFFSPI bit is being reset at this point by RESETB going low.  
34709  
Analog Integrated Circuit Device Data  
33  
Freescale Semiconductor  
Functional Block Description  
7.5.2.7  
Memory Hold and User Off (Low-power Off states)  
As noted in the User Off Wait description, the system is directed into low-power Off states based on a SPI command in response  
to an intentional turn off by the end user. The only exit then will be a turn on event. To an end user, the Memory Hold and User  
Off states look like the product has been shut down completely. However, a faster start-up is facilitated by maintaining external  
memory in self-refresh mode (Memory Hold and User Off mode) as well as powering portions of the processor core for state  
retention (User Off only). The Switching regulator mode control bits allow selective powering of the buck regulators for optimizing  
the supply behavior in the low-power Off modes. Linear regulators and most functional blocks are disabled (the RTC module,  
SPI bits resetting with RTCPORB, and Turn On event detection are maintained).  
By way of example, the following descriptions assume the typical use case where SW1 supplies the processor core(s), SW2 is  
applied to the processor’s VCC domain, SW3 supplies the processors internal memory/peripherals, SW4 supplies the external  
memory, and SW5 supplies the I/O rail. The buck regulators are intended for direct connection to the aforementioned loads.  
7.5.2.8  
Memory Hold  
RESETB and RESETBMCU are low, and both CLK32K and CLK32KMCU are disabled (CLK32KMCU active if DRM is set). To  
ensure that SW1, SW2, SW3, and SW5 shut off in Memory Hold, appropriate mode settings should be used such as  
SW1MHMODE, = SW2MHMODE, = SW3MHMODE, = SW5MHMODE set to = 0 (refer to the mode control description later in  
this section). Since SW4 should be powered in PFM mode, SW4MHMODE could be set to 1.  
Upon a Turn On event, the Cold Start state is entered, the default power-up values are loaded, and the MEMHLDI interrupt bit  
is set. A Cold Start out of the Memory Hold state will result in shorter boot times compared to starting out of the Off state, since  
software does not have to be loaded and expanded from flash. The start-up out of Memory Hold is also referred to as Warm Boot.  
No specific timer is running in this mode.  
Buck regulators that are configured to stay on in MEMHOLD mode by their SWxMHMODE settings will not be turned off when  
coming out of MEMHOLD and entering a Warm Boot. The switching regulators will be reconfigured for their default settings as  
selected by the PUMSx pins in the normal time slot that would affect them.  
7.5.2.9  
User Off  
RESETB is low and RESETBMCU is kept high. The 32 kHz peripheral clock driver CLK32K is disabled; CLK32KMCU (connected  
to the processor’s CKIL input) is maintained in this mode if the CLK32KMCUEN and USEROFFCLK bits are both set, or if DRM  
is set.  
The memory domain is held up by setting SW4UOMODE = 1. Similarly, the SW1 and/or SW2 and/or SW3 supply domains can  
be configured for SWxUOMODE=1 to keep them powered through the User Off event. If one of the switching regulators can be  
shut down on in User Off, its mode bits would typically be set to 0.  
Since power is maintained for the core (which is put into its lowest power state), and since MCU RESETBMCU does not trip, the  
processor’s state may be quickly recovered when exiting USEROFF upon a turn on event. The CLK32KMCU clock can be used  
for very low frequency / low-power idling of the core(s), minimizing battery drain, while allowing a rapid recovery from where the  
system left off before the USEROFF command.  
Upon a turn on event, Warm Start state is entered, and the default power-up values are loaded. A Warm Start out of User Off will  
result in an almost instantaneous start-up of the system, since the internal states of the processor were preserved along with  
external memory. No specific timer is running in this mode.  
7.5.2.10 Warm Start  
Entered upon a Turn On event from User Off. The first 8.0 ms is used for initialization, which includes bias generation, PUMSx  
latching, and qualification of the input supply level BP. The switching and linear regulators are then powered up sequentially to  
limit the inrush current; see Start-up Requirements for sequencing and default level details. If SW1, SW2, SW3, SW4, and/or  
SW5, were configured to stay on in User Off mode by their SWxUOMODE settings, they will not be turned off when coming out  
of User Off and entering a Warm Start. The buck regulators will be reconfigured for their default settings as selected by the  
PUMSx pins in the respective time slot defined in the sequencer selection.  
RESETB is kept low and RESETBMCU is kept high. CLK32KMCU is kept active if CLK32KMCU was set. The reset timer starts  
running when entering Warm Start. When expired, the Warm Start state is exited for the Watchdog state, a WARMI interrupt is  
generated, and RESETB will go high.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
34  
Functional Block Description  
7.5.2.11 Internal MemHold Power Cut  
As described in the Power Cut Description, a momentary power interruption will put the system into the Internal MemHold Power  
Cut state if PCUTs are enabled. The backup coin cell will now supply the 34709 core along with the 32 k crystal oscillator, the  
RTC system, and coin cell backed up registers. All regulators will be shut down to preserve the coin cell and RTC as long as  
possible.  
Both RESETB and RESETBMCU are tripped, bringing the entire system down along with the supplies and external clock drivers,  
so the only recovery out of a Power Cut state is to reestablish power and initiate a Cold Start.  
If the PCT timer expires before power is re-established, the system transitions to the Off state and awaits a sufficient supply  
recovery.  
7.5.3  
Power Control Logic  
Power Cut Description  
7.5.3.1  
When the BP drops below the UVDET threshold, due to battery bounce or battery removal, the Internal MemHold Power Cut  
mode is entered and a Power Cut (PCUT) timer starts running. The backup coin cell will now supply the RTC as well as the on  
chip memory registers and some other power control related bits. All other supplies will be disabled.  
The maximum duration of a power cut is determined by the PCUT timer PCT [7:0] preset via the SPI. When a PCUT occurs, the  
PCUT timer will be started. The contents of PCT [7:0] does not reflect the actual count down value, but will keep the programmed  
value, and therefore does not have to be reprogrammed after each power cut.  
If power is not re-established above the 3.0 V threshold before the PCUT timer expires, the state machine transitions to the Off  
mode at expiration of the counter, and clears the PCUTEXB bit by setting it to 0. This transition is referred to as an “unsuccessful”  
PCUT. In addition the PMIC will bring the SDWNB pin low for one 32 kHz clock cycle before powering down.  
Upon re-application of power before expiration (a “successful PCUT”, defined as BP first rising above the UVDET threshold and  
then battery above the 3.0 V threshold before the PCUT timer expires), a Cold Start is engaged after the UVTIMER has expired.  
In order to distinguish a non-PCUT initiated Cold Start from a Cold Start after a PCUT, the PCI interrupt should be checked by  
software. The PCI interrupt is cleared by software or when cycling through the Off state.  
Because the PCUT system quickly disables the entire power tree, the battery voltage may recover to a level with the appearance  
of a valid supply once the battery is unloaded. However, upon a restart of the IC and power sequencer, the surge of current  
through the battery and trace impedances can once again cause the BP node to droop below UVDET. This chain of cyclic power  
down / power-up sequences is referred to as “ambulance mode”, and the power control system includes strategies to minimize  
the chance of a product falling into and getting stuck in ambulance mode.  
First, the successful recovery out of a PCUT requires the BP node to rise above LOBATT threshold, providing hysteretic margin  
from the LOBATT (H to L) threshold. Secondly, the number of times the PCUT mode is entered is counted with the counter  
PCCOUNT [3:0], and the allowed count is limited to PCMAXCNT [3:0] set through the SPI. When the contents of both become  
equal, then the next PCUT will not be supported and the system will go to Off mode, after the PCUT time expires.  
After a successful power-up after a PCUT (i.e., valid power is reestablished, the system comes out of reset, and the processor  
reassumes control), software should clear the PCCOUNT [3:0] counter. Counting of PCUT events is enabled via the  
PCCOUNTEN bit. This mode is only supported if the power cut mode feature is enabled by setting the PCEN bit. When not  
enabled, then in case of a power failure, the state machine will transition to the Off state. SPI control is not possible during a  
PCUT event and the interrupt line is kept low. SPI configuration for PCUT support should also include setting the PCUTEXPB = 1  
(See Silent Restart from PCUT Event).  
7.5.3.2  
Silent Restart from PCUT Event  
If a short duration power cut event occurs (such as from a battery bounce, for example), it may be desirable to perform a silent  
restart, so the system is reinitialized without alerting the user. This can be facilitated by setting the PCUTEXPB bit to “1” at booting  
or after a Cold Start. This bit resets on RTCPORB, therefore any subsequent Cold Start can first check the status of PCUTEXPB  
and the PCI bit. The PCUTEXPB is cleared to “0” when transitioning from PCUT to Off. If there was a PCUT interrupt and  
PCUTEXPB is still “1”, then the state machine has not transitioned through Off, which confirms that the PCT timer has not expired  
during the PCUT event (i.e., a successful power cut). In this case, a silent restart may be appropriate.  
34709  
Analog Integrated Circuit Device Data  
35  
Freescale Semiconductor  
Functional Block Description  
If PCUTEXPB is found to be “0” after the Cold Start where PCI is found to be “1”, then it is inferred that the PCT timer has expired  
before power was reestablished, flagging an unsuccessful power cut or first power-up, so the start-up user greeting may be  
desirable for playback.  
7.5.3.3  
Silent System Restart with WDI Event  
A mechanism is provided for recovery if the system software somehow gets into an abnormal state which requires a system reset,  
but it is desired to make the reset a silent event so as to happen without end user awareness. The default response to WDI going  
low is for the state machine to transition to the Off state (when WDIRESET = 0). However, if WDIRESET = 1, the state machine  
will go to Cold Start without passing through Off mode (i.e., does not generate an OFFB signal).  
A WDIRESET event will generate a maskable WDIRESETI interrupt and also increment the PCCOUNT counter. This function is  
unrelated to PCUTs, but it shares the PCUT counter so that the number of silent system restarts can be limited by the  
programmable PCMAXCNT counter.  
When PCUT support is used, the software should set the PCUTEXPB bit to “1”. Since this bit resets with RTCPORB, it will not  
be reset to “0” if a WDI falls and the state machine goes straight to the Cold Start state. Therefore, upon a restart, software can  
discern a silent system restart if there is a WDIRESETI interrupt and PCUTEXPB = 1. The application may then determine that  
an inconspicuous restart without fanfare may be more appropriate than launching into the welcoming routine.  
A PCUT event does not trip the WDIRESETI bit.  
Note that the system response to WDI is gated by the Watchdog timer—once the timer has expired, then the system will respond  
as programmed by WDIRESET and described above.  
7.5.3.4  
Turn On Events  
When in Off mode, the circuit can be powered on via a Turn On event. The Turn On events are listed by the following. To indicate  
to the processor what event caused the system to power on, an interrupt bit is associated with each of the Turn On events.  
Masking the interrupts related to the turn on events will not prevent the part to turn on except for the time of day alarm. If the part  
was already on at the time of the turn on event, the interrupt is still generated.  
Power Button Press: PWRON1, or PWRON2 pulled low with corresponding interrupts and sense bits PWRON1I or  
PWRON2I, and PWRON1S or PWRON2S. A power on/off button is connected from PWRONx to ground. The PWRONx can  
be hardware debounced through a programmable debouncer PWRONxDBNC [1:0] to avoid a response upon a very short (i.e.,  
unintentional) key press. BP should be above UVDET to allow a power-up. The PWRONxI interrupt is generated for both the  
falling and the rising edge of the PWRONx pin. By default, a 30 ms interrupt debounce is applied to both falling and rising  
edges. The falling edge debounce timing can be extended with PWRONxDBNC[1:0] as defined in the following table. The  
PWRONxI interrupt is cleared by software or when cycling through the Off mode.  
Table 21. PWRONx Hardware Debounce Bit Settings(34)  
Turn On  
Debounce (ms)  
Falling Edge INT Rising Edge INT  
Bits  
State  
Debounce (ms)  
Debounce (ms)  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
PWRONxDBNC[1:0]  
750  
750  
Notes  
34. The sense bit PWRONxS is not debounced and follows the state of the PWRONx pin.  
Battery Attach: This occurs when BP crosses the 3.0V threshold and the UVDET rising threshold which is equivalent to  
attaching a charged battery or supply to the product.  
RTC Alarm: TOD and DAY become equal to the alarm setting programmed. This allows powering up a product at a preset  
time. BP should be above 3.0V, and BP should have crossed the UVDET rising threshold and not transitioned below the  
UVDET falling threshold.  
System Restart: System restart which may occur after a system reset as described earlier in this section. This is an optional  
function, see Turn Off Events. BP should be above 3.0 V and BP should have crossed the UVDET rising threshold and not  
transitioned below the UVDET falling threshold.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
36  
Functional Block Description  
Global System Reset: The global reset feature powers down the part, disables the charger, resets the SPI registers to their  
default value including all the RTCPORB registers (except the DRM bit, and the RTC registers), and then powers back on. To  
enable a global reset, the GLBRST pin needs to be pulled low for greater than GLBRSTTMR [1:0] seconds and then pulled  
back high (defaults to 12 s). BP should be above 3.0 V.  
Table 22. Global Reset Time Settings  
Bits  
State  
Time (s)  
00  
01  
Invalid  
4.0  
GLBRSTTMR[1:0]  
10  
8.0  
11 (default)  
12  
7.5.3.5  
Turn Off Events  
Power Button Press (via WDI): User shut down of a product is typically done by pressing the power button connected to the  
PWRONx pin. This will generate an interrupt (PWRONxI), but will not directly power off the part. The product is powered off  
by the processor’s response to this interrupt, which will be to pull WDI low. Pressing the power button is therefore under normal  
circumstances not considered as a turn off event for the state machine. However, since the button press power down is the  
most common turn off method for end products, it is described in this section as the product implementation for a WDI initiated  
Turn Off event. Note that the software can configure a user initiated power down, via a power button press for transition to a  
Low-power Off mode (Memory Hold or User Off) for a quicker restart than the default transition into the Off state.  
Power Button System Reset: A secondary application of the PWRONx pins is the option to generate a system reset. This is  
recognized as a Turn Off event. By default, the system reset function is disabled but can be enabled by setting the  
PWRONxRSTEN bits. When enabled, a four second long press on the power button will cause the device to go to the Off  
mode, and as a result, the entire application will power down. An interrupt SYSRSTI is generated upon the next power-up.  
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.  
Thermal Protection: If the die gets overheated, the thermal protection will power off the part to avoid damage. A Turn On  
event will not be accepted while the thermal protection is still being tripped. The part will remain in Off mode until cooling  
sufficiently to accept a Turn On event. There are no specific interrupts related to this other than the warning interrupts.  
Under-voltage Detection: When the voltage at BP drops below the under-voltage detection threshold UVDET, the state  
machine will transition to Off mode if PCUT is not enabled, or if the PCT timer expires when PCUT is enabled. The SDWNB  
pin is used to notify that the processor that the PMIC is going to immediately shut down. The PMIC will bring the SDWNB pin  
low for one 32 kHz clock cycle before powering down. This signal will then be brought back high in the power Off state.  
7.5.3.6  
Timers  
The different timers as used by the state machine are listed by the following. This listing does not include RTC timers for  
timekeeping. A synchronization error of up to one clock period may occur with respect to the occurrence of an asynchronous  
event, the duration listed below is therefore the effective minimum time period.  
Table 23. Timer Main Characteristics  
Timer  
Duration  
Clock  
Under-voltage Timer  
Reset Timer  
4.0 ms  
40 ms  
32 k/32  
32 k/32  
32 k/32  
Watchdog Timer  
128 ms  
Programmable 0 to 8 seconds  
in 31.25 ms steps  
Power Cut Timer  
32 k/1024  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
37  
Functional Block Description  
7.5.3.6.1  
Timing Diagrams  
A Turn On event timing diagrams shown in Figure 7.  
ow  
Turn On Event  
WDI Pulled Low  
Sequencer time slots  
System Core Active  
Turn On Verification  
Power Up Sequencer  
UV Masking  
RESETB  
INT  
WDI  
8 ms  
8 ms  
20 ms  
12 ms  
128 ms  
1- Off  
2- Cold Start  
3- Watchdog  
4- On  
3- Watchdog  
1- Off  
Power up of the system upon a Turn On Event followed by a transition to the On state if WDI is pulled high  
Turn on Event is based on PWRON being pulled low  
... or transition to Off state if WDI remains low  
= Indeterminate State  
Figure 7. Power-up Timing Diagram  
7.5.3.7  
Power Monitoring  
The voltage at BP are monitored by detectors as summarized in Table 24.  
Table 24. LOWBATT Detection Thresholds  
Threshold  
Power on  
Voltage (V)  
3.0  
Low input supply warning  
• BP (H to L)(35)  
2.9  
UVDET rising(36)  
3.0  
UVDT Falling(36)  
2.65  
Notes  
35. 50 mV hysteresis is applied.  
36. ± 4.0 % tolerance  
The UVDET and Power on thresholds are related to the power on/off events as described earlier in this chapter. In order for the  
IC to power on, BP must rise above the UVDET rising threshold, and the power on threshold (3.0 V) threshold. When the BP  
node decreases below the 2.9 V threshold, a low input supply warning will be sent to the processor via the LOWBATTI interrupt.  
The LOWBATTI detection threshold is debounced by the VBATTDB[2:0] SPI bits shown in Table 25.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
38  
Functional Block Description  
Table 25. VBATTDB Debounce Times  
VATTDB[1:0]  
Debounce Time (ms)  
00  
01  
0.1  
1.0  
2.5  
3.9  
10  
11 (default)  
7.5.3.8  
Power Saving  
System Standby  
7.5.3.8.1  
A product may be designed to enter DSM after periods of inactivity, the STANDBY pin is provided for board level control of timing  
in and out of such deep sleep modes.  
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing  
the operating mode of the switching regulators, or disabling some regulators. This can be obtained by controlling the STANDBY  
pin. The configuration of the regulators in standby is pre-programmed through the SPI.  
A lower power standby mode can be obtained by setting the ON_STBY_LP SPI bit to a one. With the ON_STBY_LP SPI bit set  
and the STANDBY pin asserted, a lower power standby will be entered. In the on Standby Low-power mode, the switching  
Regulators should all be programmed into PFM mode, and the LDO's should be configured to Low-power mode when the  
STANDBY pin is asserted. The PLL is disabled in this mode  
Note that the STANDBY pin is programmable for Active High or Active Low polarity, and the decoding of a Standby event will  
take into account the programmed input polarity associated with each pin. For simplicity, Standby will generally be referred to as  
active high throughout this document, but as defined in Table 26, active low operation can be accommodated. Finally, since the  
STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond  
to the pin level changes.  
Table 26. Standby Pin and Polarity Control  
STANDBY (Pin)  
STANDBYINV (SPI bit)  
STANDBY Control(37)  
0
0
1
1
0
1
0
1
0
1
1
0
Notes  
37. STANDBY = 0: System is not in Standby STANDBY = 1: System is in Standby  
The state of the STANDBY pin only has influence in On mode, and are therefore it is ignored during start-up and in the Watchdog  
phase. This allows the system to power-up without concern of the required Standby polarities since software can make  
adjustments accordingly as soon as it is running.  
A command to transition to one of the low-power Off states (User Off or Memory Hold, initiated with USE-ROFFSPI=1) redefines  
the power tree configuration based on SWxMODE programming, and has priority over Standby (which also influences the power  
tree configuration).  
7.5.3.8.2  
Standby Delay  
A provision to delay the Standby response is included. This allows the processor and peripherals, some time after a Standby  
instruction has been received, to terminate processes to facilitate seamless Standby exiting and re-entrance into Normal  
operating mode.  
A programmable delay is provided to hold off the system response to a Standby event. When enabled (STBYDLY = 01, 10, or  
11), STBYDLY will delay the STANDBY initiated response for the entire IC until the STBYDLY counter expires.  
34709  
Analog Integrated Circuit Device Data  
39  
Freescale Semiconductor  
Functional Block Description  
Note that this delay is applied only when going into Standby, and no delay is applied when coming out of Standby. Also, an  
allowance should be accounted for synchronization of the asynchronous Standby event and the internal clocking edges (up to a  
full 32 k cycle of additional delay).  
Table 27. Delay of STANDBY- Initiated Response  
STBYDLY[1:0]  
Function  
No Delay  
00  
One 32 k period (default)  
Two 32 k periods  
01  
10  
11  
Three 32 k periods  
7.5.4  
Buck Switching Regulators  
Six buck switching regulators are provided with integrated power switches and synchronous rectification. In a typical application,  
SW1 and SW2 are used for supplying the application processor core power domains. Split power domains allow independent  
DVS control for processor power optimization, or to support technologies with a mix of device types with different voltage ratings.  
SW3 is used for powering internal processor memory as well as low-voltage peripheral devices and interfaces which can run at  
the same voltage level. SW4A/B is used for powering external DDR memory as well as low-voltage peripheral devices and  
interfaces, which can run at the same voltage level. SW5 is used to supply the I/O domain for the system.  
The buck regulators are supplied from the system supply BP, which is drawn from the main battery  
The switching regulators can operate in different modes depending on the load conditions. These modes can be set through the  
SPI and include a PFM mode, PWM Pulse Skip, an Automatic Pulse Skipping mode, and a PWM mode.  
Table 28. Buck Operating Modes  
Mode  
Description  
The regulator is switched off and the output voltage is discharged  
OFF  
The regulator is switched on and set to PFM mode operation. In this mode, the regulator is always running in  
PFM mode. Useful at light loads for optimized efficiency.  
PFM  
APS  
The regulator is switched on and set to Automatic Pulse Skipping. In this mode the regulator moves automatically  
between pulse skipping and full PWM mode depending on load conditions.  
The regulator is switched on and set to PWM mode. In this mode the regulator is always in full PWM mode  
operation regardless of load conditions.  
PWM  
The regulator is alternating between pulse skipping and PWM modes, depending on the load conditions.  
PWMPS  
Buck modes of operation are programmable for explicitly defined or load-dependent control.  
When initially activated, regulators outputs will apply controlled stepping to the programmed value. The soft start feature limits  
the inrush current at start-up. During soft start, the regulator will be forced to PWM mode for 3.0 ms and then default to the APS  
mode A built in current limiter ensures that during normal operation the maximum current through the coil is not exceeded.  
Point of Load feedback is intended for minimizing errors due to board level IR drops.  
7.5.4.1  
General Control  
Operational modes of the Buck regulators can be controlled by direct SPI programming, altered by the state of the STANDBY  
pin, by direct state machine influence (i.e., entering Off or low-power Off states, for example), or by load current magnitude when  
so configured (Auto Pulse skip mode). Available modes include PWM with No Pulse Skipping (PWM), PWM with Pulse Skipping  
(PWMPS), Pulse Frequency Mode (PFM), Automatic Pulse Skip (APS), and Off. The transition between the two modes PWMPS  
and PWM can occur automatically, based on the load current (auto pulse skip mode). For light loading, the regulators should be  
put into PFM mode to optimize efficiency.  
SW1A/B, SW2, SW3, SW4A/B, and SW5, can be configured for mode switching with STANDBY or autonomously, based on load  
current Auto pulse skip mode. Additionally, provisions are made for maintaining PFM operation in User off and Memhold modes,  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
40  
Functional Block Description  
to support state retention for faster start-up from the Low-power Off modes for Warm Start or Warm Boot. SWxMODE[3:0] bits  
will be reset to their default values defined by PUMSx settings by the start-up sequencer.  
Table 29 summarizes the Buck regulators programmability for Normal and Standby modes.  
Table 29. Switching regulator Mode Control for Normal and Standby Operation  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Off  
PWM  
PWMPS  
PFM  
Off  
Off  
Off  
Off  
APS  
Off  
PWM  
PWM  
Off  
PWM  
APS  
Off  
APS  
APS  
PWMPS  
PWMPS  
APS  
PFM  
PFM  
PFM  
PFM  
PWM  
PWMPS  
PWMPS  
APS  
PWM  
PWMPS  
PFM  
In addition to controlling the operating mode in Standby, the voltage setting can be changed. The transition in voltage is handled  
in a controlled slope manner, see Serial Interfaces for details. Each regulator has an associated set of SPI bits for Standby mode  
set points. By default, the Standby settings are identical to the non-standby settings which are initially defined by PUMSx  
programming.  
The actual operating mode of the Switching regulators as a function of the STANDBY pin is not reflected through the SPI. In other  
words, the SPI will read back what is programmed in SWxMODE[3:0], not the actual state that may be altered as described  
previously.  
Two tables follow for mode control in the low-power Off states. Note that a low-power Off activated SWx should use the Standby  
set point as programmed by SWxSTBY[4:0]. The activated regulator(s) will maintain settings for mode and voltage until the next  
start-up event. When the respective time slot of the start-up sequencer is reached for a given regulator, its mode and voltage  
settings will be updated the same as if starting out of the Off state (except that switching regulators active through a low-power  
Off mode will not be off when the start-up sequencer is started).  
Table 30. Switching regulator Control In Memory Hold  
Memory Hold Operational Mode  
SWxMHMODE  
(38)  
0
1
Off  
PFM  
Notes:  
38. For Memory Hold mode, an activated SWx should use the  
Standby set point as programmed by SWxSTBY[4:0].  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
41  
Functional Block Description  
Table 31. Switching regulator Control In User Off  
SWxUOMODE  
User Off Operational Mode (39)  
0
1
Off  
PFM  
Notes:  
39. For User Off mode, an activated SWx should use the  
Standby set point as programmed by SWxSTBY[4:0].  
In normal steady state operating mode, the SW1xPWGD pin is high. When the buck charger set point is changed to a higher or  
lower set point, the SW1xPWGD pin will go low and will go high again when the higher/lower set point is reached.  
7.5.4.2  
Switching Frequency  
A PLL generates the Switching system clocking from the 32.768 kHz crystal oscillator reference. The switching frequency can  
be programmed to 2.0 MHz or 4.0 MHz by setting the PLLX SPI bit as shown in Table 32.  
Table 32. Buck Regulator Frequency  
PLLX  
Switching Frequency (Hz)  
0
1
2 000 000  
4 000 000  
The clocking system provides a near instantaneous activation when the Switching regulators are enabled or when exiting PFM  
operation for PWM mode. The PLL can be configured for continuous operation with PLLEN = 1.  
7.5.4.3  
SW1  
SW1 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator. It can be operated in single phase/dual  
phase mode. The operating mode of the Switching regulators is configured by the SW1CFG pin. The SW1CFG pin is sampled  
at start-up.  
Table 33. SW1 Configuration  
SW1CFG  
VCOREDIG  
Ground  
SW1A/B Configuration Mode  
Single Phase Mode  
Dual Phase Mode  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
42  
Functional Block Description  
BP  
SW1IN  
SW1AMODE  
SW1FAULT  
ISENSE  
CINSW 1A  
Controller  
SW1  
SW1ALX  
Driver  
LSW 1A  
DSW1  
COSW1A  
GNDSW1A  
SW1FB  
Internal  
Compensation  
SPI  
Z2  
SPI  
Interface  
Z1  
VREF  
EA  
DAC  
BP  
SW1BIN  
SW1BMODE  
ISENSE  
CIN SW 1B  
Controller  
SW1BLX  
Driver  
SW1BFAULT  
GNDSW1B  
VCOREDIG  
SW1CFG  
Figure 8. SW1 Single Phase Output Mode Block Diagram  
BP  
SW1IN  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1  
SW1ALX  
Driver  
LSW1A  
COSW1A  
DSW1A  
SW1FAULT  
GNDSW1A  
Internal  
Compensation  
SPI  
Z2  
SPI  
Interface  
SW1FB  
Z1  
VREF  
EA  
DAC  
BP  
SW1BIN  
SW1BLX  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
Driver  
LSW 1B  
COSW 1B  
DSW1B  
SW1BFAULT  
GNDSW1B  
SW1CFG  
Figure 9. SW1 Dual Phase Output Mode Block Diagram  
34709  
Analog Integrated Circuit Device Data  
43  
Freescale Semiconductor  
Functional Block Description  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW1FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW1A/B output voltage is SPI configurable in step sizes of 12.5 mV as shown in the table below. The SPI bits SW1A[5:0] set the  
output voltage for both the SW1A and SW1B.  
Table 34. SW1A/B Output Voltage Programmability  
SW1A/B  
Output (V)  
SW1A/B  
Output (V)  
Set Point SW1A[5:0]  
Set Point SW1A[5:0]  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
44  
Functional Block Description  
Table 35. SW1A/B Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW1A/B BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
• PFM operation, 0 < IL < ILMAX  
VSW1IN  
3.0  
2.8  
-
-
4.5  
4.5  
V
Output Voltage Accuracy  
(40)  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
VSW1ACC  
Nom-25  
Nom-25  
Nom  
Nom  
Nom+25  
Nom+25  
mV  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode single/dual phase (parallel)  
• SW1 in PFM mode  
ISW1  
-
-
-
2000  
-
mA  
A
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V, Current through Inductor  
ISW1PEAK  
-
4.0  
-
-
Transient Load Change  
• 100 mA/µs  
ISW1  
A
-
-
1.0  
25  
TRANSIENT  
VSW1OS-  
Start-up Overshoot, IL = 0  
mV  
µs  
START  
Turn-on Time  
tON-SW1  
• Enable to 90% of end value IL = 0  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW1  
-
-
2.0  
4.0  
-
-
MHz  
µA  
• PLLX = 1  
Quiescent Current Consumption  
• PWMPS or APS Mode, IL=0 mA; device not switching  
• PFM Mode, IL=0 mA  
ISW1Q  
-
-
160  
15  
-
-
Efficiency,  
• PFM, 0.9 V, 1.0 mA  
-
-
-
-
54  
75  
81  
76  
-
-
-
-
(41)  
• PWM Pulse skipping, 1.1 V, 200 mA  
• PWM Pulse skipping, 1.1 V, 800 mA  
• PWM, 1.1 V, 1600 mA  
%
Notes:  
40. Transient loading for load steps of ILMAX/2.  
41. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current  
34709  
Analog Integrated Circuit Device Data  
45  
Freescale Semiconductor  
Functional Block Description  
7.5.4.4  
SW2  
SW2 is fully integrated synchronous Buck PWM voltage-mode control DC/DC regulator.  
BP  
SW2IN  
SW2MODE  
ISENSE  
C
INSW 3  
Controller  
SW2  
SW2LX  
Driver  
LSW2  
DSW 2  
COSW2  
SW2FAULT  
SPI  
Interface  
GNDSW2  
Internal  
Compensation  
SPI  
Z2  
SW2FB  
Z1  
VREF  
EA  
DAC  
Figure 10. SW2 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected, the regulator  
will limit the current through cycle by cycle operation, alert the system through the SW2FAULT SPI bit, and issue an SCPI  
interrupt via the INT pin.  
SW2 can be programmed in step sizes of 12.5 mV as shown in Table 36.  
Table 36. SW2 Output Voltage Programmability  
SW2x  
Output (V)  
SW2 Output  
(V)  
Set Point SW2[5:0]  
Set Point SW2[5:0]  
0
1
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
46  
Functional Block Description  
Table 36. SW2 Output Voltage Programmability  
SW2x  
SW2 Output  
(V)  
Set Point SW2[5:0]  
Set Point SW2[5:0]  
Output (V)  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
Table 37. SW2 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW2 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
• PFM operation, 0 < IL < ILMAX  
VSW2IN  
3.0  
2.8  
-
-
4.5  
4.5  
V
Output Voltage Accuracy  
(42)  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
VSW2ACC  
Nom-25  
Nom-25  
Nom  
Nom  
Nom+25  
Nom+25  
mV  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode  
• PFM mode  
ISW2  
-
-
-
1000  
-
mA  
A
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW2PEAK  
-
2.0  
-
Transient Load Change  
• 100 mA/µs  
ISW2  
A
-
-
-
-
0.500  
25  
TRANSIENT  
VSW2OS-  
Start-up Overshoot, IL = 0  
mV  
µs  
START  
Turn-on Time  
tON-SW2  
• Enable to 90% of end value IL = 0  
-
-
500  
34709  
Analog Integrated Circuit Device Data  
47  
Freescale Semiconductor  
Functional Block Description  
Table 37. SW2 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW2 BUCK REGULATOR (CONTINUED)  
Switching Frequency  
-
-
-
• PLLX = 0  
• PLLX = 1  
fSW2  
-
-
2.0  
4.0  
MHz  
µA  
Quiescent Current Consumption  
• PWMPS or APS Mode, IL=0 mA; device not switching  
• PFM Mode, IL = 0 mA; device not switching  
ISW2Q  
-
-
160  
15  
-
-
Efficiency  
• PFM, 0.9 V, 1.0 mA  
-
-
-
-
54  
75  
83  
78  
-
-
-
-
(43)  
• PWM Pulse skipping, 1.2 V, 120 mA  
• PWM Pulse skipping, 1.2 V, 500 mA  
• PWM, 1.2 V, 1000 mA  
%
Notes:  
42. Transient loading for load steps of ILMAX/2.  
43. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current.  
7.5.4.5  
SW3  
SW3 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator.  
BP  
SW3IN  
SW3MODE  
ISENSE  
C
INSW 3  
Controller  
SW3  
SW3LX  
Driver  
LSW3  
DSW3  
COSW3  
SW3FAULT  
SPI  
Interface  
GNDSW3  
Internal  
Compensation  
SPI  
Z2  
SW3FB  
Z1  
VREF  
EA  
DAC  
Figure 11. SW3 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW3FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW3 can be programmed in step sizes of 25 mV as shown in Table 38.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
48  
Functional Block Description  
Table 38. SW3 Output Voltage Programmability  
Set Point  
SW3[4:0]  
SW3 Output (V)  
Set Point  
SW3[4:0]  
SW3 Output (V)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Table 39. SW3 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW3 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
• PFM operation, 0 < IL < ILMAX  
VSW3IN  
3.0  
2.8  
-
-
4.5  
4.5  
V
Output Voltage Accuracy  
(44)  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
VSW3ACC  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
mV  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode  
• PFM mode  
ISW3  
-
-
-
500  
-
mA  
A
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW3PEAK  
-
-
1.0  
-
-
Transient Load Change  
• 100 mA/µs  
ISW3  
250  
mA  
mV  
µs  
TRANSIENT  
VSW3OS-  
Start-up Overshoot, IL = 100 mA/µs  
-
-
-
-
25  
START  
Turn-on Time  
tON-SW3  
• Enable to 90% of end value IL = 0  
500  
34709  
Analog Integrated Circuit Device Data  
49  
Freescale Semiconductor  
Functional Block Description  
Table 39. SW3 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW3 BUCK REGULATOR (CONTINUED)  
Switching Frequency  
• PLLX = 0  
• PLLX = 1  
fSW3  
-
-
2.0  
4.0  
-
-
MHz  
µA  
Quiescent Current Consumption  
• PWMPS or APS Mode, IL=0 mA; device not switching  
• PFM Mode, IL = 0 mA; device not switching  
ISW3Q  
-
-
160  
15  
-
-
Efficiency  
• PFM, 1.2 V, 1.0 mA  
-
-
-
-
71  
79  
82  
81  
-
-
-
-
(45)  
• PWM Pulse skipping, 1.2 V, 120 mA  
• PWM Pulse skipping, 1.2 V, 250 mA  
• PWM, 1.2 V, 500 mA  
%
Notes:  
44. Transient loading for load steps of ILMAX/2  
45. Efficiency numbers at VIN=3.6 V, Excludes the quiescent current,  
7.5.4.6  
SW4  
SW4A/B is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator. It can be operated in (single phase/  
dual phase mode) or as separate independent outputs. The operating mode of the Switching regulator is configured by the  
SW4CFG pin. The SW4CFG pin is sampled at start-up.  
Table 40. SW4A/B Configuration  
SW4CFG  
Ground  
SW4A/B Configuration Mode  
Separate independent output  
Single phase  
VCOREDIG  
VCORE  
Dual phase  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
50  
Functional Block Description  
BP  
SW4IN  
SW4AMODE  
ISENSE  
CINSW 4A  
Controller  
SW4A  
SW4ALX  
Driver  
LSW4A  
COSW4A  
DSW 4A  
SW4AFAULT  
GNDSW4A  
SW4AFB  
Internal  
Compensation  
SPI  
Z2  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BLX  
SW4BMODE  
ISENSE  
CINSW 4B  
Controller  
SW4B  
Driver  
LSW4B  
COSW 4B  
DSW4B  
SW4BFAULT  
GNDSW4B  
Internal  
Compensation  
SPI  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
Figure 12. SW4A/B Separate Output Mode Block Diagram  
34709  
Analog Integrated Circuit Device Data  
51  
Freescale Semiconductor  
Functional Block Description  
BP  
SW4IN  
SW4AMODE  
SW4AFAULT  
ISENSE  
CINSW4A  
Controller  
SW4  
SW4ALX  
Driver  
LSW4A  
COSW4a  
DSW4  
GNDSW4A  
Internal  
Compensation  
SPI  
Z2  
SW4AFB  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BMODE  
ISENSE  
CINSW4B  
Controller  
SW4BLX  
Driver  
SW4BFAULT  
GNDSW4B  
Internal  
SPI  
Compensation  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
VCOREDIG  
Figure 13. SW4 Single Phase Output Mode Block Diagram  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
52  
Functional Block Description  
BP  
SW4IN  
SW4AMODE  
SW4AFAULT  
ISENSE  
CINSW4A  
Controller  
SW4  
SW4ALX  
Driver  
LSW4A  
COSW4A  
DSW4A  
GNDSW4A  
Internal  
Compensation  
SPI  
Z2  
SW4AFB  
Z1  
VREF  
EA  
DAC  
SPI  
Interface  
BP  
SW4BIN  
SW4BMODE  
ISENSE  
CINSW4B  
Controller  
SW4BLX  
DSW4B  
Driver  
LSW4B  
COSW4B  
SW4BFAULT  
GNDSW4B  
Internal  
SPI  
Compensation  
Z2  
SW4BFB  
SW4CFG  
Z1  
VREF  
EA  
DAC  
VCORE  
Figure 14. SW4 Dual Phase Output Mode Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected, the regulator  
will limit the current through cycle by cycle operation, alert the system through the SW4xFAULT SPI bit, and issue an SCPI  
interrupt via the INT pin.  
SW4A/B has a high output range (2.5 V or 3.15 V) and a low output range (1.2 V to1.85 V). The SW4A/B output range is set by  
the PUMS configuration at startup and cannot be changed dynamically by software. This means that If the PUMS are set to allow  
SW4A to come up in the high output voltage range, the output can only be changed between 2.5 V or 3.15 V. It cannot be  
programmed in the low output range. If software sets the SW4AHI[1:0]= 00, when the PUMS is set to come up into the high  
voltage range, the output voltage will only go as low as the lowest setting in the high range which is 2.5 V. If the PUMS are set  
to start up in the low output voltage range, the voltage is controlled through the SW4x[4:0] bits by software. It cannot be  
programmed into the high voltage range. When changing the voltage in either the high or low voltage range, the switcher should  
be forced into PWM mode to change the voltage.  
Table 41. SW4A/B Output Voltage Select  
SW4xHI[1:0]  
Set point selected by  
Output Voltage  
00  
01  
10  
SW4x[4:0]  
SW4xHI[1:0]  
SW4xHI[1:0]  
See Table 42  
2.5 V  
3.15 V  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
53  
Functional Block Description  
Table 42. SW4A/B Output Voltage Programmability  
SW4x  
SW4x  
Output (V)  
Set Point SW4x[4:0]  
Set Point SW4x[4:0]  
Output (V)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
-
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
-
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
-
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
-
-
-
-
-
-
-
-
-
-
-
-
Table 43. SW4A/B Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW4A/B Buck Regulator  
(47)  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
• PFM operation, 0 < IL < ILMAX  
VSW4IN  
3.0  
2.8  
-
-
4.5  
4.5  
V
Output Voltage Accuracy  
(46)  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
VSW4ACC  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
mV  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode (separate)  
-
-
-
-
-
500  
1000  
-
ISW4  
mA  
A
• PWM mode single/dual phase  
• PFM mode  
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor (separate)  
• Current through Inductor  
ISW4PEAK  
-
-
1.0  
2.0  
-
-
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
54  
Functional Block Description  
Table 43. SW4A/B Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW4A/B Buck Regulator (CONTINUED)  
Transient Load Change  
• Single/Dual Phase  
• Separate  
iSW4  
-
-
-
-
500  
250  
mA  
TRANSIENT  
• 100 mA/µs  
VSW4OS-  
Start-up Overshoot, IL = 100 mA/µs  
-
-
-
-
25  
mV  
µs  
START  
Turn-on Time  
tON-SW4  
• Enable to 90% of end value IL = 0  
500  
Switching Frequency  
• PLLX = 0  
fSW4  
-
-
2.0  
4.0  
-
-
MHz  
µA  
• PLLX = 1  
Quiescent Current Consumption  
• PWMPS or APS Mode, IL=0 mA; device not switching  
• PFM Mode, IL = 0 mA; device not switching  
ISW4Q  
-
-
160  
15  
-
-
Efficiency  
-
-
-
-
-
-
-
-
79  
93  
92  
82  
72  
71  
81  
78  
-
-
-
-
-
-
-
-
• PFM, 3.15 V, 10 mA (A)  
• PWM Pulse skipping, 3.15 V, 50 mA (A)  
• PWM Pulse skipping, 3.15 V, 250 mA (A)  
• PWM, 3.15 V, 500 mA (A)  
(48)  
%
• PFM, 1.2 V, 10 mA (B)  
• PWM Pulse skipping, 1.2 V, 50 mA (B)  
• PWM Pulse skipping, 1.2 V, 250 mA (B)  
• PWM 1.2 V, 500 mA (B)  
Notes:  
46. Transient loading for load steps of ILMAX / 2.  
47. When SW4A/B is set to 3.0 V and above the regulator may drop out of regulation when BP nears the output voltage.  
48. Efficiency numbers at VIN = 3.6 V, excludes the quiescent current.  
34709  
Analog Integrated Circuit Device Data  
55  
Freescale Semiconductor  
Functional Block Description  
7.5.4.7  
SW5  
SW5 is fully integrated synchronous Buck PWM voltage mode control DC/DC regulator.  
BP  
SW5IN  
SW5MODE  
ISENSE  
CINSW5  
Controller  
SW5  
SW5LX  
Driver  
LSW5  
COSW5  
DSW5  
SW5FAULT  
SPI  
GNDSW5  
Interface  
Internal  
Compensation  
SPI  
Z2  
SW5FB  
Z1  
VREF  
EA  
DAC  
Figure 15. SW5 Block Diagram  
The peak current is sensed internally for over-current protection purposes. If an over-current condition is detected the regulator  
will limit the current through cycle by cycle operation and alert the system through the SW5FAULT SPI bit and issue an SCPI  
interrupt via the INT pin.  
SW5 can be programmed in step sizes of 25 mV as shown in Table 44. If the software wants to change the output voltage, after  
power-up the regulator should be forced into PWM mode to change the voltage.  
Table 44. SW5 Output Voltage Programmability  
SW5  
Output (V)  
SW5  
Output (V)  
Set Point SW5[4:0]  
Set Point SW5[4:0]  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
-
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
-
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
-
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
-
-
-
-
-
-
-
-
-
-
-
-
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
56  
Functional Block Description  
Table 45. SW5 Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C TA 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SW5 BUCK REGULATOR  
Operating Input Voltage  
• PWM operation, 0 < IL < IMAX  
• PFM operation, 0 < IL < ILMAX  
VSW5IN  
3.0  
2.8  
-
-
4.5  
4.5  
V
Output Voltage Accuracy  
(49)  
• PWM mode including ripple, load regulation, and transients  
• PFM Mode, including ripple, load regulation, and transients  
VSW5ACC  
Nom-3%  
Nom-3%  
Nom  
Nom  
Nom+3%  
Nom+3%  
mV  
Continuous Output Load Current, VINMIN < BP < 4.5 V  
• PWM mode  
• PFM mode  
ISW5  
-
-
-
1000  
-
mA  
A
50  
Current Limiter Peak Current Detection  
• VIN = 3.6 V Current through Inductor  
ISW5PEAK  
-
2.0  
-
Transient Load Change  
• 100 mA/µs  
ISW5  
mA  
mV  
µs  
-
-
-
-
500  
25  
TRANSIENT  
VSW5  
Start-up Overshoot, IL = 0  
OS-START  
Turn-on Time  
tON-SW5  
• Enable to 90% of end value IL = 0  
-
-
500  
Switching Frequency  
• PLLX = 0  
fSW5  
-
-
2.0  
4.0  
-
-
MHz  
µA  
• PLLX = 1  
Quiescent Current Consumption  
• PWMPS or APS Mode, IL=0 mA; device not switching  
• PFM Mode, IL = 0 mA; device not switching  
ISW5Q  
-
-
160  
15  
-
-
Efficiency  
• PFM, 1.8 V, 1.0 mA  
-
-
-
-
80  
79  
86  
82  
-
-
-
-
(50)  
• PWM Pulse skipping, 1.8 V, 50 mA  
• PWM Pulse skipping, 1.8 V, 500 mA  
• PWM, 1.8 V, 1000 mA  
%
Notes  
49. Transient Loading for load Steps of ILMAX/2  
50. Efficiency numbers at VIN=3.6 V, Excludes the quiescent current.  
34709  
Analog Integrated Circuit Device Data  
57  
Freescale Semiconductor  
Functional Block Description  
7.5.4.8  
Dynamic Voltage Scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the  
processor. SW1A/B and SW2 allow for two different set points with controlled transitions to avoid sudden output voltage changes,  
which could cause logic disruptions on their loads.  
Preset operating points for SW1A/B and SW2 can be set up for:  
• Normal operation: output value selected by SPI bits SWx[5:0]. Voltage transitions initiated by SPI writes to SWx[5:0] are  
governed by the DVS stepping rate shown in the following tables.  
• Standby (Deep Sleep): can be higher or lower than normal operation, but is typically selected to be the lowest state retention  
voltage of a given process. Set by SPI bits SWxSTBY[5:0] and controlled by a Standby event. Voltage transitions initiated by  
Standby are governed by the SWxDVSSPEED[1:0] SPI bits shown in Table 46.  
The following table summarizes the set point control and DVS time stepping applied to SW1A/B and SW2.  
Table 46. DVS Control Logic Table for SW1A/B and SW2  
STANDBY  
Set Point Selected by  
0
1
SWx[4:0]  
SWxSTBY[4:0]  
Table 47. DVS Speed Selection  
SWxDVSSPEED[1:0]  
Function  
00  
01 (default)  
10  
12.5 mV step each 2.0 s  
12.5 mV step each 4.0 s  
12.5 mV step each 8.0 s  
12.5 mV step each 16.0 s  
11  
The regulator has a strong sourcing and sinking capability in the PWM mode. Therefore, the rising/falling slope is determined by  
the regulator in PWM mode. However, if the regulators are programmed in PFM, PWMPS, or APS mode during a DVS transition,  
the falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS  
transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.  
Voltage transitions programmed through SPI(SWx[4:0]) on SW3 and SW5 will step in increments of 25 mV per 4.0 s, SW4A/B  
will step in increments of 25 mV per 8.0 s when SW4xHI[1:0]=00, and SW4A/B will step in increments of 25 mV per 16 s when  
SW4xHI[1:0]00. Additionally, SW3, SW4/B, and SW5 include standby mode set point programmability.  
The following diagram shows the general behavior for the switching regulators when initiated with SPI programming or standby  
control.  
SW1 and SW2 also contain Power Good (outputs from the 34709 to the application processor). The power good signal is an  
active high signal. When SWxPWRGDB is high, it means that the regulators output has reached its programmed voltage. The  
SWxPWRGDB voltage outputs will be low during the DVS period and if the current limit is reached on the switching regulator.  
The SWxPWRGD will be low from a low to high or a high to low transition of the regulator output voltage. During the DVS period,  
the over-current condition on the switching regulator should be masked. If the current limit is reached outside of a DVS period,  
the SWxPWRGD pin will stay low until the current limit condition is removed.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
58  
Functional Block Description  
Requested  
Set Point  
Output Voltage  
with light Load  
Internally  
Controlled Steps  
Example  
Actual Output  
Voltage  
Output  
Voltage  
Init ial  
Set Point  
Actual  
Output Voltage  
Internally  
Possible  
Output Voltage  
Window  
Controlled Steps  
Request for  
Higher Voltage  
Request for  
Lower Voltage  
Voltage  
Change  
Request  
Initiated by SPI Programming, Standby Control  
SWxPWGD  
Figure 16. Voltage Stepping with DVS  
7.5.5  
Boost Switching Regulator  
SWBST is a boost switching regulator with a programmable output, which defaults to 5.0 V on power-up, operating at 2.0 MHz.  
SWBST supplies the VUSB regulator for the USB PHY. Note that the parasitic leakage path for a boost regulator will cause the  
output voltage SWBSTOUT and SWBSTFB to sit at a Schottky voltage drop below the battery voltage whenever SWBST is  
disabled. The switching NMOS transistor is integrated on-chip. An external fly back Schottky diode, inductor, and capacitor are  
required.  
BP  
BP  
4.7u  
SWBSTIN  
SWBST  
SPI  
Registers  
2.2uH  
SPI  
Boosted Output  
Voltage SWBST  
SWBSTIN  
SWBSTLX  
Output  
Drive  
Switcher  
Core  
32 kHz  
Control  
22uF  
SWBSTFB  
GNDSWBST  
= Package Pin  
Figure 17. Boost Regulator Architecture  
SWBST output voltage programmable via the SWBST[1:0] SPI bits as shown in Table 48.  
Table 48. SWBST Voltage Programming  
Parameter  
Voltage  
SWBST Output Voltage  
00  
01  
10  
11  
5.000 (default)  
5.050  
SWBST[1:0]  
5.100  
5.150  
34709  
Analog Integrated Circuit Device Data  
59  
Freescale Semiconductor  
Functional Block Description  
SWBST can be controlled by SPI programming in PFM, PWM, and Auto mode. Auto mode transitions between PFM and PWM  
mode based on the load current. By default SWBST is powered up in Auto mode.  
Table 49. SWBST Mode Control  
Parameter  
Voltage  
SWBST Mode  
00  
01  
10  
11  
Off  
PFM  
SWBSTMODE[1:0]  
SWBSTSTBYMODE[1:0]  
Auto (default)  
PWM  
Table 50. SWBST Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SWITCH MODE SUPPLY SWBST  
(51)  
Average Output Voltage  
VSWBST  
V
• 3.0 V < VIN < 4.5 V, 0 < IL < ILMAX  
Nom-4%  
-
VNOM  
Nom+3%  
120 mV  
Output Ripple  
VSWBSTACC  
• 3.0 V < VIN < 4.5 V 0 < IL < ILMAX, excluding reverse recovery of  
Schottky diode  
Vp-p  
-
Average Load Regulation  
SWBSTACC  
mV/mA  
mV  
• VIN = 3.6 V, 0 < IL < ILMAX  
-
-
-
0.5  
50  
-
-
-
Average Line Regulation  
VSWBST  
• 3.0 V < VIN < 4.5 V IL = ILMAX  
LINEAREG  
Continuous Load Current  
ISWBST  
mA  
• 3.0 V < VIN < 4.5 V, VOUT = 5.0 V  
380  
Peak Current Limit  
ISWBSTPEAK  
mA  
mV  
• At SWBSTIN, VIN = 3.6 V  
-
-
1800  
-
-
VSWBSTOS-  
Start-up Overshoot, IL = 0 mA  
500  
START  
Turn-on Time  
tON-SWBST  
fSWBST  
ms  
MHz  
mV  
• Enable to 90% of VOUT IL = 0  
-
-
-
2.0  
-
Switching Frequency  
2.0  
Transient Load Response, IL from 1.0 to 100 mA in 1.0 µs steps  
• Maximum transient Amplitude  
VSWBS  
-
-
-
-
-
-
300  
300  
500  
TRANSIENT  
Transient Load Response, IL from 100 to 1.0 mA in 1.0 µs steps  
• Maximum transient Amplitude  
VSWBS  
mV  
µs  
TRANSIENT  
Transient Load Response, IL from 1.0 to 100 mA in 1.0 µs steps  
• Time to settle 80% of transient  
VSWBS  
TRANSIENT  
Transient Load Response, IL from 100 to 1.0 mA in 1.0 µs steps  
• Time to settle 80% of transient  
VSWBS  
ms  
%
-
-
20  
-
TRANSIENT  
Efficiency, IL = ILMAX  
65  
80  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
60  
Functional Block Description  
Table 50. SWBST Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SWITCH MODE SUPPLY SWBST (CONTINUED)  
Bias Current Consumption  
ISWBSTBIAS  
µA  
µA  
• PFM or Auto mode  
-
-
35  
-
NMOS Off Leakage  
ILEAK-SWBST  
• SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 0  
1.0  
6.0  
Notes:  
51. VIN is the low side of the inductor that is connected to BP.  
7.5.6  
Linear Regulators (LDOs)  
This section describes the linear regulators provided. For convenience, these regulators are named to indicate their typical or  
possible applications, but the supplies are not limited to these uses and may be applied to any loads within the specified regulator  
capabilities.  
A low-power standby mode controlled by STANDBY is provided for the regulators with an external pass device in which the bias  
current is aggressively reduced. This mode is useful for deep sleep operation, where certain supplies cannot be disabled, but  
active regulation can be tolerated with lesser parametric requirements. The output drive capability and performance are limited  
in this mode.  
All regulators use the main bandgap as reference. The main bandgap is bypassed with a capacitor at REFCORE. The bandgap  
and the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on the  
performance of VCOREDIG and the bandgap. No external DC loading is allowed on VCOREDIG or REFCORE. VCOREDIG is  
kept powered as long as there is a valid supply and/or coin cell.  
7.5.6.1  
General Features  
The following applies to all linear regulators, unless otherwise specified.  
Advised bypass capacitor is the Murata GRM155R60G225ME95, which comes in a 0402 case.  
In general, parametric performance specifications assume the use of low ESR X5R/X7R ceramic capacitors with 20%  
accuracy and 15% temperature spread, for a worst case stack up of 35% from the nominal value. Use of other types with wider  
temperature variation may require a larger room temperature nominal capacitance value to meet performance specs over  
temperature. In addition, capacitor derating as a function of DC bias voltage requires special attention. Finally, minimum  
bypass capacitor guidelines are provided for stability and transient performance. Larger values may be applied; performance  
metrics may be altered and generally improved, but should be confirmed in system applications.  
Regulators which require a minimum output capacitor ESR (those with external PNPs) can avoid an external resistor if ESR  
is assured with capacitor specifications or board level trace resistance.  
The output voltage tolerance specified for each of the linear regulators include process variation, temperature range, static  
line regulation, and static load regulation.  
In the Low-power mode, the output performance is degraded. Only those parameters listed in the Low-power mode section  
are guaranteed. In this mode, the output current is limited to much lower currents than in the active mode.  
When a regulator gets disabled, the output will be pulled towards ground by an internal pull-down. The pull-down is also  
activated when RESETB goes low.  
7.5.6.2  
LDO Regulator Control  
The regulators with embedded pass devices (VPLL, VGEN1, and VUSB) have an adaptive biasing scheme thus, there are no  
distinct operating modes such as a Normal mode and a Low-power mode. Therefore, no specific control is required to put these  
regulators in a Low-power mode.  
34709  
Analog Integrated Circuit Device Data  
61  
Freescale Semiconductor  
Functional Block Description  
The external pass regulator (VDAC) can also operate in a normal and low-power mode. However, since a load current detection  
cannot be performed for this regulator, the transition between both modes is not automatic and is controlled by setting the  
corresponding mode bits for the operational behavior desired.  
The regulators VUSB2, and VGEN2 can be configured for using the internal pass device or external pass device as explained in  
Supplies. For both configurations, the transition between both modes is controlled by setting the VxMODE bit for the specific  
regulator. Therefore, depending on the configuration selected, the automatic Low-power mode determines availability.  
The regulators can be disabled and the general purpose outputs can be forced low when going into Standby (note that the  
Standby response timing can be altered with the STBYDLY function, as described in the previous section). Each regulator has  
an associated SPI bit for this. When the bit is not set, STANDBY is of no influence. The actual operating mode of the regulators  
as a function of STANDBY is not reflected through SPI. In other words, the SPI will read back what is programmed, not the actual  
state.  
Table 51. LDO Regulator Control (external pass device LDOs)  
VxEN  
VxMODE  
VxSTBY STANDBY(52)  
Regulator Vx  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
1
1
Off  
On  
Low-power  
On  
Off  
Low-power  
Notes  
52. STANDBY refers to a Standby event as described earlier  
For regulators with internal pass devices, the previous table can be simplified by elimination of the VxMODE column.  
Table 52. LDO Regulator Control (internal pass device LDOs)  
VxEN  
VxSTBY  
STANDBY (53)  
Regulator Vx  
0
1
1
1
X
0
1
1
X
X
0
1
Off  
On  
On  
Off  
Notes  
53. STANDBY refers to a Standby event as described earlier  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
62  
Functional Block Description  
7.5.6.3  
Transient Response Waveforms  
The transient load and line response are specified with the waveforms as depicted in Figure 18. Note that where the transient  
load response refers to the overshoot only, so excluding the DC shift itself, the transient line response refers to the sum of both  
overshoot and DC shift. This is also valid for the mode transition response.  
V
NOM + 0.8V  
IMAX  
IL  
VIN  
VNOM + 0.3V  
0 mA  
10us  
10us  
1us  
1us  
VIN Stimulus for Transient Line Response  
IL Stimulus for Transient Load Response  
IL = 0 mA  
IL = ILMAX  
Overshoot  
VOUT  
Overshoot  
VOUT for Transient Load Response  
Active Mode  
Low Power Mode  
Active Mode  
Overshoot  
VOUT  
Mode Transition  
Time  
Overshoot  
IL < ILMAX  
IL < ILMAXLP  
IL < ILMAX  
VOUT for Mode Transition Response  
Figure 18. Transient Waveforms  
7.5.6.4  
Short-circuit Protection  
The higher current LDOs, and those most accessible in product applications, include short-circuit detection and protection  
(VDAC, VUSB, VUSB2, VGEN1, and VGEN2). The short-circuit protection (SCP) system includes debounced fault condition  
detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product  
damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its VxEN bit, while at the same time, an  
interrupt SCPI will be generated to flag the fault to the system processor. The SCPI interrupt is maskable through the SCPM  
mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, then not only is no interrupt generated, but also  
the regulators will not automatically be disabled upon a short-circuit detection. However, the built-in current limiter will continue  
to limit the output current of the regulator. Note that by default, the REGSCPEN bit is not set, so at start-up, none of the regulators  
in an overload condition are disabled.  
34709  
Analog Integrated Circuit Device Data  
63  
Freescale Semiconductor  
Functional Block Description  
7.5.6.5  
VPLL  
VPLL is provided for isolated biasing of the application processors PLLs for clock generation in support of protocol and peripheral  
needs. Depending on the application and power requirements, this supply may be considered for sharing with other loads, but  
noise injection must be avoided and filtering added, if necessary to ensure suitable PLL performance. The VPLL regulator has a  
dedicated input supply pin.  
VINPLL can be connected to either BP or a 1.8 V switched mode power supply rail such as from SW5 for the two lower set points  
of each regulator VPLL[1:0] = [00], [01]. In addition, when the two upper set points (VPLL[1:0] = [10],[11]) are used, the VINPLL  
inputs can be connected to either BP or a 2.2 V nominal external switched mode power supply rail, to improve power dissipation.  
Table 53. VPLL Voltage Control  
Parameter Value  
Function  
ILoad max  
Input Supply  
00  
output = 1.2 V  
50 mA  
50 mA  
50 mA  
50 mA  
BP or 1.8 V  
BP or 1.8 V  
01 output = 1.25 V  
10 output = 1.50 V  
VPLL[1:0]  
BP or External switch  
BP or External switch  
11  
output = 1.8 V  
Table 54. VPLL Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
Operating Input Voltage Range  
• VPLL all settings, BP biased  
UVDET  
1.75  
-
4.5  
4.5  
4.5  
VINPLL  
V
• VPLL [1:0] = 00, 01 (SW5 = 1.8 V)  
• VPLL, [1:0] = 10, 11, External Switch  
1.8  
2.2  
2.15  
Operating current Load range  
IPLL  
-
-
50  
mA  
VPLL ACTIVE MODE – DC  
Output Voltage VOUT  
VPLL  
V
VNOM  
– 0.05  
VNOM  
+ 0.05  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM  
Load Regulation  
VPLL-LOPP  
VPLL-LIPP  
IPLL-Q  
mV/mA  
mV  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
0.35  
5.0  
8.0  
75  
-
-
-
-
Line Regulation  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Quiescent Current  
µA  
• VINMIN < VIN < VINMAX IL = 0  
Current Limit  
IPLLLIM  
mA  
• VINMIN < VIN < VINMAX  
VPLL ACTIVE MODE – AC  
PSRR, IL = 75% of ILMAX, 20 Hz to 20 kHz  
• VIN = UVDET  
VPLLPSRR  
35  
50  
40  
60  
-
-
dB  
• VIN = VNOM + 1.0 V, > UVDET  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
64  
Functional Block Description  
Table 54. VPLL Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
VPLLNOISE  
-
-
20  
-
-
dB/dec  
• > 1.0 kHz – 1.0 MHz  
2.5  
V/Hz  
VPLL ACTIVE MODE – AC (CONTINUED)  
Turn-on Time  
tON-VPLL  
µs  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
-
140  
10  
Turn-off Time  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
tOFF-VPLL  
0.05  
-
Start-up Overshoot  
VPLLOS-  
• VIN = VINMIN, VINMAX IL = 0  
-
-
-
1.0  
50  
5.0  
2.0  
70  
START  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VPLL-LO  
mV  
mV  
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VPLL-LI  
8.0  
TRANSIENT  
7.5.6.6  
VREFDDR  
VREFDDR is an internal PMOS half supply Voltage Follower. The output voltage is at one half the input voltage. It’s typical  
application is as the V for DDR memories. A filtered resistor divider is utilized to create a low frequency pole. This divider then  
REF  
utilizes a voltage follower to drive the load.  
Table 55. VREFDDR Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
VREFFDDRIN  
IREFDDR  
Operating Input Voltage Range VINMIN to VINMAX  
Operating Current Load Range ILMIN to ILMAX  
1.2  
0.0  
-
-
1.8  
10  
V
mA  
VREFDDR ACTIVE MODE – DC  
Output Voltage VOUT  
VREFDDR  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
0.6  
VIN/2  
0.9  
1.0  
(54)  
Output Voltage tolerance  
• VINMIN < VIN < VINMAX  
• 0.6 mA < IL < 10 mA  
VREFDDRTOL  
%
-1.0  
-
Load Regulation  
VREFDDR  
mV/mA  
µA  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
5.0  
8.0  
36  
-
-
-
LOPP  
Quiescent Current  
IREFDDRQ  
• VINMIN < VIN < VINMAX IL = 0  
Current Limit  
IREFDDRLIM  
mA  
• VINMIN < VIN < VINMAX  
34709  
Analog Integrated Circuit Device Data  
65  
Freescale Semiconductor  
Functional Block Description  
Table 55. VREFDDR Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VREFDDR ACTIVE MODE – AC  
Turn-on Time  
tON-VREFDDR  
µs  
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
-
-
100  
10  
Turn-off Time  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
tOFF-  
ms  
0.05  
VREFDDR  
VREFDDR ACTIVE MODE – AC (CONTINUED)  
Start-up Overshoot  
VREFDDROS  
%
• VIN = VINMIN, VINMAX IL = 0  
-
-
1.0  
5.0  
2.0  
-
Transient Load Response  
VREFDDRL  
mV  
• VIN = VINMIN, VINMAX  
TRANSIENT  
Notes  
54. guaranteed at 25 °C only  
7.5.6.7  
VUSB  
The VUSB regulator is used to supply 3.3 V to the external USB PHY, it is powered from the SWBST boost supply to ensure  
current sourcing compliance through the normal discharge range of the battery/supply input. VUSB has an internal PMOS pass  
FET which will support loads up to 100 mA.  
Table 56. VUSB Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VUSB REGULATOR  
Operating Input Voltage Range VINMIN to VINMAX  
• Supplied by SWBST  
VUSBIN  
V
VSWBST  
4%  
-
VSWBST+3  
%
-
-
Operating Current Load Range ILMIN to ILMAX  
IUSB  
0.0  
100  
mA  
VUSB ACTIVE MODE - DC  
Output Voltage VOUT  
VUSB  
V
mV/mA  
mV  
• VINMIN < VIN < VINMAX ILMIN < IL < ILMA  
VNOM - 4%  
3.3  
1.0  
-
VNOM + 4%  
Load Regulation  
VUSBLOPP  
VUSBLIPP  
VUSBSOCP  
IUSBLIM  
• 0 < IL < ILMAX from DM / DP, For any VINMIN < VIN < VINMAX  
-
-
20  
-
Line Regulation  
• VINMIN < VIN < VINMAX, For any ILMIN < IL < ILMAX  
-
Over-current Protection threshold  
mA  
• VINMIN < VIN < VINMAX, Short-circuit VOUT to ground  
IMAX+20%  
-
Current Limit  
mA  
• VINMIN < VIN < VINMAX  
-
180  
-
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
66  
Functional Block Description  
Table 56. VUSB Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VUSB ACTIVE MODE - AC  
PSRR - IL = 75% of ILMAX 20 Hz to 20 kHz  
• VIN = VINMIN + 100 mV  
VUSBPSRR  
VUSBNOISE  
dB  
35  
40  
-
Output Noise - VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 50 kHz  
-
-
-
-
1.0  
0.2  
V/Hz  
• > 50 kHz – 1.0 MHz  
7.5.6.8  
VUSB2  
VUSB2 has an internal PMOS pass FET which will support loads up to 65 mA. To support load currents an external PNP is  
provided. The external PNP configuration is offered to avoid excess on-chip power dissipation at high loads and large differentials  
between BP and output settings. For lower current requirements, an integrated PMOS pass FET is included. The input pin for  
the integrated PMOS option is shared with the base current drive pin for the PNP option. The external PNP configuration must  
be committed as a hardwired board level implementation. The recommended PNP device is the ON Semiconductor™  
NSS12100XV6T1G, which is capable of handling up to 250 mW of continuous dissipation, at minimum footprint and 75 °C of  
ambient. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is the ON Semiconductor  
NSS12100UW3TCG. For stability reasons, a small minimum ESR may be required.  
A short-circuit condition will shut down the VUSB2 regulator and generate an interrupt for SCPI.  
The nominal output voltage of this regulator is SPI configurable, and can be 2.5 V, 2.6 V, 2.75 V, or 3.0 V. The output current  
when working with the internal pass FET is 65 mA, and could be up to 350 mA when working with an external PNP.  
Table 57. VUSB2 Voltage Control  
ILoad max  
Output  
Voltage  
Parameter Value  
VUSB2CONFIG=0 VUSB2CONFIG=1  
Internal Pass FET  
External PNP  
00  
01  
10  
11  
2.5 V  
2.6 V  
65 mA  
65 mA  
65 mA  
65 mA  
350 mA  
350 mA  
350 mA  
350 mA  
VUSB2[1:0]  
2.75 V  
3.00 V  
Table 58. VUSB2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
VNOM  
0.25  
+
Operating Input Voltage Range VINMIN to VINMAX  
VUSB2IN  
-
4.5  
V
Operating Current Load Range ILMIN to ILMAX  
• Internal pass FET  
IUSB2  
0.0  
0.0  
-
-
65  
mA  
• External PNP Not exceeding PNP max power  
350  
Extended Input Voltage Range  
VUSB2IN  
V
• Performance may be out of specification  
UVDET  
-
4.5  
34709  
Analog Integrated Circuit Device Data  
67  
Freescale Semiconductor  
Functional Block Description  
Table 58. VUSB2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VUSB2 ACTIVE MODE - DC  
Output Voltage VOUT  
VUSB2  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM - 3%  
VNOM  
0.25  
8.0  
VNOM + 3%  
Load Regulation  
VUSB2LOPP  
mV/mA  
mV  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
Line Regulation  
VUSB2LIPP  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Over-current Protection threshold  
VUSB2OCP  
mA  
µA  
ILMAX  
+20%  
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
-
-
Active Mode Quiescent Current, VINMIN < VIN < VINMAX  
• IL = 0, Internal PMOS configuration  
IUSB2Q  
-
-
25  
30  
-
-
• VINMIN < VIN < VINMAX IL = 0, External PNP configuration  
Current Limit  
• External PNP mode only  
• VINMIN < VIN < VINMAX  
IUSB2LIM  
-
4.62*  
-
mA  
• Current on VUSB2DRV multiplied by of external PNP transistor  
(IUSB2DRV when VSUSB2DRV is forced to LDOVDD)  
VUSB2 LOW-POWER MODE - DC  
Output Voltage VOUT  
VUSB2  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IUSB2  
mA  
µA  
Low-power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IUSB2Q  
-
8.0  
-
VUSB2 ACTIVE MODE - AC  
PSRR, IL = 75% of ILMAX 20 Hz to 20 kHz  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
VUSB2PSRR  
35  
50  
40  
60  
-
-
dB  
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
VUSB  
2NOISE  
-
-
20  
-
-
dB/dec  
• > 1.0 kHz – 1.0 MHz  
1.0  
V/Hz  
Turn-on Time  
tON-VUSB2  
ms  
ms  
%
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
0.05  
-
-
-
1.0  
10  
Turn-off Time  
tOFF-VUSB2  
• Disable to 10% of initial value VIN = VINMIN, VINMAX IL = 0  
Start-up Overshoot  
VUSB2OS-  
• VIN = VINMIN, VINMAX IL = 0  
1.0  
2.0  
START  
Transient Load Response, VIN = VINMIN, VINMAX  
• VUSB2=01, 10, 11  
x
VUSB2LO  
-
-
1.0  
50  
2.0  
70  
%
TRANSIENT  
• VUSB2=00  
mV  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
68  
Functional Block Description  
Table 58. VUSB2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Transient Line Response  
• IL = 75% of ILMAX  
VUSB2LI  
mV  
-
5.0  
8.0  
TRANSIENT  
Mode Transition Time  
tMOD-VUSB2  
• From low-power to active and from active to low-power  
IN = VINMIN, VINMAX IL = ILMAXLP  
µs  
%
-
-
-
100  
2.0  
V
Mode Transition Response  
VUSBMODE  
• From low-power to active and from active to low-power  
1.0  
RES  
VIN = VINMIN, VINMAX IL = ILMAXLP  
34709  
Analog Integrated Circuit Device Data  
69  
Freescale Semiconductor  
Functional Block Description  
7.5.6.9  
VDAC  
The primary applications of this power supply is the TV-DAC. However, these supplies could also be used for other peripherals  
if one of these functions is not required. Low-power modes and programmable standby options can be used to optimize power  
efficiency during deep sleep modes.  
An external PNP is utilized for VDAC to avoid excess on-chip power dissipation at high loads and large differentials between BP  
and output settings. For stability reasons, a small minimum ESR may be required. In the Low-power mode for VDAC, an internal  
bypass path is used instead of the external PNP. External PNP devices must always be connected to the BP line in the  
application. The recommended PNP device is the ON Semiconductor NSS12100XV6T1G, which is capable of handling up to  
250 mW of continuous dissipation at minimum footprint and 75 °C of ambient. For use cases where up to 500 mW of dissipation  
is required, the recommended PNP device is the ON Semiconductor NSS12100UW3TCG. For stability reasons, a small minimum  
ESR may be required.  
A short-circuit condition will shut down the VDAC regulator and generate an interrupt for SCPI.  
The nominal output voltage of this regulator is SPI configurable, and can be 2.5 V, 2.6 V, 2.7 V, or 2.775 V. The maximum output  
current along with an external PNP, is 250 mA.  
Table 59. VDAC Voltage Control  
Parameter  
Value  
Output Voltage  
ILoad max  
00  
01  
10  
11  
2.500 V  
2.600 V  
2.700 V  
2.775 V  
250 mA  
250 mA  
250 mA  
250 mA  
VDAC  
Table 60. VDAC Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
VNOM  
0.25  
+
Operating Input Voltage Range VINMIN to VINMAX  
VDACIN  
-
4.5  
V
Operating Current Load Range ILMIN to ILMAX  
• Not exceeding PNP max power  
IDAC  
mA  
0.0  
-
-
250  
4.5  
Extended Input Voltage Range  
VDACIN  
V
• Performance may be out of specification  
UVDET  
VDAC ACTIVE MODE – DC  
Output Voltage VOUT  
VDAC  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM – 3%  
VNOM  
0.20  
5.0  
VNOM + 3%  
Load Regulation  
VDACLOPP  
mV/mA  
mV  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
Line Regulation  
VDACLIPP  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Over-current Protection threshold  
VDACOCP  
mA  
µA  
ILMAX  
+20%  
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
-
-
-
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IDACQ  
-
30  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
70  
Functional Block Description  
Table 60. VDAC Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Current Limit  
• External PNP mode only  
• VINMIN < VIN < VINMAX  
IDACLIM  
-
3.2*  
-
mA  
• Current on VDACDRV multiplied by of external PNP transistor  
(IDACDRV when VDACDRV is forced to LDOVDD)  
VDAC LOW-POWER MODE – DC - VDACMODE=1  
Output Voltage VOUT  
VDAC  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM – 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IDAC  
mA  
µA  
Low-power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IDACQ  
-
8.0  
-
VDAC ACTIVE MODE – AC  
PSRR - IL = 75% of ILMAX 20 Hz to 20 kHz  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
VDACPSRR  
35  
50  
40  
60  
-
-
dB  
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
-
-
-
-
-
-
-115  
-126  
-132  
VDACNOISE  
V/Hz  
• > 1.0 kHz – 10 kHz  
• > 10 kHz – 1.0 MHz  
Spurs  
VDACSPURS  
dB  
ms  
ms  
%
• 32.768 kHz and harmonics  
-
-
-
-120  
1.0  
10  
Turn-on Time  
tON-VDAC  
• Enable to 90% of end value VIN = VINMIN, VINMAX IL = 0  
-
Turn-off Time  
tOFF-VDAC  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.05  
-
Start-up Overshoot  
VDACOS-  
• VIN = VINMIN, VINMAX IL = 0  
-
-
-
-
1.0  
1.0  
5.0  
-
2.0  
2.0  
8.0  
100  
START  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VDACLO  
%
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VDACLI  
mV  
µs  
TRANSIENT  
Mode Transition Time  
tMODE-VDAC  
• From low-power to active VIN = VINMIN, VINMAX IL = ILMAXLP  
Mode Transition Response  
VDACMODE  
• From low-power to active and from active to low-power  
%
-
1.0  
2.0  
RES  
VIN = VINMIN, VINMAX IL = ILMAXLP  
7.5.6.10 VGEN1, VGEN2  
General purpose LDOs, VGEN1, and VGEN2, are provided for expansion of the power tree to support peripheral devices, which  
could include EMMC cards, WLAN, BT, GPS, or other functional modules. These regulators include programmable set points for  
34709  
Analog Integrated Circuit Device Data  
71  
Freescale Semiconductor  
Functional Block Description  
system flexibility. VGEN1 has an internal PMOS pass FET, and is powered from the SW5 buck for an efficiency advantage and  
reduced power dissipation in the pass devices. VGEN2 is powered directly from the battery.  
VGEN2 has an internal PMOS pass FET, which will support loads up to 50 mA. For higher current capability, drive for an external  
PNP is provided. The external PNP is offered to avoid excess on-chip power dissipation at high loads and large differentials  
between BP and output settings. The input pin for the integrated PMOS option is shared with the base current drive pin for the  
PNP option. The external PNP device is always connected to the BP line in the application. The recommended PNP device is  
the ON Semiconductor NSS12100XV6T1G which is capable of handling up to 250 mW of continuous dissipation at minimum  
footprint and 75 °C of ambient. For use cases where up to 500 mW of dissipation is required, the recommended PNP device is  
the ON Semiconductor NSS12100UW3TCG. For stability, a small minimum ESR may be required.  
A short-circuit condition will shut down the VGEN1 and VGEN2 regulators, and generate an interrupt for SCPI.  
The nominal output voltage of both VGEN1 and VGEN2 are SPI configurable with the VGENx[2:0] bits as shown in Table 61 and  
Table 62.  
Table 61. VGEN1 Control Register Bit Assignments  
Parameter  
Value  
Output Voltage  
ILoad max  
000  
001  
010  
011  
100  
101  
110  
111  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
VGEN1[2:0]  
Table 62. VGEN2 Control Register Bit Assignments  
ILoad max  
Output  
Voltage  
Parameter Value  
VGEN2CONFIG=0 VGEN2CONFIG=1  
Internal Pass FET  
External PNP  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.15  
3.30  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
50 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
250 mA  
VGEN2[2:0]  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
72  
Functional Block Description  
Table 63. VGEN1 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
GENERAL  
Operating Input Voltage Range VINMIN to VINMAX  
• All settings  
VGEN1IN  
V
1.75  
0.0  
1.8  
-
1.85  
250  
Operating Current Load Range ILMIN to ILMAX  
• Not exceeding PNP max power  
IGEN1  
mA  
VGEN1 ACTIVE MODE – DC  
Output Voltage VOUT  
VGEN1  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM – 3%  
VNOM  
0.25  
5.0  
VNOM + 3%  
Load Regulation  
VGEN1LOPP  
mV/mA  
mV  
• 1.0 mA < IL < ILMAX For any VINMIN < VIN < VINMAX  
-
-
-
-
Line Regulation  
VGEN1LIPP  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Over-current Protection threshold  
VGEN1OCP  
mA  
ILMAX  
+20%  
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
-
-
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN1Q  
µA  
-
-
12  
-
-
Current Limit  
IGEN1LIM  
mA  
• VINMIN < VIN < VINMAX  
375  
VGEN1 ACTIVE MODE - AC  
PSRR  
• IL = 75% of ILMAX 20 Hz to 20 kHz VGEN1[2:0] = 000-101  
VGEN1PSRR  
50  
37  
60  
-
-
-
dB  
• IL = 75% of ILMAX 20 Hz to 20 kHz VGEN1[2:0] = 110-111  
Output Noise Density, VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
-
-
-
-
-
-
-115  
-126  
-132  
VGEN  
1NOISE  
V/Hz  
• > 1.0 kHz – 10 kHz  
• > 10 kHz – 1.0 MHz  
Spurs  
VGEN  
1SPURS  
dB  
ms  
ms  
%
• 32.768 kHz and harmonics  
-
-
-
-100  
1.0  
10  
Turn-on Time  
tON-VGEN1  
• Enable to 90% of end value VIN = VINMIN, VINMAX, IL = 0  
-
Turn-off Time  
tOFF-VGEN1  
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.01  
-
Start-up Overshoot  
VGEN1OS-  
• VIN = VINMIN, VINMAX, IL = 0  
-
-
-
1.0  
1.0  
5.0  
2.0  
2.0  
8.0  
START  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VGEN1LO  
%
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VGEN1LI  
mV  
TRANSIENT  
34709  
Analog Integrated Circuit Device Data  
73  
Freescale Semiconductor  
Functional Block Description  
Table 63. VGEN1 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VGEN1 ACTIVE MODE - AC (CONTINUED)  
Mode Transition Time  
tMODE-VGEN1  
• From low-power to active and from active to low-power  
VIN = VINMIN, VINMAX IL = ILMAXLP  
µs  
%
-
-
-
100  
2.0  
Mode Transition Response  
VGEN  
1MODERES  
• From low-power to active and from active to low-power  
1.0  
VIN = VINMIN, VINMAX IL = ILMAXLP  
Table 64. VGEN2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
VGEN2  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Operating Input Voltage Range VINMIN to VINMAX  
• All settings, BP biased  
VGEN2IN  
V
VNOM  
+0.25  
-
4.5  
Operating Current Load Range ILMI to ILMAX  
• Internal Pass FET  
IGEN2  
mA  
mA  
0.0  
0.0  
-
-
50  
Operating Current Load Range ILMIN to ILMAX  
• External PNP, Not exceeding PNP max power  
IGEN2  
250  
Extended Input Voltage Range  
VGEN2IN  
mV/mA  
• BP Biased, Performance may out of specification for output levels  
VGEN2 [2:0] = 010 to 111  
UVDET  
-
4.5  
VGEN2 ACTIVE MODE - DC  
Output Voltage VOUT  
VGEN2  
V
• VINMIN < VIN < VINMAX ILMIN < IL < ILMAX  
VNOM - 3%  
VNOM  
0.20  
8.0  
VNOM + 3%  
Load Regulation  
VGEN2LOPP  
mV/mA  
mV  
• 1.0 mA < IL < ILMAX, For any VINMIN < VIN < VINMAX  
-
-
-
-
Line Regulation  
VGEN2LIPP  
• VINMIN < VIN < VINMAX For any ILMIN < IL < ILMAX  
Over-current Protection threshold  
VGEN2OCP  
mA  
µA  
ILmax  
+20%  
• VINMIN < VIN < VINMAX Short-circuit VOUT to GND  
-
-
-
Active Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN2Q  
-
-
30  
Current Limit  
• External PNP mode only  
• VINMIN < VIN < VINMAX  
IGEN2LIM  
3.4*  
-
mA  
• Current on VGEN2DRV multiplied by of external PNP transistor  
(IGEN2DRV when VGEN2DRV is forced to LDOVDD)  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
74  
Functional Block Description  
Table 64. VGEN2 Electrical Specification  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
VGEN2 LOW-POWER MODE - DC - VGEN2MODE=1  
Output Voltage VOUT  
VGEN2  
V
• VINMIN < VIN < VINMAX ILMINLP < IL < ILMAXLP  
VNOM - 3%  
0.0  
VNOM  
-
VNOM + 3%  
3.0  
Current Load Range ILMINLP to ILMAXLP  
IGEN2  
mA  
µA  
Low-power Mode Quiescent Current  
• VINMIN < VIN < VINMAX IL = 0  
IGEN2Q  
-
8.0  
-
VGEN2 ACTIVE MODE - AC  
PSRR - IL = 75% of ILmax, 20 Hz to 20 kHz  
• VIN = VINMIN + 100 mV  
• VIN = VNOM + 1.0 V  
VGEN2PSRR  
35  
55  
40  
60  
-
-
dB  
Output Noise Density - VIN = VINMIN IL = 75% of ILMAX  
• 100 Hz – 1.0 kHz  
-
-
-
-
-
-
-115  
-126  
-132  
VGEN  
2NOISE  
V/Hz  
• > 1.0 kHz – 10 kHz  
• > 10 kHz – 1.0 MHz  
Turn-on Time  
tON-VGEN22  
ms  
• Enable to 90% of end value VIN = VINMIN, VINMAX, IL = 0  
-
-
1.0  
VGEN2 ACTIVE MODE - AC (CONTINUED)  
Turn-off Time  
tOFF-VGEN2  
ms  
%
• Disable to 10% of initial value VIN = VINMIN, VINMAX, IL = 0  
0.05  
-
10  
2.0  
2.0  
8.0  
100  
Start-up Overshoot  
VGEN2OS-  
• VIN = VINMIN, VINMAX IL = 0  
-
-
-
-
1.0  
1.0  
5.0  
-
START  
Transient Load Response  
• VIN = VINMIN, VINMAX  
VGEN2LO  
%
TRANSIENT  
Transient Line Response  
• IL = 75% of ILMAX  
VGEN2LI  
mV  
µs  
TRANSIENT  
Mode Transition Time  
tMODE-VGEN2  
• From low-power to active VIN = VINMIN, VINMAX, IL = ILMAXLP  
Mode Transition Response  
VGEN  
2MODERES  
• From low-power to active and from active to low-power  
%
-
1.0  
2.0  
VIN = VINMIN, VINMAX, IL = ILMAXLP  
34709  
Analog Integrated Circuit Device Data  
75  
Freescale Semiconductor  
Functional Block Description  
7.6  
Analog to Digital Converter  
The ADC core is a 10 bit converter. The ADC core and logic run at an internally generated frequency of approximately 1.33 MHz.  
The ADC is supplied from VCORE. The ADC core has an integrated auto calibration circuit which reduces the offset and gain  
errors.  
7.6.1  
Input Selector  
The ADC has 16 input channels. Table 65 gives an overview of the characteristics of each of these channels.  
Table 65. ADC Inputs  
Channel ADSELx[3:0]  
Signal read  
Input Level  
Scaling  
Scaled Version  
Reserved  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Reserved  
Reserved  
Reserved  
-40 – 150 °C  
Reserved  
Reserved  
Reserved  
Reserved  
0 – 3.6 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
0 – 2.4 V  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
Reserved  
Die temperature  
Reserved  
3
1.2 – 2.4 V  
4
Reserved  
Reserved  
Reserved  
Reserved  
X2/3  
Reserved  
Reserved  
5
Reserved  
Reserved  
6
Reserved  
Reserved  
7
Reserved  
Coin cell Voltage  
ADIN9  
8
0 – 2.4 V  
9
x1  
0 – 2.4 V  
ADIN10  
10  
11  
12  
13  
14  
15  
x1  
0 – 2.4 V  
ADIN11  
x1  
0 – 2.4 V  
ADIN12/TSX1  
ADIN13/TSX2  
ADIN14/TSY1  
ADIN15/TSY2  
x1/x2  
0 – 2.4 V / 0 -1.2 V  
0 – 2.4 V / 0 -1.2 V  
0 – 2.4 V / 0 -1.2 V  
0 – 2.4 V / 0 -1.2 V  
x1/x2  
x1/x2  
x1/x2  
Some of the internal signals are first scaled to adapt the signal range to the input range of the ADC. For details on scaling, see  
Dedicated Readings.  
Table 66. ADC Input Specification  
Parameter  
Condition  
Min Typ Max Units  
No bypass capacitor at input  
Bypass capacitor at input 10 nF  
-
-
-
-
5.0  
30  
kOhm  
kOhm  
Source Impedance  
When considerately exceeding the maximum input of the ADC at the scaled or unscaled inputs, the reading result will return a  
full scale. It has to be noted however, that this full scale does not necessarily yield a 1022 DEC reading due to the offsets and  
calibration applied. The same applies for when going below the minimum input where the corresponding 0000 DEC reading may  
not be returned.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
76  
Functional Block Description  
7.6.2  
Control  
The ADC parameters are programmed by the processor via the SPI. When a reading sequence is finished, an interrupt  
ADCDONEI is generated. The interrupt can be masked with the ADCDONEM bit.  
The ADC is enabled by setting ADEN bit high. The ADC can start a series of conversions through SPI programming by setting  
the ADSTART bit. If the ADEN bit is low, the ADC will be disabled and in low-power mode. The ADC is automatically calibrated  
every time PMIC is powered.  
The conversions will begin after a small analog synchronization of up to 30 microseconds, plus a programmable delay from 0  
(default) up to 600 S, by programming the bits ADDLY1[3:0]. The ADDLY2[3:0] controls the delay between each of the  
conversions from 0 to 600 S. ADDLY3[3:0] controls the delay after the final conversion, and is only valid when ADCONT is high.  
ADDLY1, 2, and 3 are set to 0 by default.  
Table 67. ADDLYx[3:0]  
ADDLYx[3:0]  
Delay in s  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.0  
40  
80  
120  
160  
200  
240  
280  
320  
360  
400  
440  
480  
520  
560  
600  
There is a max of 8 conversions that will take place when the ADC is started. The register ADSELx[3:0] selects the channel which  
the ADC will read and store in the ADRESULTx register. The ADC will always start at the channel indicated in ADSEL0, and read  
up to and including the channel set by the ADSTOP[2:0] bits. For example, when ADSTOP[2:0] = 010, it will request the ADC to  
read channels indicated in ADSEL0, ADSEL1, and ADSEL2. When ADSTOP[2:0] = 111, all eight channels programmed by the  
value in ADSEL0-7 will be read. When the ADCONT bit is set high, it allows the ADC to continuously loop and read the channels  
from address 0 to the stop address programmed in ADSTOP. By default, the ADCONT is set low (disabled). In the continuous  
mode, the ADHOLD bit will allow the software to hold the ADC sequencer from updating the results register while the ADC results  
are read. Once the sequence of A/D conversions is complete, the ADRESULTx results are stored in 4 SPI registers (ADC 4 -  
ADC 7).  
34709  
Analog Integrated Circuit Device Data  
77  
Freescale Semiconductor  
Functional Block Description  
7.6.3  
Dedicated Readings  
Channel 0 to 2 Reserve  
7.6.3.1  
Channel 0 to Channel 2 are reserved.  
7.6.3.2  
Channel 3 Die Temperature  
The relation between the read out code and temperature is given in Table 68.  
Table 68. Die Temperature Voltage Reading  
Parameter  
Die temperature read out code at 25 °C  
Slope temperature change per LSB  
Slope error  
Min  
Typ  
Max  
Unit  
-
-
-
680  
+0.426  
-
-
-
Decimal  
°C/LSB  
%
5.0  
The Actual Die Temperature is obtained as follows: Die Temp = 25 + 0.426 * (ADC Code - 680)  
7.6.3.3  
Channel 4 to 7 Reserved  
Channel 4 to Channel 7 are reserved.  
7.6.3.4  
Channel 8 Coin Cell Voltage  
The voltage of the coin cell connected to the LICELL pin can be read on channel 8. Since the voltage range of the coin cell  
exceeds the input voltage range of the ADC, the LICELL voltage is scaled as V(LICELL)*2/3. In case the voltage at LICELL drops  
below the coin cell disconnect threshold, the voltage at LICELL can still be read through the ADC.  
Table 69. Coin Cell Voltage Reading Coding  
Conversion Code  
Voltage at ADC input (V) Voltage at LICELL (V)  
ADRESULTx[9:0]  
1 111 111 110  
1 000 000 000  
0 000 000 000  
2.400  
1.200  
0.000  
3.6  
1.8  
0
7.6.3.5  
Channel 9-11 ADIN9-ADIN11  
There are 3 general purpose analog input channels that can be measured through the ADIN9-ADIN11 pins.  
7.6.3.6  
Channel 12-15 ADIN12-ADIN15  
If the touch screen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose inputs. They are  
respectively mapped on ADC channels 12, 13, 14, and 15.  
7.6.4  
Touch Screen Interface  
The touch screen interface provides all circuitry required for the readout of a four-wire resistive touch screen. The touch screen  
X plate is connected to TSX1 and TSX2, while the Y plate is connected to TSY1 and TSY2. A local supply TSREF will serve as  
a reference. Several readout possibilities are offered.  
If the touchscreen is not used, the inputs TSX1, TSX2, TSY1, and TSY2 can be used as general purpose inputs. They are  
respectively mapped on ADC channels 12, 13, 14, and 15.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
78  
Functional Block Description  
Touch Screen Pen detection bias can be enabled via the TSPENDETEN bit in the AD0 register. When this bit is enabled and a  
pen touch is detected, the TSPENDET bit in the Interrupt Status 0 register is set and the INT pin is asserted - unless the interrupt  
is masked. Pen detection is only active when TSEN is low.  
The reference for the touch screen (Touch Bias) is TSREF and is powered from VCORE. During touch screen operation, TSREF  
is a dedicated regulator. No loads other than the touch screen should be connected here. When the ADC performs non touch  
screen conversions, the ADC does not rely on TSREF and the reference is disabled.  
The readouts are designed such that the on chip switch resistances are of no influence on the overall readout. The readout  
scheme does not account for contact resistances, as present in the touch screen connectors. The touch screen readings will  
have to be calibrated by the user or the factory, where one has to point with a stylus to the opposite corners of the screen. When  
reading the X-coordinate, the 10-bit ADC reading represents a 10-bit coordinate, with ‘0’ for a coordinate equal to X-, and full  
scale ‘1023’ when equal to X+. When reading the Y-coordinate, the 10-bit ADC reading represents a 10-bit coordinate, with ‘0’  
for a coordinate equal to Y-, and full scale ‘1023’ when equal to Y+. When reading contact resistance, the 10-bit ADC reading  
represents the voltage drop over the contact resistance created by the known current source, multiplied by 2.  
The X-coordinate is determined by applying TSREF over the TSX1 and TSX2 pins, while performing a high-impedance reading  
on the Y-plate through TSY1. The Y-coordinate is determined by applying TSREF between TSY1 and TSY2, while reading the  
TSX1 pin. The contact resistance is measured by applying a known current into the TSY1 pin of the touch screen and through  
the TSX2 pin, which is grounded. The voltage difference between the two remaining terminals TSY2 and TSX1 is measured by  
the ADC, and equals the voltage across the contact resistance. Measuring the contact resistance helps determine if the touch  
screen is touched with a finger or a stylus.  
The TSSELx[1:0] allows the application processor to select its own reading sequence. The TSSELx[1:0] determines what is read  
during the touch screen reading sequence, as shown in Table 70. The touch screen will always start at TSSEL0 and read up to  
and including the channel set by TSSEL at the TSSTOP[2:0] bits. For example when TSSTOP[2:0] = 010, it will request the ADC  
to read channels indicated in TSSEL0, TSSEL1, and TSSEL2. When TSSTOP[2:0] = 111, all eight addresses will be read.  
Table 70. Touch Screen Action Select  
TSSELx[1:0]  
Signals Sampled  
00  
01  
10  
11  
Dummy to discharge TSREF cap  
X - plate  
Y - plate  
Contact  
The touch screen readings can be repeated, as in the following example readout sequence, to reduce the interrupt rate and to  
allow for easier noise rejection. The dummy conversion inserted between the different readings allows the references in the  
system to be pre-biased for the change in touch screen plate polarity. It will read out as ‘0’.  
A touch screen reading will take precedence over an ADC sequence. If an ADC reading is triggered during a touch screen event,  
the ADC sequence will be overwritten by the touch screen data.  
The first touch screen conversion can be delayed from 0 (default) to 600 s by programming the TSDLY1[3:0] bits. The  
TSDLY2[3:0] controls the delay between each of the touch screen conversions from 0 to 600 s. TSDLY[2:0] sets the delay after  
the last address is converted. TSDLY1, 2, and 3 are set to 0 by default.  
Table 71. TSDLYx[3:0]  
TSDLYx[3:0]  
Delay in uS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0
40  
80  
120  
160  
200  
240  
34709  
Analog Integrated Circuit Device Data  
79  
Freescale Semiconductor  
Functional Block Description  
Table 71. TSDLYx[3:0]  
TSDLYx[3:0]  
Delay in uS  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
280  
320  
360  
400  
440  
480  
520  
560  
600  
To perform a touch screen reading, the processor must do the following:  
1. Enable the touch screen with TSEN  
2. Select the touch screen sequence by programming the TSSEL0-TSSEL7 SPI bits.  
3. Program the TSSTOP[2:0]  
4. Program the delay between the conversion via the TSDLY1 and TSDLY2 settings.  
5. Trigger the ADC via the TSSTART SPI bit  
6. Wait for an interrupt indicating the conversion is done TSDONEI  
7. And then read out the data in the ADRESULTx registers  
7.6.5  
ADC Specifications  
Table 72. ADC Electrical Specifications  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
ADC  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
Conversion Current  
-
1.0  
-
mA  
V
Converter Core Input Range  
• Single-ended voltage readings  
• Differential readings  
VADCIN  
0.0  
-
-
2.4  
1.2  
-1.2  
Conversion Time per channel  
Integral Non-linearity  
tCONVERT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
3
s  
LSB  
LSB  
LSB  
LSB  
LSB  
s  
Differential Non-linearity  
Zero Scale Error (Offset)  
Full Scale Error (Gain)  
Drift Over-temperature  
Turn On/Off Time  
1
5  
10  
1
tON-OFF-ADC  
31  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
80  
Functional Block Description  
7.7  
Auxiliary Circuits  
7.7.1  
General Purpose I/Os  
The 34709 contains four configurable GPIO input/outputs for general purpose use. When configured as outputs, they can be  
configured as open-drain (OD) or CMOS (push-pull outputs). These GPIOs are low-voltage capable (1.2 or 1.8 V). In open-drain  
configuration these outputs can only be pulled up to 2.5 V maximum.  
Each individual GPIO has a dedicated 16-bit control register. Table 73 provides detailed bit descriptions.  
Table 73. GPIOLVx Control (55)  
SPI Bit  
Description  
GPIOLVx direction  
0: Input (default)  
1: Output  
DIR  
Input state of the GPIOLVx pin  
0: Input low  
DIN  
DOUT  
HYS  
1: Input High  
Output state of GPIOLVx pin  
0: Output Low  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis (default)  
GPIOLVx input debounce time  
00: no debounce (default)  
01: 10 ms debounce  
DBNC[1:0]  
INT[1:0]  
10: 20 ms debounce  
11: 30 mS debounce  
GPIOLVx interrupt control  
00: None (default)  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off (default)  
1: On  
PKE  
ODE  
DSE  
PUE  
Open-drain enable  
0: CMOS (default)  
1: OD  
Drive strength enable  
0: 4.0 mA (default)  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
Pull-up/Pull-down enable  
00: 10 K active pull-down  
01: 10 K active pull-up  
PUS[1:0]  
10: 100 K active pull-down  
11: 100 K active pull-up (default)  
34709  
Analog Integrated Circuit Device Data  
81  
Freescale Semiconductor  
Functional Block Description  
Table 73. GPIOLVx Control (55)  
SPI Bit  
Description  
Slew rate enable  
00: slow (default)  
01: normal  
SRE[1:0]  
10: fast  
11: very fast  
Notes  
55. x= 0, 1, 2, or 3 depending of the GPIO channel it is being  
used  
7.7.2  
PWM Outputs  
There are two PWM outputs on the 34709 PWM1 and PWM2 and which are controlled by the PWMxDUTY and PWMxCLKDIV  
registers shown in Table 74.The base clock will be the 2.0 MHz divided by 32.  
Table 74. PWMx Duty Cycle Programming  
PWMxDC[5:0]((56)  
)
Duty Cycle  
000000  
000001  
0/32, Off (default)  
1/32  
010000  
16/32  
31/32  
011111  
1xxxxx  
32/32, Continuously On  
Notes  
56. “x” represent 1 and 2  
32.768 kHz Crystal Oscillator RTC Block Description and Application Information  
Table 75. PWMx Clock Divider Programming  
PWMxCLKDIV[5:0]((57)  
)
Duty Cycle  
000000  
000001  
Base Clock  
Base Clock / 2  
001111  
Base Clock / 16  
111111  
Notes  
Base Clock / 64  
57. “x” represent 1 and 2  
7.8  
Serial Interfaces  
The IC contains a number of programmable registers for control and communication. The majority of registers are accessed  
2
through a SPI interface in a typical application. The same register set may alternatively be accessed with an I C interface that is  
2
muxed on SPI pins. Table 76 describes the muxed pin options for the SPI and I C interfaces; further details for each interface  
mode follow.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
82  
Functional Block Description  
Table 76. SPI / I2C Bus Configuration  
Pin Name  
SPI Mode Functionality  
I2C Mode Functionality  
Configuration (59)  
CS  
Configuration (58), Chip Select  
SPI Clock  
CLK  
SCL: I2C bus clock  
MISO  
MOSI  
Notes  
Master In, Slave Out (data output)  
Master Out, Slave In (data input)  
SDA: Bi-directional serial data line  
A0 Address selection (60)  
58. CS held low at Cold Start, configures the interface for SPI mode; once activated, CS functions as the SPI Chip Select.  
59. CS tied to VCOREDIG at Cold Start, configures the interface for I2C mode; the pin is not used in I2C mode, other than for configuration.  
60. In I2C mode, the MOSI pin is hardwired to ground, or VCOREDIG is used to select between two possible addresses.  
7.8.1  
SPI Interface  
The IC contains a SPI interface port which allows access by a processor to the register set. Via these registers the resources of  
the IC can be controlled. The registers also provide status information about how the IC is operating, as well as information on  
external signals.  
2
Because the SPI interface pins can be reconfigured for reuse as an I C interface, a configuration protocol mandates that the CS  
pin is held low during a turn on event for the IC (a weak pull-down is integrated on the CS pin). The state of CS is latched in during  
2
the initialization phase of a Cold Start sequence, ensuring that the I C bus is configured before the interface is activated. With  
the CS pin held low during start-up (as would be the case if connected to the CS driver of an unpowered processor due to the  
integrated pull-down), then the bus configuration will be latched for SPI mode.  
The SPI port utilizes 32-bit serial data words comprised of 1 write/read_b bit, 6 address bits, 1 null bit, and 24 data bits. The  
addressable register map spans 64 registers of 24 data bits each. The map is not fully populated, but it follows the legacy  
conventions for bit positions corresponding to common functionality with previous generation FSL products.  
7.8.1.1  
SPI Interface Description  
For a SPI read, the first bit sent to the IC must be a zero indicating a SPI read cycle. Next, the six bit address is sent MSB first.  
This is followed by one dead bit to allow for more address decode time. The 34709 will clock the above bits in on the rising edge  
of the SPI clock. Then the 24 data bits are driven out on the MISO pin on the falling edge of the SPI clock so the master can clock  
them in on the rising edge of the SPI clock.  
For each MOSI SPI transfer, first a one is written to the write/read_b bit if this SPI transfer is to be a write. A zero is written to the  
write/read_b bit if this is to be a read command. If a zero is written, then any data sent after the address bits are ignored and the  
internal contents of the field addressed do not change when the 32nd CLK is sent.  
For a SPI write the first bit sent to the 34709 must be a one indicating a SPI write cycle. Next the six bit address is sent MSB first.  
This is followed by one dead bit to allow for more address decode time. Then the data is sent MSB first. The SPI data is written  
to the SPI register whose address was sent at the start of the SPI cycle on the falling edge of the 32nd SPI clock. Additionally,  
whenever a SPI write cycle is taking place the SPI read data is shifted out for the same address as for the write cycle. Next the  
6-bit address is written, MSB first. Finally, data bits are written, MSB first. Once all the data bits are written then the data is  
transferred into the actual registers on the falling edge of the 32nd CLK.  
The CS polarity is active high. The CS line must remain high during the entire SPI transfer. For a write sequence it is possible for  
the written data to be corrupted, if after the falling edge of the 32nd clock the CS goes low before it's required time. CS can go  
low before this point and the SPI transaction will be ignored, but after that point the write process is started and cannot be stopped  
because the write strobe pulse is already being generated and CS going low may cause a runt pulse that may or may not be wide  
enough to clock all 24 data bits properly. To start a new SPI transfer, the CS line must be toggled low and then pulled high again.  
The MISO line will be tri-stated while CS is low.  
The register map includes bits that are read/write, read only, read/write “1” to clear (i.e., Interrupts), and clear on read, reserved,  
and unused. Refer to the SPI/I2C Register Map and the individual subcircuit descriptions to determine the read/write capability  
of each bit. All unused SPI bits in each register must be written to as zeroes. A SPI read back of the address field and unused  
bits are returned as zeroes. To read a field of data, the MISO pin will output the data field pointed to by the 6 address bits loaded  
at the beginning of the SPI sequence.  
34709  
Analog Integrated Circuit Device Data  
83  
Freescale Semiconductor  
Functional Block Description  
CS  
CLK  
MOSI  
Write_En  
Address5  
Addr ess 4  
Address3  
Address2  
Address 1  
Address 0  
Dead Bit”  
Data 23  
Data 23  
Data 22  
Data 22  
Data 1  
Data 1  
Data 0  
Data 0  
MISO  
Figure 19. SPI Transfer Protocol Single Read/Write Access  
CS  
Preamble  
First Address  
Preamble Another Address  
24 Bits Data  
24 Bits Data  
MOSI  
MISO  
24 Bits Data  
24 Bits Data  
Figure 20. SPI Transfer Protocol Multiple Read/Write Access  
7.8.1.2  
SPI Timing Requirements  
Figure 21 and Table 77 summarize the SPI timing requirements. The SPI input and output levels are set via the SPIVCC pin, by  
connecting it to the desired supply. This would typically be tied to SW5 and programmed for 1.80 V. The strength of the MISO  
driver is programmable through the SPIDRV [1:0] bits. See Thermal Protection Thresholds for detailed SPI electrical  
characteristics.  
tCLKPER  
tCLKHIGH  
CS  
tSELHLD  
tSELLOW  
tSELSU  
tCLKLOW  
CLK  
tWRTSU  
tWRTLHD  
MOSI  
MISO  
tRDDIS  
tRDEN  
tRDSU  
tRDHLD  
Figure 21. SPI Interface Timing Diagram  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
84  
Functional Block Description  
Table 77. SPI Interface Timing Specifications(61)  
Parameter  
Description  
t MIN (ns)  
Time CS has to be high before the first rising edge of CLK  
Time CS has to remain high after the last falling edge of CLK  
Time CS has to remain low between two transfers  
tSELSU  
tSELHLD  
tSELLOW  
tCLKPER  
tCLKHIGH  
tCLKLOW  
tWRTSU  
tWRTHLD  
tRDSU  
15  
15  
15  
Clock period of CLK  
38  
Part of the clock period where CLK has to remain high  
Part of the clock period where CLK has to remain low  
Time MOSI has to be stable before the next rising edge of CLK  
Time MOSI has to remain stable after the rising edge of CLK  
Time MISO will be stable before the next rising edge of CLK  
Time MISO will remain stable after the falling edge of CLK  
Time MISO needs to become active after the rising edge of CS  
Time MISO needs to become inactive after the falling edge of CS  
15  
15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
tRDHLD  
tRDEN  
tRDDIS  
Notes  
61. This table reflects a maximum SPI clock frequency of 26 MHz.  
7.8.2  
I2C Interface  
2
7.8.2.1  
I C Configuration  
2
When configured for I C mode, the interface may be used to access the complete register map previously described for SPI  
access. Since SPI configuration is more typical, references within this document will generally refer to the common register set  
2
as a “SPI map” and bits as “SPI bits”; however, it should be understood that access reverts to I C mode when configured as such.  
2
The SPI pins CLK and MISO are reused for the SCL and SDA lines respectively. Selection of I C mode for the interface is  
configured by hard-wiring the CS pin to VCOREDIG on the application board. The state of CS is latched in during the initialization  
2
phase of a Cold Start sequence, so the I CS bit is defined for bus configuration before the interface is activated. The pull-down  
2
on CS will be deactivated if the high state is detected (indicating I C mode).  
2
In I C mode, the MISO pin is connected to the bus as an open-drain driver, and the logic level is set by an external pull-up. The  
2
part can function only as an I C slave device, not as a host.  
2
7.8.2.2  
I C Device ID  
2
I C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for  
bus conflict avoidance, pin programmable selection is provided to allow configuration for the address LSB(s). This product  
supports 7-bit addressing only; support is not provided for 10-bit or general Call addressing.  
2
Because the MOSI pin is not utilized for I C communication, it is reassigned for pin programmable address selection by  
2
hardwiring to VCOREDIG or GND at the board level when configured for I C mode. MOSI will act as Bit 0 of the address. The  
2
I C address assigned to FSL PM ICs (shared amongst our portfolio) is given as follows:  
00010-A1-A0, the A1 and A0 bits are allowed to be configured for either 1 or 0. The A1 address bit is internally hardwired as a  
“0”, leaving the LSB A0 for board level configuration. The designated address then is defined as: 000100-A0.  
34709  
Analog Integrated Circuit Device Data  
85  
Freescale Semiconductor  
Functional Block Description  
2
7.8.2.3  
I C Operation  
2
The I C mode of the interface is implemented generally following the Fast Mode definition which supports up to 400 kbits/s  
operation. (Exceptions to the standard are noted to be 7-bit only addressing, and no support for general Call addressing) Timing  
diagrams, electrical specifications, and further details on this bus standard, is available on the internet, by typing   
2
“I C specification” in the web search string field.  
2
Standard I C protocol utilizes bytes of eight bits, with an acknowledge bit (ACK) required between each byte. However, the  
number of bytes per transfer is unrestricted. The register map is organized in 24-bit registers which corresponds to the 24-bit  
2
words supported by the SPI protocol of this product. To ensure that I C operation mimics SPI transactions in behavior of a  
complete 24-bit word being written in one transaction, software is expected to perform write transactions to the device in 3-byte  
sequences, beginning with the MSB. Internally, data latching will be gated by the acknowledge at the completion of writing the  
third consecutive byte.  
2
Failure to complete a 3-byte write sequence will abort the I C transaction and the register will retain its previous value. This could  
be due to a premature STOP command from the master, for example.  
2
I C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and  
3-bytes will be sent out unless a STOP command or NACK is received prior to completion.  
The following examples show how to write and read data to the IC. The host initiates and terminates all communication. The host  
sends a master command packet after driving the start condition. The device will respond to the host if the master command  
packet contains the corresponding slave address. In the following examples, the device is shown always responding with an ACK  
to transmissions from the host. If at any time a NAK is received, the host should terminate the current transaction and retry the  
transaction.  
Packet  
Type  
Device  
Address  
Register Address  
7
0
0
7
0
0
Host SDA  
(to MISO)  
Continuation  
START  
0
R / W  
A
C
K
A
C
K
Slave SDA  
(from MISO)  
Host can  
also drive  
another  
Start instead  
of Stop  
Packet  
Type  
Master Driven Data  
( byte 2 )  
Master Driven Data  
( byte 1)  
Master Driven Data  
( byte 0 )  
23  
16  
15  
8
7
0
Host SDA  
(to MISO)  
STOP  
A
C
K
A
C
K
A
C
K
Slave SDA  
(from MISO)  
Figure 22. I2C 3-byte Write Example  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
86  
Functional Block Description  
Packet  
Type  
Device  
Address  
Register Address  
Device Address  
23  
16  
0
15  
0
8
7
0
Host SDA  
(to MISO)  
Continuation  
START  
0
START  
1
R /W  
R /W  
A
C
K
A
C
K
A
C
K
Slave SDA  
(from MISO)  
Host can also  
drive another  
Start instead of  
Stop  
Device Data  
( byte 2)  
Device Data  
( byte 1 )  
Device Data  
( byte 0)  
Packet  
Type  
A
C
K
A
C
K
Host SDA  
(to MISO)  
NA  
CK  
STOP  
23  
16  
15  
8
7
0
Slave SDA  
(from MISO)  
Figure 23. I2C 3-byte Read Example  
7.8.3  
SPI/I2C Specification  
Table 78. SPI/I2C Electrical Characteristics  
Characteristics noted under conditions BP = 3.6 V, -40 C T 85 C, unless otherwise noted. Typical values at BP = 3.6 V  
A
and TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit Notes  
SPI Interface Logic IO  
Input Low CS  
VINCSLO  
VINCSHI  
VINMOSILO  
0.0  
1.1  
-
-
0.4  
V
V
Input High CS  
SPIVCC+0.3  
/
Input Low, MOSI, CLK  
0.0  
-
-
0.3*SPIVCC  
SPIVCC+0.3  
V
V
VINCLKLO  
VINMOSIHI  
/
Input High, MOSI, CLK  
0.7*SPIVCC  
VINCLKHI  
Output Low MISO, INT  
VMISOLO  
VINTLO  
/
V
• Output sink 100 A  
0.0  
SPIVCC-0.2  
1.75  
-
-
-
0.2  
SPIVCC  
3.6  
Output High MISO, INT  
VMISOHI  
/
V
V
VINTHI  
• Output source 100 A  
SPIVCC Operating Range  
VCC-SPI  
MISO Rise and Fall Time, CL = 50 pF, SPIVCC = 1.8 V  
• SPIDRV [1:0] = 00  
-
-
-
-
6.0  
2.5  
3.0  
2.0  
-
-
-
-
• SPIDRV [1:0] = 01 (default)  
• SPIDRV [1:0] = 10  
tMISOET  
ns  
• SPIDRV [1:0] = 11  
34709  
Analog Integrated Circuit Device Data  
87  
Freescale Semiconductor  
Functional Block Description  
7.9  
Configuration Registers  
Register Set structure  
7.9.1  
The general structure of the register set is given in Table 79. Expanded bit descriptions are included in the following functional  
sections for application guidance. For brevity’s sake, references are occasionally made herein to the register set as the “SPI map”  
2
or “SPI bits”, but note that bit access is also possible through the I C interface option so such references are implied as  
generically applicable to the register set accessible by either interface.  
Table 79. Register Set  
Register  
Register  
Register  
Register  
0
1
Interrupt Status 0  
Interrupt Mask 0  
Interrupt Sense 0  
Interrupt Status 1  
Interrupt Mask 1  
Interrupt Sense 1  
Power Up Mode Sense  
Identification  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Memory A  
Memory B  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
Regulator Mode 0  
GPIOLV0 Control  
GPIOLV1 Control  
GPIOLV2 Control  
GPIOLV3 Control  
Reserved  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
ADC5  
ADC6  
2
Memory C  
ADC7  
3
Memory D  
Reserved  
Supply Debounce  
Reserved  
Reserved  
PWM Control  
Unused  
4
RTC Time  
5
RTC Alarm  
6
RTC Day  
Reserved  
7
RTC Day Alarm  
Regulator 1 A/B Voltage  
Regulator 2 & 3 Voltage  
Regulator 4 A/B Voltage  
Regulator 5 Voltage  
Regulator 1 & 2 Mode  
Regulator 3, 4 and 5 Mode  
Regulator Setting 0  
SWBST Control  
Reserved  
8
Regulator Fault Sense  
Reserved  
Reserved  
9
Unused  
Unused  
10  
11  
12  
13  
14  
15  
Reserved  
Unused  
Unused  
Reserved  
ADC 0  
Unused  
Unused  
ADC 1  
Unused  
Power Control 0  
Power Control 1  
Power Control 2  
ADC 2  
Unused  
ADC 3  
Unused  
ADC4  
Unused  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
88  
Functional Block Description  
7.9.2  
Specific Registers  
7.9.2.1  
IC and Version Identification  
The IC and other version details can be read via the identification bits. These are hardwired on the chip and described in Table 80.  
Table 80. IC Revision Bit Assignment  
Identifier  
Value  
Purpose  
Represents the full mask revision  
FULL_LAYER_REV[2:0]  
XXX  
Pass 1.0 = 001  
Represents the full Metal revision  
Pass 1.0 = 000  
METAL_LAYER_REV[2:0]  
FIN[2:0]  
XXX  
000  
000  
Options within same Reticle  
Pass 1.0 = 000  
Wafer manufacturing facility  
Pass 1.0 = 000  
FAB[2:0]  
7.9.2.2  
Embedded Memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[23:0],  
MEMB[23:0], MEMC[23:0], and MEMD[23:0] is maintained by the coin cell when the main battery is deeply discharged, removed,  
or contact-bounced (i.e., during a power cut). The contents of the embedded memory are reset by RTCPORB. A known pattern  
can be maintained in these registers to validate confidence in the RTC contents when power is restored after a power cut event.  
Alternatively, the banks can be used for any system need for bit retention with coin cell backup.  
34709  
Analog Integrated Circuit Device Data  
89  
Freescale Semiconductor  
Functional Block Description  
7.9.3  
SPI/I2C Register Map  
The complete SPI bitmap is given in Table 81.  
Table 81. SPI/I2C Register Map  
Register Types  
Read / Write  
Register Values  
Reset  
R/W  
0 = low  
Bits Loaded at Cold Start based on PUMS Value  
Bits Reset by POR or Global Reset  
R/WM  
W1C  
RO  
Read / Write Modify  
Write One to Clear  
Read Only  
1 = High  
X = Variable  
RESETB / Green Reset Bits Reset by POR or Global or Green Reset  
Bits Reset by RTCPORB or Global Reset  
Bits Reset by POR or OFFB  
NU  
Not Used  
Bits Reset by RTCPORB Only  
Register  
Name  
Address  
Type  
Default  
34709 SPI Register Map Rev 0.1  
23  
-
22  
-
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
Interrupt  
Status 0  
15  
-
14  
-
13  
12  
11  
10  
9
8
0x00  
W1C h00_00_00  
LOWBATT  
-
-
-
-
-
Table 82  
7
6
5
4
3
2
1
0
-
-
-
-
-
TSPENDET  
TSDONEI  
ADCDONEI  
23  
-
22  
-
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
Interrupt  
Mask 0  
15  
-
14  
-
13  
12  
11  
10  
9
8
0x01  
0x02  
0x03  
0x04  
R/W h00_20_07  
LOWBATTM  
-
-
-
-
-
Table 83  
7
6
5
4
3
2
1
0
-
-
-
-
-
TSPENDETM  
TSDONEM  
ADCDONEM  
23  
-
22  
-
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
Interrupt  
Sense 0  
15  
-
14  
-
13  
12  
11  
10  
9
8
NU  
h00_00_00  
-
-
-
-
-
-
0
Table 84  
7
6
5
4
3
2
1
-
-
-
-
-
-
-
-
23  
22  
21  
20  
GPIOLV3I  
12  
19  
GPIOLV2I  
11  
18  
17  
16  
-
BATTDETBI  
-
GPIOLV1I  
GPIOLV0I  
SCPI  
8
Interrupt  
Status 1  
15  
14  
13  
10  
9
WARMI  
1
W1C h40_80_80  
CLKI  
THERM130  
THERM125  
THERM120  
4
THERM110  
3
MEMHLDI  
PCI  
0
Table 85  
7
6
SYSRSTI  
22  
5
2
RTCRSTI  
WDIRESTI  
PWRON2I  
20  
PWRON1I  
19  
-
TODAI  
17  
1HZI  
16  
23  
21  
-
18  
-
15  
BATTDETBIM  
14  
GPIOLV3M  
12  
GPIOLV2M  
11  
GPIOLV1M  
GPIOLV0M  
9
SCPM  
8
Interrupt  
Mask 1  
13  
10  
R/W h5F_FF_FB  
CLKM  
7
THERM130M  
6
THERM125M THERM120M THERM110M  
MEMHLDM  
WARMM  
1
PCM  
0
Table 86  
5
4
3
2
RTCRSTM  
SYSRSTM  
WDIRESTM  
PWRON2M  
PWRON1M  
-
TODAM  
1HZM  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
90  
Functional Block Description  
23  
22  
21  
20  
19  
18  
17  
16  
-
-
-
GPIOLV3S  
GPIOLV2S  
GPIOLV1S  
GPIOLV0S  
-
Interrupt  
Sense 1  
15  
14  
13  
12  
11  
10  
9
8
0x05  
0x06  
0x07  
0x08  
RO hXX_XX_XX  
CLKS  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
-
-
-
Table 87  
7
-
6
-
5
4
3
2
1
0
-
PWRON2S  
PWRON1S  
-
-
-
23  
-
22  
-
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
Power Up  
Mode Sense  
15  
-
14  
-
13  
12  
11  
10  
9
8
RO  
h00_00_XX  
-
-
-
-
-
-
Table 88  
7
6
5
4
PUMS4S  
20  
3
PUMS3S  
19  
2
1
0
-
-
PUMS5S  
PUMS2S  
PUMS1S  
ICTESTS  
23  
22  
21  
18  
17  
-
16  
PAGE[4:0]  
-
-
15  
-
14  
-
13  
-
12  
-
11  
3
10  
FAB[2:0]  
2
9
8
FIN[2]  
0
Identification  
Table 89  
RO h00_0X_XX  
7
6
5
4
1
FIN[1:0]  
FULL_LAYER_REV[2:0]  
METAL_LAYER_REV[2:0]  
23  
22  
21  
20  
-
19  
-
18  
-
17  
-
16  
REGSCPEN  
-
-
-
Regulator  
Fault Sense  
15  
14  
13  
12  
11  
10  
9
8
R0  
h00_XX_XX  
-
-
-
VGEN2FAULT VGEN1FAULT  
VDACFAULT  
VUSB2FAULT  
VUSBFAULT  
Table 90  
7
6
5
4
3
2
1
0
SWBSTFAULT  
SW5FAULT  
SW4BFAULT  
SW4AFAULT  
SW3FAULT  
SW2FAULT  
RSVD  
SW1FAULT  
23  
22  
-
21  
20  
-
19  
18  
17  
16  
-
-
-
-
-
-
15  
14  
-
13  
12  
-
11  
10  
9
8
0x09  
To  
0x0C  
Unused  
NU  
h00_00_00  
-
-
-
-
-
-
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
23  
22  
21  
20  
19  
18  
17  
16  
COINCHEN  
VCOIN[2:0]  
-
-
-
-
Power  
Control 0  
15  
-
14  
-
13  
-
12  
-
11  
10  
9
8
0x0D  
0x0E  
0x0F  
R/W h00_00_40  
R/W h00_00_00  
R/W h42_23_00  
-
-
PCUTEXPB  
-
Table 93  
7
6
5
4
3
2
1
0
-
CLK32KMCUEN USEROFFCLK  
DRM  
20  
-
USEROFFSPI  
WARMEN  
PCCOUNTEN  
PCEN  
23  
-
22  
21  
-
19  
-
18  
-
17  
-
16  
-
-
Power  
Control 1  
15  
14  
13  
12  
11  
10  
9
8
PCMAXCNT[3:0]  
PCCOUNT[3:0]  
Table 94  
7
6
5
4
3
2
1
0
PCT[7:0]  
23  
22  
21  
20  
19  
-
18  
17  
16  
-
STBYDLY[1:0]  
ON_STBY_LP  
-
CLKDRV[1:0]  
Power  
Control 2  
15  
-
14  
13  
12  
WDIRESET  
4
11  
-
10  
9
8
SPIDRV[1:0]  
STANDBYINV  
2
GLBRSTTMR[1:0]  
Table 95  
7
6
5
3
1
0
PWRON2DBNC[1:0]  
PWRON1BDBNC[1:0]  
-
PWRON2RSTEN PWRON1RSTEN RESTARTEN  
34709  
Analog Integrated Circuit Device Data  
91  
Freescale Semiconductor  
Functional Block Description  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
MEMA[23:16]  
18  
10  
2
17  
9
16  
8
11  
Memory A  
Table 96  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h0X_XX_XX  
R/W h01_FF_FF  
R/W h00_XX_XX  
R/W h00_7F_FF  
MEMA[15:8]  
MEMA[7:0]  
3
1
0
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
18  
10  
2
17  
9
16  
8
MEMB[23:16]  
11  
Memory B  
Table 97  
MEMB[15:8]  
3
1
0
MEMB[7:0]  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
18  
10  
2
17  
9
16  
8
MEMC[23:16]  
11  
Memory C  
Table 98  
MEMC[15:8]  
3
1
0
MEMC[7:0]  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
18  
10  
2
17  
9
16  
8
MEMD[23:16]  
11  
Memory D  
Table 99  
MEMD[15:8]  
3
1
0
MEMD[7:0]  
23  
22  
21  
13  
5
20  
12  
4
19  
18  
10  
2
17  
9
16  
TOD[16]  
8
RTCCALMODE[1:0]  
RTCCAL[4:0]  
15  
7
14  
11  
RTC Time  
Table 100  
TOD[15:8]  
6
3
1
0
TOD[7:0]  
23  
RTCDIS  
15  
22  
SPARE  
14  
21  
SPARE  
13  
20  
SPARE  
12  
19  
18  
SPARE  
10  
17  
SPARE  
9
16  
TODA[16]  
8
SPARE  
11  
RTC Alarm  
Table 101  
TODA[15:8]  
7
6
5
4
3
2
1
0
TODA[7:0]  
23  
-
22  
-
21  
-
20  
-
19  
18  
-
17  
-
16  
-
-
15  
-
14  
13  
12  
11  
10  
9
8
RTC Day  
Table 102  
DAY[14:8]  
7
6
5
4
3
2
1
0
DAY[7:0]  
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
RTC Day  
Alarm  
15  
-
14  
13  
12  
11  
10  
9
8
DAYA[14:8]  
Table 103  
7
6
5
4
3
2
1
0
DAYA[7:0]  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
92  
Functional Block Description  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
11  
3
18  
10  
2
17  
9
16  
8
RSVD[5:0]  
RSVD[5:4]  
Regulator  
1A/B Voltage  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
R/WM hXX_XX_XX  
R/WM hXX_XX_XX  
R/WM hXX_XX_XX  
R/WM h00_XX_XX  
R/WM h52_80_48  
R/WM h52_08_48  
R/WM h00_XX_XX  
R/WM h00_00_0X  
RSVD[3:0]  
SW1ASTBY[5:2]  
Table 104  
1
0
SW1ASTBY[1:0]  
SW1A[5:0]  
23  
-
22  
14  
6
21  
13  
5
20  
19  
11  
3
18  
10  
2
17  
-
16  
SW3[4]  
8
SW3STBY[4:0]  
Regulator  
2&3 Voltage  
15  
12  
9
SW3[3:0]  
SW2STBY[5:2]  
Table 105  
7
4
20  
12  
4
1
17  
9
0
SW2STBY[1:0]  
SW2[5:0]  
23  
15  
7
22  
14  
6
21  
13  
5
19  
18  
10  
16  
SW4BHI[1:0]  
SW4BSTBY[4:0]  
SW4B[4]  
Regulator 4  
Voltage  
11  
8
SW4B[3:0]  
SW4AHI[1:0]  
SW4ASTBY[4:3]  
Table 106  
3
2
1
0
SW4ASTBY[2:0]  
SW4A[4:0]  
23  
22  
-
21  
-
20  
19  
-
18  
-
17  
-
16  
-
-
15  
-
-
Regulator 5  
Voltage  
14  
13  
12  
11  
10  
9
-
8
-
SW5TBY[4:0]  
Table 107  
7
6
-
5
-
4
3
2
1
0
-
SW5[4:0]  
18  
23  
PLLX  
15  
22  
21  
20  
19  
17  
16  
PLLEN  
14  
SW2DVSSPEED[1:0]  
SW2UOMODE SW2MHMODE  
SW2MODE[3:2]  
Regulator  
1, 2 Mode  
13  
-
12  
-
11  
-
10  
-
9
-
8
-
SW2MODE[1:0]  
Table 108  
7
6
5
4
3
2
1
0
SW1DVSSPEED[1:0]  
23 22  
SW5UOMODE SW5MHMODE  
SW1AUOMODESW1AMHMODE  
SW1AMODE[3:0]  
17  
21  
20  
12  
4
19  
18  
16  
SW5MODE[3:0]  
11  
SW4BUOMODE SW4BMHMODE  
Regulator  
3, 4, 5 Mode  
15  
14  
13  
10  
9
8
0
SW4BMODE[3:0]  
SW4AUOMODE SW4AMHMODE  
SW4AMODE[3:2]  
Table 109  
7
6
5
3
2
1
SW4AMODE[1:0]  
SW3UOMODE SW3MHMODE  
SW3MODE[3:0]  
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
Regulator  
Setting 0  
15  
-
14  
-
13  
-
12  
11  
10  
9
8
VGEN2[2]  
0
VUSB2[1:0]  
VPLL[1:0]  
Table 110  
7
6
5
4
3
-
2
1
VGEN2[1:0]  
VDAC[1:0]  
VGEN1[2:0]  
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
SWBST  
Control  
15  
-
14  
-
13  
-
12  
-
11  
-
10  
-
9
-
8
-
Table 111  
7
6
5
4
3
2
1
0
SPARE  
SWBSTSTBYMODE[1:0]  
SPARE  
SWBSTMODE[1:0]  
SWBST[1:0]  
34709  
Analog Integrated Circuit Device Data  
93  
Freescale Semiconductor  
Functional Block Description  
23  
22  
-
21  
-
20  
VUSB2MODE VUSB2STBY  
12 11  
19  
18  
VUSB2EN  
10  
17  
16  
-
VUSB2CONFIG  
VPLLSTBY  
Regulator  
Mode 0  
15  
14  
13  
9
8
0x20  
0x21  
0x22  
0x23  
0x24  
R/WM h0X_XX_XX  
R/W h00_38_0X  
R/W h00_38_0X  
R/W h00_38_0X  
R/W h00_38_0X  
VPLLEN  
VGEN2MODE VGEN2STBY  
VGEN2EN VGEN2CONFIG VREFDDREN  
-
-
Table 112  
7
6
5
4
3
2
1
0
-
VDACMODE  
VDACSTBY  
VDACEN  
VUSBEN  
-
VGEN1STBY  
VGEN1EN  
23  
22  
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
-
SPARE  
GPIOLV0  
Control  
15  
14  
13  
12  
11  
10  
9
8
SRE1  
SRE0  
PUS1  
PUS0  
PUE  
DSE  
ODE  
PKE  
Table 113  
7
6
5
4
3
2
1
0
INT1  
INT0  
DBNC1  
DBNC0  
HYS  
DOUT  
DIN  
DIR  
23  
22  
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
-
SPARE  
GPIOLV1  
Control  
15  
14  
13  
12  
11  
10  
9
8
SRE1  
SRE0  
PUS1  
PUS0  
PUE  
DSE  
ODE  
PKE  
Table 114  
7
6
5
4
3
2
1
0
INT1  
INT0  
DBNC1  
DBNC0  
HYS  
DOUT  
DIN  
DIR  
23  
22  
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
-
SPARE  
GPIOLV2  
Control  
15  
14  
13  
12  
11  
10  
9
8
SRE1  
SRE0  
PUS1  
PUS0  
PUE  
DSE  
ODE  
PKE  
Table 115  
7
6
5
4
3
2
1
0
INT1  
INT0  
DBNC1  
DBNC0  
HYS  
DOUT  
DIN  
DIR  
23  
22  
21  
20  
19  
18  
17  
16  
-
-
-
-
-
-
-
SPARE  
GPIOLV3  
Control  
15  
14  
13  
12  
11  
10  
9
8
PKE  
0
SRE1  
SRE0  
PUS1  
PUS0  
PUE  
DSE  
ODE  
Table 116  
7
6
5
4
3
2
1
INT1  
INT0  
DBNC1  
DBNC0  
HYS  
DOUT  
DIN  
DIR  
16  
-
23  
22  
21  
20  
19  
18  
-
17  
-
-
-
-
-
-
15  
14  
13  
12  
11  
10  
-
9
8
0x25  
to  
0x2A  
Unused  
NU  
h00_00_00  
-
-
-
-
-
-
-
7
6
5
4
3
2
1
0
-
23  
-
22  
-
-
-
19  
-
-
-
21  
20  
18  
17  
16  
SPARE  
15  
SPARE  
14  
SPARE  
TSPENDETEN  
SPARE  
11  
TSSTOP[2:0]  
13  
TSSTART  
5
12  
TSEN  
4
10  
SPARE  
2
9
SPARE  
1
8
THERM  
0
ADC 0  
0x2B  
R/W h00_00_00  
Table 119  
TSHOLD  
7
TSCONT  
6
SPARE  
3
SPARE  
23  
ADSTOP[2:0]  
21  
ADHOLD  
19  
ADCONT  
18  
ADSTART  
17  
ADEN  
16  
22  
20  
12  
4
TSDLY3[3:0]  
TSDLY2[3:0]  
15  
7
14  
13  
11  
3
10  
9
1
8
0
ADC 1  
0x2C  
R/W h00_00_00  
Table 120  
TSDLY1[3:0]  
ADDLY3[3:0]  
6
5
2
ADDLY2[3:0]  
ADDLY1[3:0]  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
94  
Functional Block Description  
23  
15  
7
22  
ADSEL5[3:0]  
14  
ADSEL3[3:0]  
21  
13  
5
20  
12  
4
19  
11  
3
18  
10  
2
17  
9
16  
8
ADSEL4[3:0]  
ADSEL2[3:0]  
ADSEL0[3:0]  
ADC 2  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
R/W h00_00_00  
Table 121  
6
1
0
ADSEL1[3:0]  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
11  
3
18  
10  
2
17  
9
16  
8
TSSEL7[1:0]  
TSSEL3[1:0]  
TSSEL6[1:0]  
TSSEL2[1:0]  
TSSEL5[1:0]  
TSSEL1[1:0]  
TSSEL4[1:0]  
TSSEL0[1:0]  
ADC 3  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
R/W h00_00_00  
Table 122  
1
0
ADSEL7[3:0]  
ADSEL6[3:0]  
23  
15  
22  
21  
20  
19  
18  
10  
2
17  
9
16  
8
ADRESULT1[9:2]  
14  
13  
-
12  
11  
3
ADC 4  
Table 123  
ADRESULT1[1:0]  
-
ADRESULT0[9:6]  
7
6
5
4
1
0
-
ADRESULT0[5:0]  
-
23  
15  
7
22  
14  
21  
20  
19  
18  
10  
2
17  
16  
ADRESULT3[9:2]  
13  
-
12  
11  
3
9
8
ADC 5  
Table 124  
ADRESULT3[1:0]  
-
ADRESULT2[9:6]  
6
5
4
1
0
-
ADRESULT2[5:0]  
-
23  
15  
22  
14  
6
21  
20  
19  
18  
10  
2
17  
16  
ADRESULT5[9:2]  
13  
-
12  
11  
3
9
8
ADC 6  
Table 125  
ADRESULT5[1:0]  
-
ADRESULT4[9:6]  
7
23  
15  
7
5
4
1
0
-
ADRESULT4[5:2]  
-
22  
14  
21  
20  
19  
18  
10  
2
17  
16  
ADRESULT7[9:2]  
13  
-
12  
11  
3
9
8
ADC 7  
Table 126  
ADRESULT7[9:2]  
-
ADRESULT6[9:6]  
6
5
4
1
0
-
ADRESULT6[5:0]  
-
23  
-
22  
-
21  
-
20  
19  
-
18  
-
17  
16  
-
-
12  
-
-
9
-
15  
-
14  
-
13  
-
11  
-
10  
-
8
-
Unused  
NU  
h00_00_00  
7
6
5
4
3
2
1
-
0
-
-
-
-
-
-
-
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
16  
DIE_TEMP_DB[1:0]  
Supply  
Debounce  
15  
-
14  
-
13  
-
12  
-
11  
-
10  
-
9
-
8
-
R/W h03_00_00  
Table 128  
7
6
5
4
3
2
1
-
0
-
-
-
-
-
VBATTDB[1:0]  
34709  
Analog Integrated Circuit Device Data  
95  
Freescale Semiconductor  
Functional Block Description  
23  
-
22  
-
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
15  
-
14  
-
13  
-
12  
-
11  
-
10  
-
9
8
0x35  
to  
0x36  
Unused  
NU  
h00_00_00  
-
-
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
23  
22  
21  
20  
19  
18  
17  
16  
PWM2CLKDIV[5:0]  
PWM2DUTY[5:4]  
15  
7
14  
13  
12  
4
11  
3
10  
9
8
0
PWM Control  
Table 130  
0x37  
R/W h00_00_00  
PWM2DUTY[3:0]  
PWM1CLKDIV[5:2]  
6
5
2
1
PWM1CLKDIV[1:0]  
PWM1DUTY[5:0]  
23  
-
22  
21  
-
20  
-
19  
-
18  
-
17  
-
16  
-
-
14  
-
15  
-
13  
-
12  
-
11  
-
10  
-
9
-
8
-
0x38  
to  
Unused  
NU  
h00_00_00  
0x3F  
7
6
5
4
3
2
1
-
0
-
-
-
-
-
-
-
7.9.4  
SPI Register’s Bit Description  
Table 82. Register 0, Interrupt Status 0  
Name  
Bit # R/W  
Reset  
Default  
Description  
ADCDONEI  
TSDONEI  
TSPENDET  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LOWBATT  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
1
RW1C  
RESETB  
0
0
0
-
ADC has finished requested conversions  
Touchscreen has finished requested conversions  
Touch screen pen detection  
For Future Use  
RW1C  
RESETB  
2
RW1C  
RESETB  
3
R
R
R
R
R
R
R
R
R
R
-
4
-
-
For Future Use  
5
-
-
For Future Use  
6
-
-
For Future Use  
7
-
-
For Future Use  
8
-
-
For Future Use  
9
-
-
For Future Use  
10  
11  
12  
-
-
For Future Use  
-
-
For Future Use  
-
-
For Future Use  
13 RW1C  
RESETB  
0
-
Low battery threshold warning  
For Future Use  
14  
15  
16  
17  
18  
19  
R
R
R
R
R
R
-
-
-
-
-
-
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
96  
Functional Block Description  
Table 82. Register 0, Interrupt Status 0  
Name  
Bit # R/W  
Reset  
Default  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
20  
21  
22  
23  
R
R
R
R
-
-
-
-
-
-
-
-
For Future Use  
For Future Use  
For Future Use  
For Future Use  
Back to SPI/I2C Register Map  
Table 83. Register 1, Interrupt Mask 0  
Name  
Bit # R/W Reset Default  
Description  
ADCDONEM  
TSDONEM  
TSPENDETM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LOWBATTM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
1
R/W RESETB  
R/W RESETB  
R/W RESETB  
1
1
1
-
ADCDONEI mask bit  
TSDONEI mask bit  
Touch screen pen detect mask bit  
For Future Use  
2
3
R
R
R
R
R
R
R
R
R
R
-
-
-
-
-
-
-
-
-
-
4
-
For Future Use  
5
-
For Future Use  
6
-
For Future Use  
7
-
For Future Use  
8
-
For Future Use  
9
-
For Future Use  
10  
11  
12  
-
For Future Use  
-
For Future Use  
-
For Future Use  
13 R/W RESETB  
1
-
LOBATLI mask bit  
For Future Use  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
R
R
R
R
R
R
R
R
-
-
-
-
-
-
-
-
-
-
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
-
For Future Use  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
97  
Functional Block Description  
Table 84. Register 2, Interrupt Sense 0  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
-
Not available  
Not available  
Not available  
For Future Use  
For Future Use  
For Future Use  
For Future Use  
Not available  
For Future Use  
For Future Use  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
For Future Use  
For Future Use  
For Future Use  
For Future Use  
For Future Use  
Not available  
Not available  
Unused  
2
Reserved  
Reserved  
Reserved  
Reserved  
Unused  
3
4
-
5
-
6
-
7
0
-
Reserved  
Reserved  
Unused  
8
9
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
0
0
0
0
0
0
0
-
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Unused  
-
-
-
-
0
0
Unused  
Back to SPI/I2C Register Map  
Table 85. Register 3, Interrupt Status 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
1HZI  
TODAI  
0
1
2
3
4
5
6
7
8
9
RW1C RTCPORB  
RW1C RTCPORB  
R
0
0
0
0
0
0
0
1
0
0
1.0 Hz time tick  
Time of day alarm  
Unused  
PWRON1I  
PWRON2I  
WDIRESETI  
SYSRSTI  
RTCRSTI  
PCI  
RW1C  
RW1C  
OFFB  
OFFB  
PWRON1 event  
PWRON2 event  
RW1C RTCPORB  
RW1C RTCPORB  
RW1C RTCPORB  
WDI system reset event  
PWRON system reset event  
RTC reset event  
RW1C  
OFFB  
Power cut event  
WARMI  
RW1C RTCPORB  
Warm start event  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
98  
Functional Block Description  
Table 85. Register 3, Interrupt Status 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
MEMHLDI  
THERM110  
THERM120  
THERM125  
THERM130  
CLKI  
10 RW1C RTCPORB  
11 RW1C RESETB  
12 RW1C RESETB  
13 RW1C RESETB  
14 RW1C RESETB  
15 RW1C RESETB  
16 RW1C RESETB  
17 RW1C RESETB  
18 RW1C RESETB  
19 RW1C RESETB  
20 RW1C RESETB  
0
0
0
0
0
0
0
0
0
0
0
0
-
Memory hold event  
110 °C thermal threshold  
120 °C thermal threshold  
125 °C thermal threshold  
130 °C thermal threshold  
Clock source change  
Short-circuit protection trip detection  
GPIOLV1 interrupt  
SCPI  
GPIOLV1I  
GPIOLV2I  
GPIOLV3I  
GPIOLV4I  
Unused  
GPIOLV2 interrupt  
GPIOLV3 interrupt  
GPIOLV4 interrupt  
21  
22  
23  
R
R
R
-
Not available  
Reserved  
Unused  
-
For future use  
RESETB  
0
Not available  
Back to SPI/I2C Register Map  
Table 86. Register 4, Interrupt Mask 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
1HZM  
TODAM  
0
1
2
3
4
5
6
7
8
9
R/W RTCPORB  
R/W RTCPORB  
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1HZI mask bit  
TODAI mask bit  
Unused  
PWRON1M  
PWRON2M  
WDIRESETM  
SYSRSTM  
RTCRSTM  
PCM  
R/W  
R/W  
OFFB  
OFFB  
PWRON1 mask bit  
PWRON2 mask bit  
R/W RTCPORB  
R/W RTCPORB  
R/W RTCPORB  
WDIRESETI mask bit  
SYSRSTI mask bit  
RTCRSTI mask bit  
R/W  
OFFB  
PCI mask bit  
WARMM  
R/W RTCPORB  
WARMI mask bit  
MEMHLDM  
10 R/W RTCPORB  
MEMHLDI mask bit  
THERM110M 11 R/W  
THERM120M 12 R/W  
THERM125M 13 R/W  
THERM130M 14 R/W  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
THERM110 mask bit  
THERM120 mask bit  
THERM125 mask bit  
THERM130 mask bit  
CLKI mask bit  
CLKM  
15 R/W  
16 R/W  
17 R/W  
18 R/W  
19 R/W  
SCPM  
Short-circuit protection trip mask bit  
GPIOLV1 interrupt mask bit  
GPIOLV2 interrupt mask bit  
GPIOLV3 interrupt mask bit  
GPIOLV1M  
GPIOLV2M  
GPIOLV3M  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
99  
Functional Block Description  
Table 86. Register 4, Interrupt Mask 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
GPIOLV4M  
Unused  
20 R/W  
RESETB  
1
0
-
GPIOLV4 interrupt mask bit  
Not available  
21  
22  
23  
R
R
R
Reserved  
Unused  
-
For Future use  
1
Not available  
Back to SPI/I2C Register Map  
Table 87. Register 5, Interrupt Sense 1  
Name  
Bit # R/W Reset Default  
Description  
Unused  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
S
S
0
0
0
0
0
0
S
S
S
S
0
0
0
0
0
0
0
-
Not available  
Not available  
Unused  
2
Not available  
PWRON1S  
PWRON2S  
Unused  
3
NONE  
NONE  
PWRON1I sense bit  
PWRON2I sense bit  
Not available  
4
5
Unused  
6
Not available  
Unused  
7
Not available  
Unused  
8
Not available  
Unused  
9
Not available  
Unused  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
CLKS  
NONE  
NONE  
NONE  
NONE  
NONE  
THERM110 sense bit  
THERM120 sense bit  
THERM125 sense bit  
THERM130 sense bit  
CLKI sense bit  
Not available  
Unused  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Unused  
Not available  
Reserved  
Unused  
-
For Future Use  
Not available  
NONE  
0
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
100  
Functional Block Description  
Table 88. Register 6, Power-up Mode Sense  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ICTESTS  
PUMS1S  
PUMS2S  
PUMS3S  
PUMS4S  
PUMS5S  
Unused  
Unused  
Unused  
Reserved  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
S
L
L
L
L
L
0
0
0
-
ICTEST sense state  
PUMS1 state  
PUMS2 state  
PUMS3 state  
PUMS4 state  
PUMS5 state  
Not available  
Not available  
Not available  
For future use  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
2
3
4
5
6
7
8
9
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Back to SPI/I2C Register Map  
Table 89. Register 7, Identification  
Name  
Bit # R/W  
Reset  
Default  
Description  
METAL_LAYER_REV0  
METAL_LAYER_REV1  
METAL_LAYER_REV2  
FULL_LAYER_REV0  
FULL_LAYER REV1  
FULL_LAYER REV2  
FIN0  
0
1
2
3
4
5
6
7
8
R
R
R
R
R
R
R
R
R
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
X
X
X
X
X
X
X
X
X
Metal Layer version  
Pass 1.0 = 000  
Full Layer version  
Pass 1.0 = 001  
FIN version  
FIN1  
Pass 1.0 = 000  
FIN2  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
101  
Functional Block Description  
Table 89. Register 7, Identification  
Name  
Bit # R/W  
Reset  
Default  
Description  
FAB0  
FAB1  
9
R
R
R
R
R
R
R
R
R
R
NONE  
NONE  
NONE  
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
FAB version  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Pass 1.0 = 000  
FAB2  
Unused  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
PAGE0  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
PAGE1  
PAGE2  
SPI Page  
PAGE3  
PAGE4  
Back to SPI/I2C Register Map  
Table 90. Register 8, Regulator Fault Sense  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1FAULT  
Reserved  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
NONE  
-
S
-
SW1 fault detection  
For future use  
SW2FAULT  
SW3FAULT  
SW4AFAULT  
SW4BFAULT  
SW5FAULT  
SWBSTFAULT  
VUSBFAULT  
VUSB2FAULT  
VDACFAULT  
VGEN1FAULT  
VGEN2FAULT  
Unused  
2
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
S
S
S
S
S
S
S
S
S
S
S
0
SW2 fault detection  
SW3 fault detection  
SW4A fault detection  
SW4B fault detection  
SW5 fault detection  
SWBST fault detection  
VUSB fault detection  
VUSB2 fault detection  
VDAC fault detection  
VGEN1 fault detection  
VGEN2 fault detection  
Not available  
3
4
5
6
7
8
9
10  
11  
12  
13-22  
23  
RESCGPEN  
R/W RESETB  
0
Regulator short-circuit protect enable  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
102  
Functional Block Description  
Table 91. Register 9, Reserved  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Reserved  
23-0  
R
-
-
For future use  
Table 92. Register 10 to 12, Unused  
Name  
Bit # R/W  
23-0  
Reset  
Default  
Description  
Reserved  
R
-
-
For future use  
Table 93. Register 13, Power Control 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
PCEN  
PCCOUNTEN  
WARMEN  
0
1
2
3
4
5
6
7
8
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
RESETB  
0
0
0
0
0
0
1
0
0
Power cut enable  
Power cut counter enable  
Warm start enable  
USEROFFSPI  
DRM  
SPI command for entering user off modes  
Keeps VSRTC and CLK32KMCU on for all states  
Keeps the CLK32KMCU active during user off  
Enables the CLK32KMCU  
RTCPORB (62)  
RTCPORB  
USEROFFCLK  
CLK32KMCUEN  
Unused  
RTCPORB  
Not available  
Unused  
R
Not available  
PCUTEXPB=1 at a start-up event indicates that PCUT timer did not  
expire (assuming it was set to 1 after booting)  
PCUTEXPB  
9
R/W  
RTCPORB  
0
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Reserved  
VCOIN0  
VCOIN1  
VCOIN2  
COINCHEN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R
R
0
0
0
0
0
0
0
0
0
-
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
For Future Use  
R
R
R
R
R
R
R
R
-
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
Coin cell charger voltage setting  
Coin cell charger enable  
Notes:  
62. Reset by RTCPORB but not during a GLBRST (global reset)  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
103  
Freescale Semiconductor  
Functional Block Description  
Table 94. Register 14, Power Control 1  
Name  
Bit # R/W  
Reset  
Default  
Description  
PCT0  
PCT1  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PCT2  
2
PCT3  
3
Power cut timer  
PCT4  
4
PCT5  
5
PCT6  
6
PCT7  
7
PCCOUNT0  
PCCOUNT1  
PCCOUNT2  
PCCOUNT3  
PCMAXCNT0  
PCMAXCNT1  
PCMAXCNT2  
PCMAXCNT3  
Unused  
8
9
Power cut counter  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Maximum allowed number of power cuts  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Unused  
R
Back to SPI/I2C Register Map  
Table 95. Register 15, Power Control 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
RESTARTEN  
PWRON1RSTEN  
PWRON2RSTEN  
Unused  
0
1
2
3
4
5
6
7
8
9
R/W  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
1
1
Enables automatic restart after a system reset  
Enables system reset on PWRON1 pin  
Enables system reset on PWRON2 pin  
Not available  
PWRON1DBNC0  
PWRON1DBNC1  
PWRON2DBNC0  
PWRON2DBNC1  
GLBRSTTMR0  
GLBRSTTMR1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
Sets debounce time on PWRON1 pin  
Sets debounce time on PWRON2 pin  
Sets Global reset time  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
104  
Functional Block Description  
Table 95. Register 15, Power Control 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
STANDBYINV  
Unused  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R/W  
R
RTCPORB  
0
0
0
1
0
0
0
1
0
0
0
If set then STANDBY is interpreted as active low  
Not available  
WDIRESET  
SPIDRV0  
SPIDRV1  
Unused  
R/W  
R/W  
R/W  
R
RESETB  
RTCPORB  
RTCPORB  
Enables system reset through WDI  
SPI drive strength  
Not available  
Not available  
Unused  
R
CLK32KDRV0  
CLK32KDRV1  
Unused  
R/W  
R/W  
R
RTCPORB  
RTCPORB  
CLK32K and CLK32KMCU drive strength (master control bits)  
Not available  
Not available  
Unused  
R
On Standby Low-power Mode  
0 = Low-power mode disabled  
1 =Low-power mode enabled  
ON_STBY_LP  
21  
R/W  
RESETB  
0
STBYDLY0  
STBYDLY1  
22  
23  
R/W  
R/W  
RESETB  
RESETB  
1
0
Standby delay control  
Back to SPI/I2C Register Map  
Table 96. Register 16, Memory A  
Name  
Bit # R/W  
Reset  
Default  
Description  
MEMA0  
MEMA1  
MEMA2  
MEMA3  
MEMA4  
MEMA5  
MEMA6  
MEMA7  
MEMA8  
MEMA9  
MEMA10  
MEMA11  
MEMA12  
MEMA13  
MEMA14  
MEMA15  
MEMA16  
MEMA17  
MEMA18  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
3
4
5
6
7
8
9
Backup memory A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
34709  
Analog Integrated Circuit Device Data  
105  
Freescale Semiconductor  
Functional Block Description  
Table 96. Register 16, Memory A  
Name  
Bit # R/W  
Reset  
Default  
Description  
MEMA19  
MEMA20  
MEMA21  
MEMA22  
MEMA23  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
Backup memory A  
Back to SPI/I2C Register Map  
Table 97. Register 17, Memory B  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
MEMB0  
MEMB1  
MEMB2  
MEMB3  
MEMB4  
MEMB5  
MEMB6  
MEMB7  
MEMB8  
MEMB9  
MEMB10  
MEMB11  
MEMB12  
MEMB13  
MEMB14  
MEMB15  
MEMB16  
MEMB17  
MEMB18  
MEMB19  
MEMB20  
MEMB21  
MEMB22  
MEMB23  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Backup memory B  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
106  
Functional Block Description  
Table 98. Register 18, Memory C  
Name  
Bit # R/W  
Reset  
Default  
Description  
MEMC0  
MEMC1  
MEMC2  
MEMC3  
MEMC4  
MEMC5  
MEMC6  
MEMC7  
MEMC8  
MEMC9  
MEMC10  
MEMC11  
MEMC12  
MEMC13  
MEMC14  
MEMC15  
MEMC16  
MEMC17  
MEMC18  
MEMC19  
MEMC20  
MEMC21  
MEMC22  
MEMC23  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Backup memory C  
Back to SPI/I2C Register Map  
Table 99. Register 19, Memory D  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
MEMD0  
MEMD1  
MEMD2  
MEMD3  
MEMD4  
MEMD5  
MEMD6  
MEMD7  
MEMD8  
MEMD9  
0
1
2
3
4
5
6
7
8
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
Backup memory D  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
107  
Functional Block Description  
Table 99. Register 19, Memory D  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
MEMD10  
MEMD11  
MEMD12  
MEMD13  
MEMD14  
MEMD15  
MEMD16  
MEMD17  
MEMD18  
MEMD19  
MEMD20  
MEMD21  
MEMD22  
MEMD23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
RTCPORB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Backup memory D  
Back to SPI/I2C Register Map  
Table 100. Register 20, RTC Time  
Name  
Bit # R/W  
Reset  
Default  
Description  
TOD0  
TOD1  
TOD2  
TOD3  
TOD4  
TOD5  
TOD6  
TOD7  
TOD8  
TOD9  
TOD10  
TOD11  
TOD12  
TOD13  
TOD14  
TOD15  
TOD16  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
3
4
5
6
7
8
Time of day counter  
9
10  
11  
12  
13  
14  
15  
16  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
108  
Functional Block Description  
Table 100. Register 20, RTC Time  
Name  
Bit # R/W  
Reset  
Default  
Description  
RTCCAL0  
RTCCAL1  
17  
18  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
RTCPORB (63)  
0
0
0
0
0
0
0
RTCCAL2  
RTC calibration count  
RTCCAL3  
RTCCAL4  
RTCCALMODE0  
RTCCALMODE1  
RTC calibration mode  
Notes  
63. Reset by RTCPORB but not during a GLBRST (global reset)  
Back to SPI/I2C Register Map  
Table 101. Register 21, RTC Alarm  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
TODA0  
TODA1  
TODA2  
TODA3  
TODA4  
TODA5  
TODA6  
TODA7  
TODA8  
TODA9  
TODA10  
TODA11  
TODA12  
TODA13  
TODA14  
TODA15  
TODA16  
Unused  
RTCDIS  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
RTCPORB (64)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
2
3
4
5
6
7
8
Time of day alarm  
9
10  
11  
12  
13  
14  
15  
16  
17- 22  
23  
Not available  
Disable RTC  
R/W  
RTCPORB (64)  
Notes  
64. Reset by RTCPORB but not during a GLBRST (global reset)  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
109  
Freescale Semiconductor  
Functional Block Description  
Table 102. Register 22, RTC Day  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DAY0  
DAY1  
DAY2  
DAY3  
DAY4  
DAY5  
DAY6  
DAY7  
DAY8  
DAY9  
DAY10  
DAY11  
DAY12  
DAY13  
DAY14  
Unused  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
RTCPORB (65)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
Day counter  
8
9
10  
11  
12  
13  
14  
15 - 23  
Not available  
Notes  
65. Reset by RTCPORB but not during a GLBRST (global reset)  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
110  
Functional Block Description  
Table 103. Register 23, RTC Day Alarm  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
DAYA0  
DAYA1  
DAYA2  
DAYA3  
DAYA4  
DAYA5  
DAYA6  
DAYA7  
DAYA8  
DAYA9  
DAYA10  
DAYA11  
DAYA12  
DAYA13  
DAYA14  
Unused  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
RTCPORB (66)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
3
4
5
6
7
Day alarm  
8
9
10  
11  
12  
13  
14  
15 - 23  
Not available  
Notes  
66. Reset by RTCPORB but not during a GLBRST (global reset)  
Back to SPI/I2C Register Map  
Table 104. Register 24, Regulator 1A/B Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1A0  
SW1A1  
0
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
*
*
*
*
*
*
*
*
*
*
*
*
-
1
SW1A2  
2
SW1 setting in normal mode  
SW1A3  
3
SW1A4  
4
SW1A5  
5
SW1ASTBY0  
SW1ASTBY1  
SW1ASTBY2  
SW1ASTBY3  
SW1ASTBY4  
SW1ASTBY5  
Reserved  
6
7
8
SW1 setting in Standby mode  
9
10  
11  
12 - 23  
R
-
For future use  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
111  
Functional Block Description  
Table 105. Register 25, Regulator 2 & 3 Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW20  
SW21  
0
1
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
*
*
*
*
*
0
SW22  
2
SW2 setting in normal mode  
SW23  
3
SW24  
4
SW25  
5
SW2STBY0  
SW2STBY1  
SW2STBY2  
SW2STBY3  
SW2STBY4  
SW2STBY5  
SW30  
6
7
8
SW2 setting in Standby mode  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
SW31  
SW32  
SW3 setting in normal mode  
Not available  
SW33  
SW34  
Unused  
SW3STBY0  
SW3STBY1  
SW3STBY2  
SW3STBY3  
SW3STBY4  
Unused  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R
NONE  
NONE  
NONE  
NONE  
NONE  
SW3 setting in standby mode  
Not available  
Back to SPI/I2C Register Map  
Table 106. Register 26, REgulator 4A/B  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW4A0  
SW4A1  
0
1
2
3
4
5
6
7
8
9
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
*
*
*
*
*
*
*
*
*
*
SW4A2  
SW4A setting in normal mode  
SW4A3  
SW4A4  
SW4ASTBY0  
SW4ASTBY1  
SW4ASTBY2  
SW4ASTBY3  
SW4ASTBY4  
SW4A setting in Standby mode  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
112  
Functional Block Description  
Table 106. Register 26, REgulator 4A/B  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW4AHI0  
SW4AHI1  
SW4B0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
NONE  
NONE  
NONE  
NONE  
NONE  
NONE  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
SW4A high setting  
SW4B1  
SW4B2  
SW4B setting in normal mode  
SW4B3  
SW4B4  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
R/WM RESETB  
SW4BSTBY0  
SW4BSTBY1  
SW4BSTBY2  
SW4BSTBY3  
SW4BSTBY4  
SW4BHI0  
SW4BHI1  
SW4B setting in Standby mode  
SW4B high setting  
Back to SPI/I2C Register Map  
Table 107. Register 27, REgulator 5 Voltage  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW50  
SW51  
0
1
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R
*
*
*
*
*
*
*
*
*
*
*
0
SW52  
2
SW4 setting in normal mode  
Not available  
SW53  
3
SW54  
4
Unused  
5 - 9  
10  
SW5STBY0  
SW5STBY1  
SW5STBY2  
SW5STBY3  
SW5STBY4  
Unused  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R/WM NONE  
R
11  
12  
SW5 setting in Standby mode  
Not available  
13  
14  
15 - 23  
Back to SPI/I2C Register Map  
Table 108. Register 28, Regulators 1 & 2 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1AMODE0  
SW1AMODE1  
SW1AMODE2  
SW1AMODE3  
0
1
2
3
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
0
0
0
1
SW1A operating mode  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
113  
Functional Block Description  
Table 108. Register 28, Regulators 1 & 2 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW1AMHMODE  
SW1AUOMODE  
SW1DVSSPEED0  
SW1DVSSPEED1  
Unused  
4
5
R/W  
R/W  
R/W  
R/W  
R
OFFB  
OFFB  
0
0
1
0
0
0
0
0
1
0
0
1
0
1
0
SW1A Memory Hold mode  
SW1A User Off mode  
6
RESETB  
RESETB  
SW1 DVS1 speed  
7
8 - 13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
SW2MODE0(67)  
SW2MODE1(67)  
SW2MODE2(67)  
SW2MODE3(67)  
SW2MHMODE  
SW2UOMODE  
SW2DVSSPEED0  
SW2DVSSPEED1  
PLLEN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
SW2 operating mode  
SW2 Memory Hold mode  
SW2 User Off mode  
OFFB  
RESETB  
RESETB  
RESETB  
RESETB  
SW2 DVS1 speed  
PLL enable  
PLLX  
PLL multiplication factor  
Notes  
67. SWxMODE[3:0] bits will be reset to their default values by the start-up sequencer, based on PUMS settings. An enabled switch will  
default to APS mode for both Normal and Standby operation.  
Back to SPI/I2C Register Map  
Table 109. Register 29, Regulators 3, 4, and 5 Operating Mode  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SW3MODE0  
SW3MODE1  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
SW3 operating mode  
SW3MODE2  
2
SW3MODE3  
3
SW3MHMODE  
SW3UOMODE  
SW4AMODE0  
SW4AMODE1  
SW4AMODE2  
SW4AMODE3  
SW4AMHMODE  
SW4AUOMODE  
SW4BMODE0  
SW4BMODE1  
SW4BMODE2  
SW4BMODE3  
SW4BMHMODE  
4
SW3 Memory Hold mode  
SW3 User Off mode  
5
OFFB  
6
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
7
SW4A operating mode  
8
9
10  
11  
12  
13  
14  
15  
16  
SW4A Memory Hold mode  
SW4A User Off mode  
OFFB  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
SW4B operating mode  
SW4B Memory Hold mode  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
114  
Functional Block Description  
Table 109. Register 29, Regulators 3, 4, and 5 Operating Mode  
SW4BUOMODE  
SW5MODE0(68)  
SW5MODE1(68)  
SW5MODE2(68)  
SW5MODE3(68)  
SW5MHMODE  
SW5UOMODE  
17  
18  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OFFB  
RESETB  
RESETB  
RESETB  
RESETB  
OFFB  
0
0
0
0
1
0
0
SW4B User Off mode  
SW5 operating mode  
SW5 Memory Hold mode  
SW5 User Off mode  
OFFB  
Notes  
68. SWxMODE[3:0] bits will be reset to their default values by the start-up sequencer, based on PUMS settings. An enabled regulator will  
default to APS mode for both Normal and Standby operation.  
Back to SPI/I2C Register Map  
Table 110. Register 30, Regulator Setting 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VGEN10  
VGEN11  
VGEN12  
Unused  
VDAC0  
VDAC1  
VGEN20  
VGEN21  
VGEN22  
VPLL0  
0
R/WM  
R/WM  
R/WM  
R
RESETB  
RESETB  
RESETB  
*
*
*
0
*
*
*
*
*
*
*
*
*
0
1
VGEN1 setting  
2
3
Not available  
VDAC setting  
4
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R/WM  
R
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
5
6
7
VGEN2 setting  
VPLL setting  
8
9
VPLL1  
10  
11  
12  
13 -23  
VUSB20  
VUSB21  
Unused  
VUSB2 setting  
Not available  
Back to SPI/I2C Register Map  
Table 111. Register 31, SWBST Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SWBST0  
SWBST1  
0
1
2
3
4
5
6
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NONE  
NONE  
*
SWBST setting  
*
SWBSTMODE0  
SWBSTMODE1  
Spare  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
0
1
0
0
1
SWBST mode  
Not available  
SWBSTSTBYMODE0  
SWBSTSTBYMODE1  
SWBST standby mode  
34709  
Analog Integrated Circuit Device Data  
115  
Freescale Semiconductor  
Functional Block Description  
Table 111. Register 31, SWBST Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Spare  
Unused  
7
R/W  
R
RESETB  
0
0
Not available  
Not available  
8 - 23  
Back to SPI/I2C Register Map  
Table 112. Register 32, Regulator Mode 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
VGEN1EN  
VGEN1STBY  
Unused  
0
1
R/W  
R/W  
R
NONE  
*
0
0
1
*
VGEN1 enable  
VGEN1 controlled by standby  
Not available  
RESETB  
2
VUSBEN  
3
R/W  
R/W  
R/W  
R/W  
R
RESETB  
NONE  
VUSB enable (PUMS4:1=[0100]).  
VDAC enable  
VDACEN  
4
VDACSTBY  
VDACMODE  
Unused  
5
RESETB  
RESETB  
0
0
0
0
0
*
VDAC controlled by standby  
VDAC operating mode  
Not available  
6
7
Unused  
8
R
Not available  
Unused  
9
R
Not available  
VREFDDREN  
10  
R/W  
NONE  
NONE  
VREFDDR enable  
PUMS5 Tied to ground = 0: VGEN2 with external PNP  
PUMS5 Tied to VCROREDIG =1:VGEN2 internal PMOS  
VGEN2CONFIG  
11  
R/W  
*
VGEN2EN  
VGEN2STBY  
VGEN2MODE  
VPLLEN  
12  
13  
14  
15  
16  
R/W  
R/W  
R/W  
R/W  
R/W  
NONE  
RESETB  
RESETB  
NONE  
*
0
0
*
VGEN2 enable  
VGEN2 controlled by standby  
VGEN2 operating mode  
VPLL enable  
VPLLSTBY  
RESETB  
0
VPLL controlled by standby  
PUMS5 Tied to ground = 0: VUSB2 with external PNP  
PUMS5 Tied to VCROREDIG =1:VUSB2 internal PMOS  
VUSB2CONFIG  
17  
R/W  
NONE  
*
VUSB2EN  
VUSB2STBY  
VUSB2MODE  
Unused  
18  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R
NONE  
*
VUSB2 enable  
VUSB2 controlled by standby  
VUSB2 operating mode  
Not available  
RESETB  
RESETB  
0
0
0
0
0
Unused  
R
Not available  
Unused  
R
Not available  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
116  
Functional Block Description  
Table 113. Register 33, GPIOLV0 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV0 direction  
0: Input  
DIR  
0
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
1: Output  
Input state of GPIOLV0 pin  
0: Input low  
DIN  
1
2
0
0
1: Input High  
Output state of GPIOLV0 pin  
0: Output Low  
DOUT  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis  
HYS  
3
4
R/W RESETB  
R/W RESETB  
1
0
DBNC0  
GPIOLV0 input debounce time  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
DBNC1  
5
R/W RESETB  
0
INT0  
INT1  
6
7
R/W RESETB  
R/W RESETB  
0
0
GPIOLV0 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off  
PKE  
ODE  
DSE  
PUE  
8
9
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
0
0
1
1: On  
Open-drain enable  
0: CMOS  
1: OD  
Drive strength enable  
0: 4.0 mA  
10  
11  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS0  
PUS1  
12  
13  
R/W RESETB  
R/W RESETB  
1
1
11: 100 K pull-up  
(1.0 default 10)  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
117  
Functional Block Description  
Table 113. Register 33, GPIOLV0 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
SRE0  
14  
R/W RESETB  
R/W RESETB  
R
0
Slew rate enable  
00: slow (default)  
01: normal  
SRE1  
15  
0
0
10: fast  
11: very fast  
Unused 16 - 23  
Not available  
Back to SPI/I2C Register Map  
Table 114. Register 34, GPIOLV1 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV1directon  
0: Input  
DIR  
0
R/W  
RESETB  
0
1: Output  
Input state of GPIOLV1 pin  
0: Input low  
DIN  
1
2
R/W  
R/W  
RESETB  
RESETB  
0
0
1: Input High  
Output state of GPIOLV1 pin  
0: Output Low  
DOUT  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis  
HYS  
3
4
R/W  
R/W  
RESETB  
RESETB  
1
0
DBNC0  
GPIOLV1 input debounce time  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
DBNC1  
5
R/W  
RESETB  
0
INT0  
INT1  
6
7
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV1 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off  
PKE  
ODE  
DSE  
8
9
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
0
0
0
1: On  
Open-drain enable  
0: CMOS  
1: OD  
Drive strength enable  
0: 4.0 mA  
10  
1: 8.0 mA  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
118  
Functional Block Description  
Table 114. Register 34, GPIOLV1 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Pull-up/down enable  
0: pull-up/down off  
PUE  
11  
R/W  
RESETB  
1
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS0  
12  
R/W  
RESETB  
1
11: 100 K pull-up  
PUS1  
SRE0  
13  
14  
R/W  
R/W  
RESETB  
RESETB  
1
0
(1.0 default 10)  
Slew rate enable  
00: slow (default)  
01: normal  
SRE1  
15  
R/W  
RESETB  
0
0
10: fast  
11: very fast  
Unused 16 - 23  
R
Not available  
Back to SPI/I2C Register Map  
Table 115. Register 35, GPIOLV2 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV2 direction  
0: Input  
DIR  
0
R/W  
RESETB  
0
1: Output  
Input state of GPIOLV2 pin  
0: Input low  
DIN  
1
2
R/W  
R/W  
RESETB  
RESETB  
0
0
1: Input High  
Output state of GPIOLV2 pin  
0: Output Low  
DOUT  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis  
HYS  
3
4
R/W  
R/W  
RESETB  
RESETB  
1
0
DBNC0  
GPIOLV2 input debounce time  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
DBNC1  
5
R/W  
RESETB  
0
INT0  
INT1  
6
7
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV2 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
119  
Functional Block Description  
Table 115. Register 35, GPIOLV2 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Pad keep enable  
0: Off  
PKE  
8
R/W  
RESETB  
0
1: On  
Open-drain enable  
0: CMOS  
ODE  
DSE  
PUE  
9
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
0
0
1
1: OD  
Drive strength enable  
0: 4.0 mA  
10  
11  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
1: pull-up/down on (default)  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS0  
12  
R/W  
RESETB  
1
11: 100 K pull-up  
PUS1  
SRE0  
13  
14  
R/W  
R/W  
RESETB  
RESETB  
1
0
(1.0 default = 10)  
Slew rate enable  
00: slow (default)  
01: normal  
SRE1  
15  
R/W  
R
RESETB  
0
0
10: fast  
11: very fast  
Unused 16 - 23  
Not available  
Back to SPI/I2C Register Map  
Table 116. Register 36, GPIOLV3 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
GPIOLV3 direction  
0: Input  
DIR  
0
R/W  
RESETB  
0
1: Output  
Input state of GPIOLV3 pin  
0: Input low  
DIN  
1
2
R/W  
R/W  
RESETB  
RESETB  
0
0
1: Input High  
Output state of GPIOLV3 pin  
0: Output Low  
DOUT  
1: Output High  
Hysteresis  
0: CMOS in  
1: Hysteresis  
HYS  
3
4
R/W  
R/W  
RESETB  
RESETB  
1
0
DBNC0  
GPIOLV3 input debounce time  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
120  
Functional Block Description  
Table 116. Register 36, GPIOLV3 Control  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
00: no debounce  
01: 10 ms debounce  
10: 20 ms debounce  
11: 30 mS debounce  
DBNC1  
5
R/W  
RESETB  
0
INT0  
INT1  
6
7
R/W  
R/W  
RESETB  
RESETB  
0
0
GPIOLV3 interrupt control  
00: None  
01: Falling edge  
10: Rising edge  
11: Both edges  
Pad keep enable  
0: Off  
PKE  
ODE  
DSE  
8
9
R/W  
R/W  
R/W  
RESETB  
RESETB  
RESETB  
0
0
0
1: On  
Open-drain enable  
0: CMOS  
1: OD  
Drive strength enable  
0: 4.0 mA  
10  
1: 8.0 mA  
Pull-up/down enable  
0: pull-up/down off  
PUE  
11  
12  
R/W  
R/W  
RESETB  
RESETB  
1
1
1: pull-up/down on (default)  
PUS0  
Pull-up/Pull-down select  
00: 10 K pull-down  
01: 100 K pull-down  
10: 10 K pull-up  
PUS1  
13  
R/W  
RESETB  
1
11: 100 K pull-up  
(1.0 default = 10)  
SRE0  
SRE1  
14  
15  
R/W  
R/W  
R
RESETB  
RESETB  
0
0
0
Slew rate enable  
00: slow (default)  
01: normal  
10: fast  
11: very fast  
Unused 16 - 23  
Not available  
Back to SPI/I2C Register Map  
Table 117. Register 37 - 40, Reserved  
Name  
Bit # R/W  
0 - 23  
Reset  
Default  
Description  
Unused  
R
0
Not available  
Table 118. Register 41 - 42, Unused  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
0-23  
R
0
Not available  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
121  
Functional Block Description  
Table 119. Register 43, ADC 0  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADEN  
0
1
R/W  
R/W  
DIGRESETB  
DIGRESETB  
0
0
Enables ADC from the low-power mode  
ADSTART  
Request a start of the ADC Reading Sequencer  
Run ADC reads continuously when high or one time when low. Note that the  
TSSTART request will have higher priority  
ADCONT  
2
R/W  
DIGRESETB  
0
ADHOLD  
ADSTOP0  
ADSTOP1  
ADSTOP2  
Spare  
3
4
5
6
7
R/W  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
Hold the ADC reading Sequencer while saved ADC results are read from SPI  
Channel Selection to stop when complete. Always start at 000 and read up to and  
including this channel value.  
Not available  
0: NTCREF not forced on  
1: Force NTCREF on  
THERM  
8
R/W  
DIGRESETB  
0
Spare  
Spare  
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
Not available  
Not available  
10  
11  
12  
13  
14  
Spare  
Not available  
TSEN  
Enable the touch screen from low-power mode.  
Request a start of the ADC Reading Sequencer for touch screen readings.  
Run ADC reads of touch screen continuously when high or one time when low.  
TSSTART  
TSCONT  
Hold the ADC reading Sequencer while saved touch screen results are read from  
SPI  
TSHOLD  
15  
R/W  
DIGRESETB  
0
TSSTOP0  
TSSTOP1  
TSSTOP2  
Spare  
16  
17  
18  
19  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
Just like the ADSTOP above, but for the touch screen read programming. This will  
allow independent code for ADC Sequence readings and touch screen ADC  
Sequence readings.  
Not available  
TSPENDET  
EN  
Enable the touch screen Pen Detection. Note that TSEN must be off for Pen  
Detection.  
20  
R/W  
DIGRESETB  
0
Spare  
Spare  
Spare  
21  
22  
23  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
Not available  
Not available  
Not available  
Back to SPI/I2C Register Map  
Table 120. Register 44, ADC 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADDLY10  
ADDLY11  
ADDLY12  
ADDLY13  
0
1
2
3
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
This will allow delay before the ADC readings.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
122  
Functional Block Description  
Table 120. Register 44, ADC 1  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADDLY20  
ADDLY21  
ADDLY22  
ADDLY23  
ADDLY30  
ADDLY31  
ADDLY32  
ADDLY33  
TSDLY10  
TSDLY11  
TSDLY12  
TSDLY13  
TSDLY20  
TSDLY21  
TSDLY21  
TSDLY23  
TSDLY30  
TSDLY31  
TSDLY31  
TSDLY33  
4
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
This will allow delay between each of ADC readings in a set.  
6
7
8
9
This will allow delay after the set of ADC readings. This delay is only valid between  
subsequent wrap around reading sequences with ADCONT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
This will allow delay before the ADC touch screen readings. This is like the ADDLY1,  
but allows independent programming of touch screen readings from general purpose  
ADC readings to prevent code replacement in the system.  
This will allow delay between each of ADC touch screen readings in a set. This is like  
the ADDLY2, but allows independent programming of touch screen readings from  
general purpose ADC readings to prevent code replacement in the system.  
This will allow delay after the set of ADC touch screen readings. This delay is only  
valid between subsequent wrap around reading sequences with TSCONT mode.  
This is like the ADDLY3, but allows independent programming of touch screen  
readings from general purpose ADC readings to prevent code replacement in the  
system.  
Back to SPI/I2C Register Map  
Table 121. Register 45, ADC 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADSEL00  
ADSEL01  
ADSEL02  
ADSEL03  
ADSEL10  
ADSEL11  
ADSEL12  
ADSEL13  
ADSEL20  
ADSEL21  
ADSEL22  
ADSEL23  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
Channel Selection to place in ADRESULT0  
2
3
4
5
Channel Selection to place in ADRESULT1  
Channel Selection to place in ADRESULT2  
6
7
8
9
10  
11  
34709  
Analog Integrated Circuit Device Data  
123  
Freescale Semiconductor  
Functional Block Description  
Table 121. Register 45, ADC 2  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
ADSEL30  
ADSEL31  
ADSEL32  
ADSEL33  
ADSEL40  
ADSEL41  
ADSEL42  
ADSEL43  
ADSEL50  
ADSEL51  
ADSEL52  
ADSEL53  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
Channel Selection to place in ADRESULT3  
Channel Selection to place in ADRESULT4  
Channel Selection to place in ADRESULT5  
Back to SPI/I2C Register Map  
Table 122. Register 46, ADC 3  
Name  
Bit # R/W  
Reset  
Default  
Description  
ADSEL60  
ADSEL61  
ADSEL62  
ADSEL63  
ADSEL70  
ADSEL71  
ADSEL72  
ADSEL73  
TSSEL00  
0
1
2
3
4
5
6
7
8
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
0
0
0
0
0
Channel Selection to place in ADRESULT6  
Channel Selection to place in ADRESULT7  
Touch screen Selection to place in ADRESULT0.  
Select the action for the Touch screen; 00 = dummy to discharge TSREF capacitance,  
01 = to read X-plate, 10 = to read Y-plate, and 11 = to read Contact.  
TSSEL01  
9
R/W DIGRESETB  
0
TSSEL10  
TSSEL11  
TSSEL20  
TSSEL21  
TSSEL30  
TSSEL31  
TSSEL40  
TSSEL41  
TSSEL50  
TSSEL51  
TSSEL60  
TSSEL61  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
0
0
0
0
0
0
0
0
0
0
Touch screen Selection to place in ADRESULT1.  
See TSSEL0 for modes.  
Touch screen Selection to place in ADRESULT2.  
See TSSEL0 for modes.  
Touch screen Selection to place in ADRESULT3.  
See TSSEL0 for modes.  
Touch screen Selection to place in ADRESULT4.  
See TSSEL0 for modes.  
Touch screen Selection to place in ADRESULT5.  
See TSSEL0 for modes.  
Touch screen Selection to place in ADRESULT6.  
See TSSEL0 for modes.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
124  
Functional Block Description  
Table 122. Register 46, ADC 3  
Name  
Bit # R/W  
Reset  
Default  
Description  
TSSEL70  
TSSEL71  
22  
23  
R/W DIGRESETB  
R/W DIGRESETB  
0
0
Touch screen Selection to place in ADRESULT7.  
See TSSEL0 for modes.  
Back to SPI/I2C Register Map  
Table 123. Register 47, ADC 4  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT00  
ADRESULT01  
ADRESULT02  
ADRESULT03  
ADRESULT04  
ADRESULT05  
ADRESULT06  
ADRESULT07  
ADRESULT08  
ADRESULT09  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
3
4
5
6
ADC Result for ADSEL0  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Unused  
ADRESULT10  
ADRESULT11  
ADRESULT12  
ADRESULT13  
ADRESULT14  
ADRESULT15  
ADRESULT16  
ADRESULT17  
ADRESULT18  
ADRESULT19  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL1  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
125  
Functional Block Description  
Table 124. Register 48, ADC5  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT20  
ADRESULT21  
ADRESULT22  
ADRESULT23  
ADRESULT24  
ADRESULT25  
ADRESULT26  
ADRESULT27  
ADRESULT28  
ADRESULT29  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
3
4
5
6
ADC Result for ADSEL2  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Unused  
ADRESULT30  
ADRESULT31  
ADRESULT32  
ADRESULT33  
ADRESULT34  
ADRESULT35  
ADRESULT36  
ADRESULT37  
ADRESULT38  
ADRESULT39  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL3  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
126  
Functional Block Description  
Table 125. Register 49, ADC6  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT40  
ADRESULT41  
ADRESULT42  
ADRESULT43  
ADRESULT44  
ADRESULT45  
ADRESULT46  
ADRESULT47  
ADRESULT48  
ADRESULT49  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
3
4
5
6
ADC Result for ADSEL4  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Unused  
ADRESULT50  
ADRESULT51  
ADRESULT52  
ADRESULT53  
ADRESULT54  
ADRESULT55  
ADRESULT56  
ADRESULT57  
ADRESULT58  
ADRESULT59  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL5  
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
127  
Functional Block Description  
Table 126. Register 50, ADC7  
Name  
Bit # R/W  
Reset  
Default  
Description  
Unused  
0
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Not available  
Unused  
ADRESULT60  
ADRESULT61  
ADRESULT62  
ADRESULT63  
ADRESULT64  
ADRESULT65  
ADRESULT66  
ADRESULT67  
ADRESULT68  
ADRESULT69  
Unused  
2
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
3
4
5
6
ADC Result for ADSEL6  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Not available  
Unused  
ADRESULT70  
ADRESULT71  
ADRESULT72  
ADRESULT73  
ADRESULT74  
ADRESULT75  
ADRESULT76  
ADRESULT77  
ADRESULT78  
ADRESULT79  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
DIGRESETB  
ADC Result for ADSEL7  
Back to SPI/I2C Register Map  
Table 127. Register 51, Reserved  
Name  
Bit # R/W  
0 - 23  
Reset  
Default  
Description  
Unused  
R
0
Not Available  
Table 128. Register 52, Supply Debounce  
Name  
Bit # R/W  
Reset  
Default  
Description  
Reserved  
Reserved  
0
R
R
-
-
-
-
For Future use  
For Future use  
1
2
VBATTDB0  
VBATTDB1  
Reserved  
R/W RESETB  
R/W RESETB  
1
1
-
Low input warning (BP) debounce  
For Future use  
3
4 - 23  
R
-
Back to SPI/I2C Register Map  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
128  
Functional Block Description  
Table 129. Register 53 - 54, Reserved  
Name  
Bit # R/W  
0 - 23  
Reset  
Default  
Description  
Unused  
R
0
Not Available  
Table 130. Register 55, PWM Control  
Name  
Bit # R/W  
Reset  
Default  
Description  
PWM1DUTY0  
PWM1DUTY1  
PWM1DUTY2  
PWM1DUTY3  
PWM1DUTY4  
PWM1DUTY5  
PWMCLKDIV0  
PWM1CLKDIV1  
PWM1CLKDIV2  
PWM1CLKDIV3  
PWM1CLKDIV4  
PWM1CLKDIV5  
PWM2DUTY0  
PWM2DUTY1  
PWM2DUTY2  
PWM2DUTY3  
PWM2DUTY4  
PWM2DUTY5  
PWM2CLKDIV0  
PWM2CLKDIV1  
PWM2CLKDIV2  
PWM2CLKDIV3  
PWM2CLKDIV4  
PWM2CLKDIV5  
0
1
2
3
4
5
6
7
8
9
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
R/W RESETB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM1 Duty Cycle  
PWM1 Clock Divide Setting  
10 R/W RESETB  
11 R/W RESETB  
12 R/W RESETB  
13 R/W RESETB  
14 R/W RESETB  
15 R/W RESETB  
16 R/W RESETB  
17 R/W RESETB  
18 R/W RESETB  
19 R/W RESETB  
20 R/W RESETB  
21 R/W RESETB  
22 R/W RESETB  
23 R/W RESETB  
PWM2 Duty Cycle  
PWM2 Clock Divide Setting  
Back to SPI/I2C Register Map  
Table 131. Register 56 - 63, Unused  
Name  
Bit #  
R/W  
Reset  
Default  
Description  
Unused  
0-23  
R
0
Not available  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
129  
Typical Applications  
8
Typical Applications  
Figure 24 gives a typical application diagram of the 34709 PMIC together with its functional components. For details on  
component references and additional components such as filters, refer to the individual sections.  
8.1  
Application Diagram  
SW1 Output  
2 x22u  
C2  
4.7u  
L1A  
1.0u  
BP  
SW1IN  
SW1ALX  
GNDSW1A  
SW1FB  
O/P  
Drive  
C3/C4  
SW1  
Dual Phase  
GP  
2000 mA  
Buck  
SW1CFG  
SW1VSSSNS  
VCOREDIG  
To AP  
D1  
GNDADC  
SW1BLX  
GNDSW1B  
O/P  
Drive  
R18  
100K  
10 Bit GP  
ADC  
A/D Result  
ADIN9  
DVS  
SW1PWGD  
General Purpose  
CONTROL  
ADC Inputs:  
i.e., PA thermistor,  
Light Sensor, Etc.  
ADIN10  
SW2 Output  
C6  
C5  
4.7u  
BP  
L2  
A/D  
Control  
ADIN11  
1.0u  
SW2IN  
SW2LX  
GNDSW2  
SW2FB  
22u  
MUX  
O/P  
Drive  
SW2  
ADIN12/TSX1  
ADIN13/TSX2  
ADIN14/TSY1  
D2  
R19  
100K  
LP  
Touch  
Screen  
Interface  
`
1000 mA  
SW2PWGD  
To AP  
BP  
Buck  
Touch  
Screen  
Interface  
SW3 Output  
C8 10u  
C7  
4.7u  
L3  
1.0u  
ADIN15/TSY2  
TSREF  
SW3IN  
C34  
SW3  
INT MEM  
500 mA  
Buck  
O/P  
Drive  
SW3LX  
GNDSW3  
SW3FB  
D3  
2.2u  
C9  
4.7u  
SW4A Output  
L4A  
1.0u  
BP  
SW4AIN  
C10  
10u  
SW4ALX  
GNDSW4A  
SW4FBA  
O/P  
Drive  
D4  
SW4  
Dual Phase  
DDR  
SW4CFG  
1000 mA  
Buck  
SW4B Output  
C12 10u  
C11  
4.7u  
L4B  
1.0u  
Package Pin Legend  
BP  
BP  
SW4BIN  
SW4BLX  
GNDSW4B  
SW4BFB  
O/P  
Drive  
Output Pin  
Input Pin  
D5  
SPIVCC  
Shift Register  
Bi-directional Pin  
SW5  
SW5 Output  
C14 22u  
C13  
4.7u  
L5  
1.0u  
CS  
SPI  
SW5IN  
Interface  
+
Muxed  
I2C  
CLK  
SW5  
I/O  
1000 mA  
Buck  
O/P  
Drive  
SW5LX  
GNDSW5  
SW5FB  
SPI  
D6  
SPI  
MOSI  
MISO  
To Enables & Control  
Registers  
BP  
C15  
4.7u  
Optional  
Interface  
GNDSPI  
Shift Register  
L6  
2.2u  
SWBSTIN  
SWBSTLX  
SWBSTFB  
SWBST  
Output  
(Boost)  
BP  
D7  
O/P  
Drive  
SWBST  
380 mA  
Boost  
GNDSWBST  
C16  
10u  
C33  
VCORE  
MC34709  
1u  
C32  
VCOREDIG  
VDDLP  
Reference  
Generation  
1u  
SW4B  
C17  
100n  
C31  
VINREFDDR  
VHALF  
C18  
100n  
C30  
VCOREREF  
100pF  
VREFDDR  
10mA  
GNDCORE  
GNDREF  
100n  
VREFDDR  
1u  
C19  
Main input Supply - BP  
C20  
2.2u  
BP  
VINPLL  
VPLL  
BP  
VPLL  
50 mA  
Pass  
FET  
C1  
10u  
BP  
VUSB2DRV  
VUSB2  
Q1  
Pass  
FET  
VUSB2  
350mA  
C21  
2.2u  
BP  
VDACDRV  
VDAC  
VDAC  
250mA  
Q2  
C22  
2.2u  
To  
Trimmed  
Circuits  
SPI  
Trim-In-Package  
Control  
Logic  
C23  
SW5  
VINGEN1  
VGEN1  
VGEN1  
250mA  
Pass  
FET  
2.2u  
BP  
Startup  
Sequencer  
Decode  
Trim?  
VINUSB  
SWBST  
Control  
Logic  
VGEN2DRV  
VGEN2  
PUMSx  
Q3  
VUSB  
Regulator  
PLL  
Switchers  
C29  
VUSB  
Pass  
FET  
VGEN2  
250mA  
Monitor  
Timer  
GNDUSB  
2.2u  
C24  
2.2u  
RTC  
Calibration  
+
32 KHz  
Internal  
Osc  
LDOVDD  
BP  
SPI Result  
Registers  
Interrupt  
Inputs  
Enables &  
Control  
32 KHz  
Buffers  
Best  
of  
Supply  
Coin Cell  
Battery  
GNDREG1  
GNDREG2  
GNDREF1  
GNDREF2  
BP  
LCELL  
Switch  
LICELL  
C28  
100n  
PWM  
Outputs  
32 KHz  
Crystal  
Osc  
GPIO Control  
Li Cell  
Charger  
Digital Core  
VSRTC  
R4  
R20 R3  
C25  
0.1u  
To/From  
AP  
To AP  
To Peripherals  
To GND, or  
VCOREDIG  
18p  
C27  
18p  
C26  
Y1  
32.768 KHz  
Crystal  
On/Off  
Button  
Reset  
button  
Figure 24. Typical Application Schematic  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
130  
Typical Applications  
8.2  
Bill of Material  
Table 132 provides a complete list of the recommended components on a full featured system using the 34709 Device. Critical  
components such as inductors, transistors, and diodes are provided with a recommended part number, but equivalent  
components may be used.  
Table 132. 34709 Bill of Material (69)  
Item Reference Quantity  
Description  
Vendor  
Comments  
34709  
Freescale  
PMIC  
1
U1  
Battery/supply input  
C1  
Miscellaneous  
1
1
10 F  
TDK  
Battery Filter  
2
100 nF  
1.0 F  
1.0 F  
100 pF  
100 nF  
2.2 F  
100 nF  
VSRTC  
3
4
C25  
C33  
1
1
1
1
1
1
1
1
2
2
1
VCORE  
VCOREDIG  
VDDLP  
5
C32  
6
C31  
VCOREREF  
TSREF  
7
C30  
8
C34  
Coin cell  
Oscillator  
9
C28  
Crystal 32.768 kHz CC7  
10  
11  
12  
13  
Boost  
14  
15  
16  
17  
SW1  
Y1  
18 pF  
100 k  
100 k  
Oscillator load capacitors  
RESETB, RESETBMCU Pull-ups  
SDWNB Pull-up  
C26, C27  
R3, R4  
R20  
2.2 H LPS3015-222ML  
Diode BAS52  
10 F 16 V  
Coilcraft  
Infineon  
Boost Inductor  
L6  
D7  
1
1
1
1
Boost diode  
Boost Output Capacitor  
Boost Input Capacitor  
C16  
C15  
4.7 F  
Buck 1 Inductor (IMAX < 1.6 Amps)  
Alternate part numbers:  
• 1.0 H VLS252010ET-1R0N (TDK)  
• 1.0 H BRL3225T1ROM (Taiyo Yuden)  
• 1.0 uH LPS4012-102NL (Coilcraft)  
1.0 H VLS201612ET-1R0N TDK  
18  
L1A, L1B  
2
22 F  
Buck 1 Output Capacitor  
Buck 1 Input Capacitor  
SW1LX diode  
19  
20  
21  
C3, C4  
C2  
2
1
1
4.7 F  
Diode BAS3010-03LRH  
Infineon  
D1  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
131  
Typical Applications  
Table 132. 34709 Bill of Material (69)  
Item Reference Quantity  
Description  
Vendor  
Comments  
SW2  
1.0 H VLS252010ET-1R0N TDK  
Buck 2 Inductor  
22  
23  
L2  
C6  
C5  
D2  
1
1
1
1
22 F  
Buck 2 Output Capacitor  
Buck 2 Input Capacitor  
SW2LX diode  
4.7 F  
24  
Diode BAS3010-03LRH  
Infineon  
25  
SW3  
26  
1.0 H VLS201612ET-1R0N TDK  
Buck 3 Inductor  
L3  
C8  
C7  
D3  
1
1
1
1
10 F  
Buck 3 Output Capacitor  
Buck 3 Input Capacitor  
SW3LX diode  
27  
4.7 F  
28  
Diode BAS3010-03LRH  
Infineon  
29  
SW4A  
Buck 4A Inductor  
1.0 H VLS201612ET-1R0N TDK  
Alternate Part number:  
30  
L4A  
1
1.0 H VLS252010ET-1R0N (TDK)  
10 F  
Buck 4A Output Capacitor  
Buck 4A Input Capacitor  
SW4ALX diode  
31  
32  
C10  
C9  
1
1
1
4.7 F  
Diode BAS3010-03LRH  
Infineon  
33  
D4  
SW4B  
Buck 4B Inductor  
1.0 H VLS201612ET-1R0N TDK  
Alternate Part numbers:  
1.0 H VLS252010ET-1R0N (TDK)  
34  
L4B  
1
10 F  
Buck 4B Output Capacitor  
Buck 4B Input Capacitor  
SW4BLX diode  
35  
36  
C12  
C11  
D5  
1
1
1
4.7 F  
Diode BAS3010-03LRH  
Infineon  
37  
SW5  
38  
1.0 H VLS252010ET-1R0N TDK  
Buck 5 Inductor  
L5  
C14  
C13  
D6  
1
1
1
1
22 F  
Buck 5 Output Capacitor  
Buck 5 Input Capacitor  
SW5LX diode  
39  
4.7 F  
40  
Diode BAS3010-03LRH  
Infineon  
41  
VPLL  
42  
2.2 F  
VPLL output Capacitor  
C20  
1
VREFDDR  
43  
100 nF  
1.0 F  
100 nF  
VHALF 0.1 uF caps  
C18  
C19  
C17  
1
1
1
VREFDDR output Capacitor  
VREFDDR input Capacitor  
44  
45  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
132  
Typical Applications  
Table 132. 34709 Bill of Material (69)  
Item Reference Quantity  
Description  
Vendor  
Comments  
VDAC  
PNP NSS12100UW3TCG  
PNP NSS12100XV6T1G  
VDAC PNP - 500 W dissipation  
On Semi  
46  
Q2  
1
1
VDAC PNP - 250 W dissipation - Alternate  
2.2 F  
VDAC output Capacitor  
47  
C22  
VUSB2  
PNP NSS12100UW3TCG  
PNP NSS12100XV6T1G  
VUSB2 PNP - 500 W dissipation  
On Semi  
48  
Q1  
1
1
VUSB2 PNP - 250 W dissipation - Alternate  
2.2 F  
2.2 F  
2.2 F  
VUSB2 output Capacitor  
VUSB output Capacitor  
VGEN1 output Capacitor  
49  
C21  
VUSB  
50  
C29  
C23  
1
1
VGEN1  
51  
VGEN2  
PNP NSS12100UW3TCG  
PNP NSS12100XV6T1G  
VGEN2 PNP - 500 W dissipation  
On Semi  
52  
Q3  
1
1
VGEN2 PNP - 250 W dissipation - Alternate  
2.2 F  
VGEN2 output Capacitor  
53  
C24  
Notes  
69. Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit  
drawings or tables. While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to  
validate their application.  
8.3  
34709 Layout Guidelines  
8.3.1  
General board recommendations  
1. It is recommended to use an 4 layer board stack-up arranged as follows:  
High-current signal  
GND  
Signal  
High-current signal  
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high-current signals), copper-pour the unused area.  
3. Add one GND inner layer to reduce Current loops to the maximum between layers.  
8.3.2  
General Routing Requirements  
1. Some recommended things to keep in mind for manufacturability:  
Via in pads require a 4.5 mil Minimum annular ring. Pad must be 9.0 mils larger than the hole  
Max copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
Minimum allowed spacing between line and hole pad is 3.5 mils  
Minimum allowed spacing between line and line is 3.0 mils  
2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from  
power, clock, or high-power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins.  
34709  
Analog Integrated Circuit Device Data  
133  
Freescale Semiconductor  
Typical Applications  
3. Shield feedback traces of the switching regulators and keep them as short as possible (trace them on the bottom so the  
ground and power planes shield these traces).  
4. Avoid coupling trace between important signal/low noise supplies (like VREFCORE, VCORE, VCOREDIG) from any  
switching node (i.e. SW1ALXx, SW2LX, SW3LX, SW4ALX, SW4BLX, SW5LX, and SWBSTLX).  
5. Make sure that all components related to an specific block are referenced to the corresponding ground, e.g. all  
components related to the SW1 converter must referenced to GNDSW1A1 and GNDSW1A2.  
8.3.3  
Parallel Routing Requirements  
2
1. SPI/I C signal routing:  
CLK is the fastest signal of the system, so it must be given special care. Here are some tips for routing the communication  
signals:  
To avoid contamination of these delicate signals by nearby high-power or high-frequency signals, it is a good practice to  
shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole  
signal trace length.  
Figure 25. Recommended Shielding for Critical Signals.  
These signals can be placed on an outer layer of the board to reduce their capacitance in respect to the ground plane.  
The crystal connected to the XTAL1 and XTAL2 pins must not have a ground plane directly below.  
The following are clock signals: CLK, CLK32K, CLK32KMCU, XTAL1, and XTAL2. These signals must not run parallel to  
each other, or in the same routing layer. If it is necessary to run clock signals parallel to each other, or parallel to any other  
signal, then follow a MAX PARALLEL rule as follows:  
• Up to one inch parallel length – 25 mil minimum separation  
• Up to two inches parallel length – 50 mil minimum separation  
• Up to three inches parallel length – 100 mil minimum separation  
• Up to four inches parallel length – 250 mil minimum separation  
Care must be taken with these signals not to contaminate analog signals, as they are high-frequency signals. Another good  
practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.  
8.3.4  
Switching Regulator Layout Recommendations  
1. Per design, the 34709 is designed to operate with only one input bulk capacitor. However, it is recommended to add a  
high-frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor should be in the  
range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.  
2. Make high-current ripple traces low inductance (short, high W/L ratio).  
3. Make high-current traces wide or copper islands.  
4. Make high-current traces SYMETRICAL for dual–phase regulators (SW1, SW4).  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
134  
Typical Applications  
VBP  
SWxVIN  
CIN_HF  
CIN  
SWx  
SWxLX  
Diver Controller  
L
COUT  
D
GNDSWx  
SWxFB  
Compensation  
Figure 26. Generic Buck Regulator Architecture  
Figure 27. Recommended Layout for Switching Regulators.  
8.4  
Thermal Considerations  
8.4.1  
Rating Data  
The thermal rating data of the packages has been simulated with the results listed in Table 5.  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol R  
strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. R  
or θJA (Theta-JA)  
or θJMA   
θJA  
θJMA  
(Theta-JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with  
34709  
Analog Integrated Circuit Device Data  
135  
Freescale Semiconductor  
Typical Applications  
forced convection on both 1s and 2s2p test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly  
used.  
The JEDEC standards can be consulted at http://www.jedec.org/  
8.4.2  
Estimation of Junction Temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation  
T = T + (R  
x P )  
D
J
A
θJA  
with  
T = Ambient temperature for the package in °C  
A
R= Junction to ambient thermal resistance in °C/W  
JA  
P
= Power dissipation in the package in W  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board R and the  
θJA  
value obtained on a four layer board R  
. Actual application PCBs show a performance close to the simulated four layer board  
θJMA  
value although this may be somewhat degraded in case of significant power dissipated by other components placed close to the  
device.  
At a known board temperature, the junction temperature T is estimated using the following equation  
J
T = T + (R  
x P ) with  
D
J
B
θJB  
T = Board temperature at the package perimeter in °C  
B
R
= Junction to board thermal resistance in °C/W  
θJB  
P
= Power dissipation in the package in W  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
See Functional Block Description for more details on thermal management.  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
136  
Packaging  
9
Packaging  
The 34709 is offered in an 130 balls, 8.0x8.0 mm, 0.5 mm pitch MAPBGA package.  
9.1  
Package Mechanical Dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to  
www.freescale.com and perform a keyword search for the drawing’s document number.  
Table 133. Package Drawing Information  
Package  
Suffix  
Package Outline Drawing Number  
98ASA00333D  
130-pin MAPBGA (8 x 8), 0.5 mm  
VK  
Dimensions shown are provided for reference ONLY (For Layout and Design, refer to the Package Outline Drawing listed in the  
following figures).  
34709  
Analog Integrated Circuit Device Data  
137  
Freescale Semiconductor  
Packaging  
VK SUFFIX  
130-PIN  
98ASA00333D  
REVISION 0  
Figure 28. 8 x 8 Package Mechanical Dimension  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
138  
Packaging  
VK SUFFIX  
130-PIN  
98ASA00333D  
REVISION 0  
Figure 29. 8 x 8 Package Mechanical Dimension  
34709  
Analog Integrated Circuit Device Data  
139  
Freescale Semiconductor  
Reference Section  
10 Reference Section  
Table 134. MC34709 Reference Documents  
Reference  
Description  
34709FS  
34709ER  
Freescale Fact Sheet  
Freescale Errata  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
140  
Revision History  
11 Revision History  
REVISION  
DATE  
DESCRIPTION OF CHANGES  
Initial release  
Corrected doc number to MC34709, corrected part number PC34709VK  
Removed Freescale Confidential Proprietary on page 1  
1.0  
8/2012  
34709  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
141  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm  
Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,  
Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, Qorivva, StarCore, and  
Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.  
Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a  
Package, Processor expert, QorIQ Qonverge, QUICC Engine, Ready Play,  
SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property of their  
respective owners.  
© 2012 Freescale Semiconductor, Inc.  
Document Number: MC34709  
Rev. 1.0  
8/2012  

相关型号:

PC34709VKR2

Power Management Integrated Circuit (PMIC) for i.MX50/53 Families
FREESCALE

PC34710EW

Adjustable Dual Output Switching Power Supply
MOTOROLA

PC34710EWR2

Adjustable Dual Output Switching Power Supply
MOTOROLA

PC34830EP

HD to SD Adjustable Bandwidth Video Buffer with DC Restore
FREESCALE

PC34830EPR2

HD to SD Adjustable Bandwidth Video Buffer with DC Restore
FREESCALE

PC34844EP

10 Channel LED Backlight Driver with Integrated Power Supply
FREESCALE

PC34844EPR2

10 Channel LED Backlight Driver with Integrated Power Supply
FREESCALE

PC34848EP

LED DISPLAY DRIVER, QCC48, 7 X 7 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-220VKKD-2, QFN-48
NXP

PC34S-1

Board Connector, 34 Contact(s), 2 Row(s), Female, Right Angle, 0.1 inch Pitch, Solder Terminal, Guide Slot, Black Insulator, Plug,
BEL

PC34SFBB-1

Card Edge Connector, 68 Contact(s), 2 Row(s), Straight, 0.156 inch Pitch, Solder Terminal, Receptacle,
AMPHENOL

PC35-100K

General Purpose Inductor, 10uH, 10%, 1 Element, SMD, CHIP, 2730
ALLIED

PC35-101K

General Purpose Inductor, 100uH, 10%, 1 Element, SMD, CHIP, 2730
ALLIED