SCF5250PV120 [FREESCALE]

Integrated ColdFire Microprocessor Data Sheet;
SCF5250PV120
型号: SCF5250PV120
厂家: Freescale    Freescale
描述:

Integrated ColdFire Microprocessor Data Sheet

外围集成电路
文件: 总56页 (文件大小:653K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: SCF5250EC  
Freescale Semiconductor  
Data Sheet: Technical Data  
Rev. 1.3, 07/2006  
SCF5250  
Package Information  
MAPBGA–196  
LQFP-144  
SCF5250  
Ordering Information: See Table 1 on page 2  
Integrated ColdFire®  
Microprocessor  
Data Sheet  
Contents  
1 Introduction  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 SCF5250 Block Diagram . . . . . . . . . . . . . . . . 8  
3 Signal Descriptions . . . . . . . . . . . . . . . . . . . . 8  
4 Electrical Characteristics . . . . . . . . . . . . . . 21  
5 Pin-Out and Package Information . . . . . . . . 36  
6 Product Documentation . . . . . . . . . . . . . . . . 55  
This document provides an overview of the SCF5250  
ColdFire processor and general descriptions of  
SCF5250 features and its various modules.  
®
The SCF5250 was designed as a system  
controller/decoder for compressed audio music players,  
especially portable and automotive CD and hard disk  
drive players. The 32-bit ColdFire core with Enhanced  
Multiply Accumulate (EMAC) unit provides optimum  
performance and code density for the combination of  
control code and signal processing required for audio  
decoding and post processing, file management, and  
system control.  
Low power features include a hardwired CD ROM  
decoder, advanced 0.13um CMOS process technology,  
1.2V core power supply, and on-chip 128KByte SRAM  
that enables Windows Media Audio (WMA) decoding  
without the need for external DRAM in CD applications.  
The SCF5250 is also an excellent general purpose  
system controller with over 110 Dhrystone 2.1 MIPS @  
120MHz performance at a very competitive price. The  
This document contains information on a product under development. Freescale reserves the right to change or discontinue this  
product without notice.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
integrated peripherals and enhanced MAC unit allow the SCF5250 to replace both the microcontroller and  
the DSP in certain applications. Most peripheral pins can also be remapped as General Purpose I/O pins.  
1.1  
Orderable Part Numbers  
Table 1 lists the orderable part numbers for the SCF5250 processor.  
Table 1. Orderable Part Numbers  
Orderable Part  
Number  
Maximum Clock  
Frequency  
Operating Temperature  
Range  
Package Type  
Part Status  
SCF5250LPV100  
SCF5250LAG100  
SCF5250PV120  
SCF5250AG120  
SCF5250DAG1201  
SCF5250EAG1202  
SCF5250CPV120  
SCF5250CAG120  
SCF5250VM120  
100 MHz  
100 MHz  
120 MHz  
120 MHz  
120 MHz  
120 MHz  
120 MHz  
120 MHz  
120 MHz  
144 pin QFP  
144 pin QFP  
144 pin QFP  
144 pin QFP  
144 pin QFP  
144 pin QFP  
144 pin QFP  
144 pin QFP  
196 ball MAPBGA  
-20°C to 70°C  
-20°C to 70°C  
-20°C to 70°C  
-20°C to 70°C  
-20°C to 70°C  
-20°C to 70°C  
-40°C to 85°C  
-40°C to 85°C  
-20°C to 70°C  
Leaded  
Lead Free  
Leaded  
Lead Free  
Lead Free  
Lead Free  
Leaded  
Lead Free  
Lead Free  
1
SCF5250DAG120—This device has the same feature set, pin assignment and specification as SCF5250AG120 with the  
addition of including the cost of the MP3 decoder royalty to be paid to Thomson Licensing S.A. for use of the MP3 patent rights  
described at http://mp3licensing.com/patents/index.html.  
2
SCF5250EAG120—This device has the same feature set, pin assignment and specification as SCF5250AG120 with the  
addition of including the cost of the MP3 encoder and decoder royalty to be paid to Thomson Licensing S.A. for use of the MP3  
patent rights described at http://mp3licensing.com/patents/index.html.  
1.2  
SCF5250 Features  
This section provides brief descriptions of the features of the SCF5250 processor.  
1.2.1  
ColdFire V2 Core  
The ColdFire processor Version 2 core consists of two independent, decoupled pipeline structures to  
maximize performance while minimizing core size.The instruction fetch pipeline (IFP) is a two-stage  
pipeline for prefetching instructions. The prefetched instruction stream is then gated into the two-stage  
operand execution pipeline (OEP), which decodes the instruction, fetches the required operands, and then  
executes the required function. Because the IFP and OEP pipelines are decoupled by an instruction buffer  
that serves as a FIFO queue, the IFP can prefetch instructions in advance of their actual use by the OEP,  
which minimizes time stalled waiting for instructions. The OEP is implemented in a two-stage pipeline  
featuring a traditional RISC data path with a dual-read-ported register file feeding an arithmetic/logic unit  
(ALU).  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
2
Freescale Semiconductor  
1.2.2  
DMA Controller  
The SCF5250 provides four fully programmable DMA channels for quick data transfer. Single and dual  
address mode is supported with the ability to program bursting and cycle stealing. Data transfer is  
selectable as 8, 16, 32, or 128-bits. Packing and unpacking is supported.  
Two internal audio channels and the dual UART can be used with the DMA channels. All channels can  
perform memory to memory transfers. The DMA controller has a user-selectable, 24- or 16-bit counter and  
a programmable DMA exception handler.  
External requests are not supported.  
1.2.3  
Enhanced Multiply and Accumulate Module (EMAC)  
The integrated EMAC unit provides a common set of DSP operations and enhances the integer multiply  
instructions in the ColdFire architecture. The EMAC provides functionality in three related areas:  
1. Faster signed and unsigned integer multiplies  
2. New multiply-accumulate operations supporting signed and unsigned operands  
3. New miscellaneous register operations  
Multiplies of 16x16 and 32x32 with 48-bit accumulates are supported in addition to a full set of extensions  
for signed and unsigned integers plus signed, fixed-point fractional input operands. The EMAC has a  
single-clock issue for 32x32-bit multiplication instructions and implements a four-stage execution  
pipeline.  
1.2.4  
Instruction Cache  
The instruction cache improves system performance by providing cached instructions to the execution unit  
in a single clock. The SCF5250 processor uses a 8K-byte, direct-mapped instruction cache to achieve 107  
MIPS at 120 MHz. The cache is accessed by physical addresses, where each 16-byte line consists of an  
address tag and a valid bit. The instruction cache also includes a bursting interface for 16-bit and 8-bit port  
sizes to quickly fill cache lines.  
1.2.5  
Internal 128-KByte SRAM  
The 128-KByte on-chip SRAM is available in two banks, SRAM0 (64K) and SRAM1 (64K). It provides  
one clock-cycle access for the ColdFire core. This SRAM can store processor stack and critical code or  
data segments to maximize performance. Memory in SRAM1 can be accessed under DMA.  
1.2.6  
SDRAM Controller  
The SCF5250 SDRAM controller provides a glueless interface for one bank of SDRAM up to 32 MB  
(256 Mbits). The controller supports a 16-bit data bus. A unique addressing scheme allows for increases  
in system memory size without rerouting address lines and rewiring boards. The controller operates in  
page mode, non-page mode, and burst-page mode and supports SDRAMS.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
3
1.2.7  
System Interface  
The SCF5250 provides a glueless interface to 16-bit port size SRAM, ROM, and peripheral devices with  
independent programmable control of the assertion and negation of chip-select and write-enable signals.  
The SCF5250 also supports bursting ROMs.  
1.2.8  
External Bus Interface  
The bus interface controller transfers information between the ColdFire core or DMA and memory,  
peripherals, or other devices on the external bus. The external bus interface provides 23 bits of address bus  
space, a 16-bit data bus, Output Enable, and Read/Write signals. This interface implements an extended  
synchronous protocol that supports bursting operations.  
1.2.9  
Serial Audio Interfaces  
The SC5250 digital audio interface provides three serial Philips IIS/Sony EIAJ interfaces. One interface  
is a 4-pin (1 bit clock, 1 word clock, 1 data in, 1 data out), the other two interfaces are 3-pin (1 bit clock,  
1 word clock, 1 data in or out). The serial interfaces have no limit on minimum sampling frequency.  
Maximum sampling frequency is determined by maximum frequency on bit clock input. This is 1/3 the  
frequency of the internal system clock.  
1.2.10 IEC958 Digital Audio Interfaces  
The SCF5250 has one digital audio input interface, and one digital audio output interface. The single  
output carries the consumer “c” channel.  
1.2.11 Audio Bus  
The audio interfaces connect to an internal bus that carries all audio data. Each receiver places its received  
data on the audio bus and each transmitter takes data from the audio bus for transmission. Each transmitter  
has a source select register.  
In addition to the audio interfaces, there are six CPU accessible registers connected to the audio bus. Three  
of these registers allow data reads from the audio bus and allow selection of the audio source. The other  
three register provide a write path to the audio bus and can be selected by transmitters as the audio source.  
Through these registers, the CPU has access to the audio samples for processing.  
Audio can be routed from a receiver to a transmitter without the data being processed by the core so the  
audio bus can be used as a digital audio data switch. The audio bus can also be used for audio format  
conversion.  
1.2.12 CD-ROM Encoder/Decoder  
The SCF5250 is capable of processing CD-ROM sectors in hardware. Processing is compliant with  
CD-ROM and CD-ROM XA standards.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
4
Freescale Semiconductor  
The CD-ROM decoder performs following functions in hardware:  
Sector sync recognition  
Descrambling of sectors  
Verification of the CRC checksum for Mode 1, Mode 2 Form 1, and Mode 2 Form 2 sectors  
Third-layer error correction is not performed  
The CD-ROM encoder performs following functions in hardware:  
Sector sync recognition  
Scrambling of sectors  
Insertion of the CRC checksum for Mode 1, Mode 2 Form 1, and Mode 2 Form 2 sectors.  
Third-layer error encoding needs to be done in software. This can use approximately 5–10 MHz of  
performance for single-speed.  
1.2.13 Dual UART Module  
Two full-duplex UARTs with independent receive and transmit buffers are in this module. Data formats  
can be 5, 6, 7, or 8 bits with even, odd, or no parity, and up to 2 stop bits in 1/16 increments. Four-byte  
receive buffers and two-byte transmit buffers minimize CPU service calls. The Dual UART module also  
provides several error-detection and maskable-interrupt capabilities. Modem support includes  
request-to-send (RTS) and clear-to-send (CTS) lines.  
The system clock provides the clocking function from a programmable prescaler. You can select full  
duplex, auto-echo loopback, local loopback, and remote loopback modes. The programmable Dual UARTs  
can interrupt the CPU on various normal or error-condition events.  
1.2.14 Queued Serial Peripheral Interface QSPI  
The QSPI module provides a serial peripheral interface with queued transfer capability. It supports up to  
16 stacked transfers at a time, making CPU intervention between transfers unnecessary. Transfers of up to  
15 Mbits/second are possible at a CPU clock of 120 MHz. The QSPI supports master mode operation only.  
1.2.15 Timer Module  
The timer module includes two general-purpose timers, each of which contains a free-running 16-bit timer.  
Timer0 has an external pin TOUT0, which can be used in Output Compare mode. This mode triggers an  
external signal or interrupts the CPU when the timer reaches a set value, and can also generate waveforms  
on TOUT0.  
The timer unit has an 8-bit prescaler that allows programming of the clock input frequency, which is  
derived from the system clock. In addition to the ÷1 and ÷16 clock derived from the bus clock (CPU clock  
/ 2), the programmable timer-output pins either generate an active-low pulse or toggle the outputs.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
5
1.2.16 IDE and SmartMedia Interfaces  
The SCF5250 system bus allows connection of an IDE hard disk drive or SmartMedia flash card with a  
minimum of external hardware. The external hardware consists of bus buffers for address and data and are  
intended to reduce the load on the bus and prevent SDRAM and Flash accesses to propagate to the IDE  
bus. The control signals for the buffers are generated in the SCF5250.  
Low cost version SCF5250LPV100 and SCF5250LAG100 does not run production test for the  
IDE/CF/SD/MMC interfaces. Freescale does not guarantee these interfaces will work on these two  
devices.  
1.2.17 Analog/Digital Converter (ADC)  
The six channel ADC is a based on the Sigma-Delta concept with 12-bit resolution. Both the analogue  
comparator and digital sections of the ADC are provided internally. An external integrator circuit  
(resistor/capacitor) is required, which is driven by the ADC output. A software interrupt is provided when  
the ADC measurement cycle is complete.  
1.2.18 I2C Module  
2
2
The two-wire I C bus interface, which is compliant with the Philips I C bus standard, is a bidirectional  
2
serial bus that exchanges data between devices. The I C bus minimizes the interconnection between  
devices in the end system and is best suited for applications that need occasional bursts of rapid  
communication over short distances among several devices. Bus capacitance and the number of unique  
addresses limit the maximum communication length and the number of devices that can be connected.  
1.2.19 Chip-Selects  
Up to four programmable chip-select outputs provide signals that enable glueless connection to external  
memory and peripheral circuits. The base address, access permissions and automatic wait-state insertion  
are programmable with configuration registers. These signals also interface to 16-bit ports.  
CS0 is active after reset to provide boot-up from external FLASH/ROM.  
1.2.20 GPIO Interface  
A total of 60 General Purpose inputs and 57 General Purpose outputs are available. These are multiplexed  
with various other signals. Seven of the GPIO inputs have edge sensitive interrupt capability.  
1.2.21 Interrupt Controller  
The interrupt controller provides user-programmable control of a total of 57 interrupts. There are 49  
internal interrupt sources. In addition, there are 7 GPIOs where interrupts can be generated on the rising  
or falling edge of the pin. All interrupts are autovectored and interrupt levels are programmable.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
6
Freescale Semiconductor  
1.2.22 JTAG  
To help with system diagnostics and manufacturing testing, the SCF5250 includes dedicated  
user-accessible test logic that complies with the IEEE 1149.1A standard for boundary scan testability,  
often referred to as Joint Test Action Group, or JTAG. For more information, refer to the IEEE 1149.1A  
standard. Freescale provides BSDL files for JTAG testing.  
1.2.23 System Debug Interface  
The ColdFire processor core debug interface supports real-time instruction trace and debug, plus  
background-debug mode. A background-debug mode (BDM) interface provides system debug.  
In real-time instruction trace, four status lines provide information on processor activity in real time (PST  
pins). A four-bit wide debug data bus (DDATA) displays operand data and change-of-flow addresses,  
which helps track the machine’s dynamic execution path.  
1.2.24 Crystal and On-Chip PLL  
Typically, an external 16.92 MHz or 33.86 MHz clock input is used for CD R/W applications, while an  
11.2896 MHz clock is more practical for Portable CD player applications. However, the on-chip  
programmable PLL, which generates the processor clock, allows the use of almost any low frequency  
external clock (5-35 MHz).  
Two clock outputs (MCLK1 and MCLK2) are provided for use as Audio Master Clock. The output  
frequencies of both outputs are programmable to Fxtal, Fxtal/2, Fxtal/3, and Fxtal/4. The Fxtal/3 option is  
only available when the 33.86 MHz crystal is connected.  
The SCF5250 supports VCO operation of the oscillator by means of a 16-bit pulse density modulation  
output. Using this mode, it is possible to lock the oscillator to the frequency of an incoming IEC958 or IIS  
signal. The maximum trim depends on the type and design of the oscillator. Typically a trim of +/- 100 ppm  
can be achieved with a crystal oscillator and over +/- 1000 ppm with an LC oscillator.  
1.2.25 Boot ROM  
The boot ROM on the SCF5250 serves to boot the CPU in designs which do not have external Flash  
memory or ROM. Typically this occurs in systems which have a separate MCU to control the system,  
and/or the SCF5250 is used as a stand-alone decoder.  
The SCF5250 can be booted in one of three modes:  
External ROM  
Internal ROM Master mode – boots from I2C, SPI, or IDE  
Internal ROM Slave mode – boots from I2C or UART  
1.2.26 Voltage Regulator  
The SCF5250 contains an on-chip linear regulator that generates 1.2V from a 3.3V input. The regulator is  
self-contained and drives the 1.2V core voltage out on one pin that can be used to power the core supply  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
7
pins at the board level. In battery powered portable applications, it is recommended that an external dc-dc  
converter be used to generate the 1.2V core voltage to minimize power consumption.  
2 SCF5250 Block Diagram  
Figure 1 illustrates the functional block diagram of the SCF5250 processor.  
I2S Rx  
x3  
I2S Tx  
x2  
CD ROM  
block encode  
& decode  
Flash  
Media Int  
IDE  
Interface  
12-bit  
ADC  
SPDIF  
Tx  
UART x2  
DMAs /  
Timers  
SPDIF  
Rx  
QSPI  
BDM  
I2C x2  
PLL  
1.2V  
Regulator  
GPI/O  
Boot  
ROM  
JTAG  
128K  
SRAM  
8K  
I-Cache  
Oscillator  
V2  
ColdFire®  
Core  
System  
Bus  
Controller  
SDRAM Ctr  
&
Chip Selects  
Figure 1. SCF5250 Block Diagram  
3 Signal Descriptions  
This section describes the SCF5250 processor’s input and output signals. The signal descriptions shown  
in Table 2 are grouped according to relevant functionality.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
8
Freescale Semiconductor  
Table 2. SCF5250 Signal Index  
Mnemonic  
Input/ Reset  
Output State  
Signal Name  
Address  
Function  
A[24:1]  
A[23]/GPO54  
24 address lines, address line 23  
multiplexed with GPO54 and address 24  
is multiplexed with A20 (SDRAM access  
only).  
Out  
X
Read-write control  
Output enable  
Data  
R/W  
Bus write enable - indicates if read or  
write cycle in progress  
Out  
H
OE  
Output enable for asynchronous  
memories connected to chip selects  
Out negated  
In/Out Hi-Z  
D[31:16]  
Data bus used to transfer word data  
Synchronous row address SDRAS/GPIO59  
strobe  
Row address strobe for external SDRAM. Out negated  
Synchronous column  
address strobe  
SDCAS/GPIO39  
Column address strobe for external  
SDRAM  
Out negated  
SDRAM write enable  
SDWE/GPIO38  
Write enable for external SDRAM  
Out negated  
SDRAM upper byte  
enable  
SDUDQM/GPO53  
Indicates during write cycle if high byte is  
written  
Out  
Out  
SDRAM lower byte enable SDLDQM/GPO52  
Indicates during write cycle if low byte is  
written  
SDRAM chip selects  
SDRAM clock enable  
System clock  
SD_CS0/GPIO60  
BCLKE/GPIO63  
BCLK/GPIO40  
SDRAM chip select  
SDRAM clock enable  
SDRAM clock output  
In/Out negated  
Out  
In/Out  
ISA bus read strobe  
IDE-DIOR/GPIO31  
(CS2)  
There is 1 ISA bus read strobe and 1 ISA In/Out  
bus write strobe. They allow connection  
of one independent ISA bus peripherals,  
e.g. an IDE slave device.  
ISA bus write strobe  
ISA bus wait signal  
Chip Selects[2:0]  
IDE-DIOW/GPIO32  
(CS2)  
In/Out  
IDE-IORDY/GPIO33  
ISA bus wait line - available for both  
busses  
In/Out  
CS0/CS4  
CS1/QSPI_CS3/GPIO28  
Enables peripherals at programmed  
addresses.  
Out negated  
In/Out  
CS[0] provides boot ROM selection  
Buffer enable 1  
Buffer enable 2  
BUFENB1/GPIO29  
BUFENB2/GPIO30  
Two programmable buffer enables allow In/Out  
seamless steering of external buffers to  
In/Out  
split data and address bus in sections.  
Transfer acknowledge  
Wake Up  
TA/GPIO12  
Transfer Acknowledge signal  
Wake-up signal input  
In/Out  
In  
WAKE_UP/GPIO21  
Serial Clock Line  
SCL0/SDATA1_BS1/GPIO41  
SCL1/TXD1/GPIO10  
Clock signal for Dual I2C module  
operation  
In/Out  
Serial Data Line  
Receive Data  
SDA0/SDATA3/GPIO42  
SDA1/RXD1/GPIO44  
Serial data port for second I2C module  
operation  
In/Out  
In  
SDA1/RXD1/GPIO44  
RXD0/GPIO46  
Signal is receive serial data input for  
DUART  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
9
Table 2. SCF5250 Signal Index (continued)  
Mnemonic Function  
SCL1/TXD1/GPIO10  
Input/ Reset  
Output State  
Signal Name  
Transmit Data  
Signal is transmit serial data output for  
DUART  
Out  
Out  
In  
TXD0/GPIO45  
Request-To-Send  
Clear-To-Send  
Timer Output  
DDATA3/RTS0/GPIO4  
DDATA1/RTS1/SDATA2_BS2/GPIO2  
DUART signals a ready to receive data  
query  
DDATA2/CTSO/GPIO3  
Signals to DUART that data can be  
DDATA0/CTS1/SDATA0_SDIO1/GPIO1 transmitted to peripheral  
SDATAO1/TOUT0/GPIO18  
Capable of output waveform or pulse  
Out  
In  
generation  
IEC958 inputs  
EBUIN1/GPIO36  
audio interfaces IEC958 inputs  
EBUIN2/SCLK_OUT/GPIO13  
EBUIN3/CMD_SDIO2/GPIO14  
QSPI_CS0/EBUIN4/GPIO15  
IEC958 outputs  
Serial data in  
Serial data out  
Word clock  
EBUOUT1/GPIO37  
QSPI_CS1/EBUOUT2/GPIO16  
audio interfaces IEC958 outputs  
audio interfaces serial data inputs  
audio interfaces serial data outputs  
audio interfaces serial word clocks  
Out  
In  
SDATAI1/GPIO17  
SDATAI3/GPIO8  
SDATAO1/TOUT0/GPIO18  
SDATAO2/GPIO34  
In/Out  
Out  
LRCK1/GPIO19  
In/Out  
LRCK2/GPIO23  
LRCK3/GPIO43/AUDIO_CLOCK  
Bit clock  
SCLK1/GPIO20  
SCLK2/GPIO22  
SCLK3/GPIO35  
audio interfaces serial bit clocks  
In/Out  
Serial input  
Serial input  
Subcode clock  
EF/GPIO6  
error flag serial in  
In/Out  
In/Out  
In/Out  
CFLG/GPIO5  
C-flag serial in  
RCK/QSPI_DIN/QSPI_DOUT/  
GPIO26  
audio interfaces subcode clock  
Subcode sync  
QSPI_DOUT/SFSY/GPIO27  
QSPI_CLK/SUBR/GPIO25  
XTRIM/GPIO0  
audio interfaces subcode sync  
audio interfaces subcode data  
clock trim control  
In/Out  
In/Out  
Out  
Subcode data  
Clock frequency trim  
Audio clocks out  
MCLK1/GPIO11  
DAC output clocks  
Out  
QSPI_CS2/MCLK2/GPIO24  
Audio clock in  
LRCK3/GPIO43/AUDIO_CLOCK  
Optional Audio clock Input  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
10  
Freescale Semiconductor  
Table 2. SCF5250 Signal Index (continued)  
Input/ Reset  
Output State  
Signal Name  
Memory Stick/  
Mnemonic  
Function  
EBUIN3/CMD_SDIO2/GPIO14  
Secure Digital command lane  
Memory Stick interface 2 data I/O  
In/Out  
In/Out  
In/Out  
In/Out  
In/Out  
Secure Digital interface  
EBUIN2/SCLK_OUT/GPIO13  
Clock out for both Memory Stick  
interfaces and for Secure Digital  
DDATA0/CTS1/SDATA0_SDIO1/GPIO1 Secure Digital serial data bit 0  
Memory Stick interface 1 data I/O  
SCL0/SDATA1_BS1/GPIO41  
Secure Digital serial data bit 1  
Memory Stick interface 1 strobe  
DDATA1/RTS1/SDATA2_BS2/GPIO2  
Secure Digital serial data bit 2  
Memory Stick interface 2 strobe  
Reset output signal  
SDA0/SDATA3/GPIO42  
Secure Digital serial data bit 3  
In/Out  
In  
ADC IN  
ADIN0/GPI52  
ADIN1/GPI53  
ADIN2/GPI54  
ADIN3/GPI55  
ADIN4/GPI56  
ADIN5/GPI57  
Analog to Digital converter input signals  
ADC OUT  
ADREF  
ADOUT/SCLK4/GPIO58  
Analog to digital convertor output signal. In/Out  
Connect to ADREF via integrator  
network.  
QSPI clock  
QSPI_CLK/SUBR/GPIO25  
QSPI clock signal  
In/Out  
In/Out  
In/Out  
QSPI data in  
QSPI data out  
RCK/QSPI_DIN/QSPI_DOUT/GPIO26 QSPI data input  
RCK/QSPI_DIN/QSPI_DOUT/GPIO26 QSPI data out  
QSPI_DOUT/SFSY/GPIO27  
QSPI chip selects  
QSPI_CS0/EBUIN4/GPIO15  
QSPI_CS1/EBUOUT2/GPIO16  
QSPI_CS2/MCLK2/GPIO24  
CS1/QSPI_CS3/GPIO28  
QSPI chip selects  
In/Out  
Crystal in  
CRIN  
Crystal input  
In  
Out  
In  
Crystal out  
CROUT  
RSTI  
Crystal Out  
Reset In  
Processor Reset Input  
TEST pins.  
Freescale Test Mode  
Linear regulator output  
Linear regulator input  
Linear regulator ground  
High Impedance  
Debug Data  
TEST[2:0]  
LINOUT  
LININ  
In  
outputs 1.2 V to supply core  
Input, typically I/O supply (3.3V)  
Out  
In  
LINGND  
HI-Z  
Assertion Tri-states all output signal pins.  
In  
DDATA0/CTS1/SDATA0_SDIO1/GPIO1 Displays captured processor data and  
In/Out  
Hi-Z  
DDATA1/RTS1/SDATA2_BS2/GPIO2  
DDATA2/CTS0/GPIO3  
break-point status.  
DDATA3/RTS0/GPIO4  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
11  
Table 2. SCF5250 Signal Index (continued)  
Mnemonic Function  
Input/ Reset  
Output State  
Signal Name  
Processor Status  
PST0/GPIO50  
PST1/GPIO49  
Indicates internal processor status.  
In/Out  
Hi-Z  
PST2/INTMON2/GPIO48  
PST3/INTMON1/GPIO47  
Processor Clock  
Test Clock  
PSTCLK/GPIO51  
TCK  
processor clock output  
Out  
In  
Clock signal for IEEE 1149.1A JTAG.  
Test Reset/Development TRST/DSCLK  
Serial Clock  
Multiplexed signal that is asynchronous  
reset for JTAG controller. Clock input for  
debug module.  
In  
Test Mode Select/ Break TMS/BKPT  
Point  
Multiplexed signal that is test mode select  
in JTAG mode and a hardware  
break-point in debug mode.  
In  
Test Data Input /  
Development Serial Input  
TDI/DSI  
Multiplexed serial input for the JTAG or  
background debug module.  
In  
Test Data  
Output/Development  
Serial Output  
TDO/DSO  
Multiplexed serial output for the JTAG or  
background debug module.  
Out  
3.1  
GPIO  
Many pins have an optional GPIO function.  
General purpose input is always active, regardless of state of pin.  
General purpose output or primary output is determined by the appropriate setting of the Pin  
Multiplex Control Registers, GPIO-FUNCTION, GPIO1-FUNCTION and PIN-CONFIG.  
At Power-on reset, all pins are set to their primary function.  
3.2  
SCF5250 Bus Signals  
These signals provide the external bus interface to the SCF5250 processor.  
3.2.1  
Address Bus  
The address bus provides the address of the byte or most significant byte of the word or longword  
being transferred. The address lines also serve as the DRAM address pins, providing multiplexed  
row and column address signals.  
Bits 23 down to 1 and 24 of the address are available. A24 is intended to be used with 256 Mbit  
DRAM’s. Signals are named:  
— A[23:1]  
— A20/24  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
12  
Freescale Semiconductor  
3.2.2  
Read-Write Control  
This signal indicates during any bus cycle whether a read or write is in progress. A low is write cycle and  
a high is a read cycle.  
3.2.3  
Output Enable  
The OE signal is intended to be connected to the output enable of asynchronous memories connected to  
chip selects. During bus read cycles, the ColdFire processor will drive OE low.  
3.2.4  
Data Bus  
The data bus (D[31:16]) is bi-directional and non-multiplexed. Data is registered by the SCF5250 on the  
rising clock edge. The data bus uses a default configuration if none of the chip-selects or DRAM bank  
match the address decode. All 16 bits of the data bus are driven during writes, regardless of port width or  
operand size.  
3.2.5  
Transfer Acknowledge  
The TA/GPIO12 pin is the transfer acknowledge signal.  
3.3  
SDRAM Controller Signals  
The following SDRAM signals provide a glueless interface to external SDRAM. An SDRAM width of 16  
bits is supported and can access as much as 32MB of memory. ADRAMs are not supported.  
Table 3. SDRAM Controller Signals  
SDRAM Signal  
Description  
Synchronous DRAM row address strobe The SDRAS/GPIO59 active low pin provides a seamless interface to the RAS input  
on synchronous DRAM  
Synchronous DRAM Column Address  
Strobe  
The SDCAS/GPIO39 active low pin provides a seamless interface to CAS input on  
synchronous DRAM.  
Synchronous DRAM Write  
The SDWE/GPIO38 active-low pin is asserted to signify that a SDRAM write cycle  
is underway. This pin outputs logic ‘1’ during read bus cycles.  
Synchronous DRAM Chip Enable  
The SD_CS0/GPIO60 active-low output signal is used during synchronous mode  
to route directly to the chip select of a SDRAM device.  
Synchronous DRAM UDQM and LQDM  
signals  
The DRAM byte enables UDMQ and LDQM are driven by the SDUDQM/GPO53  
and SDLDQM/GPO52 byte enable outputs.  
Synchronous DRAM clock  
The DRAM clock is driven by the BCLK/GPIO40 signal  
Synchronous DRAM Clock Enable  
The BCLKE active high output signal is used during synchronous mode to route  
directly to the SCKE signal of external SDRAMs. This signal provides the clock  
enable to the SDRAM.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
13  
3.4  
Chip Selects  
There are three chip select outputs on the SCF5250 device. CS0/CS4 and CS1/QSPI_CS3/GPIO28 and  
CS2 which is associated with the IDE interface read and write strobes - IDE-DIOR and IDE-DIOW.  
CS0 and CS4 are multiplexed. The SCF5250 has the option to boot from an internal Boot ROM.  
The function of the CS0/CS4 pin is determined by the boot mode. When the device is booted from internal  
ROM, the internal ROM is accessed with CS0 (required for boot) and the CS0/CS4 pin is driven by CS4.  
When the device is booted from external ROM / Flash, the CS0/CS4 pin is driven by CS0 and the internal  
ROM is disabled.  
The active low chip selects can be used to access asynchronous memories. The interface is glueless.  
3.5  
ISA Bus  
The SCF5250 supports an ISA bus. Using the ISA bus protocol, reads and writes for one ISA bus  
peripheral is possible. IDE-DIOR/GPIO31 and IDE-DIOW/GPIO32 are the read and write strobe. The  
peripheral can insert wait states by pulling IDE-IORDY/GPIO33.  
CS2 is associated with the IDE-DIOR and IDE-DIOW.  
3.6  
Bus Buffer Signals  
As the SCF5250 has a complicated slave bus, which allows SDRAM, asynchronous memories, and ISA  
peripherals on the bus, it may become necessary to introduce a buffer on the bus in certain applications.  
The SCF5250 has a glueless interface to steer these bus buffers with two bus buffer output signals  
BUFENB1/GPIO29 and BUFENB2/GPIO30.  
2
3.7  
I C Module Signals  
There are two I2C interfaces on this device as described in Table 4.  
The I2C module acts as a two-wire, bidirectional serial interface between the SCF5250 processor and  
peripherals with an I2C interface (e.g., LED controller, A-to-D converter, D-to-A converter). When  
devices connected to the I2C bus drive the bus, they will either drive logic-0 or high-impedance. This can  
be accomplished with an open-drain output.  
2
Table 4. I C Module Signals  
I2c Module Signal  
Description  
I2C Serial Clock The SCL0/SDATA1_BS1/GPIO41 and SCL1/TXD1/GPIO10 bidirectional signals are the clock signal for  
first and second I2C module operation. The I2C module controls this signal when the bus is in master  
mode; all I2C devices drive this signal to synchronize I2C timing.  
Signals are multiplexed  
I2C Serial Data The SDA0/SDATA3/GPIO42 and SDA1/RXD1/GPIO44 bidirectional signals are the data input/output for  
the first and second serial I2C interface.  
Signals are multiplexed  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
14  
Freescale Semiconductor  
3.8  
Serial Module Signals  
The signals described in Table 5 transfer serial data between the two UART modules and the external  
peripherals.  
Table 5. Serial Module Signals  
Serial Module Signal  
Description  
Receive Data  
The RXD0/GPIO46 and SDA1/RXD1/GPIO44 are the inputs on which serial data is received by the  
DUART. Data is sampled on RxD[1:0] on the rising edge of the serial clock source, with the least  
significant bit received first.  
Transmit Data  
The DUART transmits serial data on the TXD0/GPIO45 and SCL1/TXD1/GPIO10 output signals. Data  
is transmitted on the falling edge of the serial clock source, with the least significant bit transmitted (LSB)  
first. When no data is being transmitted or the transmitter is disabled, these two signals are held high.  
TxD[1:0] are also held high in local loopback mode.  
Request To Send  
Clear To Send  
The DDATA3/RTS0/GP104 and DDATA1/RTS1/SDATA2_BS2/GPIO2 request-to-send outputs indicate  
to the peripheral device that the DUART is ready to send data and requires a clear-to-send signal to  
initiate transfer.  
Peripherals drive the DDATA2/CTS0/GPIO3 and DDATA0/CTS1/SDATA0_SDIO1/GPIO1 inputs to  
indicate to the SCF5250 serial module that it can begin data transmission.  
3.9  
Timer Module Signals  
Table 6 describes the Timer module signal which provides an external interface to Timer0.  
Table 6. Timer Module Signals  
Serial Module Signal  
Description  
Timer Output  
The SDATAO1/TOUT0/GPIO18 programmable output pulse or toggle on various timer events.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
15  
3.10 Serial Audio Interface Signals  
Table 7 describes the signals that provide the external audio interface.  
Table 7. Serial Audio Interface Signals  
Serial Module Signal  
Description  
Serial Audio Bit Clock The SCLK1/GPIO20, SCLK2/GPIO22 and SCLK3/GPIO35,  
multiplexed pins can serve as general purpose I/Os or serial audio bit clocks. As bit clocks, these  
bidirectional pins can be programmed as outputs to drive their associated serial audio (IIS) bit clocks.  
Alternately, these pins can be programmed as inputs when the serial audio bit clocks are driven  
internally. The functionality is programmed within the Audio module. During reset, these pins are  
configured as input serial audio bit clocks.  
Serial Audio Word Clock The LRCK1/GPIO19, LRCK2/GPIO23 and LRCK3/GPIO43/AUDIO_CLOCK multiplexed pins can  
serve as general purpose I/Os or serial audio word clocks. As word clocks, the bidirectional pins can  
be programmed as inputs to drive their associated serial audio word clock. Alternately, these pins can  
be programmed as outputs when the serial audio word clocks are derived internally. The functionality  
is programmed within the Audio module. During reset, these pins are configured as input serial audio  
word clocks.  
LRCK3/GPIO43/AUDIO_CLOCK can be used as the external audio clock input. If the core clock  
chosen to be non-audio specific.  
Serial Audio Data In  
The SDATAI1/GPIO17 and SDATAI3/GPIO8 multiplexed pins can serve as general purpose I/Os or  
serial audio inputs. As serial audio inputs the data is sent to interfaces 1and 3 respectively. During  
reset, the pins are configured as serial data inputs.  
Serial Audio Data Out SDATO1/TOUT0/GPIO18 AND SDATAO2/GPIO34 multiplexed pins can serve as general purpose I/Os  
or serial audio outputs. During reset, the pins are configured as serial data outputs.  
Serial audio error flag The EF/GPIO6 multiplexed pin can serve as general purpose I/Os or error flag input. As error flag  
input, this pin will input the error flag delivered by the CD-DSP. EF/GPIO6 is only relevant for serial  
interface SDATAI1.  
Serial audio CFLG  
The CFLG/GPIO5 multiplexed pin can serve as general purpose I/O or CFLG input. As CFLG input,  
the pin will input the CFLG flag delivered by the CD-DSP. CFLG/GPIO5 is only relevant for serial  
interface SDATAI1.  
3.11 Digital Audio Interface Signals  
Table 8 describes the signals for the digital audio interface.  
Table 8. Digital Audio Interface Signals  
Serial Module Signal  
Description  
Digital Audio In  
The EBUIN1/GPIO36, EBUIN2/SCLK_OUT/GPIO13, EBUIN3/CMD_SDIO2/GPIO14, and  
QSPI_CS0/EBUIN4/GPIO15 multiplexed signals can serve as general purpose input or can be driven  
by various digital audio (IEC958) input sources. Both functions are always active. Input chosen for  
IEC958 receiver is programmed within the audio module. Input value on the 4 pins can always be read  
from the appropriate GPIO register.  
Digital Audio Out  
The EBUOUT1/GPIO37 and QSPI_CS1/EBUOUT2/GPIO16 multiplexed pins can serve as general  
purpose I/O or as digital audio (IEC958) output. EBUOUT1 is digital audio out for consumer mode,  
EBUOUT2 is digital audio out for professional mode. During reset, the pin is configured as a digital audio  
output.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
16  
Freescale Semiconductor  
3.12 Subcode Interface  
There is a 3-line subcode interface on the SCF5250 processor. This 3-line subcode interface allows the  
device to format and transmit subcode in EIAJ format to a CD channel encoder device. The three signals  
are described in Table 9.  
Table 9. Subcode Interface Signal  
Signal name  
Description  
RCK/QSPI_DIN/QSPI_DOUT/GPIO26 Subcode clock input. When pin is used as subcode clock, this pin is driven by the CD  
channel encoder.  
QSPI_DOUT/SFSY/GPIO27  
Subcode sync output  
This signal is driven high if a subcode sync needs to be inserted in the EFM stream.  
QSPI_CLK/SUBR/GPIO25  
Subcode data output  
This signal is a subcode data out pin.  
3.13 Analog to Digital Converter (ADC)  
The ADOUT signal on the ADOUT/SCLK4/GPIO58 pin provides the reference voltage in PWM format.  
This output requires an external integrator circuit (resistor/capacitor) to convert it to a DC level to be input  
to the ADREF pin.  
The six AD inputs are each fed to their own comparator. The reference input to each (ADREF) is then  
multiplexed as only one AD comparison can be made at any one time.  
NOTE  
To use the ADINx as General Purpose inputs (rather than there analogue function) it is  
necessary to generate a fixed comparator voltage level of VDD/2. This can be  
accomplished by a potential divider network connected to the ADREF pin. However in  
portable applications where stand-by power consumption is important the current taken  
by the divider network (in stand-by mode) could be excessive. Therefore it is possible to  
generate a VDD/2 voltage by selecting SCLK4 output mode and feeding this clock signal  
(which is 50% duty cycle) through an external integration circuit. This would generate a  
voltage level equal to VDD/2 but would be disabled when stand-by mode was selected.  
3.14 Secure Digital/Memory Stick Card Interface  
The device has a versatile flash card interface that supports both Secure Digital and Memory Stick cards.  
The interface can either support one Secure Digital or two Memory Stick cards. No mixing of card types  
is possible. Table 10 gives the pin descriptions.  
Table 10. Flash Memory Card Signals  
Flash Memory Signal  
Description  
EBUIN2/SCLKOUT/GPIO13  
Clock out for both Memory Stick interfaces and for Secure Digital  
EBUIN3/CMD_SDIO2/GPIO14  
Secure Digital command line  
Memory Stick interface 2 data I/O  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
17  
Table 10. Flash Memory Card Signals (continued)  
Description  
Flash Memory Signal  
DDATAO/CTS1/SDATA0_SDIO1/GPIO1 Secure Digital serial data bit 0  
Memory Stick interface 1 data I/O  
SCL0/SDATA1_BS1/GPIO41  
Secure Digital serial data bit 1  
Memory Stick interface 1 strobe  
DDATA1/RTS1/SDATA2_BS2/GPIO2 Secure Digital serial data bit 2  
Memory Stick interface 2 strobe  
Reset output signal  
Selection between Reset function and SDATA2_BS2 is done by programming PLLCR  
register.  
SDA0/SDATA3/GPIO42  
Secure Digital serial data bit 3  
3.15 Queued Serial Peripheral Interface (QSPI)  
The QSPI interface is a high-speed serial interface allowing transmit and receive of serial data. Pin  
descriptions are given in Table 11.  
Table 11. Queued Serial Peripheral Interface (QSPI) Signals  
Serial Module Signal  
Description  
QSPICLK/SUBR/GPIO25  
Multiplexed signal IIC interface clock or QSPI clock output Function select is done via  
PLLCR register.  
RCK/QSPIDIN/QSPI_DOUT/GPIO26 Multiplexed signal IIC interface data or QSPI data input. Function select is done via  
PLLCR register.  
RCK/QSPI_DIN/QSPI_DOUT/GPIO26  
QSPI data output.  
QSPI_DOUT/SFSY/GPIO27  
QSPICS0/EBUIN4GPIO15  
QSPICS1/EBUOUT2/GPIO16  
4 different QSPI chip selects.  
QSPICS2/MCLK2/GPIO24  
CS1/QSPICS3/GPIO28  
3.16 Crystal Trim  
The XTRIM/GPIO0 output produces a pulse-density modulated phase/frequency difference signal to be  
used after low-pass filtering to control varicap-voltage to control crystal oscillation frequency. This will  
lock the crystal to the incoming digital audio signal.  
3.17 Clock Out  
The MCLK1/GPIO11 and QSPI_CS2/MCLK2/GPIO24 can serve as DAC clock outputs. When  
programmed as DAC clock outputs, these signals are directly derived from the crystal oscillator or clock  
Input (CRIN).  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
18  
Freescale Semiconductor  
3.18 Debug and Test Signals  
These signals interface with external I/O to provide processor debug and status signals.  
3.18.1 Test Mode  
The TEST[2:0] inputs are used for various manufacturing and debug tests. For normal mode TEST [2:1]  
should be ways be tied low. TEST0 should be set high for BDM debug mode and set low for JTAG mode.  
3.18.2 High Impedance  
The assertion of HI_Z will force all output drivers to a high-impedance state. The timing on HI_Z is  
independent of the clock.  
NOTE  
JTAG operation will override the HI_Z pin.  
3.18.3 Processor Clock Output  
The internal PLL generates this PSTCLK/GPIO51 and output signal, and is the processor clock output that  
is used as the timing reference for the Debug bus timing (DDATA[3:0] and PST[3:0]). The  
PSTCLK/GPIO51 is at the same frequency as the core processor.  
3.18.4 Debug Data  
The debug data pins, DDATA0/CTS1/SDATA0_SDIO1/GPIO1, DDATA1/RTS1/SDATA2_BS2/GPIO2,  
DDATA2/CTS0/GPIO3, and DDATA3/RTS0/GPIO4, are four bits wide. This nibble-wide bus displays  
captured processor data and break-point status.  
3.18.5 Processor Status  
The processor status pins, PST0/GPIO50, PST1/GPIO49, PST2/INTMON/GPIO48, and  
PST3/INTMON/GPIO47, indicate the SCF5250 processor status. During debug mode, the timing is  
synchronous with the processor clock (PSTCLK) and the status is not related to the current bus transfer.  
Table 12 shows the encodings of these signals.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
19  
.
Table 12. Processor Status Signal Encodings  
Definition  
PST[3:0]  
(HEX) (BINARY)  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Continue execution  
Begin execution of an instruction  
Reserved  
Entry into user-mode  
Begin execution of PULSE and WDDATA instructions  
Begin execution of taken branch or Synch_PC1  
Reserved  
Begin execution of RTE instruction  
Begin 1-byte data transfer on DDATA  
Begin 2-byte data transfer on DDATA  
Begin 3-byte data transfer on DDATA  
Begin 4-byte data transfer on DDATA  
Exception processing2  
Emulator mode entry exception processing2  
Processor is stopped, waiting for interrupt2  
Processor is halted2  
1
2
Rev. B enhancement.  
These encodings are asserted for multiple cycles.  
3.19 BDM/JTAG Signals  
The SCF5250 complies with the IEEE 1149.1A JTAG testing standard. The JTAG test pins are multiplexed  
with background debug pins.  
3.20 Clock and Reset Signals  
The clock and reset signals configure the SCF5250 processor and provide interface signals to the external  
system.  
3.20.1 Reset In  
Asserting RSTI causes the SCF5250SCF5250 to enter reset exception processing. When RSTI is  
recognized, the data bus is tri-stated.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
20  
Freescale Semiconductor  
3.20.2 Clock Input  
SCF5250 includes an on-chip crystal oscillator. The crystal should be connected between CRIN and  
CROUT. An externally generated clock signal can also be used and should be connected directly to the  
CRIN pin.  
3.21 Wake-Up Signal  
To exit power down mode, apply a LOW level to the WAKE_UP/GPIO21 input pin.  
3.22 On-Chip Linear Regulator  
The SCF5250 includes an on-chip linear regulator. This regulator provides an 1.2 V output which is  
intended to be used to power the SCF5250 core. Three pins are associated with this function.  
LININ, LINOUT and LINGND. Typically LININ would be fed by the I/O (PAD) supply (3.3 V) with  
separate filtering recommended to provide some isolation between the I/O and the core.  
In portable solutions this linear regulator may not be efficient enough and in this case we would expect the  
1.2 V supply to be generated externally, possibly by a highly efficient DC-DC convertor.  
If not used leave pins not connected.  
4 Electrical Characteristics  
Table 14 through Table 19 provide the electrical characteristics for the SCF5250 processor. The remaining  
figures and tables in this section provide the timing diagrams and the timing parameters for the SCF5250  
processor.  
Table 13. Quick Reference for Electrical Characteristics  
For  
See  
Maximum Ratings  
Table 14 on page 22  
Operating Temperature Table 15 on page 22  
Recommended  
Operating Supply  
Voltages  
Table 16 on page 22  
Linear Regulator  
Operating Specification  
Table 17 on page 23  
Table 18 on page 23  
Table 19 on page 24  
DC Electrical  
Specifications  
Operating Parameters  
for ADC DC Electrical  
Characteristics  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
21  
Table 14. Maximum Ratings  
Symbol  
Rating  
Supply Core Voltage  
Value  
Units  
Vcc  
Vcc  
Vcc  
Vcc  
Vcc  
Vcc  
Vin  
-0.5 to +2.5  
+1.32  
V
V
Maximum Core Operating Voltage  
Minimum Core Operating Voltage  
Supply I/O Voltage  
+1.08  
V
-0.5 to +4.6  
+3.6  
V
Maximum I/O Operating Voltage  
Minimum I/O Operating Voltage  
Input Voltage  
V
+3.0  
V
-0.5 to +6.0  
-65 to150  
V
Storage Temperature Range  
Tstg  
oC  
Table 15 provides the recommended operating temperatures for the SCF5250 processor.  
Table 15. Operating Temperature  
Characteristic  
Symbol  
Value  
Units  
Maximum Operating Ambient Temperature  
Minimum Operating Ambient Temperature  
TAmax  
TAmin  
851  
-40  
οC  
oC  
1
This published maximum operating ambient temperature should be used only as a system design guideline. All device operating  
parameters are guaranteed only when the junction temperature does not exceed 105°C.  
Table 16 provides the recommended operating supply voltages for the SCF5250 processor.  
Table 16. Recommended Operating Supply Voltages  
Pin Name  
CORE-VDD  
Min  
Typ  
Max  
1.08V  
1.2V  
gnd  
3.3v  
gnd  
3.3v  
gnd  
3.3v  
gnd  
1.2V  
gnd  
1.2v  
gnd  
3.3V  
1.32V  
CORE-VSS  
PAD-VDD  
3.0V  
3.6V  
PAD-VSS  
ADVDD  
3.0V  
3.6V  
ADGND  
OSCPAD-VDD  
OSCPAD-GND  
PLLCORE1VDD  
PLLCORE1GND  
PLLCORE2VDD  
PLLCORE2GND  
LIN  
3.0V  
3.6V  
1.08V  
1.32V  
1.08V  
1.32V  
3.0v  
3.6V  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
22  
Freescale Semiconductor  
Table 17 provides the linear regulator operating specifications for the SCF5250 processor.  
1
Table 17. Linear Regulator Operating Specification  
Characteristic  
Symbol  
Min  
Typ  
Max  
Input Voltage  
Vin  
Vout  
Iout  
Pd  
3.0V  
1.14V  
3.3V  
1.2V  
100mA  
3.6  
1.26V  
150mA  
436uW  
60mV  
Output Voltage (LINOUT)  
Output Current  
Power Dissipation  
Load Regulation (10% Iout 90% Iout)  
Power Supply Rejection  
40mV  
50mV  
40dB  
PSRR  
1
A pmos regulator is employed as a current source in this Linear regulator, so a 10µF capacitor (ESR 0 ... 5 Ohm) is needed on the output pin  
(LINOUT) to integrate the current. Typically this will require the use of a Tantalum type capacitor.  
Table 18 provides the DC electrical specifications.  
Table 18. DC Electrical Specifications (I/O Vcc = 3.3 Vdc + 0.3 Vdc)  
Characteristic  
Symbol  
Min  
Max  
Units  
Operation Voltage Range for I/O  
Input High Voltage  
Vcc  
VIH  
VIL  
Iin  
3.0  
2
3.6  
5.5  
0.8  
±1  
V
V
Input Low Voltage  
-0.3  
V
Input Leakage Current @ 0.0 V /3.3 V During Normal Operation  
µµA  
µµA  
Hi-Impedance (Three-State) Leakage Current  
@ 0.0 V/3.3 V During Normal Operation  
ITSI  
±1  
Output High Voltage IOH = 8mA1, 4mA2, 2mA3  
Output Low Voltage IOL = 8mA1, 4mA2, 2mA3  
Schmitt Trigger Low to High Threshold Point6  
Schmitt Trigger High to Low Threshold Point6  
VOH  
VOL  
VT+  
VT-  
2.4  
V
V
0.4  
1.47  
V
.95  
50  
V
Load Capacitance (DATA[31:16], SCLK[4:1], SCLKOUT, EBUOUT[2:1],  
LRCK[3:1], SDATAO[2:1], CFLG, EF, DDATA[3:0], PST[3:0], PSTCLK,  
IDE-DIOR, IDE-DIOW, IORDY)  
CL  
pF  
Load Capacitance (ADDR[24:9], BCLK)  
CL  
CL  
40  
30  
pF  
pF  
Load Capacitance (BCLKE, SDCAS, SDRAS, SDLDQM, SD_CS0, SDUDQM,  
SDWE, BUFENB[2:1])  
Load Capacitance (SDA0, SDA1, SCL0, SCL1, CMD_SDIO2, SDATA2_BS2,  
SDATA1_BS1, SDATA0_SDIO1, CS0/CS4, CS1, OE, R/W, TA, TXD[1:0], XTRIM,  
TDO/DSO, RCK, SFSY, SUBR, SDATA3, TOUT0, QSPID_OUT, QSPICS[3:0],  
GP[6:5])  
CL  
20  
pF  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
23  
Table 18. DC Electrical Specifications (I/O Vcc = 3.3 Vdc + 0.3 Vdc) (continued)  
Characteristic  
Capacitance5, Vin = 0 V, f = 1 MHz  
DATA[31:16], ADDR[24:9], PSTCLK, BCLK  
Symbol  
Min  
Max  
Units  
CIN  
6
pF  
SCL, SDA, PST[3:0], DDATA[3:0], TDSO, SDRAS, SDCAS, SDWE, SD_CS0, SDLDQM, SDUDQM, R/W  
TOUT0, RTS[1:0], TXD[1:0], SCLK[4:1]  
BKPT/TMS, DSI/TDI, DSCLK/TRST  
Capacitance C is periodically sampled rather than 100% tested.  
IN  
SCLK[4:1], SCL0, SCL1, SDA0, SDA1, CRIN, RSTI  
Table 19 provides the operating parameters for the ADC DC electrical characteristics.  
Table 19. Operating Parameters for ADC DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Operation Voltage Range for ADC  
Common Mode Rejection  
ADVDD  
CMR  
3
0
3.6  
ADVDD–1.1  
ADVDD–1.1  
V
v
Reference Voltage (external)  
Input offset voltage  
ADREF  
Voffset  
Vhyst  
0
v
10  
0.78  
mV  
mV  
V
Input Hysteresis (ADINx = ADVDD/2)  
ADC Input Linear Operating Range  
0.73  
0
0.85  
ADINx  
ADVDD–1.1  
Figure 2 and Table 20 provide the clock timing diagram and timing parameters.  
CRIN  
C5  
PSTCLK  
C6  
C6  
C7  
BCLK  
C8  
C8  
Figure 2. Clock Timing Definition  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
24  
Freescale Semiconductor  
NOTE  
The signals shown in Figure 2 are in relation to the clock. No relationship  
between signals is implied or intended.  
Table 20. Clock Timing Specification  
Num  
Characteristic  
Min  
Max  
Units  
CRIN Frequency1  
5.00  
7.1  
40  
33.86  
MHz  
ns  
C5  
C6  
C7  
C8  
PSTCLK cycle time  
PSTCLK duty cycle  
BCLK cycle time  
BCLK duty cycle  
60  
%
14.2  
45  
ns  
55  
%
1
There are only three choices for the valid Audio frequencies 11.29 MHz, 16.93 MHz, or 33.86 MHz; no other  
values are allowed. The System Clock is derived from one of these crystals via an internal PLL.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
25  
Figure 3 and Figure 4 provide the input and output AC timing definition diagrams and Table 21 and  
Table 22 provide the input and output AC timing parameters.  
Figure 3. Input/Output Timing Definition-I  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
26  
Freescale Semiconductor  
B3  
B4  
BCLK  
INPUTS  
B13  
B14  
BCLK  
OUTPUTS  
H1  
H2  
HIZ  
OUTPUTS  
Figure 4. Input/Output AC Timing Definition-III  
Table 21. Input AC Timing Specification  
Num  
Characteristic  
Min  
Max  
Units  
B11,2  
B21  
Signal Valid to BCLK Rising (setup)  
BCLK Rising to signal Invalid (hold)  
BCLK to Input High Impedance  
3
2
5
ns  
ns  
B31  
BCLK cycle  
1
2
Inputs (rising): DATA[31:16]  
AC timing specs assume 40pF load capacitance on BCLK and 50pF load capacitance on output pins. If this value is different,  
the input and output timing specifications would need to be adjusted to match the clock load.  
Table 22. Output AC Timing Specification  
Num  
Characteristic1  
BCLK (8mA) Rising to signal Valid  
Min  
Max  
Units  
B102  
B112  
B103  
B113  
B124  
3.5  
10  
ns  
ns  
ns  
ns  
ns  
BCLK (8mA) Rising to signal Invalid (hold)  
BCLK (4mA) Rising to signal Valid  
11  
BCLK (4mA) Rising to signal Invalid (hold)  
BCLK to High Impedance (Three-State)  
4
14  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
27  
Table 22. Output AC Timing Specification (continued)  
Num  
Characteristic1  
Min  
Max  
Units  
H1  
H2  
HIZ to High Impedance  
HIZ to Low Impedance  
tbd  
tbd  
ns  
ns  
1
AC timing specs assume 40pF load capacitance on BCLK and a 50pF load capacitance on output pins. If this value is different,  
the input and output timing specifications would need to be adjusted to match the clock load.  
2
3
4
Outputs (8mA): DATA[31:16], ADDR[25,23:9]  
Outputs (4mA): SDRAS, SDCAS, SDWE, SD_CS0, SDUDQM, SDLDQM, BCLKE  
High Impedance (Three-State): DATA[31:16]  
Figure 5 and Table 23 provide the timing diagram and timing parameters for the Debug AC.  
PSTCLK  
D4  
D3  
DSCLK  
D4  
D3  
D1  
DSI  
PST[3:0]  
DDATA[3:0]  
DSO  
D2  
Figure 5. Debug AC Timing Definition Diagram  
1
Table 23. Debug AC Timing Specification  
Num  
Characteristic  
Min  
Max  
Units  
D1  
D2  
PSTCLK to signal Valid (Output valid)  
PSTCLK to signal Invalid (Output hold)  
Signal Valid to PSTCLK (Input setup)  
PSTCLK to signal Invalid (Input hold)  
1.8  
3
6
ns  
ns  
ns  
ns  
D32  
D4  
5
1
2
AC timing specs assume 50pF load capacitance on PSTCLK and output pins. If this value is different, the input and  
output timing specifications would need to be adjusted to match the clock load.  
DSCLK and DSI are internally synchronized. This setup time must be met only if recognition on a particular clock is  
required.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
28  
Freescale Semiconductor  
Figure 6 and Table 24 provide the timing diagram and timing parameters for the Timer module.  
BCLK  
T6  
T2  
T3  
T1  
TIN  
TIN  
T7  
TOUT  
T4  
T5  
Figure 6. Timer Module AC Timing Definition Diagram  
Table 24. Timer Module AC Timing Specification  
Num  
Characteristic  
Min  
Max  
Units  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
TIN Cycle time  
3T  
6
bus clocks  
TIN Valid to BCLK (input setup)  
BCLK to TIN Invalid (input hold)  
BCLK to TOUT Valid (output valid)  
BCLK to TOUT Invalid (output hold)  
TIN Pulse Width  
ns  
ns  
0
10  
ns  
tbd  
1T  
1T  
ns  
bus clocks  
bus clocks  
TOUT Pulse Width  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
29  
Figure 7 and Table 25 provide the timing diagram and timing parameters for the UART module.  
BCLK  
U1  
RXD  
U2  
U3  
CTS  
U4  
U5  
TXD  
U6  
U7  
RTS  
U8  
Figure 7. UART Module AC Timing Definition Diagram  
Table 25. UART Module AC Timing Specifications  
Num  
Characteristic  
Min  
Max  
Units  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
U8  
RXD Valid to BCLK (input setup)  
BCLK to RXD Invalid (input hold)  
CTS Valid to BCLK (input setup)  
BCLK to CTS Invalid (input hold)  
BCLK to TXD Valid (output valid)  
BCLK to TXD Invalid (output hold)  
BCLK to RTS Valid (output valid)  
BCLK to RTS Invalid (output hold)  
6
0
6
0
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tbd  
tbd  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
30  
Freescale Semiconductor  
Figure 8 provides the I2C-bus input and output timing diagram and Table 26 and Table 27 provide the  
I2C-bus input and output timing parameters.  
M2  
M6  
M5  
SCL  
SDA  
M3  
M1  
M4  
M7  
M8  
M9  
Figure 8. I2C-Bus Input/Output Timing Definition Diagram  
Table 26. I2C-Bus Input Timing Specifications Between SCL and SDA  
Num  
Characteristic  
Min  
Max  
Units  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
Start Condition Hold Time  
Clock Low Period  
2
8
0
4
0
2
2
1
1
bus clocks  
bus clocks  
mSec  
SCL/SDA Rise Time (VIL= 0.5 V to VIH = 2.4 V)  
Data Hold Time  
ns  
SCL/SDA Fall Time (VIH= 2.4 V to VIL = 0.5 V)  
Clock High time  
ms  
bus clocks  
ns  
Data Setup Time  
Start Condition Setup Time (for repeated start condition only)  
Stop Condition Setup Time  
bus clocks  
bus clocks  
Table 27. I2C-Bus Output Timing Specifications Between SCL and SDA  
Num  
Characteristic  
Min  
Max  
Units  
M11  
M21  
M32  
Start Condition Hold Time  
Clock Low Period  
6
bus clocks  
bus clocks  
mSec  
10  
SCL/SDA Rise Time (VIL= 0.5 V to VIH = 2.4 V)  
note 2  
note 2  
M41  
M53  
Data Hold Time  
7
3
bus clocks  
ns  
SCL/SDA Fall Time (VIH= 2.4 V to VIL = 0.5 V)  
M61  
M71  
M81  
M91  
Clock High time  
10  
2
bus clocks  
bus clocks  
bus clocks  
bus clocks  
Data Setup Time  
Start Condition Setup Time (for repeated start condition only)  
Stop Condition Setup Time  
20  
10  
1
Output numbers are dependent on the value programmed into the MFDR; an MFDR programmed with the maximum frequency (MFDR =  
0x20) will result in minimum output timings as shown. The MBUS interface is designed to scale the actual data transition time to move it to  
the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the MFDR; however,  
numbers given are the minimum values.  
2
3
Since SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time required for SCL or SDA to  
reach a high level depends on external signal capacitance and pull-up resistor values.  
Specified at a nominal 20 pF load.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
31  
Figure 9 provides the I2C-bus and system clock timing diagram and Table 28 provides the I2C-bus output  
timing parameters.  
M10  
BCLK  
SCL, SDA IN  
M11  
M12  
SCL, SDA OUT  
SCL, SDA OUT  
M13  
Figure 9. I2C and System Clock Timing Relationship  
Table 28. I2C Output Bus Timings  
96 MHz  
Num  
Characteristic  
Units  
Min  
Max  
M101  
M11  
SCL, SDA Valid to BCLK (input setup)  
BCLK to SCL, SDA Invalid (input hold)  
BCLK to SCL, SDA Low (output valid)  
BCLK to SCL, SDA Invalid (output hold)  
2
4.5  
ns  
ns  
ns  
ns  
M122  
M133  
10  
3
1
2
SCL and SDA are internally synchronized. This setup time must be met only if recognition on a particular clock is required.  
Since SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, this specification applies only when SCL  
or SDA are driven low by the processor. The time required for SCL or SDA to reach a high level depends on external signal capacitance and  
pull-up resistor values.  
3
Since SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, this specification applies only when SCL  
or SDA are actively being driven or held low by the processor.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
32  
Freescale Semiconductor  
Figure 10 provides the general-purpose parallel port timing diagram and Table 29 provides the timing  
parameters.  
BCLK  
P1  
GPIO IN  
P2  
P3  
GPIO OUT  
P4  
Figure 10. General-Purpose I/O Port AC Timing Definition Diagram  
Table 29. General-Purpose I/O Port AC Timing Specifications  
Num  
Characteristic  
Min  
Max  
Units  
P1  
P2  
P3  
P4  
GPIO Valid to BCLK (input setup)  
BCLK to GPIO Invalid (input hold)  
BCLK to GPIO Valid (output valid)  
BCLK to GPIO Invalid (output hold)  
6
0
1
ns  
ns  
ns  
ns  
tbd  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
33  
Figure 11 provides the IEEE 1149.1 JTAG timing diagram and Table 30 provides the timing parameters.  
J1  
J3A  
J2A  
J2B  
TCK  
J3B  
J4  
TDI, TMS  
J5  
J6  
BOUNDARY  
SCAN DATA  
INPUT  
J7  
TRST  
TDO  
J8  
J9  
J10  
J11  
BOUNDARY  
SCAN DATA  
OUTPUT  
J12  
Figure 11. JTAG AC Timing Diagram  
Table 30. JTAG AC Timing Specifications  
Characteristic  
Num  
Min  
Max  
Units  
TCK Frequency of Operation  
0
100  
25  
25  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J1  
TCK Cycle Time  
J2a  
J2b  
J3a  
J3b  
J4  
TCK Clock Pulse High Width  
TCK Clock Pulse Low Width  
TCK Fall Time (VIH=2.4 V to VIL=0.5 V)  
TCK Rise Time (VIL=0.5 v to VIH=2.4 V)  
TDI, TMS to TCK rising (Input Setup)  
TCK rising to TDI, TMS Invalid (Hold)  
Boundary Scan Data Valid to TCK (Setup)  
TCK to Boundary Scan Data Invalid to rising edge (Hold)  
TRST Pulse Width (asynchronous to clock edges)  
TCK falling to TDO Valid (signal from driven or three-state)  
TCK falling to TDO High Impedance  
5
5
8
J5  
10  
tbd  
tbd  
12  
J6  
J7  
J8  
J9  
15  
15  
J10  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
34  
Freescale Semiconductor  
Table 30. JTAG AC Timing Specifications (continued)  
Characteristic  
Num  
Min  
Max  
Units  
J11  
J12  
TCK falling to Boundary Scan Data Valid (signal from driven or three-state)  
TCK falling to Boundary Scan. Data High Impedance  
tbd  
tbd  
ns  
ns  
Figure 12 provides the SCLK input, SDATA output timing diagram for the IIS module and Table 31  
provides the timing parameters.  
SCLK (INPUT)  
SDATAO1, 2 (OUTPUT)  
TU  
TD  
Figure 12. SCLK Input, SDATA Output Timing Diagram  
Table 31. SCLK Input, SDATA Output Timing Specifications  
Num  
Characteristic  
Min  
Max  
Units  
TU  
TD  
SCLK fall to SDATAO rise  
SCLK fall to SDATAO fall  
25  
25  
ns  
ns  
Figure 13 provides the SCLK output, SDATA output timing diagram for the IIS module and Table 32  
provides the timing parameters.  
SCLK (OUTPUT)  
SDATAO1, 2 (OUTPUT)  
TU  
TD  
Figure 13. SCLK Output, SDATA Output Timing Diagram  
Table 32. SCLK Output, SDATA Output Timing Specifications  
Num  
Characteristic  
Min  
Max  
Units  
TU  
TD  
SCLK fall to SDATAO rise  
SCLK fall to SDATAO fall  
3
3
ns  
ns  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
35  
Figure 14 provides the SCLK input/output, SDATA input timing diagram and Table 33 provides the timing  
parameters.  
SCLK  
(INPUT OR OUTPUT)  
SDATA1, 3, 4 (INPUT)  
TH  
TSU  
Figure 14. SCLK Input/Output, SDATA Input Timing Diagram  
Table 33. SCLK Input/Output, SDATA Input Timing Specifications  
Num  
Characteristic  
Min  
Max  
Units  
TSU  
TH  
SDATAI IN to SCLKn  
SCLK rise to SDATAI  
-5  
3
ns  
ns  
5 Pin-Out and Package Information  
Visit the URL [http://www.freescale.com/coldfire] and choose the documentation library to obtain  
information on the mechanical characteristics of the SCF5250 integrated microprocessor. Thermal  
characteristics are not available at this time.  
The SCF5250 is available in a 144 pin QFP and a 196 pin MAPBGA package. Use Table 34 to find the  
information desired.  
Table 34. Section Quick Reference  
For Chip  
Package  
See  
Pin assignments  
Table 35 on page 37  
Figure 15 on page 42  
Figure 16 on page 43  
Figure 17 on page 44  
144 pin QFP  
Package drawings  
Pin assignments  
Package drawings  
Ball map  
Table 36 on page 45  
Figure 18 on page 52  
Figure 19 on page 53  
196 MAPBGA  
Figure 20 on page 54  
5.1  
144 QFP Pin Assignments  
The SCF5250 can be assembled in 144-pin QFP package. Table 35 provides the pin assignments for the  
package.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
36  
Freescale Semiconductor  
Table 35. 144 QFP Pin Assignments  
144 QFP  
Pin Number  
Pin State  
After Reset  
Name  
Type  
Description  
01  
02  
DATA16  
I/O  
I/O  
Data  
X
A23/GPO54  
SDRAM address / static adr  
Out (requires pull up /down for  
boot-up selection)  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
PAD-VDD  
A22  
O
O
O
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
Out  
Out  
Out  
Out  
Out  
A21  
A20/A24  
A19  
A18  
PAD-GND  
A17  
O
O
O
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
Out  
Out  
Out  
Out  
Out  
A16  
A15  
A14  
A13  
PAD-VDD  
A12  
O
O
SDRAM address / static adr  
SDRAM address / static adr  
Out  
Out  
A11  
CORE-VDD  
CORE-GND  
A10  
O
O
O
O
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
PAD-GND  
Out  
Out  
Out  
Out  
Out  
Out  
A9  
A8  
A7  
A6  
A5  
PAD-GND  
A4  
O
O
O
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
Static chip select 0 / static chip select 4  
Out  
Out  
Out  
Out  
Out  
A3  
A2  
A1  
CS0/CS4  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
37  
Table 35. 144 QFP Pin Assignments (continued)  
144 QFP  
Pin Number  
Pin State  
After Reset  
Name  
Type  
Description  
Bus write enable  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
RW  
O
Out  
OSC PAD VDD  
CRIN  
Crystal / external clock input  
Crystal clock output  
OSC_PAD_GND  
I
X
CROUT  
O
X
OSC PAD GND  
PLL CORE1 VDD  
PLL CORE2 VDD  
PLL CORE2 GND  
PLL CORE1 GND  
OE  
O
Output Enable  
IDE DIOW  
Out  
IDE-DIOW/GPIO32  
IDE-IORDY/GPIO33  
IDE-DIOR/GPIO31  
BUFENB2/GPIO30  
BUFENB1/GPIO29  
TA/GPIO12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Out / HIGH  
In / LOW  
Out / HIGH  
Out / HIGH  
Out / HIGH  
IDE interface IORDY  
IDE interface DIOR  
External buffer 2 enable  
External buffer 1 enable  
Transfer acknowledge  
In (requires pull-up for normal  
operation)  
48  
49  
50  
WAKE_UP/GPIO21  
I/O  
I/O  
I/O  
Wake-up input  
In (requires pull-up for normal  
operation)  
EBUIN2/SCLK_OUT/  
GPIO13  
Audio interfaces EBU in 2 /  
FlashMedia Clock  
In / LOW  
EBUIN3/CMD_SDIO2/  
GPIO14  
Audio interfaces EBU in 3 /  
FlashMedia Command interface  
In / LOW  
51  
52  
53  
54  
55  
56  
PAD VDD  
EBUIN1/GPIO36  
I/O  
I/O  
I/O  
I/O  
I/O  
Audio interfaces EBU in 1  
Audio interfaces EBU out 1  
Audio interfaces X-tal trim  
Chip select 1/ QSPI Chip Select 3  
In / LOW  
EBUOUT1/GPIO37  
XTRIM/GPIO0  
Out / LOW  
Out / clock out  
Out / HIGH  
Out / LOW  
CS1/QSPI_CS3/GPIO28  
RCK/  
QSPI_DIN/QSPI_DOUT/  
GPIO26  
Subcode RCK interface /  
QSPI Data In / Data Out  
57  
58  
QSPI_CLK/SUBR/GPIO25  
I/O  
I/O  
QSPI clock pin / subcode interface  
Out / LOW  
Out / LOW  
QSPI_DOUT/SFSY/  
GPIO27  
QSPI Data Output / subcode  
interface SFSY  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
38  
Freescale Semiconductor  
Table 35. 144 QFP Pin Assignments (continued)  
144 QFP  
Pin Number  
Pin State  
After Reset  
Name  
Type  
Description  
59  
60  
QSPI_CS1/EBUOUT2/  
GPIO16  
I/O  
QSPI Chip select 1 output /  
audio interface EBU output 2  
Out / LOW  
Out / LOW  
QSPI_CS0/EBUIN4/  
GPIO15  
I/O  
QSPI chip select 0 /  
audio interface EBUIN 4  
61  
62  
63  
64  
PAD GND  
SCLK1/GPIO20  
LRCK1/GPIO19  
I/O  
I/O  
I/O  
Audio interfaces serial clock 1  
Audio interfaces word clock 1  
In / LOW  
In / LOW  
Out / LOW  
SDATAO1/TOUT0/  
GPIO18  
Audio interfaces serial data  
output 1 / Timer output 0  
65  
66  
67  
68  
SDATAI1/GPIO17  
CFLG/GPIO5  
EF/GPIO6  
I
Audio interfaces serial data in 1  
CFLG input  
In / LOW  
In / LOW  
In / LOW  
Out / LOW  
I/O  
I/O  
I/O  
Error flag input  
QSPI_CS2/MCLK2/  
GPIO24  
QSPI Chip Select output 2 /  
audio master clock output 2  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
SDATAI3/GPIO8  
ADIN0/GPI52  
ADIN1/GPI53  
ADIN2/GPI54  
ADVDD  
I/O  
A
Audio interfaces serial data input 3  
In / LOW  
AD input 0  
AD input 1  
AD input 2  
In only  
A
In only  
A
In only  
ADGND  
In only  
ADIN3/GPI55  
ADIN4/GPI56  
ADIN5/GPI57  
ADREF  
A
AD input 3  
AD input 4  
AD input 5  
ADC reference input  
A
In only  
A
In only  
A
In  
ADOUT/SCLK4/  
GPIO58  
I/O  
AD output / SCLK4 (for GPI function in  
low power applications)  
Out / clock output  
80  
LRCK3/GPIO43/  
AUDIO_CLOCK  
I/O  
Audio interface LRCK3 /  
Audio master clock input  
In / LOW  
81  
82  
SCLK3/GPIO35  
I/O  
I/O  
Audio interface SCLK3  
In / LOW  
SCL0/SDATA1_BS1/  
GPIO41  
I2C0 clock line / FlashMedia  
Data interface  
Out / LOW  
83  
84  
SDA0/SDATA3/GPIO42  
I/O  
I/O  
I2C0 data / FlashMedia data interface  
Hi-Z  
DDATA0/CTS1/  
SDATA0_SDIO1/GPIO1  
Debug / UART1 CTS / FlashMedia data  
interface  
Out / HIGH  
85  
DDATA1/RTS1/  
SDATA2_BS2/GPIO2  
I/O  
Debug / UART1 RTS / FlashMedia data  
interface  
Out / HIGH  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
39  
Table 35. 144 QFP Pin Assignments (continued)  
144 QFP  
Pin Number  
Pin State  
After Reset  
Name  
Type  
Description  
Debug / UART0 CTS  
86  
87  
88  
DDATA2/CTS0/GPIO3  
DDATA3/RTS0/GPIO4  
SCL1/TXD1/GPIO10  
I/O  
I/O  
I/O  
Out / HIGH  
Out / HIGH  
Out / LOW  
Debug / UART0 RTS  
I2C1 clock line / second UART transmit  
data output  
89  
90  
91  
CORE VDD  
CORE GND  
SDA1/RXD1/GPIO44  
I/O  
I2C1 data line / second UART receive  
data input  
Hi-Z  
92  
93  
94  
95  
PAD VDD  
TXD0/GPIO45  
RXD0/GPIO46  
I/O  
I/O  
I/O  
First UART transmit data output  
First UART receive data input  
Debug / interrupt monitor output 1  
Out / HIGH  
In / LOW  
Out / HIGH  
PST3/INTMON1/  
GPIO47  
96  
PST2/INTMON2/GPIO48  
PAD GND  
I/O  
Debug / interrupt monitor output 2  
Out / HIGH  
97  
98  
PST1/GPIO49  
PST0/GPIO50  
PSTCLK/GPIO51  
TDO/DSO  
I/O  
I/O  
I/O  
O
I
Debug  
Out / HIGH  
99  
Debug  
Out / HIGH  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
Debug  
Out / clock output  
JTAG/debug  
BDM  
TDI/DSI  
JTAG/debug  
BDM  
TCK  
I
JTAG  
BDM  
TMS/BKPT  
TRST/DSCLK  
RSTI  
I
JTAG/debug  
BDM  
I
JTAG/Debug  
BDM  
I
Reset  
X
SCLK2/GPIO22  
LRCK2/GPIO23  
LINOUT  
I/O  
I/O  
A
Audio interfaces serial clock 2  
Audio interfaces EBU out 1  
Linear regulator output  
Linear regulator input  
Linear regulator ground  
Audio interfaces serial data output 2  
Audio master clock output 1  
JTAG  
In / LOW  
In /LOW  
X
LININ  
A
X
LINGND  
X
SDATAO2/GPIO34  
MCLK1/GPIO11  
HI-Z  
I/O  
I/O  
I
Out / LOW  
Out / clock output  
X
X
TEST2  
I
Test  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
40  
Freescale Semiconductor  
Table 35. 144 QFP Pin Assignments (continued)  
144 QFP  
Pin Number  
Pin State  
After Reset  
Name  
Type  
Description  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
TEST1  
TEST0  
I
Test  
Test  
X
I
X
SDWE/GPIO38  
SDCAS/GPIO39  
PAD VDD  
SDRAS/GPIO59  
SD_CS0/GPIO60  
SDLDQM/GPO52  
SDUDQM/GPO53  
BCLKE/GPIO63  
BCLK/GPIO40  
DATA31  
I/O  
I/O  
SDRAM write enable  
Out / HIGH  
SDRAM CAS  
Out / HIGH  
I/O  
I/O  
O
SDRAM RAS  
Out / HIGH  
SDRAM chip select out 0  
Out / HIGH  
SDRAM LDQM  
Out / HIGH  
O
SDRAM UDQM  
Out / HIGH  
I/O  
I/O  
I/O  
I/O  
SDRAM clock enable output  
Out / HIGH  
SDRAM clock output  
Out / HIGH  
Data  
Data  
X
X
DATA30  
PAD GND  
DATA29  
I/O  
I/O  
I/O  
I/O  
I/O  
Data  
Data  
Data  
Data  
Data  
X
X
X
X
X
DATA28  
DATA27  
DATA26  
DATA25  
PAD-VDD  
DATA24  
I/O  
I/O  
I/O  
I/O  
I/O  
Data  
Data  
Data  
Data  
Data  
X
X
X
X
X
DATA23  
DATA22  
DATA21  
DATA20  
PAD GND  
DATA19  
I/O  
I/O  
I/O  
Data  
Data  
Data  
X
X
X
DATA18  
DATA17  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
41  
5.2  
144 QFP Package  
The SCF5250 is available in a 144-pin QFP package. For the 144 QFP package drawings, refer to Figure  
15 on page 42, Figure 16 on page 43, and Figure 17 on page 44.  
Figure 15. 144 QFP Package (1 of 3)  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
42  
Freescale Semiconductor  
Figure 16. 144 QFP Package (2 of 3)  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
43  
Figure 17. 144 QFP Package (3 of 3)  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
44  
Freescale Semiconductor  
5.3  
196 MAPBGA Pin Assignments  
The SCF5250 can be assembled in a 196-pin MAPBGA package. Table 36 lists the 196 MAPBGA pin  
assignments.  
Table 36. 196 MAPBGA Pin Assignments  
MAPBGA  
Pin  
Pin State  
After Reset  
Name  
Type  
Description  
B1  
D3  
DATA16  
I/O  
I/O  
Data  
X
A23_GPO54  
SDRAM address / static adr  
Out (requires pull  
up/down for  
boot-up selection  
P_VDD  
C1  
PST_VDD  
A22  
PST_VDD  
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
Out  
Out  
D2  
A21  
E3  
A20_A24  
I/O  
Out (requires pull  
up/down for  
boot-up selection  
D1  
E2  
A19  
A18  
O
O
SDRAM address / static adr  
SDRAM address / static adr  
PST_GND  
Out  
Out  
P_GND  
F3  
PST_GND  
A17  
O
O
O
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
PAD_VDD  
Out  
Out  
Out  
Out  
Out  
E1  
A16  
F2  
A15  
F1  
A14  
G3  
A13  
P_VDD  
G2  
PAD_VDD  
A12  
O
O
SDRAM address / static adr  
SDRAM address / static adr  
CORE_VDD  
Out  
Out  
G1  
A11  
CORE_VDD  
C_GND  
H2  
CORE_VDD  
CORE_VSS  
A10  
CORE_VSS  
Out  
Out  
Out  
Out  
Out  
O
O
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
J1  
A9  
H3  
A8  
K1  
A7  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
45  
Table 36. 196 MAPBGA Pin Assignments (continued)  
MAPBGA  
Pin  
Pin State  
After Reset  
Name  
Type  
Description  
J2  
L1  
A6  
A5  
O
O
SDRAM address / static adr  
SDRAM address / static adr  
PAD_GND  
Out  
Out  
P_GND  
J3  
PAD_GND  
A4  
O
O
O
O
O
O
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
SDRAM address / static adr  
Static chip select 0  
Bus write enable  
Out  
Out  
Out  
Out  
Out  
Out  
K2  
A3  
L2  
A2  
M1  
K3  
A1  
CS0  
L3  
RWB  
J5  
OSCPAD_VDD  
CRIN  
OSCPAD_VDD  
M2  
N1  
J6  
Crystal / external clock input  
Crystal clock output  
OSCPAD_GND  
X
X
CROUT  
OSCPAD_GND  
PLLCORE_VDD  
PLLCORE_VDD  
PLLCORE_VDD  
PLLCORE_GND  
PLLCORE_GND  
PLLCORE_GND  
OE  
K5  
PLLCORE_VDD  
K5  
PLLCORE_VDD  
K5  
PLLCORE_VDD  
K6  
PLLCORE_GND  
K6  
PLLCORE_GND  
K6  
PLLCORE_GND  
M3  
M4  
M5  
N3  
M6  
P2  
O
Output enable  
Out  
IDEDIOW_GP32  
IDEIORDY_GP33  
IDEDIOR_GP31  
BUFENB2_GP30  
BUFENB1_GP29  
TA_GP12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IDE DIOW  
Out / High  
Out / Low  
Out / High  
Out / High  
Out / High  
IDE interface IORDY  
IDE interface DIOR  
External Buffer 2 enable  
External Buffer 1 enable  
Transfer acknowledge  
N4  
In (requires  
pull-up for normal  
operation)  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
46  
Freescale Semiconductor  
Table 36. 196 MAPBGA Pin Assignments (continued)  
MAPBGA  
Pin  
Pin State  
Name  
Type  
Description  
Wake-up input  
After Reset  
N5  
WAKEUP_GP21  
I/O  
In (requires  
pull-up for normal  
operation)  
P3  
P4  
EBUIN2_SCLKOUT_GP1  
3
I/O  
I/O  
Audio interfaces EBUIN2 /  
FlashMedia Clock  
In / Low  
EBUIN3_CMDSDIO2_GP  
14  
Audio interfaces EBUIN3 /  
FlashMedia Clock  
In / Low  
P_VDD  
N6  
PAD_VDD  
EBUIN1_GP36  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PAD_VDD  
Audio interfaces EBUIN1  
Audio interfaces EBUOUT1  
Audio interfaces X-tal trim  
QSPI Chip select 3  
In / Low  
P5  
EBUOUT1_GP37  
XTRIM_GP0  
Out / Low  
Out / clock out  
Out / High  
M7  
P6  
QSPICS3_CS1_GP28  
N7  
RCK_QSPIDIN_QSPIDO  
UT_GP26  
Subcode RCK interface / QSPI Data Out / Low  
In / Data out  
P7  
P8  
QSPICLK_SUBR_GP25  
QSPIDOUT_SFSY_GP27  
I/O  
I/O  
QSPI clockpin / subcode interface  
Out / Low  
Out / Low  
QSPI Data Output / subcode  
interface SFSY  
M8  
N8  
QSPICS1_EBUOUT2_GP  
16  
I/O  
I/O  
QSPI Chip select 1 output / audio  
interface EBU output 2  
Out / Low  
Out / Low  
QSPICS0_EBUIN4_GP15  
QSPI Chip select 0 output / audio  
interface EBUIN4  
P_GND  
P9  
PAD_GND  
SCLK1_GP20  
I/O  
I/O  
I/O  
I/O  
PAD_GND  
Audio interfaces serial clock 1  
Audio interfaces word clock 1  
In / Low  
In / Low  
M9  
LRCK1_GP19  
N9  
SDATAO1_TOUT1_GP18  
Audio interfaces serial data output 1 Out / Low  
/ Timer output 1  
P10  
N10  
M10  
P11  
SDATAI1_GP17  
CFLG_GP5  
I/O  
I/O  
I/O  
I/O  
Audio interfaces serial data input 1 In / Low  
CFLG input  
In / Low  
In / Low  
Out / Low  
EF_GP6  
Error flag input  
QSPICS2_MCLK2_GP24  
QSPI Chip select output 2 / audio  
master clock output 2  
N11  
SDATAI3_GP8  
I/O  
Audio interfaces serial data input 3 In / Low  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
47  
Table 36. 196 MAPBGA Pin Assignments (continued)  
MAPBGA  
Pin  
Pin State  
After Reset  
Name  
Type  
Description  
M11  
P12  
P13  
N12  
M13  
M12  
L12  
K12  
N13  
N14  
ADIN0_GPI52  
ADIN1_GPI53  
ADIN2_GPI54  
AD_VDD  
A
A
A
AD input 0  
AD input 1  
AD input 2  
AD_VDD  
In only  
In only  
In only  
AD_GND  
AD_GND  
AD input 3  
AD input 4  
AD input 5  
ADIN3_GPI55  
ADIN4_GPI56  
ADIN5_GPI57  
ADREF  
A
A
In only  
In only  
In only  
In  
A
A
ADC reference input  
ADOUT_SCLK4_GP58  
I/O  
AD output / SCLK4 (for GPI function Out / clock output  
in low power applications  
L13  
M14  
J12  
LRCK3_GP43  
SCLK3_GP35  
I/O  
I/O  
I/O  
Audio interface LRCK3  
Audio interface SCLK3  
In  
In  
SCL_SDATA1BS1_GP41  
I2C clock line / FlashMedia data  
interface  
In / Low  
L14  
J13  
K14  
SDA_SDATA3_GP42  
I/O  
I/O  
I/O  
I2C data line / FlashMedia data  
interface  
Hi-Z  
DDATA0_CTS2B_SDATA  
0SDIO1_GP1  
Debug / UART2 CTS / FlashMedia Out / High  
data interface  
DDATA1_RTS2B_SDATA  
2BS2_GP2  
Debug / UART2 RTS / FlashMedia Out / High  
data interface  
H12  
J14  
H13  
DDATA2_CTS1B_GP3  
DDATA3_RTS1B_GP4  
SCL2_TXD2_GP10  
I/O  
I/O  
I/O  
Debug / UART1 CTS  
Debug / UART1 RTS  
Out / High  
Out / High  
Out / Low  
I2C2 clock line / second UART  
transmit data output  
CORE_VDD  
C_GND  
H14  
CORE_VDD  
CORE_GND  
I/O  
I/O  
I/O  
CORE_VDD  
CORE_GND  
SDA2_RXD2_GP44  
I2C2 data line / second UART2  
receive data input  
Hi-Z  
P_VDD  
G14  
PAD_VDD  
I/O  
I/O  
PAD_VDD  
TXD1_GP45  
UART1 transmit data output  
Out / High  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
48  
Freescale Semiconductor  
Table 36. 196 MAPBGA Pin Assignments (continued)  
MAPBGA  
Pin  
Pin State  
After Reset  
Name  
Type  
Description  
G13  
G12  
F12  
RXD1_GP46  
PST3_INTMON1_GP47  
PST2_INTMON2_GP48  
PAD_GND  
PST1_GP49  
PST0_GP50  
PSTCLK_GP51  
TDO_DSO  
TDI_DSI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
UART1 receive data input  
Debug / interrupt monitor output 1  
Debug / interrupt monitor output 2  
PAD_GND  
Out / Low  
Out / High  
Out / High  
P_GND  
F14  
Debug  
Out / High  
F13  
Debug  
Out / High  
E14  
E13  
D13  
E12  
C13  
D12  
D14  
C14  
B14  
C11  
C11  
B12  
B12  
P_GND  
C10  
A12  
---  
Debug  
Out / clock output  
JTAG / Debug  
BDM  
BDM  
BDM  
BDM  
BDM  
X
I
JTAG / Debug  
TCK  
I
JTAG  
TMS_BKPT  
TRST_DSCLK  
RSTI  
I
JTAG / Debug  
I
JTAG / Debug  
I
Reset  
SCLK2_GP22  
LRCK2_GP23  
LINOUT  
I/O  
I/O  
A
Audio interfaces serial clock 2  
Audio interfaces word clock 2  
Linear regulator output  
Linear regulator output  
Linear regulator input  
Linear regulator input  
Linear regulator ground  
In / Low  
In / Low  
X
LINOUT  
A
X
LININ  
A
X
LININ  
A
X
LIN_GND  
X
SDATAO2_GP34  
MCLK1_GP11  
VBGT  
I/O  
I/O  
Audio interfaces serial data output 2 Out / Low  
Audio master clock output 1  
Out / clock output  
B11  
B10  
C9  
HIZ_B  
I
I
I
I
JTAG  
Test  
Test  
Test  
X
X
X
X
TEST2  
TEST1  
A11  
TEST0  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
49  
Table 36. 196 MAPBGA Pin Assignments (continued)  
MAPBGA  
Pin  
Pin State  
Name  
Type  
Description  
SDRAM write enable  
After Reset  
B9  
A10  
P_VDD  
C8  
SDWE_GP38  
SDCAS_GP39  
PAD_VDD  
SDRAS_GP59  
SDCS0_GP60  
SDLDQM_GPO52  
SDUDQM_GPO53  
BCLKE_GPO63  
BCLK_GP40  
DATA31  
I/O  
I/O  
Out / High  
Out / High  
Out / High  
Out / High  
Out / High  
Out / High  
Out / High  
Out / High  
Out / High  
X
SDRA CAS  
PAD_VDD  
I/O  
I/O  
O
SDRAM RAS  
A9  
SDRAM chip select out 0  
B8  
SDRAM LDQM  
A8  
O
SDRAM UDQM  
A7  
O
SDRAM clock enable output  
A6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDRAM clock output  
Data  
B7  
A5  
DATA30  
Data  
X
P_GND  
C7  
PAD_GND  
DATA29  
PAD_GND  
Data  
X
X
X
X
X
B6  
DATA28  
Data  
A4  
DATA27  
Data  
B5  
DATA26  
Data  
C6  
DATA25  
Data  
P_VDD  
B4  
PAD_VDD  
DATA24  
PAD_VDD  
Data  
X
X
X
X
X
B3  
DATA23  
Data  
C5  
DATA22  
Data  
A2  
DATA21  
Data  
B2  
DATA20  
Data  
P_GND  
C4  
PAD_GND  
DATA19  
PAD_GND  
Data  
X
X
X
C3  
DATA18  
Data  
C2  
DATA17  
Data  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
50  
Freescale Semiconductor  
Table 36. 196 MAPBGA Pin Assignments (continued)  
MAPBGA  
Pin  
Pin State  
After Reset  
Name  
Type  
Description  
A1  
A14  
P1  
BGA1_NC_A1  
BGA1_NC_A14  
BGA1_NC_P1  
BGA1_NC_P14  
NC  
NC  
NC  
NC  
P14  
5.4  
196 MAPBGA Package and Ball Map  
The SCF5250 is available in a 196-pin MAPBGA package. For the 196 MAPBGA package drawings,  
refer to Figure 18 on page 52 and Figure 19 on page 53.  
For the 196 MAPBGA ball map, refer to Figure 20 on page 54.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
51  
Figure 18. 196 MAPBGA Package (1 of 2)  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
52  
Freescale Semiconductor  
Figure 19. 196 MAPBGA Package (2 of 2)  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
53  
Figure 20. 196 MAPBGA Ball Map  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
54  
Freescale Semiconductor  
6 Product Documentation  
This section contains this document’s revision history and the reference documents that are available to  
provide more information about the SCF5250 processor.  
6.1  
Reference Documents  
The following list contains the documents that provide a complete description of the SCF5250 and are  
required to design properly with the part. The documents are available at: http://www.freescale.com.  
ColdFire Family Programmer’s Reference Manual (order number CFPRM)  
Version 2/2M ColdFire Core Processor User’s Manual (order number ColdFire2UM)  
Version 2/2M ColdFire Core Processor User’s Manual Addendum (order number ColdFire2UMAD)  
SCF5250 User’s Manual (order number SCF5250UM)  
6.2  
Revision History  
Table 37 list the revision history for this data sheet.  
Table 37. Revision History  
Description  
Added 144 LQFP package drawings.  
Revision  
1.3  
Added 196 MAPBGA package drawings, pin assignments, and ball map.  
1.2  
Added SCF5250DAG120 and SCF5250EAG120 parts in Table 1.  
Content has been reorganized, however there are no other content removal  
or additions.  
SCF5250 Data Sheet: Technical Data, Rev. 1.3  
Freescale Semiconductor  
55  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
Home Page:  
www.freescale.com  
E-mail:  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other  
product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: SCF5250EC  
Rev. 1.3  
07/2006  

相关型号:

SCF5250VM120

SCF5250 Integrated ColdFire Microprocessor
MOTOROLA

SCF5250VM120

32-BIT, 120MHz, MICROPROCESSOR, PBGA196, 15 X 15 MM, 1 MM PITCH, LEAD FREE, MAPBGA-196
NXP

SCF5250VM120

Integrated ColdFire Microprocessor Data Sheet
FREESCALE

SCF5740

0.270” 4-Character, 5x7 Dot Matrix Serial Input Dot Addressable Intelligent Display
INFINEON

SCF5742

0.270” 4-Character, 5x7 Dot Matrix Serial Input Dot Addressable Intelligent Display
INFINEON

SCF5744

0.270” 4-Character, 5x7 Dot Matrix Serial Input Dot Addressable Intelligent Display
INFINEON

SCF62160

Power Solid State Relay
CELDUC

SCF6C60

Silicon Controlled Rectifiers
SEMIWELL

SCF7500

FAST RECOVERY HIGH VOLTAGE RECTIFIER ASSEMBLY
SEMTECH

SCFB

Connector for CompactFlash
ALPS

SCFB1A0500

Connector for CompactFlash
ALPS

SCFB1A0600

Connector for CompactFlash
ALPS