MB81F643242C-70 [FUJITSU]

4 X 512 K X 32 BIT SYNCHRONOUS DYNAMIC RAM; 4× 512 ; K X 32位同步动态RAM
MB81F643242C-70
型号: MB81F643242C-70
厂家: FUJITSU    FUJITSU
描述:

4 X 512 K X 32 BIT SYNCHRONOUS DYNAMIC RAM
4× 512 ; K X 32位同步动态RAM

文件: 总56页 (文件大小:935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
ADVANCED INFO.  
AE0.1E  
MEMORY  
CMOS  
4 × 512 K × 32 BIT  
SYNCHRONOUS DYNAMIC RAM  
MB81F643242C-60/-70/-10  
CMOS 4-Bank × 524,288-Word × 32 Bit  
Synchronous Dynamic Random Access Memory  
DESCRIPTION  
The Fujitsu MB81F643242C is a CMOS Synchronous Dynamic Random Access Memory (SDRAM) containing  
67,108,864 memory cells accessible in a 32-bit format. The MB81F643242C features a fully synchronous  
operation referenced to a positive edge clock whereby all operations are synchronized at a clock input which  
enables high performance and simple user interface coexistence. The MB81F643242C SDRAM is designed to  
reduce the complexity of using a standard dynamic RAM (DRAM) which requires many control signal timing  
constraints, and may improve data bandwidth of memory as much as 5 times more than a conventional DRAM.  
The MB81F643242C is ideally suited for workstations, personal computers, laser printers, high resolution graphic  
adapters/accelerators and other applications where an extremely large memory and bandwidth are required and  
where a simple interface is needed.  
PRODUCT LINE & FEATURES  
MB81F643242C  
-70  
Reference  
Value@ 67 MHz,  
CL=3  
Parameter  
CL - tRCD - tRP  
-60  
-10  
CL = 2 2 - 2 - 2 clk min.  
CL = 3 3 - 3 - 3 clk min.  
167 MHz max.  
2 - 2 - 2 clk min.  
3 - 3 - 3 clk min.  
143 MHz max.  
10 ns min.  
2 - 2 - 2 clk min.  
3 - 3 - 3 clk min.  
100 MHz max.  
15 ns min.  
2 - 2 - 2 clk min.  
3 - 3 - 3 clk min.  
67 MHz max.  
20 ns min.  
Clock Frequency  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
10 ns min.  
6 ns min.  
Burst Mode Cycle Time  
7 ns min.  
10 ns min.  
15 ns min.  
6 ns max.  
6 ns max.  
7 ns max.  
7 ns max.  
Access Time from Clock  
Operating Current  
5.5 ns max.  
165 mA max.  
5.5 ns max.  
155 mA max.  
7 ns max.  
7 ns max.  
115 mA max.  
100 mA max.  
Power Down Mode Current (ICC2P)  
Self Refresh Current (ICC6)  
2 mA max.  
2 mA max.  
• Single +3.3 V Supply ±0.3 V tolerance  
• LVTTL compatible I/O interface  
• 4 K refresh cycles every 64 ms  
• Four bank operation  
• Programmable burst type, burst length, and  
CAS latency  
• Auto-and Self-refresh (every 15.6 µs)  
• CKE power down mode  
• Burst read/write operation and burst  
read/single write operation capability  
• Output Enable and Input Data Mask  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
PACKAGE  
86 pin Plastic TSOP(II) Package  
(FPT-86P-M01)  
(Normal Bend)  
Package and Ordering Information  
– 86-pin plastic (10.16 × 22.22 mm) TSOP-II without SCITT Function, order as MB81F643242C-××FN  
– 86-pin plastic (10.16 × 22.22 mm) TSOP-II with SCITT Function, order as MB81F643242C-××FN-S  
2
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
PIN ASSIGNMENTS AND DESCRIPTIONS  
86-Pin TSOP(II)  
(TOP VIEW)  
<Normal Bend: FPT-86P-M01>  
VCC  
DQ0  
VCCQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VCCQ  
DQ5  
DQ6  
VSSQ  
DQ7  
N.C.  
VCC  
DQM0  
WE  
CAS  
RAS  
CS  
N.C.  
BA0  
BA1  
VSS  
1
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
DQ15  
VSSQ  
DQ14  
DQ13  
VCCQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VCCQ  
DQ8  
N.C.  
VSS  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
DQM1  
N.C.  
N.C.  
CLK  
CKE  
A9  
A8  
A7  
A10/AP  
A0  
A6  
A5  
A1  
A2  
A4  
A3  
DQM2  
VCC  
DQM3  
VSS  
N.C.  
DQ16  
VSSQ  
DQ17  
DQ18  
VCCQ  
DQ19  
DQ20  
VSSQ  
DQ21  
DQ22  
VCCQ  
DQ23  
VCC  
N.C.  
DQ31  
VCCQ  
DQ30  
DQ29  
VSSQ  
DQ28  
DQ27  
VCCQ  
DQ26  
DQ25  
VSSQ  
DQ24  
VSS  
3
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
Pin Number  
Symbol  
Function  
1, 3, 9, 15, 29, 35, 41, 43, 49, 55, 75, 81  
VCC, VCCQ  
Supply Voltage  
Data I/O  
2, 4, 5, 7, 8, 10, 11, 13, 31, 33, 34, 36, 37,  
39, 40, 42, 45, 47, 48, 50, 51, 53, 54, 56,  
74, 76, 77, 79, 80, 82, 83, 85  
DQ0 to DQ31  
6, 12, 32, 38, 44, 46, 52, 58, 72, 78, 84, 86  
VSS, VSSQ  
N.C.  
Ground  
14, 21, 30, 57, 69, 70, 73  
No Connection  
Write Enable  
17  
18  
WE  
CAS  
Column Address Strobe  
Row Address Strobe  
Chip Select  
19  
RAS  
20  
CS  
22, 23  
24  
BA1, BA0  
AP  
Bank Select (Bank Address)  
Auto Precharge Enable  
• Row: A0 to A10  
• Column: A0 to A7  
24, 25, 26, 27, 60, 61, 62, 63, 64, 65, 66  
A0 to A10  
Address Input  
67  
68  
CKE  
CLK  
Clock Enable  
Clock Input  
16, 28, 59, 71  
DQM0 to DQM3  
Input Mask/Output Enable  
4
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
BLOCK DIAGRAM  
Fig. 1 – MB81F643242C BLOCK DIAGRAM  
CLK  
To each block  
BANK-3  
CLOCK  
BUFFER  
BANK-2  
CKE  
BANK-1  
BANK-0  
RAS  
CS  
CONTROL  
SIGNAL  
CAS  
LATCH  
RAS  
COMMAND  
DECODER  
WE  
CAS  
WE  
DRAM  
CORE  
MODE  
REGISTER  
(2,048 × 256 × 32)  
A0 to A9,  
A10/AP  
ADDRESS  
BUFFER/  
REGISTER  
ROW  
ADDR.  
BA1  
BA0  
COL.  
ADDR.  
DQM0  
to  
DQM3  
COLUMN  
ADDRESS  
I/O  
COUNTER  
I/O DATA  
BUFFER/  
REGISTER  
VCC  
DQ0  
to  
DQ31  
VCCQ  
VSS  
VSSQ  
5
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
FUNCTIONAL TRUTH TABLE Note *1  
COMMAND TRUTH TABLE Note *2, *3, and *4  
CKE  
A9  
to  
A8  
A7  
to  
A0  
BA1,  
A10  
Function  
Notes Symbol  
CS RAS CAS WE  
BA0 (AP)  
n-1  
H
H
H
H
H
H
H
H
H
H
H
n
X
X
X
X
X
X
X
X
X
X
X
Device Deselect  
*5 DESL  
*5 NOP  
BST  
H
L
L
L
L
L
L
L
L
L
L
X
H
H
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
V
V
V
V
V
V
X
L
X
X
X
L
X
X
X
X
X
X
X
V
X
X
V
X
X
X
V
V
V
V
V
X
X
V
No Operation  
Burst Stop  
Read  
*6 READ  
*6 READA  
*6 WRIT  
*6 WRITA  
*7 ACTV  
PRE  
H
H
L
Read with Auto-precharge  
Write  
L
H
L
L
Write with Auto-precharge  
Bank Active  
L
L
H
V
L
H
H
H
L
H
L
Precharge Single Bank  
Precharge All Banks  
Mode Register Set  
L
PALL  
L
L
H
L
*8, *9 MRS  
L
L
Notes: *1. V = Valid, L = Logic Low, H = Logic High, X = either L or H.  
*2. All commands assumes no CSUS command on previous rising edge of clock.  
*3. All commands are assumed to be valid state transitions.  
*4. All inputs are latched on the rising edge of clock.  
*5. NOP and DESL commands have the same effect on the part. Unless specifically noted, NOP will  
represent both NOP and DESL command in later descriptions.  
*6. READ, READA, WRIT and WRITA commands should only be issued after the corresponding bank has  
been activated (ACTV command). Refer to “STATE DIAGRAM” in section “FUNCTIONAL  
DESCRIPTION“.  
*7. ACTV command should only be issued after corresponding bank has been precharged (PRE or PALL  
command).  
*8. Required after power up.  
*9. MRS command should only be issued after all banks have been precharged (PRE or PALL command).  
Refer to “STATE DIAGRAM” in section “FUNCTIONAL DESCRIPTION“.  
6
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
DQM TRUTH TABLE  
Function  
CKE  
DQMi *1, *2  
Symbol  
n-1  
H
n
X
X
Data Write/Output Enable  
Data Mask/Output Disable  
ENBi *1  
L
MASKi *1  
H
H
Notes: *1. i = 0, 1, 2, 3  
*2. DQM0 for DQ0 to DQ7, DQM1 for DQ8 to DQ15, DQM2 for DQ16 to DQ23, DQM3 for DQ24 to DQ31,  
CKE TRUTH TABLE  
CKE  
A9  
to  
A0  
Current  
State  
BA1, A10  
BA0 (AP)  
Function  
Notes Symbol  
CS RAS CAS WE  
n-1  
n
Bank Active Clock Suspend Mode Entry  
*1 CSUS  
*1  
H
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Any  
Clock Suspend Continue  
(Except Idle)  
L
Clock  
Clock Suspend Mode Exit  
Suspend  
L
H
X
X
X
X
X
X
X
Idle  
Idle  
Auto-refresh Command  
Self-refresh Entry  
*2 REF  
H
H
L
H
L
L
L
L
L
L
L
H
H
H
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
*2, *3 SELF  
H
H
L
L
H
X
H
X
H
X
H
X
H
X
H
X
Self Refresh Self-refresh Exit  
*4 SELFX  
L
H
L
H
H
L
Idle  
Power Down Entry  
*3  
PD  
L
H
L
H
H
Power Down Power Down Exit  
L
H
Notes: *1. The CSUS command requires that at least one bank is active. Refer to “STATE DIAGRAM” in section  
FUNCTIONAL DESCRIPTION“.  
NOP or DSEL commands should only be issued after CSUS and PRE(or PALL) commands asserted  
at the same time.  
*2. REF and SELF commands should only be issued after all banks have been precharged (PRE or PALL  
command). Refer to “STATE DIAGRAM” in section “FUNCTIONAL DESCRIPTION“.  
*3. SELF and PD commands should only be issued after the last read data have been appeared on DQ.  
*4. CKE should be held high within one tRC period after tCKSP.  
7
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
OPERATION COMMAND TABLE (Applicable to single bank)  
Current  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
State  
Idle  
H
L
L
L
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP  
NOP  
NOP  
H
L
BA, CA, AP READ/READA Illegal  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
Bank Active after tRCD  
NOP  
L
PRE/PALL  
REF/SELF  
L
H
Auto-refresh or Self-refresh  
*3, *6  
*3, *7  
Mode Register Set  
(Idle after tRSC)  
L
L
L
L
MODE  
MRS  
Bank Active  
H
L
L
L
L
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP  
NOP  
NOP  
H
L
BA, CA, AP READ/READA Begin Read; Determine AP  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Begin Write; Determine AP  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
*2  
L
Precharge; Determine Precharge Type  
L
H
L
Illegal  
L
L
MODE  
Illegal  
(Continued)  
8
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
(Continued)  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Read  
NOP (Continue Burst to End Bank  
Active)  
H
X
X
X
X
DESL  
NOP (Continue Burst to End Bank  
Active)  
L
L
L
H
H
H
H
H
L
H
L
X
X
NOP  
BST  
Burst Stop Bank Active  
Terminate Burst, New Read;  
Determine AP  
H
BA, CA, AP READ/READA  
Terminate Burst, Start Write;  
Determine AP  
L
L
L
H
L
L
L
H
H
L
H
L
BA, CA, AP  
BA, RA  
WRIT/WRITA  
ACTV  
*4  
Illegal  
*2  
Terminate Burst, Precharge Idle;  
Determine Precharge Type  
BA, AP  
PRE/PALL  
L
L
L
L
L
L
H
L
X
REF/SELF  
MRS  
Illegal  
Illegal  
MODE  
Write  
NOP (Continue Burst to End →  
Bank Active)  
H
X
X
X
X
DESL  
NOP (Continue Burst to End →  
Bank Active)  
L
L
L
H
H
H
H
H
L
H
L
X
X
NOP  
BST  
Burst Stop Bank Active  
Terminate Burst, Start Read;  
Determine AP  
*4  
*2  
H
BA, CA, AP READ/READA  
Terminate Burst, New Write;  
Determine AP  
L
L
L
H
L
L
L
H
H
L
H
L
BA, CA, AP  
BA, RA  
WRIT/WRITA  
ACTV  
Illegal  
Terminate Burst, Precharge;  
Determine Precharge Type  
BA, AP  
PRE/PALL  
L
L
L
L
L
L
H
L
X
REF/SELF  
MRS  
Illegal  
Illegal  
MODE  
(Continued)  
9
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
(Continued)  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Read with  
Auto-  
precharge  
NOP (Continue Burst to End →  
Precharge Idle)  
H
L
X
H
X
H
X
H
X
DESL  
NOP (Continue Burst to End →  
Precharge Idle)  
X
X
NOP  
BST  
L
L
L
L
L
L
L
H
H
H
L
H
L
L
H
L
Illegal  
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
Illegal  
Illegal  
Illegal  
L
L
H
L
L
L
MODE  
Write with  
Auto-  
precharge  
NOP (Continue Burst to End →  
Precharge Idle)  
H
L
X
H
X
H
X
H
X
DESL  
NOP (Continue Burst to End →  
Precharge Idle)  
X
X
NOP  
BST  
L
L
L
L
L
L
L
H
H
H
L
H
L
L
H
L
Illegal  
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
Illegal  
Illegal  
Illegal  
L
L
H
L
L
L
MODE  
(Continued)  
10  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
(Continued)  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Pre-  
charging  
H
L
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP (Idle after tRP)  
NOP (Idle after tRP)  
NOP (Idle after tRP)  
H
L
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
WRIT/WRITA Illegal  
H
H
ACTV  
Illegal  
NOP (PALL may affect other  
bank)  
L
L
H
L
BA, AP  
PRE/PALL  
*5  
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
H
L
X
REF/SELF  
MRS  
Illegal  
MODE  
Illegal  
Bank  
Activating  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
DESL  
NOP  
NOP (Bank Active after tRCD)  
NOP (Bank Active after tRCD)  
NOP (Bank Active after tRCD)  
BST  
H
L
BA, CA, AP READ/READA Illegal  
*2  
*2  
*2  
*2  
L
BA, CA, AP  
BA, RA  
BA, AP  
X
WRIT/WRITA Illegal  
H
H
L
H
L
ACTV  
PRE/PALL  
REF/SELF  
MRS  
Illegal  
Illegal  
Illegal  
Illegal  
L
L
H
L
L
L
MODE  
(Continued)  
11  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
(Continued)  
Current  
State  
CS RAS CAS WE  
Addr  
Command  
Function  
Notes  
Refreshing  
H
L
X
H
X
H
X
X
X
X
DESL  
NOP (Idle after tRC)  
NOP (Idle after tRC)  
NOP/BST  
READ/READA/  
WRIT/WRITA  
L
L
L
H
L
L
L
H
L
X
X
X
X
X
X
Illegal  
Illegal  
Illegal  
ACTV/  
PRE/PALL  
REF/SELF/  
MRS  
Mode  
Register  
Setting  
H
L
L
X
H
H
X
H
H
X
H
L
X
X
X
DESL  
NOP  
BST  
NOP (Idle after tRSC)  
NOP (Idle after tRSC)  
Illegal  
READ/READA/  
WRIT/WRITA  
L
L
H
L
L
X
X
X
X
Illegal  
Illegal  
ACTV/PRE/  
PALL/REF/  
SELF/MRS  
X
ABBREVIATIONS:  
RA = Row Address  
BA = Bank Address  
AP = Auto Precharge  
CA = Column Address  
Notes: *1. All entries in OPERATION COMMAND TABLE assume the CKE was High during the proceeding clock  
cycle and the current clock cycle.  
Illegal means don’t used command. If used, power up sequence be asserted after power shut down.  
*2. Illegal to bank in specified state; entry may be legal in the bank specified by BA, depending on the state  
of that bank.  
*3. Illegal if any bank is not idle.  
*4. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
Refer to “TIMING DIAGRAM -11 & -12” in section TIMING DIAGRAMS“.  
*5. NOP to bank precharging or in idle state. May precharge bank specified by BA (and AP).  
*6. SELF command should only be issued after the last read data have been appeared on DQ.  
*7. MRS command should only be issued on condition that all DQ are in Hi-Z.  
12  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
COMMAND TRUTH TABLE FOR CKE Note *1  
Current  
State  
CKE CKE  
CS RAS CAS WE  
Addr  
X
Function  
Notes  
n-1  
n
Self-  
refresh  
H
X
X
H
X
X
X
X
X
X
Invalid  
Exit Self-refresh  
L
L
H
H
X
(Self-refresh Recovery Idle after tRC)  
Exit Self-refresh  
(Self-refresh Recovery Idle after tRC)  
L
H
H
H
X
L
L
H
H
H
L
L
L
H
H
L
H
L
L
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
Illegal  
Illegal  
L
L
X
X
X
X
H
H
L
Illegal  
L
X
X
H
L
X
X
X
H
H
H
L
NOP (Maintain Self-refresh)  
Self-  
refresh  
Recovery  
L
X
H
H
H
H
H
H
L
Invalid  
H
H
H
H
H
H
H
Idle after tRC  
Idle after tRC  
Illegal  
L
L
X
X
X
X
Illegal  
L
X
X
X
Illegal  
X
X
X
X
Illegal  
Illegal  
*2  
(Continued)  
13  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
(Continued)  
Current  
State  
CKE CKE  
CS RAS CAS WE  
Addr  
Function  
Notes  
n-1  
H
L
n
X
H
H
L
Power  
Down  
X
H
L
X
X
H
X
L
X
X
H
X
X
L
X
X
H
X
X
X
X
X
X
X
X
X
Invalid  
Exit Power Down Mode Idle  
L
L
X
L
NOP (Maintain Power Down Mode)  
L
H
H
Illegal  
Illegal  
L
L
H
All  
Banks  
Idle  
Refer to the Operation Command  
Table.  
H
H
H
H
H
L
X
H
X
X
X
X
MODE  
MODE  
Refer to the Operation Command  
Table.  
Refer to the Operation Command  
Table.  
H
H
H
H
H
H
L
L
L
L
L
L
H
L
L
X
H
L
MODE  
X
Auto-refresh  
Refer to the Operation Command  
Table.  
MODE  
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
X
H
L
L
L
L
L
L
X
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
X
X
X
Power Down  
Power Down  
Illegal  
X
X
H
L
Illegal  
H
L
Illegal  
L
Self-refresh  
Illegal  
*3  
L
L
X
X
X
Invalid  
(Continued)  
14  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
(Continued)  
Current  
State  
CKE CKE  
CS RAS CAS WE  
Addr  
Function  
Notes  
n-1  
n
Bank  
Active,  
Bank  
Activating,  
Refer to the Operation Command  
Table.  
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
L
L
Begin Clock Suspend next cycle  
Invalid  
Read/Write  
X
Clock  
Suspend  
H
L
L
L
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Invalid  
Exit Clock Suspend next cycle  
Maintain Clock Suspend  
Invalid  
Any State  
Other Than  
Listed  
X
Refer to the Operation Command  
Table.  
H
H
H
L
X
X
X
X
X
X
X
X
X
X
Above  
Illegal  
Notes: *1. All entries in “COMMAND TRUTH TABLE FOR CKE” are specified at CKE(n) state and CKE input  
from CKE(n-1) to CKE(n) state must satisfy corresponding set up and hold time for CKE.  
*2. CKE should be held High for tRC period.  
*3. SELF command should only be issued after the last data have been appeared on DQ.  
15  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
FUNCTIONAL DESCRIPTION  
SDRAM BASIC FUNCTION  
Three major differences between this SDRAM and conventional DRAMs are: synchronized operation, burst mode,  
and mode register.  
The synchronized operation is the fundamental difference. An SDRAM uses a clock input for the synchronization,  
where the DRAM is basically asynchronous memory although it has been using two clocks, RAS and CAS. Each  
operation of DRAM is determined by their timing phase differences while each operation of SDRAM is determined  
by commands and all operations are referenced to a positive clock edge. Fig. 2 shows the basic timing diagram  
differences between SDRAMs and DRAMs.  
The burst mode is a very high speed access mode utilizing an internal column address generator. Once a column  
addresses for the first access isset, following addresses are automaticallygenerated by the internal column address  
counter.  
The mode register is to justify the SDRAM operation and function into desired system conditions. MODE  
REGISTER TABLE shows how SDRAM can be configured for system requirement by mode register programming.  
CLOCK INPUT (CLK) and CLOCK ENABLE (CKE)  
All input and output signals of SDRAM use register type buffers. A CLK is used as a trigger for the register and  
internal burst counter increment. All inputs are latched by a positive edge of CLK. All outputs are validated by the  
CLK. CKE is a high active clock enable signal. When CKE = Low is latched at a clock input during active cycle, the  
next clock will be internally masked. During idle state (all banks have been precharged), the Power Down mode  
(standby) is entered with CKE = Low and this will make extremely low standby current.  
CHIP SELECT (CS)  
CS enables all commands inputs, RAS, CAS, and WE, and address input. When CS is High, command signals are  
negated but internal operation such as burst cycle will not be suspended. If such a control isn’t needed, CS can be  
tied to ground level.  
COMMAND INPUT (RAS, CAS and WE)  
Unlike a conventional DRAM, RAS, CAS, and WE do not directly imply SDRAM operation, such as Row address  
strobe by RAS. Instead, each combination of RAS, CAS, and WE input in conjunction with CS input at a rising edge  
of the CLK determines SDRAM operation. Refer to “FUNCTIONAL TRUTH TABLE”.  
ADDRESS INPUT (A0 to A10)  
Address input selects an arbitrary location of a total of 524,288 words of each memory cell matrix. A total of nineteen  
address input signals are required to decode such a matrix. SDRAM adopts an address multiplexer in order to  
reduce the pin count of the address line. At a Bank Active command (ACTV), eleven Row addresses are initially  
latched and the remainder of eight Column addresses are then latched by a Column address strobe command of  
either a Read command (READ or READA) or Write command (WRIT or WRITA).  
BANK SELECT (BA0, BA1)  
This SDRAM has four banks and each bank is organized as 512 K words by 32-bit.  
Bank selection by BA0, BA1 occurs at Bank Active command (ACTV) followed by read (READ or READA), write  
(WRIT or WRITA), and precharge command (PRE).  
16  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
DATA INPUT AND OUTPUT (DQ0 to DQ31)  
Input data is latched and written into the memory at the clock following the write command input. Data output is  
obtained by the following conditions followed by a read command input:  
tRAC ; from the bank active command when tRCD (min) is satisfied. (This parameter is reference only.)  
tCAC ; from the read command when tRCD is greater than tRCD (min). (This parameter is reference only.)  
tAC ; from the clock edge after tRAC and tCAC.  
The polarity of the output data is identical to that of the input. Data is valid between access time (determined by  
the three conditions above) and the next positive clock edge (tOH).  
DATA I/O MASK (DQM)  
DQM is an active high enable input and has an output disable and input mask function. During burst cycle and  
when DQM0 to DQM3 = High is latched by a clock, input is masked at the same clock and output will be masked at  
the second clock later while internal burst counter will increment by one or will go to the next stage depending on  
burst type. DQM0, DQM1, DQM2, DQM3, controls DQ0 to DQ7, DQ8 to DQ15, DQ16 to DQ23, DQ24 to DQ31, respectively.  
BURST MODE OPERATION AND BURST TYPE  
The burst mode provides faster memory access. The burst mode is implemented by keeping the same Row address  
and by automatic strobing column address. Access time and cycle time of Burst mode is specified as tAC and tCK,  
respectively. The internal column address counter operation is determined by a mode register which defines burst  
type and burst count length of 1, 2, 4 or 8 bits of boundary. In order to terminate or to move from the current burst  
mode to the next stage while the remaining burst count is more than 1, the following combinations will be required:  
Current Stage  
Next Stage  
Method (Assert the following command)  
Burst Read  
Burst Read  
Read Command  
1st Step  
2nd Step  
Mask Command (Normally 3 clock cycles)  
Write Command after lOWD  
Burst Read  
Burst Write  
Burst Write  
Burst Write  
Burst Read  
Burst Write  
Burst Write  
Burst Read  
Precharge  
Precharge  
Write Command  
Read Command  
Precharge Command  
Precharge Command  
The burst type can be selected either sequential or interleave mode if burst length is 2, 4 or 8. The sequential mode  
is an incremental decoding scheme within a boundary address to be determined by count length, it assigns +1 to  
the previous (or initial) address until reaching the end of boundary address and then wraps round to least significant  
address (= 0). The interleave mode is a scrambled decoding scheme for A0 and A2. If the first access of column  
address is even (0), the next address will be odd (1), or vice-versa.When the full burst operation is executed at  
single write mode, Auto-precharge command is valid only at write operation.  
The burst type can be selected either sequential or interleave mode. But only the sequential mode is usable to the  
full column burst. The sequential mode is an incremental decoding scheme within a boundary address to be  
determined by burst length, it assigns +1 to the previous (or initial) address until reaching the end of boundary  
address and then wraps round to least significant address (= 0).  
17  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
Starting Column  
Burst  
Address  
Sequential Mode  
Interleave  
Length  
A2 A1 A0  
X X 0  
X X 1  
X 0 0  
X 0 1  
X 1 0  
X 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 – 1  
0 – 1  
2
1 – 0  
1 – 0  
0 – 1 – 2 – 3  
0 – 1 – 2 – 3  
1 – 2 – 3 – 0  
1 – 0 – 3 – 2  
4
2 – 3 – 0 – 1  
2 – 3 – 0 – 1  
3 – 0 – 1 – 2  
3 – 2 – 1 – 0  
0 – 1 – 2 – 3 – 4 – 5 – 6 – 7  
1 – 2 – 3 – 4 – 5 – 6 – 7 – 0  
2 – 3 – 4 – 5 – 6 – 7 – 0 – 1  
3 – 4 – 5 – 6 – 7 – 0 – 1 – 2  
4 – 5 – 6 – 7 – 0 – 1 – 2 – 3  
5 – 6 – 7 – 0 – 1 – 2 – 3 – 4  
6 – 7 – 0 – 1 – 2 – 3 – 4 – 5  
7 – 0 – 1 – 2 – 3 – 4 – 5 – 6  
0 – 1 – 2 – 3 – 4 – 5 – 6 – 7  
1 – 0 – 3 – 2 – 5 – 4 – 7 – 6  
2 – 3 – 0 – 1 – 6 – 7 – 4 – 5  
3 – 2 – 1 – 0 – 7 – 6 – 5 – 4  
4 – 5 – 6 – 7 – 0 – 1 – 2 – 3  
5 – 4 – 7 – 6 – 1 – 0 – 3 – 2  
6 – 7 – 4 – 5 – 2 – 3 – 0 – 1  
7 – 6 – 5 – 4 – 3 – 2 – 1 – 0  
8
FULL COLUMN BURST AND BURST STOP COMMAND (BST)  
The full column burst is an option of burst length and available only at sequential mode of burst type. This full column  
burst mode is repeatedly access to the same column. If burst mode reaches end of column address, then it wraps  
round to first column address (= 0) and continues to count until interrupted by the news read (READ) /write (WRIT),  
precharge (PRE), or burst stop (BST) command. The selection of Auto-precharge option is illegal during the full  
column burst operation except write command at BURST READ & SINGLE WRITE mode.  
The BST command is applicable to terminate the burst operation. If the BST command is asserted during the burst  
mode, its operation is terminated immediately and the internal state moves to Bank Active.  
When read mode is interrupted by BST command, the output will be in High-Z.  
For the detail rule, please refer to “TIMING DIAGRAM - 8” in section “TIMING DIAGRAMS“.  
When write mode is interrupted by BST command, the data to be applied at the same time with BST command will  
be ignored.  
BURST READ & SINGLE WRITE  
The burst read and single write mode provides single word write operation regardless of its burst length. In this  
mode, burst read operation does not be affected by this mode.  
18  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
PRECHARGE AND PRECHARGE OPTION (PRE, PALL)  
SDRAM memory core is the same as conventional DRAMs’, requiring precharge and refresh operations. Precharge  
rewrites the bit line and to reset the internal Row address line and is executed by the Precharge command (PRE).  
With the Precharge command, SDRAM will automatically be in standby state after precharge time (tRP).  
The precharged bank is selected by combination of AP and BA0, BA1 when Precharge command is asserted. If AP  
= High, all banks are precharged regardless of BA0, BA1 (PALL). If AP = Low, a bank to be selected by BA0, BA1 is  
precharged (PRE).  
The auto-precharge enters precharge mode at the end of burst mode of read or write without Precharge command  
assertion.  
This auto precharge is entered by AP = High when a read or write command is asserted. Refer to “FUNCTIONAL  
TRUTH TABLE”.  
AUTO-REFRESH (REF)  
Auto-refresh uses the internal refresh address counter. The SDRAM Auto-refresh command (REF) generates  
Precharge command internally. All banks of SDRAM should be precharged prior to the Auto-refresh command.  
The Auto-refresh command should also be asserted every 16 µs or a total 4096 refresh commands within a 64 ms  
period.  
SELF-REFRESH ENTRY (SELF)  
Self-refresh function provides automatic refresh by an internal timer as well as Auto-refresh and will continue the  
refresh function until cancelled by SELFX.  
The Self-refresh is entered by applying an Auto-refresh command in conjunction with CKE = Low (SELF). Once  
SDRAM enters the self-refresh mode, all inputs except for CKE will be “don’t care” (either logic high or low level  
state) and outputs will be in a High-Z state. During a self-refresh mode, CKE = Low should be maintained. SELF  
command should only be issued after last read data has been appeared on DQ  
Notes: When the burst refresh method is used, a total of 4096 auto-refresh commands within 4 ms must be  
asserted prior to the self-refresh mode entry.  
SELF-REFRESH EXIT (SELFX)  
To exit self-refresh mode, apply minimum tCKSP after CKE brought high, and then the No Operation command (NOP)  
or the Deselect command (DESL) should be asserted within one tRC period. CKE should be held High within one  
tRC period after tCKSP. Refer to “TIMING DIAGRAM -16” in section “TIMING DIAGRAMS” for the detail.  
It is recommended to assert an Auto-refresh command just after the tRC period to avoid the violation of refresh period.  
Notes: When the burst refresh method is used, a total of 4096 auto-refresh commands within 4 ms must be  
asserted after the self-refresh exit.  
MODE REGISTER SET (MRS)  
The mode register of SDRAM provides a variety of different operations. The register consists of four operation  
fields; Burst Length, Burst Type, CAS latency, and Operation Code. Refer to “MODE REGISTER TABLE”.  
The mode register can be programmed by the Mode Register Set command (MRS). Each field is set by the address  
line. Once a mode register is programmed, the contents of the register will be held until re-programmed by another  
MRS command (or part loses power). MRS command should only be issued on condition that all DQ is in Hi-Z.  
The condition of the mode register is undefined after the power-up stage. It is required to set each field after  
initialization of SDRAM. Refer to “POWER-UP INITIALIZATION” below.  
19  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
POWER-UP INITIALIZATION  
The SDRAM internal condition after power-up will be undefined. It is required to follow the following Power On  
Sequence to execute read or write operation.  
1. Apply power and start clock. Attempt to maintain either NOP or DESL command at the input.  
2. Maintain stable power, stable clock, and NOP condition for a minimum of 100 µs.  
3. Precharge all banks by Precharge (PRE) or Precharge All command (PALL).  
4. Assert minimum of 2 Auto-refresh command (REF).  
5. Program the mode register by Mode Register Set command (MRS).  
In addition, it is recommended DQM and CKE to track VCC to insure that output is High-Z state. The Mode Register  
Set command (MRS) can be set before 2 Auto-refresh command (REF).  
20  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
Fig. 2 – BASIC TIMING FOR CONVENTIONAL DRAM VS SYNCHRONOUS DRAM  
<SDRAM>  
Active  
Read/Write  
Precharge  
CLK  
CKE  
H
H
H
tSI  
tHI  
CS  
RAS  
CAS  
WE  
H : Read  
L : Write  
Address  
BA  
CA  
BA  
AP (A10)  
BA  
RA  
CASLatency=2  
DQ0  
to  
DQ31  
Burst Length = 4  
<Conventional DRAM>  
Row Address Select  
Column Address Select  
Precharge  
RAS  
CAS  
DQ0  
to  
DQ31  
21  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
Fig. 3 – STATE DIAGRAM (Simplified for Single BANK Operation State Diagram)  
MRS  
SELF  
MODE  
REGISTER  
SET  
SELF  
REFRESH  
SELFX  
IDLE  
REF  
CKE\(PD)  
CKE  
AUTO  
REFRESH  
POWER  
DOWN  
CKE\(CSUS)  
CKE  
BANK  
ACTIVE  
SUSPEND  
BANK  
ACTIVE  
BST  
BST  
READ  
WRIT  
READ  
CKE\(CSUS)  
WRIT  
WRITA  
READA  
CKE\(CSUS)  
CKE  
WRITE  
SUSPEND  
READ  
SUSPEND  
READ  
WRIT  
WRITE  
READ  
CKE  
WRITA  
READA  
READA  
WRITA  
CKE\(CSUS)  
CKE  
CKE\(CSUS)  
CKE  
WRITE WITH  
AUTO  
PRECHARGE  
READ WITH  
AUTO  
PRECHARGE  
WRITE  
SUSPEND  
READ  
SUSPEND  
PRE or  
PALL  
PRE or  
PALL  
PRE or PALL  
POWER  
ON  
PRECHARGE  
DEFINITION OF ALLOWS  
POWER  
APPLIED  
Manual  
Input  
Automatic  
Sequence  
Note: CKE\ means CKE goes Low-level from High-level.  
22  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
BANK OPERATION COMMAND TABLE  
MINIMUM CLOCK LATENCY OR DELAY TIME FOR 1 BANK OPERATION  
Second  
command  
(same  
*4  
*4  
bank)  
First  
command  
MRS  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
ACTV  
READ  
tRCD  
tRCD  
tRCD  
tRCD  
tRAS  
tRAS  
1
*5  
*5  
*4  
*4  
1
1
1
1
1
1
1
*1,*2  
*2,*7  
BL  
+
BL  
+
BL *4  
+
BL *4  
+
BL *2  
+
BL  
+
READA  
WRIT  
tRP  
tRP  
tRP  
tRP  
tRP  
tRP  
*4  
*4  
tWR  
tWR  
1
1
tDPL  
tDPL  
1
*2  
*4  
*4  
*2  
*2  
BL-1  
+
tDAL  
BL-1  
+
tDAL  
BL-1  
+
tDAL  
BL-1  
+
tDAL  
BL-1  
+
tDAL  
BL-1  
+
tDAL  
WRITA  
*2,*3  
*4  
*2  
*2,*6  
PRE  
PALL  
REF  
tRP  
tRP  
tRC  
tRC  
tRP  
tRP  
tRC  
tRC  
1
1
1
tRP  
tRP  
tRP  
tRC  
tRC  
1
*3  
*6  
1
tRP  
tRC  
tRC  
1
tRC  
tRC  
tRC  
SELFX  
tRC  
tRC  
tRC  
Notes: *1. If tRP(min.)<CL×tCK, minimum latency is a sum of (BL+CL)×tCK.  
*2. Assume all banks are in Idle state.  
*3. Assume output is in High-Z state.  
*4. Assume tRAS(min.) is satisfied.  
*5. Assume no I/O conflict.  
*6. Assume after the last data have been appeared on DQ.  
*7. If tRP(min.)<(CL-1)×tCK, minimum latency is a sum of (BL+CL-1)×tCK.  
Illegal Command  
23  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
MULTI BANK OPERATION COMMAND TABLE  
MINIMUM CLOCK LATENCY OR DELAY TIME FOR MULTI BANK OPERATION  
Second  
command  
(other  
*5  
*5,*6  
*5  
*5,*6  
bank)  
First  
command  
MRS  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
tRSC  
*2  
*7  
*7  
*7  
*7  
*6,*7  
*7  
ACTV  
READ  
tRRD  
1
1
1
1
1
1
1
1
1
1
1
1
tRAS  
1
*2,*4  
*10  
*10  
*6  
*6  
*6  
1
1
1
1
1
1
1
*1,*2  
*2,*4  
*6  
*6  
*6,*10  
*6,*10  
*6  
*6  
*2  
*2,*9  
BL+  
tRP  
1
1
1
BL+  
tRP  
BL+  
tRP  
BL+  
tRP  
READA  
WRIT  
*2,*4  
*6  
1
1
1
tDPL  
1
*2  
*2,*4  
*6  
*7  
*6  
*7  
*6  
*6  
*6  
*6  
*2  
*2  
BL-1  
+
BL-1  
+
BL-1  
+
BL-1  
+
WRITA  
1
1
1
1
1
1
1
1
tDAL  
tDAL  
tDAL  
tDAL  
*2,*3  
*2,*4  
*7  
*7  
*6,*7  
*7  
*2  
*2,*8  
PRE  
PALL  
REF  
tRP  
tRP  
tRC  
tRC  
1
1
1
1
1
tRP  
tRP  
tRC  
tRC  
tRP  
tRP  
tRC  
tRC  
1
*3  
*8  
tRP  
tRC  
tRC  
1
1
1
tRC  
tRC  
tRC  
SELFX  
tRC  
tRC  
tRC  
Notes: *1. If tRP(min.)<CL×tCK, minimum latency is a sum of (BL+CL)×tCK.  
*2. Assume bank of the object is in Idle sate.  
*3. Assume output is in High-Z sate.  
*4. tRRD(min.) of other bank (second command will be asserted) is satisfied.  
*5. Assume other bank is in active, read or write state.  
*6. Assume tRAS(min.) is satisfied.  
*7. Assume other banks are not in READA/WRITA state.  
*8. Assume after the last data have been appeared on DQ.  
*9. If tRP(min.)<(CL-1)×tCK, minimum latency is a sum of (BL+CL-1)×tCK.  
*10. Assume no I/O conflict.  
Illegal Command  
24  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
MODE REGISTER TABLE  
MODE REGISTER SET  
BA1 BA0  
A10  
0
A9  
A8  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
ADDRESS  
*3  
*3  
Op-  
code  
MODE  
REGISTER  
0
0
0
CL  
BT  
BL  
A5  
Burst Length  
A6  
A4  
CAS Latency  
A2  
A1  
A0  
*2  
BT = 0  
BT = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
Reserved  
2
2
4
3
4
Reserved  
Reserved  
Reserved  
Reserved  
8
8
Reserved  
Reserved  
Reserved  
Full Column  
Reserved  
Reserved  
Reserved  
Reserved  
A9  
Op-code  
A3  
Burst Type  
0
1
Burst Read & Burst Write  
Burst Read & Single Write  
0
1
Sequential (Wrap round, Binary-up)  
Interleave (Wrap round, Binary-up)  
*1  
Notes: *1. When A9 = 1, burst length at Write is always one regardless of BL value.  
*2. BL = 1 and Full Column are not applicable to the interleave mode.  
*3. A7 = 1 and A8 = 1 are reserved for vender test.  
25  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
ABSOLUTE MAXIMUM RATINGS (See WARNING)  
Parameter  
Voltage of VCC Supply Relative to VSS  
Voltage at Any Pin Relative to VSS  
Short Circuit Output Current  
Power Dissipation  
Symbol  
VCC, VCCQ  
VIN, VOUT  
IOUT  
Value  
–0.5 to +4.6  
–0.5 to +4.6  
±50  
Unit  
V
V
mA  
W
PD  
1.3  
Storage Temperature  
TSTG  
–55 to +125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
(Referenced to VSS)  
Parameter  
Notes  
Symbol  
VCC, VCCQ  
VSS, VSSQ  
VIH  
Min.  
3.0  
0
Typ.  
3.3  
0
Max.  
3.6  
Unit  
V
Supply Voltage  
0
V
Input High Voltage  
Input Low Voltage  
Ambient Temperature  
*1  
*2  
2.0  
–0.5  
0
VCC + 0.5  
0.8  
V
VIL  
V
TA  
70  
°C  
Notes:  
VIH  
Pulse width 5 ns  
4.6V  
VIL(max.)  
VIL  
50% of pulse amplitude  
VIH  
VIH(min.)  
50% of pulse amplitude  
-1.5V  
Pulse width 5 ns  
VIL  
*2. Undershoot limit: VIL (min.)  
*1. Overshoot limit: VIH (max.)  
= VSS -1.5V for pulse width <= 5 ns acceptable,  
pulse width measured at 50% of pulse amplitude.  
= 4.6V for pulse width <= 5 ns acceptable,  
pulse width measured at 50% of pulse amplitude.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All  
the device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
CAPACITANCE  
(TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CIN1  
Min.  
2.5  
Typ.  
Max.  
Unit  
pF  
Input Capacitance, Except for CLK  
Input Capacitance for CLK  
I/O Capacitance  
5.0  
4.0  
6.5  
CIN2  
2.5  
pF  
CI/O  
4.0  
pF  
26  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
DC CHARACTERISTICS  
(At recommended operating conditions unless otherwise noted.) Note *1, *2, and 3*  
Value  
Parameter  
Output High Voltage  
Symbol  
Condition  
Unit  
Min.  
2.4  
Max.  
VOH(DC) IOH = –2 mA  
VOL(DC) IOL = 2 mA  
0 V VIN VCC;  
V
V
Output Low Voltage  
0.4  
Input Leakage Current (Any Input)  
ILI  
All other pins not under  
test = 0 V  
–5  
–5  
5
µA  
µA  
0 V VIN VCC;  
Data out disabled  
Output Leakage Current  
ILO  
5
MB81F643242C-60  
165  
Burst: Length = 1  
tRC = min, tCK = min  
One bank active  
Output pin open  
Addresses changed up to  
1-time during tRC (min)  
0 V VIN VIL max  
VIH min VIN VCC  
MB81F643242C-70  
MB81F643242C-10  
155  
115  
100  
Operating Current  
(Average Power  
Supply Current)  
ICC1  
mA  
Reference Value *4  
@67MHz (CL=3)  
CKE = VIL  
All banks idle  
tCK = min  
ICC2P  
2
1
mA  
mA  
Power down mode  
0 V VIN VIL max  
VIH min VIN VCC  
CKE = VIL  
All banks idle  
CLK = VIH or VIL  
Power down mode  
0 V VIN VIL max  
VIH min VIN VCC  
ICC2PS  
Precharge Standby Current  
(Power Supply Current)  
CKE = VIH  
All banks idle, tCK = 15 ns  
NOP commands only,  
Input signals (except to  
CMD) are changed 1 time  
during 30 ns  
ICC2N  
12  
mA  
0 V VIN VIL max  
VIH min VIN VCC  
CKE = VIH  
All banks idle  
CLK = VIH or VIL  
Input signal are stable  
0 V VIN VIL max  
VIH min VIN VCC  
ICC2NS  
2
mA  
(Continued)  
27  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
(Continued)  
Value  
Parameter  
Symbol  
Condition  
CKE = VIL  
Unit  
Min.  
Max.  
Any bank active  
tCK = min  
0 V VIN VIL max  
VIH min VIN VCC  
ICC3P  
2
mA  
CKE = VIL  
Any bank active  
CLK = VIH or VIL  
0 V VIN VIL max  
VIH min VIN VCC  
ICC3PS  
1
mA  
mA  
CKE = VIH  
Any bank active  
tCK = 15 ns  
NOP commands only,  
Input signals (except to  
CMD) are changed 1 time  
during 30 ns  
Active Standby Current (Power Supply Current)  
ICC3N  
25  
0 V VIN VIL max  
VIH min VIN VCC  
CKE = VIH  
Any bank idle  
CLK = VIH or VIL  
Input signals are stable  
0 V VIN VIL max  
VIH min VIN VCC  
ICC3NS  
2
mA  
mA  
tCK = min  
MB81F643242C-60  
305  
260  
185  
Burst Length = 4  
Output pin open  
All banks active  
Gapless data  
MB81F643242C-70  
MB81F643242C-10  
Burst mode Current  
(Average Power  
Supply Current)  
ICC4  
Reference Value *4  
@67MHz (CL=3)  
0 V VIN VIL max  
VIH max VIN VCC  
125  
MB81F643242C-60  
MB81F643242C-70  
MB81F643242C-10  
235  
220  
155  
Auto-refresh;  
tCK = min  
tRC = min  
0 V VIN VIL max  
VIH max VIN VCC  
Refresh Current #1  
(Average Power  
Supply Current)  
ICC5  
mA  
mA  
Reference Value *4  
@67MHz (CL=3)  
125  
Self-refresh;  
tCK = min  
CKE 0.2 V  
0 V VIN VIL max  
VIH max VIN VCC  
Refresh Current #2  
ICC6  
2
(Average Power Supply Current)  
Notes: *1. All voltage are referenced to VSS.  
*2. DC characteristics are measured after following the POWER-UP INITIALIZATION procedure in section  
FUNCTIONAL DESCRIPTION“.  
*3. ICC depends on the output termination or load conditions, clock cycle rate, signal clocking rate. The  
specified values are obtained with the output open and no termination register.  
*4. This value is for reference only.  
28  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
AC CHARACTERISTICS  
(At recommended operating conditions unless otherwise noted.) Note *1, 2, and *3  
MB81F643242C MB81F643242C MB81F643242C Reference Value *4  
-60  
-70  
-10  
@67MHz, CL=3  
Parameter  
Notes  
Symbol  
Unit  
Min. Max. Min. Max. Min. Max.  
Min.  
20  
15  
4
Max.  
CL = 2  
CL = 3  
*5  
tCK2  
tCK3  
tCH  
tCL  
10  
6
10  
7
15  
10  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Period  
Clock High Time  
Clock Low Time  
2.5  
2.5  
1.5  
1
6
2.5  
2.5  
2
6
7
7
*5  
3
4
Input Setup Time  
Input Hold Time  
*5  
tSI  
2
3
*5  
tHI  
1
1
1
Access Time  
from Clock  
(tCK = min)  
*5,*6, CL = 2  
tAC2  
tAC3  
tLZ  
*7  
1
1
1
1
CL = 3  
5.5  
6
5.5  
6
7
7
Output in Low-Z  
*5  
7
7
CL = 2  
*5,*8  
tHZ2  
tHZ3  
Output in  
High-Z  
2.5  
2.5  
3
3
CL = 3  
5.5  
5.5  
7
7
CL = 2  
*5,*7  
Output Hold  
Time  
tOH  
2.5  
2.5  
3
3
CL = 3  
Time between Auto-Refresh  
command interval  
tREFI  
15.6  
15.6  
15.6  
15.6  
µs  
*4  
*5  
Time between Refresh  
Transition Time  
tREF  
tT  
64  
10  
64  
10  
64  
10  
64  
10  
ms  
ns  
0.5  
0.5  
0.5  
0.5  
CKE Setup Time for Power  
Down Exit Time  
tCKSP  
1.5  
2
3
3
ns  
29  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
BASE VALUES FOR CLOCK COUNT/LATENCY  
MB81F643242C MB81F643242C MB81F643242C Reference Value *4  
-60 -70 -10  
@67MHz, CL=3  
Parameter Notes  
Symbol  
Unit  
Min. Max. Min. Max. Min. Max.  
Min.  
Max.  
RAS Cycle  
*9  
t
RC  
60  
63  
90  
110  
ns  
Time  
RAS Precharge Time  
RAS Active Time  
tRP  
tRAS  
tRCD  
tWR  
18  
42  
18  
6
110K  
20  
42  
20  
7
110K  
30  
60  
30  
10  
110K  
40  
70  
30  
15  
110K  
ns  
ns  
ns  
ns  
RAS to CAS Delay Time  
Write Recovery Time  
RAS to RAS Bank Active  
Delay Time  
tRRD  
tDPL  
12  
7
14  
7
20  
10  
30  
15  
ns  
ns  
ns  
ns  
ns  
Data-in to Precharge Lead  
Time  
1 cyc  
+ tRP  
1cyc  
+ tRP  
1cyc  
+ tRP  
1 cyc  
+ tRP  
CL=2  
tDAL2  
tDAL3  
tRSC  
Data-in to Active/  
Refresh Command  
2 cyc  
+ tRP  
2cyc  
+ tRP  
2cyc  
+ tRP  
2 cyc  
+ tRP  
Period  
CL=3  
Mode Resister Set Cycle  
Time  
12  
14  
20  
30  
CLOCK COUNT FORMULA Note *10  
Base Value  
Clock ≥  
(Round off a whole number)  
Clock Period  
30  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
LATENCY - FIXED VALUES  
(The latency values on these parameters are fixed regardless of clock period.)  
MB81F643242C  
-60  
MB81F643242C MB81F643242C  
Parameter  
Symbol  
Unit  
-70  
-10  
CKE to Clock Disable  
lCKE  
lDQZ  
1
2
0
2
0
2
3
2
3
1
1
1
1
cycle  
cycle  
cycle  
cycle  
cycle  
cycle  
cycle  
cycle  
cycle  
cycle  
cycle  
DQM to Output in High-Z  
2
2
DQM to Input Data Delay  
lDQD  
lOWD  
lDWD  
lROH2  
lROH3  
lBSH2  
lBSH3  
lCCD  
0
0
Last Output to Write Command Delay  
Write Command to Input Data Delay  
2
2
0
0
CL = 2  
CL = 3  
CL = 2  
CL = 3  
2
2
Precharge to Outputing  
High-Z Delay  
3
3
2
2
Burst Stop Command to Output  
in High-Z Delay  
3
3
CAS to CAS Delay (min)  
CAS Bank Delay (min)  
1
1
lCBD  
1
1
Notes: *1. AC characteristics are measured after following the POWER-UP INITIALIZATION procedure in section  
FUNCTIONAL DESCRIPTION“.  
*2. AC characteristics assume tT = 1 ns and 30 pF of capacitive load.  
*3. 1.4 V is the reference level for measuring timing of input signals. Transition times are measured  
between VIH (min) and VIL (max). (See Fig. 5)  
*4. This value is for reference only.  
*5. If input signal transition time (tT) is longer than 1 ns; [(tT/2) –0.5] ns should be added to tAC (max), tHZ  
(max), and tCKSP (min) spec values, [(tT/2) –0.5] ns should be subtracted from tLZ (min), tHZ (min), and  
tOH (min) spec values, and (tT –1.0) ns should be added to tCH (min), tCL (min), tSI (min), and tHI (min)  
spec values.  
*6. tAC also specifies the access time at burst mode.  
*7. tAC and tOH are the specs value under OUTPUT LOAD CIRCUIT shown in Fig. 4.  
*8. Specified where output buffer is no longer driven.  
*9. Actual clock count of tRC (lRC) will be sum of clock count of tRAS (lRAS) and tRP (lRP).  
*10. All base values are measured from the clock edge at the command input to the clock edge for the next  
command input. All clock counts are calculated by a simple formula: clock count equals base value  
divided by clock period (round off to a whole number).  
31  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
Fig. 4 – OUTPUT LOAD CIRCUIT  
R1 = 50 Ω  
Output  
1.4 V  
CL = 30 pF  
LVTTL  
Note: By adding appropriate correlation factors to the test conditions, t  
AC and tOH measured when the Output is coupled to  
the Output Load Circuit are within specifications.  
32  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
Fig. 5 – TIMING DIAGRAM, SETUP, HOLD AND DELAY TIME  
tCK  
tCH  
tCL  
2.4 V  
1.4 V  
CLK  
0.4 V  
tSI  
tHI  
2.4 V  
0.4 V  
Input  
(Control,  
Addr. & Data)  
1.4 V  
tAC  
tHZ  
tOH  
tLZ  
2.4 V  
0.4 V  
Output  
1.4 V  
Note: Reference level of input signal is 1.4 V for LVTTL.  
Access time is measured at 1.4 V for LVTTL.  
Fig. 6 – TIMING DIAGRAM, DELAY TIME FOR POWER DOWN EXIT  
Don’t Care  
CLK  
CKE  
1 clock (min)  
tCKSP (min)  
Don’t Care  
NOP  
NOP  
ACTV  
Command  
33  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
Fig. 7 – TIMING DIAGRAM, PULSE WIDTH  
CLK  
tRC, tRP, tRAS, tRCD, tWR, tREF,  
tDPL, tDAL, tRSC, tRRD, tCKSP  
Input  
(Control)  
COMMAND  
COMMAND  
Note: These parameters are a limit value of the rising edge of the clock from one command input to next input. tCKSP is the  
latency value from the rising edge of CKE.  
Measurement reference voltage is 1.4 V.  
Fig. 8 – TIMING DIAGRAM, ACCESS TIME  
CLK  
READ  
Command  
tAC  
tAC  
tAC  
(CAS Latency – 1) × tCK  
DQ0 to DQ31  
(Output)  
Q(Valid)  
Q(Valid)  
Q(Valid)  
34  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAMS  
TIMING DIAGRAM – 1 : CLOCK ENABLE - READ AND WRITE SUSPEND (@ BL = 4)  
CLK  
CKE  
*1  
*1  
ICKE (1 clock)  
ICKE (1 clock)  
*2  
*2  
CLK  
(Internal)  
*2  
(NO CHANGE)  
*2  
(NO CHANGE)  
DQ0 to DQ31  
(Read)  
Q1  
D1  
Q2  
Q3  
Q4  
D4  
*3  
*3  
WRITTEN  
DQ0 to DQ31  
(Write)  
NOT  
WRITTEN  
NOT  
D2  
D3  
Notes: *1. The latency of CKE (lCKE) is one clock.  
*2. During read mode, burst counter will not be incremented/decremented at the next clock of CSUS command. Output  
data remain the same data.  
*3. During the write mode, data at the next clock of CSUS command is ignored.  
TIMING DIAGRAM – 2 : CLOCK ENABLE - POWER DOWN ENTRY AND EXIT  
CLK  
tCKSP  
(min)  
1 clock  
(min)  
CKE  
*1  
*2  
*3  
*3  
*4  
Command  
NOP  
PD(NOP)  
DON’T CARE  
tREF (max)  
NOP  
NOP  
ACTV  
Notes: *1. Precharge command (PRE or PALL) should be asserted if any bank is active and in the burst mode.  
*2. Precharge command can be posted in conjunction with CKE after the last read data have been appeared on DQ.  
*3. It is recommended to apply NOP command in conjunction with CKE.  
*4. The ACTV command can be latched after tCKSP (min) + 1 clock (min).  
35  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 3 : COLUMN ADDRESS TO COLUMN ADDRESS INPUT DELAY  
CLK  
RAS  
ICCD  
(1 clock)  
ICCD  
ICCD  
ICCD  
tRCD (min)  
CAS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
ROW  
ADDRESS  
Address  
Note: CAS to CAS delay can be one or more clock period.  
TIMING DIAGRAM – 4 : DIFFERENT BANK ADDRESS INPUT DELAY  
CLK  
tRRD (min)  
RAS  
CAS  
ICBD  
(1 clock)  
tRCD (min) or more  
ICBD  
tRCD (min)  
ROW  
ADDRESS  
ROW  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
Address  
BA0, BA1  
Bank 0  
Bank 3  
Bank 0  
Bank 3  
Bank 0  
Bank 3  
Note: CAS Bank delay can be one or more clock period.  
36  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 5 : DQM0 - DQM3 - INPUT MASK AND OUTPUT DISABLE (@ BL = 4)  
CLK  
DQM0 to DQM3  
(@ Read)  
IDQZ (2 clocks)  
DQ0 to DQ31  
(@ Read)  
Q1  
Q2  
Hi-Z  
Q4  
End of burst  
DQM0 to DQM3  
(@ Write)  
IDQD (same clock)  
DQ0 to DQ31  
(@ Write)  
D1  
MASKED  
D3  
D4  
End of burst  
TIMING DIAGRAM – 6 : PRECHARGE TIMING (APPLIED TO THE SAME BANK)  
CLK  
tRAS (min)  
Command  
PRE  
ACTV  
Note: PRECHARGE means ’ PRE’ or ’PALL’.  
37  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 7 : READ INTERRUPTED BY PRECHARGE (EXAMPLE @ CL = 2, BL = 4)  
CLK  
Command  
DQ0 to DQ31  
Command  
DQ0 to DQ31  
Command  
DQ0 to DQ31  
Command  
DQ0 to DQ31  
PRECHARGE  
IROH (2 clocks)  
Q1  
Hi-Z  
PRECHARGE  
IROH (2 clocks)  
Hi-Z  
Q1  
Q2  
PRECHARGE  
IROH (2 clocks)  
Hi-Z  
Q1  
Q2  
Q3  
PRECHARGE  
No effect (end of burst)  
Q3 Q4  
Q1  
Q2  
Note: In case of CL = 2, the lROH is 2 clocks.  
In case of CL = 3, the lROH is 3 clocks.  
PRECHARGE means ’ PRE’ or ’PALL’.  
38  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 8 : READ INTERRUPTED BY BURST STOP (EXAMPLE @ BL = Full Column)  
CLK  
Command  
(CL = 2)  
BST  
lBSH (2 clocks)  
Hi-Z  
Qn–2  
Qn–1  
Qn  
Qn+1  
DQ0 to DQ31  
BST  
Command  
(CL = 3)  
lBSH (3 clocks)  
Hi-Z  
DQ0 to DQ31  
Qn-2  
Qn-1  
Qn  
Qn+1  
Qn+2  
TIMING DIAGRAM – 9 : WRITE INTERRUPTED BY BURST STOP (EXAMPLE @ BL = 2)  
CLK  
Command  
BST  
COMMAND  
LAST  
DATA-IN  
Masked  
by BST  
DQ0 to DQ31  
39  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 10 : WRITE INTERRUPTED BY PRECHARGE (EXAMPLE @ CL = 3)  
CLK  
ACTV  
PRECHARGE  
tDPL (min)  
Command  
tRP (min)  
DQ0 to DQ31  
LAST  
DATA-IN  
MASKED  
by Precharge  
DATA-  
Note: The precharge command (PRE) should only be issued after the tDPL of final data input is satisfied.  
PRECHARGE means ’ PRE’ or ’PALL’.  
TIMING DIAGRAM – 11 : READ INTERRUPTED BY WRITE (EXAMPLE @ CL = 3, BL = 4)  
CLK  
IOWD (2 clocks)  
READ  
WRIT  
Command  
*1  
*2  
*3  
DQM  
(DQM0 to DQM3)  
IDQZ (2 clocks)  
IDWD (same clock)  
DQ0 to DQ31  
Q1  
D1  
D2  
Masked  
Notes: *1. First DQM makes high-impedance state High-Z between last output and first input data.  
*2. Second DQM makes internal output data mask to avoid bus contention.  
*3. Third DQM in illustrated above also makes internal output data mask. If burst read ends (final data output) at or after the  
second clock of burst write, this third DQM is required to avoid internal bus contention.  
40  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 12 : WRITE TO READ TIMING (EXAMPLE @ CL = 3, BL = 4)  
tWR (min)  
CLK  
Command  
WRIT  
READ  
DQM  
(DQM0 to DQM3)  
(CL-1) × tCK  
tAC (max)  
D3  
DQ0 to DQ31  
D1  
D2  
Q1  
Q2  
Masked  
by READ  
Note: Read command should be issued after tWR of final data input is satisfied.  
41  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 13 : READ WITH AUTO-PRECHARGE  
(EXAMPLE @ CL = 2, BL = 2 Applied to same bank)  
CLK  
tRAS (min)  
READA  
tRP (min)  
ACTV  
NOP or DESL  
ACTV  
Command  
DQM  
*1  
2 clocks  
(same value as BL)  
*2  
BL+tRP (min)  
(DQM0 to DQM3)  
DQ0 to DQ31  
Q1  
Q2  
Notes: *1. Precharge at read with Auto-precharge command (READA) is started from number of clocks that is the same as  
Burst Length (BL) after the READA command is asserted.  
*2. Next ACTV command should be issued after BL+tRP (min) from READA command.  
TIMING DIAGRAM – 14 : WRITE WITH AUTO-PRECHARGE *1, *2, and *3  
(EXAMPLE @ CL = 2, BL = 2 Applied to same bank)  
tRAS (min)  
CLK  
*4  
CL- 1  
tDAL (min)  
BL+tRP (min) *5  
Command  
ACTV  
WRITA  
NOP or DESL  
ACTV  
DQM  
(DQM0 to DQM3)  
DQ0 to DQ31  
D1  
D2  
Notes: *1. Even if the final data is masked by DQM, the precharge does not start the clock of final data input.  
*2. Once auto precharge command is asserted, no new command within the same bank can be issued.  
*3. Auto-precharge command doesn’t affect at full column burst operation except Burst READ & Single Write.  
*4. Precharge at write with Auto-precharge is started after the CL - 1 from the end of burst.  
*5. Next command should be issued after BL+ tRP (min) at CL = 2, BL+1+tRP (min) at CL = 3 from WRITA command.  
42  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 15 : AUTO-REFRESH TIMING  
CLK  
*3  
*4  
*1  
*3  
*3  
*3  
Command  
REF  
NOP  
NOP  
NOP  
REF  
NOP  
Command  
tRC (min)  
tRC (min)  
*2  
DON’T CARE  
*2  
DON’T CARE  
BA  
BA0, BA1  
Notes: *1. All banks should be precharged prior to the first Auto-refresh command (REF).  
*2. Bank select is ignored at REF command. The refresh address and bank select are selected by internal refresh counter.  
*3. Either NOP or DESL command should be asserted during tRC period while Auto-refresh mode.  
*4. Any activation command such as ACTV or MRS command other than REF command should be asserted after tRC from the  
last REF command.  
TIMING DIAGRAM – 16 : SELF-REFRESH ENTRY AND EXIT TIMING  
CLK  
tCKSP (min)  
tSI (min)  
CKE  
*4  
tRC (min)  
*2  
*3  
*1  
SELF  
DON’T CARE  
SELFX  
Command  
NOP  
NOP  
NOP  
Command  
Notes: *1. Precharge command (PRE or PALL) should be asserted if any bank is active prior to Self-refresh Entry command (SELF).  
*2. The Self-refresh Exit command (SELFX) is latched after tCKSP (min). It is recommended to apply NOP command in  
conjunction with CKE.  
*3. Either NOP or DESL command can be used during tRC period.  
*4. CKE should be held high within one tRC period after tCKSP.  
43  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 17 : MODE REGISTER SET TIMING  
CLK  
tRSC (min)  
MRS  
NOP or DESL  
ACTV  
Command  
Address  
ROW  
ADDRESS  
MODE  
Notes: The Mode Register Set command (MRS) should only be asserted after all banks have been precharged.  
44  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
SCITT TEST MODE  
ABOUT SCITT  
SCITT (Static Component Interconnection Test Technology) is an XNOR circuit based test technology that is used  
for testing interconnection between SDRAM and SDRAM controller on the printed circuit boards. SCITT provides  
inexpensive board level test mode in combination with boundary-scan. The basic idea is simple, consider all output  
of SDRAM as output of XNOR circuit and each output pin has a unique mapping on the input of SDRAM. The ideal  
schematic block diagram is as shown below.  
TEST  
Control  
µC  
SDRAM  
CORE  
xAddress  
Boundary  
Scan  
Bus  
XNOR  
ASIC  
Data Bus  
TEST Control : CAS, CS, CKE  
xAddress Bus : A0 to A10, BA0, BA1, RAS, DQM0 to DQM3, CLK, WE  
Data Bus : DQ0 to DQ31  
It is static and provides easy test pattern that result in a high diagnostic resolution for detecting all open/short faults.  
The MB81F643242C adopts SCITT as an optional function. See Package and “Ordering Information” in section “■  
PACKAGE“.  
45  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
SCITT TEST SEQUENCE  
The followings are the SCITT test sequence. SCITT Test can be executed after power-on and prior to Precharge  
command in POWER-UP INITIALIZATION. Once Precharge command is issued to SDRAM, it never get back to  
SCITT Test Mode during regular operation for the purpose of a fail-safe way in get in and out of test mode.  
1. Apply power. Attempt to maintain either NOP or DESL command at the input.  
2. Maintain stable power for a minimum of 100us.  
3. Enter SCITT test mode.  
4. Execute SCITT test.  
5. Exit from SCITT mode.  
It is required to follow Power On Sequence to execute read or write operation.  
6. Start clock. Attempt to maintain either NOP or DESL command at the input.  
7. Precharge all banks by Precharge (PRE) or Precharge All command (PALL).  
8. Assert minimum of 2 Auto-Refresh command (REF).  
9. Program the mode register by Mode Register Set command (MRS).  
The 3,4,5 steps define the SCITT mode available. It is possible to skip these steps if necessary (Refer to POWER-  
UP INITIALIZATION).  
COMMAND TRUTH TABLE Note *1  
Control  
CS  
Input  
Output  
DQM0  
to  
DQM3  
DQ0  
to  
DQ31  
A0 to A10  
BA0, BA1  
CAS  
CKE  
WE  
RAS  
CLK  
HL *2  
LH *3  
SCITT mode entry  
SCITT mode exit  
L
L
X
X
X
X
X
X
X
X
X
X
X
X
H *5  
L *5  
SCITT mode  
L
L
H
V
V
V
V
V
V
output enable *4  
Notes: *1. L = Logic Low, H = Logic High, V = Valid, X = either L or H  
*2. The SCITT mode entry command assumes the first CAS falling edge with CS and CKE = L after power  
on.  
*3. The SCITT mode exit command assumes the first CAS rising edge after the test mode entry.  
*4. Refer the test code table.  
*5. CS = H or CKE = L is necessary to disable outputs in SCITT mode exit.  
46  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TEST CODE TABLE  
DQ0 to DQ31 output data is static and is determined by following logic during the SCITT mode operation.  
DQ0 = RAS xnor A0  
DQ1 = RAS xnor A1  
DQ2 = RAS xnor A2  
DQ3 = RAS xnor A3  
DQ4 = RAS xnor A4  
DQ5 = RAS xnor A5  
DQ6 = RAS xnor A6  
DQ7 = RAS xnor A7  
DQ8 = RAS xnor A8  
DQ9 = RAS xnor A9  
DQ10 = RAS xnor A10  
DQ11 = RAS xnor BA1  
DQ12 = RAS xnor BA0  
DQ13 = RAS xnor DQM0  
DQ14 = RAS xnor DQM1  
DQ15 = RAS xnor DQM2  
DQ16 = RAS xnor DQM3  
DQ17 = RAS xnor CLK  
DQ18 = RAS xnor WE  
DQ19 = A0 xnor A1  
DQ22 = A0 xnor A4  
DQ23 = A0 xnor A5  
DQ24 = A0 xnor A6  
DQ25 = A0 xnor A7  
DQ26 = A0 xnor A8  
DQ27 = A0 xnor A9  
DQ28 = A0 xnor A10  
DQ29 = A0 xnor BA1  
DQ30 = A0 xnor BA0  
DQ31 = A0 xnor DQM0  
DQ20 = A0 xnor A2  
DQ21 = A0 xnor A3  
• EXAMPLE OF TEST CODE TABLE  
Input bus  
Output bus  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H  
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L L L L L L L L L L L L L L L L L L L H H H H H H H H H H H H H  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L H H H H H H H H H H H H H H H H H H L L L L L L L L L L L L L  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H L H H H H H H H H H H H H H H H H H L H H H H H H H H H H H H  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H L H H H H H H H H H H H H H H H H H L H H H H H H H H H H H  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H L H H H H H H H H H H H H H H H H H L H H H H H H H H H H  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H H L H H H H H H H H H H H H H H H H H L H H H H H H H H H  
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 H H H H H L H H H H H H H H H H H H H H H H H L H H H H H H H H  
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 H H H H H H L H H H H H H H H H H H H H H H H H L H H H H H H H  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 H H H H H H H L H H H H H H H H H H H H H H H H H L H H H H H H  
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 H H H H H H H H L H H H H H H H H H H H H H H H H H L H H H H H  
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 H H H H H H H H H L H H H H H H H H H H H H H H H H H L H H H H  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 H H H H H H H H H H L H H H H H H H H H H H H H H H H H L H H H  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 H H H H H H H H H H H L H H H H H H H H H H H H H H H H H L H H  
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H L H  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H L  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 H H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 H H H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 H H H H H H H H H H H H H H H H H L H H H H H H H H H H H H H H  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 H H H H H H H H H H H H H H H H H H L H H H H H H H H H H H H H  
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L L L L L L L L L L L L L L L L L L L H H H H H H H H H H H H H  
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L H H H H H H H H H H H H H H H H H H L L L L L L L L L L L L L  
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H L H H H H H H H H H H H H H H H H H L H H H H H H H H H H H H  
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H L H H H H H H H H H H H H H H H H H L H H H H H H H H H H H  
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H L H H H H H H H H H H H H H H H H H L H H H H H H H H H H  
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H H L H H H H H H H H H H H H H H H H H L H H H H H H H H H  
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H H H L H H H H H H H H H H H H H H H H H L H H H H H H H H  
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 H H H H H H L H H H H H H H H H H H H H H H H H L H H H H H H H  
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 H H H H H H H L H H H H H H H H H H H H H H H H H L H H H H H H  
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 H H H H H H H H L H H H H H H H H H H H H H H H H H L H H H H H  
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 H H H H H H H H H L H H H H H H H H H H H H H H H H H L H H H H  
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 H H H H H H H H H H L H H H H H H H H H H H H H H H H H L H H H  
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 H H H H H H H H H H H L H H H H H H H H H H H H H H H H H L H H  
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H L H  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H L  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 H H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 H H H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 H H H H H H H H H H H H H H H H H L H H H H H H H H H H H H H H  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 H H H H H H H H H H H H H H H H H H L H H H H H H H H H H H H H  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H  
0 = input Low, 1 = input High, L = output Low, H = output High  
47  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
AC SPECIFICATION  
Parameter  
Description  
Test mode entry set up time  
Minimum  
Maximum  
Units  
ns  
tTS  
tTH  
10  
10  
10  
0
20  
Test mode entry hold time  
ns  
tEPD  
tTLZ  
tTHZ  
Test mode exit to power on sequence delay time  
Test mode output in Low-Z time  
Test mode output in High-Z time  
ns  
ns  
0
ns  
Test mode access time from control signals  
(output enable & chip select)  
tTCA  
40  
ns  
tTIA  
tTOH  
tETD  
tTIH  
Test mode Input access time  
Test mode Output Hold time  
Test mode entry to test delay time  
Test mode input hold time  
0
20  
ns  
ns  
ns  
ns  
10  
30  
TIMING DIAGRAMS  
TIMING DIAGRAM – 1 : POWER-UP TIMING DIAGRAM  
*2  
VDD  
100µs Pause Time  
Test Mode Entry Point  
CS  
CKE  
*3  
CAS  
*1  
Notes: *1. SCITT is enabled if CS = L, CKE = L, CAS = L at just power on.  
*2. All output buffers maintains in High-Z state regardless of the state of control signals as long as  
the above timing is maintained.  
*3. CAS must not be brought from High to Low.  
48  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 2 : SCITT TEST ENTRY AND EXIT *1  
Next power on sequence  
and normal operation  
VCC  
Pause 100µs  
tTS  
tTH  
Test Mode  
tEPD  
H L  
CAS  
CS  
L
L
CKE  
*3  
*2  
Exit  
Entry  
Notes: *1. If entry and exit operation have not been done correctly, CAS, CS, CKE pins will have some problems.  
*2. PRE or PALL commands must not be asserted. Test mode is disable by those commands.  
*3. Outputs must be disabled by CS = H or CKE = L before Exit.  
49  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 3 : OUTPUT CONTROL (1)  
VDD  
Entry  
CAS must not brought from High to Low  
CAS  
DQ turn to Low-Z at CS=L and CKE=H  
DQ turn to High-Z at CS=H  
CS  
CKE  
High-Z  
High-Z  
DQ0 to DQ31  
tTLZ  
tTHZ  
Memory device  
Low-Z  
High-Z  
output buffer status  
Time (a)  
Time (b)  
Time (c)  
This is not bus line level  
TIMING DIAGRAM – 4 : OUTPUT CONTROL (2)  
VDD  
Entry  
CAS must not brought from High to Low  
CAS  
CS  
DQ turn to Low-Z at CS=L and CKE=H  
DQ turn to High-Z at CKE=L  
CKE  
High-Z  
High-Z  
DQ0 to DQ31  
tTLZ  
tTHZ  
Memory device  
Low-Z  
High-Z  
output buffer status  
Time (a)  
Time (b)  
Time (c)  
This is not bus line level  
50  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 5 : TEST TIMING (1)  
Test mode  
Entry Command  
Test mode  
Entry  
tETD  
Under test  
CAS  
CS  
CKE  
DQ becomes Low-Z at CS=L and CKE=H  
A0  
A1  
A2  
tTCA  
Under  
Check  
Pins  
tTIA  
tTIA  
tTIA  
tTOH  
Valid  
tTOH  
Valid  
Valid  
DQ0 to DQ31  
tTLZ  
51  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 6 : TEST TIMING (2)  
Test mode  
Entry  
Test mode  
Exit  
Under test  
CAS  
L
CS-#1  
L
Changed under test devices  
Tested #2 device  
H
CS-#2  
CKE  
Tested #1 device  
tTIH  
tTIH  
tTIH  
tTCA  
A0  
A1  
A2  
tTLZ  
tTHZ  
Under  
Check  
Pins  
tTIA  
tTIA  
tTIA  
tTIA  
tTIA  
tTOH  
Valid  
tTOH  
Valid  
tTOH  
Valid  
Valid  
Valid  
DQ0 to DQ31  
52  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
TIMING DIAGRAM – 7 : TEST TIMING (3)  
Test mode  
Entry  
Test mode  
Exit  
Under test  
CAS  
L
CS-#1  
L
Changed under test devices  
Tested #2 device  
H
CS-#2  
CKE  
Tested #1 device  
tTIH  
tTHZ  
tTIH  
tTIH  
A0  
A1  
A2  
tTCA  
Under  
Check  
Pins  
tTLZ  
tTIA  
tTIA  
tTIA  
tTIA  
tTIA  
tTOH  
Valid  
tTOH  
Valid  
tTOH  
Valid  
Valid  
Valid  
DQ0 to DQ31  
53  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
PACKAGE DIMENSION  
86-pin plastic TSOP(II)  
*: Resin protrusion. (Each side: 0.15 (.006) MAX)  
(FPT-86P-M01)  
86  
44  
Details of "A" part  
0.25(.010)  
INDEX  
0.45/0.75  
(.018/.030)  
0~8˚  
1
43  
LEAD No.  
*22.22±0.10(.875±.004)  
11.76±0.20(.463±.008)  
10.16±0.10(.400±.004)  
0.22+00..0045  
.009 +..000022  
1.20(.047)MAX  
(Mounting height)  
0.145+00..0035  
.006+..000012  
M
0.10(.004)  
"A"  
0.50(.020)TYP  
0.10±0.05  
(.004±.002)  
(STAND OFF)  
0.10(.004)  
21.00(.827)REF  
C
Dimensions in MM (inches)  
1996 FUJITSU LIMITED F86001S-1C-1  
54  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
MEMO  
55  
MB81F643242C-60/-70/-10 Advanced Info (AE0.1E)  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
Fax: (408) 922-9179  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inhereut chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F0001  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB81F64442B-103LFN

Synchronous DRAM, 16MX4, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842B-103EFN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842B-103FN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842B-103LFN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842B-10LFN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842C-102FN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842C-103FN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842D-102FN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81F64842D-102LFN

Synchronous DRAM, 8MX8, 6ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54
FUJITSU

MB81G163222--10TQ

Synchronous Graphics RAM, 512KX32, 7ns, CMOS, PQFP100, PLASTIC, TQFP-100
FUJITSU

MB81G163222--80TQ

Synchronous Graphics RAM, 512KX32, 7ns, CMOS, PQFP100, PLASTIC, TQFP-100
FUJITSU

MB81G83222-010PQ

暂无描述
FUJITSU